Novel hybrid-type solutions for the (3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients

In this article, the bilinear form, Bäcklund transformation, Lax pair and infinite conservation laws of the (3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients are constructed based on the Bell polynomials approach. N-soliton solutions are studied by m...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 107; no. 1; pp. 1163 - 1177
Main Authors Han, Peng-Fei, Bao, Taogetusang
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-090X
1573-269X
DOI10.1007/s11071-021-07019-5

Cover

Loading…
Abstract In this article, the bilinear form, Bäcklund transformation, Lax pair and infinite conservation laws of the (3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients are constructed based on the Bell polynomials approach. N-soliton solutions are studied by means of introducing the complex conjugate condition technique and selecting appropriate test functions and parameters, including the hybrid solution of the a -order kink waves, b -order periodic-kink waves and c -order periodic-breather waves. The homoclinic test method is applied to investigate their dynamical interaction properties between different forms of hybrid-type solutions. Besides, a number of examples are presented by choosing different types of interactions among the hybrid-type solutions. Finally, we analyze the wave propagation direction and velocity to reflect the novel evolutionary behaviors in the three-dimensional profile of the model. These results are helpful to the study of local wave interactions in nonlinear mathematical physics.
AbstractList In this article, the bilinear form, Bäcklund transformation, Lax pair and infinite conservation laws of the (3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients are constructed based on the Bell polynomials approach. N-soliton solutions are studied by means of introducing the complex conjugate condition technique and selecting appropriate test functions and parameters, including the hybrid solution of the a-order kink waves, b-order periodic-kink waves and c-order periodic-breather waves. The homoclinic test method is applied to investigate their dynamical interaction properties between different forms of hybrid-type solutions. Besides, a number of examples are presented by choosing different types of interactions among the hybrid-type solutions. Finally, we analyze the wave propagation direction and velocity to reflect the novel evolutionary behaviors in the three-dimensional profile of the model. These results are helpful to the study of local wave interactions in nonlinear mathematical physics.
In this article, the bilinear form, Bäcklund transformation, Lax pair and infinite conservation laws of the (3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients are constructed based on the Bell polynomials approach. N-soliton solutions are studied by means of introducing the complex conjugate condition technique and selecting appropriate test functions and parameters, including the hybrid solution of the a -order kink waves, b -order periodic-kink waves and c -order periodic-breather waves. The homoclinic test method is applied to investigate their dynamical interaction properties between different forms of hybrid-type solutions. Besides, a number of examples are presented by choosing different types of interactions among the hybrid-type solutions. Finally, we analyze the wave propagation direction and velocity to reflect the novel evolutionary behaviors in the three-dimensional profile of the model. These results are helpful to the study of local wave interactions in nonlinear mathematical physics.
Author Bao, Taogetusang
Han, Peng-Fei
Author_xml – sequence: 1
  givenname: Peng-Fei
  orcidid: 0000-0003-1164-5819
  surname: Han
  fullname: Han, Peng-Fei
  organization: College of Mathematics Science, Inner Mongolia Normal University
– sequence: 2
  givenname: Taogetusang
  surname: Bao
  fullname: Bao, Taogetusang
  email: tgts@imnu.edu.cn
  organization: College of Mathematics Science, Inner Mongolia Normal University
BookMark eNp9kM-KFDEQxoOs4OzqC3gKeFEkWkm6O91HXfyHi14U9hYyncpMdnuT3iSz0p68evYNfRIzO4LgYQMhBVW_r_J9x-QoxICEPObwggOol5lzUJyBqFcBH1h7j6x4qyQT3XB-RFYwiIbBAOcPyHHOFwAgBfQr8vNTvMGJbpd18paVZUaa47QrPoZMXUy0bJE-lc_5M2b9FYZcG2aiGwyYzOS_o6Wv4yYu5maqzcvl949fH2OIM07jFsNlpHi9M3s1-s2XLS1Vg1mcMVgMhY4RnfOjr3V-SO47M2V89Pc9IV_fvvly-p6dfX734fTVGRslHwpznTHCikaAQCX6vrHNemgGqaxroZctH5QzQjRr2ysjOzeaoefgRD_KdT2dPCFPDrpzitc7zEVfxF2qprIWHe8apRTsp8Rhakwx54ROz8lfmbRoDnofuT5Ermvk-jZy3Vao_w8afbl1X5Lx092oPKC57gkbTP9-dQf1B-0lm5Y
CitedBy_id crossref_primary_10_1007_s11071_022_07658_2
crossref_primary_10_1007_s11082_023_05440_1
crossref_primary_10_1007_s11071_022_07920_7
crossref_primary_10_1007_s11071_023_09090_6
crossref_primary_10_1007_s11071_023_09062_w
crossref_primary_10_1016_j_padiff_2025_101136
crossref_primary_10_3934_math_2023864
crossref_primary_10_1007_s11071_023_08348_3
crossref_primary_10_1140_epjp_s13360_022_02413_3
crossref_primary_10_1007_s11071_022_07327_4
crossref_primary_10_1080_00207160_2023_2219349
crossref_primary_10_1007_s11071_022_08097_9
crossref_primary_10_1007_s11071_022_08209_5
crossref_primary_10_1007_s11071_023_08424_8
Cites_doi 10.1007/s00366-020-01175-9
10.1016/j.camwa.2019.03.008
10.1016/j.cnsns.2020.105613
10.1016/j.camwa.2016.03.022
10.1007/s11071-021-06603-z
10.1088/1402-4896/ab7f48
10.1007/s11071-019-04866-1
10.1088/1674-1056/23/3/030201
10.1007/s11071-017-3429-x
10.1142/S0217984920503297
10.1002/mma.5899
10.1007/s11071-020-06167-4
10.1142/S0217984917502165
10.1016/j.camwa.2019.03.048
10.1016/j.chaos.2021.111029
10.1007/s11071-019-04956-0
10.1016/j.aml.2019.106063
10.1002/mma.6931
10.1007/s11071-018-4222-1
10.1007/s11071-019-05458-9
10.1108/HFF-10-2019-0760
10.1002/mma.6000
10.1002/mma.7093
10.1016/j.aml.2018.12.005
10.1007/s11071-019-05110-6
10.1140/epjp/s13360-020-01023-1
10.1016/j.physleta.2021.127429
10.1016/j.jmaa.2012.11.028
10.1140/epjp/i2015-15215-1
10.1142/S0217979220502215
10.1016/j.cjph.2019.11.005
10.1007/s11071-016-2755-8
10.1140/epjp/s13360-020-00405-9
10.1007/s11071-018-4196-z
10.1007/s11071-018-4085-5
10.1007/s12043-018-1700-4
10.1007/s11071-018-4724-x
10.1016/j.rinp.2020.103329
10.1007/s11071-021-06291-9
10.1140/epjp/s13360-020-00883-x
10.1007/s11071-014-1678-5
10.1017/CBO9780511543043
10.1088/1402-4896/ab52c1
10.1016/j.oceaneng.2014.12.017
10.1140/epjp/s13360-021-01918-7
10.1002/mma.5721
10.1140/epjp/s13360-021-01828-8
10.1007/s11071-019-05294-x
10.1002/mma.7490
10.1142/S021797922150079X
10.1007/s12043-020-01987-w
10.1016/j.camwa.2018.03.022
10.1007/s11071-020-06154-9
10.1007/s11071-020-05926-7
10.1142/S0217979221502337
10.1016/j.aml.2019.05.025
10.1007/s12043-021-02082-4
10.1140/epjp/s13360-021-01925-8
10.1016/j.camwa.2017.08.033
10.1088/1402-4896/aba5ae
10.1007/s11071-019-05269-y
10.1007/s11071-018-04736-2
10.1016/j.rinp.2020.103532
10.1016/j.cnsns.2019.105116
10.1007/s11071-016-3110-9
10.1016/j.geomphys.2020.103598
10.1063/5.0019219
10.1140/epjp/s13360-020-00629-9
10.1007/s11071-016-2905-z
10.1016/j.rinp.2020.103769
10.1016/j.physleta.2019.125907
10.1007/s11071-020-06186-1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-021-07019-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 1177
ExternalDocumentID 10_1007_s11071_021_07019_5
GrantInformation_xml – fundername: Natural Science Foundation of Inner Mongolia
  grantid: (Grant No. 2020LH01008)
  funderid: http://dx.doi.org/10.13039/501100004763
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-f6aa2d24202e72884d4b94937df50835197fa224bd87a36fca9810f28c3bbbb63
IEDL.DBID 8FG
ISSN 0924-090X
IngestDate Fri Jul 25 11:17:29 EDT 2025
Tue Jul 01 01:52:09 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Fri Feb 21 02:46:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hybrid-type solutions
(3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients
Bell polynomials approach
Infinite conservation laws
Hirota bilinear method
Bäcklund transformation
Homoclinic test method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f6aa2d24202e72884d4b94937df50835197fa224bd87a36fca9810f28c3bbbb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1164-5819
PQID 2616477706
PQPubID 2043746
PageCount 15
ParticipantIDs proquest_journals_2616477706
crossref_primary_10_1007_s11071_021_07019_5
crossref_citationtrail_10_1007_s11071_021_07019_5
springer_journals_10_1007_s11071_021_07019_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Wazwaz (CR32) 2005; 170
Kumar, Kumar, Kharbanda (CR42) 2020; 95
Zhao, Manafian, Zaya, Mohammed (CR57) 2021; 44
Zhao, Tian, Tian, Yang (CR67) 2021; 103
Han, Bao (CR34) 2021; 103
Wang, Gao, Jia, Deng, Hu (CR53) 2017; 31
Osman, Inc, Liu, Hosseini, Yusuf (CR1) 2020; 95
Osman, Wazwaz (CR73) 2019; 42
Han, Bao (CR55) 2021; 136
Tan, Zhang, Zhang (CR51) 2020; 101
Jadaun, Kumar (CR30) 2018; 93
Osman (CR69) 2019; 96
Han, Bao (CR27) 2021; 35
Ilhan, Manafian, Shahriari (CR25) 2019; 78
Manafian, Mohammadi-Ivatloo, Abapour (CR5) 2019; 356
Chen, Tian, Qu, Li, Sun, Du (CR19) 2021; 148
Wang, Wei (CR8) 2020; 102
Liu, Wazwaz (CR11) 2021; 44
Xu, Wazwaz (CR2) 2019; 98
Shen, Tian, Liu (CR62) 2021; 405
Nisar, Ilhan, Abdulazeez, Manafian, Mohammed, Osman (CR47) 2021; 21
Liu, Zhu (CR13) 2021; 103
Lü, Hua, Chen, Tang (CR36) 2021; 95
Liu, Tian, Wamg (CR64) 2021; 136
Zhao, Zhaqilao (CR10) 2020; 135
Kumar, Niwas, Wazwaz (CR22) 2020; 95
Fan, Bao (CR74) 2021; 35
Wang, Wei, Geng (CR3) 2020; 83
Yan, Tian, Dong, Zou (CR9) 2019; 92
Kumar, Kumar, Wazwaz (CR41) 2020; 135
Kumar, Kumar (CR40) 2019; 98
Gupta, Kumar, Jiwari (CR44) 2015; 79
Manafian, Mohammadi Ivatloo, Abapour (CR56) 2020; 43
Mao, Tian, Zou, Zhang, Yan (CR7) 2019; 95
Lü, Chen, Ma (CR37) 2016; 86
Osman, Baleanu, Adem, Hosseini, Mirzazadeh, Eslami (CR59) 2020; 63
Han, Bao (CR68) 2021; 44
Manafian, Lakestani (CR14) 2020; 150
Osman, Machado (CR66) 2018; 93
Gao (CR38) 2015; 96
Liu, Osman, Zhu, Zhou, Baleanu (CR58) 2020; 10
Jiwari, Kumar, Singh (CR46) 2020
Zhaqilao (CR4) 2020; 99
Osman (CR16) 2018; 75
Kumar, Kumar (CR28) 2020; 34
Kumar, Rani (CR43) 2020; 94
Ma (CR39) 2019; 97
Wazwaz (CR54) 2019; 30
Xu (CR12) 2019; 97
Wazwaz, El-Tantawy (CR35) 2017; 88
Han, Bao (CR72) 2021; 105
Wang, Tian (CR21) 2021; 136
Osman, Abdel-Gawad (CR65) 2015; 130
Yadav, Jiwari (CR20) 2019; 95
Manafian, Lakestani (CR60) 2019; 92
Chai, Tian, Sun, Xie (CR17) 2016; 71
CR23
Kumar, Rani (CR29) 2021; 95
Lü, Ma (CR33) 2016; 85
Liu, Zhu (CR48) 2019; 78
Liu, Zhu, Osman, Ma (CR61) 2020; 135
Wang, Chen (CR70) 2013; 400
Lan (CR26) 2019; 94
Liu, Zhu, Zhou, Xiong (CR15) 2019; 97
Ismael, Bulut, Park, Osman (CR6) 2020; 19
Liu, Zhu, Zhou (CR24) 2020; 43
Tan (CR50) 2019; 383
Liu, Xiong (CR52) 2020; 19
Kumar, Gupta, Jiwari (CR45) 2014; 23
Osman (CR49) 2016; 87
Wang, Wang (CR18) 2018; 75
Zhao, Tian, Du, Hu, Liu (CR63) 2021; 136
Hirota (CR71) 2004
Kumar, Jiwari, Mittal, Awrejcewicz (CR31) 2021; 104
JJ Mao (7019_CR7) 2019; 95
JG Liu (7019_CR58) 2020; 10
LL Fan (7019_CR74) 2021; 35
X Zhao (7019_CR67) 2021; 103
J Manafian (7019_CR60) 2019; 92
S Kumar (7019_CR28) 2020; 34
S Kumar (7019_CR42) 2020; 95
PF Han (7019_CR27) 2021; 35
RK Gupta (7019_CR44) 2015; 79
S Kumar (7019_CR29) 2021; 95
KS Nisar (7019_CR47) 2021; 21
X Lü (7019_CR33) 2016; 85
J Chai (7019_CR17) 2016; 71
M Wang (7019_CR21) 2021; 136
AM Wazwaz (7019_CR35) 2017; 88
J Manafian (7019_CR5) 2019; 356
Y Shen (7019_CR62) 2021; 405
MS Osman (7019_CR49) 2016; 87
OA Ilhan (7019_CR25) 2019; 78
X Zhao (7019_CR63) 2021; 136
S Kumar (7019_CR40) 2019; 98
YH Wang (7019_CR70) 2013; 400
X Lü (7019_CR36) 2021; 95
MS Osman (7019_CR65) 2015; 130
W Tan (7019_CR51) 2020; 101
X Lü (7019_CR37) 2016; 86
S Kumar (7019_CR22) 2020; 95
MS Osman (7019_CR1) 2020; 95
V Jadaun (7019_CR30) 2018; 93
SS Chen (7019_CR19) 2021; 148
JG Liu (7019_CR24) 2020; 43
7019_CR23
PF Han (7019_CR72) 2021; 105
ZZ Lan (7019_CR26) 2019; 94
JG Liu (7019_CR52) 2020; 19
R Hirota (7019_CR71) 2004
JG Liu (7019_CR11) 2021; 44
MS Osman (7019_CR66) 2018; 93
PF Han (7019_CR55) 2021; 136
Zhaqilao (7019_CR4) 2020; 99
GQ Xu (7019_CR12) 2019; 97
J Zhao (7019_CR57) 2021; 44
PF Han (7019_CR34) 2021; 103
S Kumar (7019_CR31) 2021; 104
PF Han (7019_CR68) 2021; 44
AM Wazwaz (7019_CR32) 2005; 170
MS Osman (7019_CR69) 2019; 96
AM Wazwaz (7019_CR54) 2019; 30
JG Liu (7019_CR13) 2021; 103
YL Wang (7019_CR53) 2017; 31
S Kumar (7019_CR43) 2020; 94
MS Osman (7019_CR73) 2019; 42
J Manafian (7019_CR56) 2020; 43
SH Liu (7019_CR64) 2021; 136
X Wang (7019_CR3) 2020; 83
JG Liu (7019_CR15) 2019; 97
S Kumar (7019_CR41) 2020; 135
J Manafian (7019_CR14) 2020; 150
HF Ismael (7019_CR6) 2020; 19
X Wang (7019_CR8) 2020; 102
X Wang (7019_CR18) 2018; 75
MS Osman (7019_CR16) 2018; 75
GQ Xu (7019_CR2) 2019; 98
D Zhao (7019_CR10) 2020; 135
MS Osman (7019_CR59) 2020; 63
JG Liu (7019_CR61) 2020; 135
YL Ma (7019_CR39) 2019; 97
JG Liu (7019_CR48) 2019; 78
XY Gao (7019_CR38) 2015; 96
R Jiwari (7019_CR46) 2020
XW Yan (7019_CR9) 2019; 92
W Tan (7019_CR50) 2019; 383
OP Yadav (7019_CR20) 2019; 95
V Kumar (7019_CR45) 2014; 23
References_xml – volume: 136
  start-page: 1002
  year: 2021
  ident: CR21
  article-title: In an inhomogeneous multicomponent optical fiber: Lax pair, generalized Darboux transformation and vector breathers for a three-coupled variable-coefficient nonlinear Schrödinger system
  publication-title: Eur. Phys. J. Plus
– volume: 95
  start-page: 2825
  year: 2019
  end-page: 2836
  ident: CR20
  article-title: Some soliton-type analytical solutions and numerical simulation of nonlinear Schrödinger equation
  publication-title: Nonlinear Dyn.
– volume: 150
  start-page: 103598
  year: 2020
  ident: CR14
  article-title: N-lump and interaction solutions of localized waves to the (2+1)-dimensional variable-coefficient Caudrey–Dodd–Gibbon–Kotera–Sawada equation
  publication-title: J. Geom. Phys.
– volume: 96
  start-page: 1491
  year: 2019
  end-page: 1496
  ident: CR69
  article-title: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation
  publication-title: Nonlinear Dyn.
– volume: 135
  start-page: 870
  issue: 11
  year: 2020
  ident: CR41
  article-title: New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method
  publication-title: Eur. Phys. J. Plus
– volume: 78
  start-page: 848
  year: 2019
  end-page: 856
  ident: CR48
  article-title: Breather wave solutions for the generalized shallow water wave equation with variable coefficients in the atmosphere, rivers, lakes and oceans
  publication-title: Comput. Math. Appl.
– volume: 34
  start-page: 2050221
  issue: 25
  year: 2020
  ident: CR28
  article-title: Lie symmetry analysis and dynamical structures of soliton solutions for the (2+1)-dimensional modified CBS equation
  publication-title: Int. J. Mod. Phys. B
– volume: 95
  start-page: 065207
  issue: 6
  year: 2020
  ident: CR42
  article-title: Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations
  publication-title: Phys. Scr.
– volume: 75
  start-page: 4201
  issue: 12
  year: 2018
  end-page: 4213
  ident: CR18
  article-title: Darboux transformation and nonautonomous solitons for a modified Kadomtsev–Petviashvili equation with variable coefficients
  publication-title: Comput. Math. Appl.
– volume: 94
  start-page: 126
  year: 2019
  end-page: 132
  ident: CR26
  article-title: Periodic, breather and rogue wave solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid dynamics
  publication-title: Appl. Math. Lett.
– volume: 405
  start-page: 127429
  year: 2021
  ident: CR62
  article-title: Solitonic fusion and fission for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves
  publication-title: Phys. Lett. A
– volume: 95
  start-page: 105613
  year: 2021
  ident: CR36
  article-title: Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, B cklund transformation, Lax pair and infinitely many conservation laws
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 44
  start-page: 2200
  year: 2021
  end-page: 2208
  ident: CR11
  article-title: Breather wave and lump-type solutions of new (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation in incompressible fluid
  publication-title: Math. Methods Appl. Sci.
– volume: 30
  start-page: 4259
  issue: 9
  year: 2019
  end-page: 4266
  ident: CR54
  article-title: Painlevé analysis for new (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equations with constant and time-dependent coefficients
  publication-title: Int. J. Numer. Method. H.
– volume: 83
  start-page: 105116
  year: 2020
  ident: CR3
  article-title: Rational solutions for a (3+1)-dimensional nonlinear evolution equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 44
  start-page: 5079
  year: 2021
  end-page: 5098
  ident: CR57
  article-title: Multiple rogue wave, lump-periodic, lump-soliton, and interaction between k-lump and k-stripe soliton solutions for the generalized KP equation
  publication-title: Math. Methods Appl. Sci.
– volume: 79
  start-page: 455
  year: 2015
  end-page: 464
  ident: CR44
  article-title: Exact and numerical solutions of coupled short pulse equation with time-dependent coefficients
  publication-title: Nonlinear Dyn.
– volume: 35
  start-page: 2150079
  issue: 6
  year: 2021
  ident: CR27
  article-title: Integrability aspects and some abundant solutions for a new (4+1)-dimensional KdV-like equation
  publication-title: Int. J. Mod. Phys. B
– volume: 93
  start-page: 349
  year: 2018
  end-page: 360
  ident: CR30
  article-title: Lie symmetry analysis and invariant solutions of (3+1)-dimensional Calogero–Bogoyavlenskii–Schiff equation
  publication-title: Nonlinear Dyn.
– volume: 103
  start-page: 1841
  year: 2021
  end-page: 1850
  ident: CR13
  article-title: Multiple rogue wave, breather wave and interaction solutions of a generalized (3+1)-dimensional variable-coefficient nonlinear wave equation
  publication-title: Nonlinear Dyn.
– volume: 78
  start-page: 2429
  year: 2019
  end-page: 2448
  ident: CR25
  article-title: Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev–Petviashvili equation
  publication-title: Comput. Math. Appl.
– volume: 43
  start-page: 1753
  issue: 4
  year: 2020
  end-page: 1774
  ident: CR56
  article-title: Breather wave, periodic, and cross-kink solutions to the generalized Bogoyavlensky–Konopelchenko equation
  publication-title: Math. Methods Appl. Sci.
– volume: 87
  start-page: 1209
  year: 2016
  end-page: 1216
  ident: CR49
  article-title: Nonlinear interaction of solitary waves described by multi-rational wave solutions of the (2+1)-dimensional Kadomtsev–Petviashvili equation with variable coefficients
  publication-title: Nonlinear Dyn.
– volume: 75
  start-page: 1
  year: 2018
  end-page: 6
  ident: CR16
  article-title: On multi-soliton solutions for the (2+1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide
  publication-title: Comput. Math. Appl.
– volume: 86
  start-page: 523
  issue: 1
  year: 2016
  end-page: 534
  ident: CR37
  article-title: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation
  publication-title: Nonlinear Dyn.
– volume: 170
  start-page: 347
  year: 2005
  end-page: 360
  ident: CR32
  article-title: The Camassa–Holm–KP equations with compact and noncompact travelling wave solutions
  publication-title: Appl. Math. Comput.
– volume: 43
  start-page: 458
  year: 2020
  end-page: 465
  ident: CR24
  article-title: Breather wave solutions for the Kadomtsev–Petviashvili equation with variable coefficients in a fluid based on the variable-coefficient three-wave approach
  publication-title: Math. Meth. Appl. Sci.
– volume: 148
  start-page: 111029
  year: 2021
  ident: CR19
  article-title: Alfvén solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrödinger equation in an inhomogeneous plasma
  publication-title: Chaos Solitons Fract.
– volume: 19
  start-page: 103532
  year: 2020
  ident: CR52
  article-title: Multi-wave, breather wave and lump solutions of the Boiti–Leon–Manna–Pempinelli equation with variable coefficients
  publication-title: Results Phys.
– volume: 96
  start-page: 245
  year: 2015
  end-page: 247
  ident: CR38
  article-title: Bäcklund transformation and shock-wave-type solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid mechanics
  publication-title: Ocean Eng.
– volume: 356
  start-page: 13
  year: 2019
  end-page: 41
  ident: CR5
  article-title: Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation
  publication-title: Appl. Math. Comput.
– volume: 63
  start-page: 122
  year: 2020
  end-page: 129
  ident: CR59
  article-title: Double-wave solutions and Lie symmetry analysis to the (2+1)-dimensional coupled Burgers equations
  publication-title: Chin. J. Phys.
– volume: 135
  start-page: 412
  year: 2020
  ident: CR61
  article-title: An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model
  publication-title: Eur. Phys. J. Plus
– volume: 71
  start-page: 2060
  year: 2016
  end-page: 2068
  ident: CR17
  article-title: Solitons and rouge waves for a generalized (3+1)-dimensional variable-coefficient Kadomtsev–Petviashvili equation in fluid mechanics
  publication-title: Comput. Math. Appl.
– year: 2004
  ident: CR71
  publication-title: The Direct Method in Soliton Theory
– volume: 21
  start-page: 103769
  year: 2021
  ident: CR47
  article-title: Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method
  publication-title: Results Phys.
– volume: 31
  start-page: 1750216
  year: 2017
  ident: CR53
  article-title: Solitons for a (2+1)-dimensional variable-coefficient Bogoyavlensky–Konopelchenko equation in a fluid
  publication-title: Mod. Phys. Lett. B
– volume: 97
  start-page: 81
  year: 2019
  end-page: 87
  ident: CR12
  article-title: Painlev analysis, lump-kink solutions and localized excitation solutions for the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation
  publication-title: Appl. Math. Lett.
– volume: 99
  start-page: 2945
  year: 2020
  end-page: 2960
  ident: CR4
  article-title: Nonlinear dynamics of higher-order rogue waves in a novel complex nonlinear wave equation
  publication-title: Nonlinear Dyn.
– volume: 94
  start-page: 116
  year: 2020
  ident: CR43
  article-title: Lie symmetry reductions and dynamics of soliton solutions of (2+1)-dimensional Pavlov equation
  publication-title: Pramana J. Phys.
– volume: 88
  start-page: 3017
  year: 2017
  end-page: 3021
  ident: CR35
  article-title: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method
  publication-title: Nonlinear Dyn.
– volume: 10
  start-page: 105325
  year: 2020
  ident: CR58
  article-title: The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium
  publication-title: AIP Adv.
– volume: 19
  start-page: 103329
  year: 2020
  ident: CR6
  article-title: M-lump, N-soliton solutions, and the collision phenomena for the (2+1)-dimensional Date–Jimbo–Kashiwara–Miwa equation
  publication-title: Results Phys.
– volume: 101
  start-page: 106063
  year: 2020
  ident: CR51
  article-title: Evolutionary behavior of breathers and interaction solutions with M-solitons for (2+1)-dimensional KdV system
  publication-title: Appl. Math. Lett.
– ident: CR23
– volume: 400
  start-page: 624
  year: 2013
  end-page: 634
  ident: CR70
  article-title: Binary Bell polynomial manipulations on the integrability of a generalized (2+1)-dimensional Korteweg-de Vries equation
  publication-title: J. Math. Anal. Appl.
– volume: 135
  start-page: 617
  year: 2020
  ident: CR10
  article-title: Three-wave interactions in a more general (2+1)-dimensional Boussinesq equation
  publication-title: Eur. Phys. J. Plus
– volume: 102
  start-page: 363
  year: 2020
  end-page: 377
  ident: CR8
  article-title: Antidark solitons and soliton molecules in a (3+1)-dimensional nonlinear evolution equation
  publication-title: Nonlinear Dyn.
– volume: 136
  start-page: 925
  year: 2021
  ident: CR55
  article-title: Dynamic analysis of hybrid solutions for the new (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation with time-dependent coefficients in incompressible fluid
  publication-title: Eur. Phys. J. Plus
– volume: 93
  start-page: 733
  year: 2018
  end-page: 740
  ident: CR66
  article-title: New nonautonomous combined multi-wave solutions for (2+1)-dimensional variable coefficients KdV equation
  publication-title: Nonlinear Dyn.
– volume: 44
  start-page: 11307
  year: 2021
  end-page: 11323
  ident: CR68
  article-title: Bäcklund transformation and some different types of N-soliton solutions to the (3+1)-dimensional generalized nonlinear evolution equation for the shallow-water waves
  publication-title: Math. Methods Appl. Sci.
– volume: 103
  start-page: 1817
  year: 2021
  end-page: 1829
  ident: CR34
  article-title: Construction of abundant solutions for two kinds of (3+1)-dimensional equations with time-dependent coefficients
  publication-title: Nonlinear Dyn.
– volume: 136
  start-page: 159
  year: 2021
  ident: CR63
  article-title: Bilinear Bäcklund transformation, kink and breather-wave solutions for a generalized (2+1)-dimensional Hirota–Satsuma–Ito equation in fluid mechanics
  publication-title: Eur. Phys. J. Plus
– volume: 105
  start-page: 717
  year: 2021
  end-page: 734
  ident: CR72
  article-title: Interaction of multiple superposition solutions for the (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation
  publication-title: Nonlinear Dyn.
– volume: 95
  start-page: 095204
  issue: 9
  year: 2020
  ident: CR22
  article-title: Lie symmetry analysis, exact analytical solutions and dynamics of solitons for (2+1)-dimensional NNV equations
  publication-title: Phys. Scr.
– volume: 95
  start-page: 3005
  year: 2019
  end-page: 3017
  ident: CR7
  article-title: Bilinear formalism, lump solution, lumpoff and instanton/rogue wave solution of a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation
  publication-title: Nonlinear Dyn.
– volume: 104
  start-page: 661
  year: 2021
  end-page: 682
  ident: CR31
  article-title: Dark and bright soliton solutions and computational modeling of nonlinear regularized long wave model
  publication-title: Nonlinear Dyn.
– volume: 85
  start-page: 1217
  issue: 2
  year: 2016
  end-page: 1222
  ident: CR33
  article-title: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation
  publication-title: Nonlinear Dyn.
– volume: 42
  start-page: 6277
  year: 2019
  end-page: 6283
  ident: CR73
  article-title: A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation
  publication-title: Math. Methods Appl. Sci.
– volume: 97
  start-page: 95
  year: 2019
  end-page: 105
  ident: CR39
  article-title: Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers
  publication-title: Nonlinear Dyn.
– volume: 98
  start-page: 1891
  issue: 3
  year: 2019
  end-page: 1903
  ident: CR40
  article-title: Lie symmetry reductions and group invariant solutions of (2+1)-dimensional modified Veronese web equation
  publication-title: Nonlinear Dyn.
– volume: 35
  start-page: 2150233
  issue: 23
  year: 2021
  ident: CR74
  article-title: Lumps and interaction solutions to the (4+1)-dimensional variable-coefficient Kadomtsev–Petviashvili equation in fluid mechanics
  publication-title: Int. J. Mod. Phys. B
– volume: 92
  start-page: 709
  year: 2019
  end-page: 720
  ident: CR9
  article-title: Bäcklund transformation, rogue wave solutions and interaction phenomena for a (3+1)-dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation
  publication-title: Nonlinear Dyn.
– year: 2020
  ident: CR46
  article-title: Lie group analysis, exact solutions and conservation laws to compressible isentropic Navier–Stokes equation
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01175-9
– volume: 95
  start-page: 035229
  year: 2020
  ident: CR1
  article-title: Different wave structures and stability analysis for the generalized (2+1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation
  publication-title: Phys. Scr.
– volume: 92
  start-page: 41
  year: 2019
  ident: CR60
  article-title: Lump-type solutions and interaction phenomenon to the bidirectional Sawada–Kotera equation
  publication-title: Pramana-J. Phys.
– volume: 98
  start-page: 1379
  year: 2019
  end-page: 1390
  ident: CR2
  article-title: Integrability aspects and localized wave solutions for a new (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation
  publication-title: Nonlinear Dyn.
– volume: 383
  start-page: 125907
  year: 2019
  ident: CR50
  article-title: Evolution of breathers and interaction between high-order lump solutions and N-solitons for Breaking Soliton system
  publication-title: Phys. Lett. A
– volume: 103
  start-page: 1785
  year: 2021
  end-page: 1794
  ident: CR67
  article-title: Bilinear Bäcklund transformation, Lax pair and interactions of nonlinear waves for a generalized (2+1)-dimensional nonlinear wave equation in nonlinear optics/fluid mechanics/plasma physics
  publication-title: Nonlinear Dyn.
– volume: 136
  start-page: 917
  year: 2021
  ident: CR64
  article-title: Painlevé analysis, bilinear form, Bäcklund transformation, solitons, periodic waves and asymptotic properties for a generalized Calogero–Bogoyavlenskii–Konopelchenko–Schiff system in a fluid or plasma
  publication-title: Eur. Phys. J. Plus
– volume: 95
  start-page: 51
  issue: 2
  year: 2021
  ident: CR29
  article-title: Lie symmetry analysis, group-invariant solutions and dynamics of solitons to the (2+1)-dimensional Bogoyavlenskii–Schieff equation
  publication-title: Pramana J. Phys.
– volume: 23
  start-page: 030201
  issue: 3
  year: 2014
  ident: CR45
  article-title: Lie group analysis, numerical and non-traveling wave solutions for the (2+1)-dimensional diffusion-advection equation with variable coefficients
  publication-title: Chin. Phys. B
– volume: 130
  start-page: 215
  year: 2015
  ident: CR65
  article-title: Multi-wave solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equations with variable coefficients
  publication-title: Eur. Phys. J. Plus
– volume: 97
  start-page: 2127
  year: 2019
  end-page: 2134
  ident: CR15
  article-title: Multi-waves, breather wave and lump-stripe interaction solutions in a (2+1)-dimensional variable-coefficient Korteweg-de Vries equation
  publication-title: Nonlinear Dyn.
– volume: 78
  start-page: 848
  year: 2019
  ident: 7019_CR48
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2019.03.008
– volume: 95
  start-page: 105613
  year: 2021
  ident: 7019_CR36
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2020.105613
– volume: 71
  start-page: 2060
  year: 2016
  ident: 7019_CR17
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.03.022
– volume: 105
  start-page: 717
  year: 2021
  ident: 7019_CR72
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06603-z
– volume: 95
  start-page: 065207
  issue: 6
  year: 2020
  ident: 7019_CR42
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab7f48
– volume: 96
  start-page: 1491
  year: 2019
  ident: 7019_CR69
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04866-1
– volume: 356
  start-page: 13
  year: 2019
  ident: 7019_CR5
  publication-title: Appl. Math. Comput.
– volume: 23
  start-page: 030201
  issue: 3
  year: 2014
  ident: 7019_CR45
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/23/3/030201
– volume: 88
  start-page: 3017
  year: 2017
  ident: 7019_CR35
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3429-x
– ident: 7019_CR23
  doi: 10.1142/S0217984920503297
– volume: 43
  start-page: 458
  year: 2020
  ident: 7019_CR24
  publication-title: Math. Meth. Appl. Sci.
  doi: 10.1002/mma.5899
– year: 2020
  ident: 7019_CR46
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01175-9
– volume: 103
  start-page: 1817
  year: 2021
  ident: 7019_CR34
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06167-4
– volume: 31
  start-page: 1750216
  year: 2017
  ident: 7019_CR53
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984917502165
– volume: 78
  start-page: 2429
  year: 2019
  ident: 7019_CR25
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2019.03.048
– volume: 148
  start-page: 111029
  year: 2021
  ident: 7019_CR19
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2021.111029
– volume: 97
  start-page: 95
  year: 2019
  ident: 7019_CR39
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04956-0
– volume: 101
  start-page: 106063
  year: 2020
  ident: 7019_CR51
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.106063
– volume: 44
  start-page: 2200
  year: 2021
  ident: 7019_CR11
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6931
– volume: 93
  start-page: 733
  year: 2018
  ident: 7019_CR66
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4222-1
– volume: 99
  start-page: 2945
  year: 2020
  ident: 7019_CR4
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05458-9
– volume: 30
  start-page: 4259
  issue: 9
  year: 2019
  ident: 7019_CR54
  publication-title: Int. J. Numer. Method. H.
  doi: 10.1108/HFF-10-2019-0760
– volume: 43
  start-page: 1753
  issue: 4
  year: 2020
  ident: 7019_CR56
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6000
– volume: 44
  start-page: 5079
  year: 2021
  ident: 7019_CR57
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.7093
– volume: 94
  start-page: 126
  year: 2019
  ident: 7019_CR26
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2018.12.005
– volume: 97
  start-page: 2127
  year: 2019
  ident: 7019_CR15
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05110-6
– volume: 136
  start-page: 159
  year: 2021
  ident: 7019_CR63
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-01023-1
– volume: 405
  start-page: 127429
  year: 2021
  ident: 7019_CR62
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2021.127429
– volume: 400
  start-page: 624
  year: 2013
  ident: 7019_CR70
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2012.11.028
– volume: 130
  start-page: 215
  year: 2015
  ident: 7019_CR65
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2015-15215-1
– volume: 34
  start-page: 2050221
  issue: 25
  year: 2020
  ident: 7019_CR28
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979220502215
– volume: 170
  start-page: 347
  year: 2005
  ident: 7019_CR32
  publication-title: Appl. Math. Comput.
– volume: 63
  start-page: 122
  year: 2020
  ident: 7019_CR59
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2019.11.005
– volume: 85
  start-page: 1217
  issue: 2
  year: 2016
  ident: 7019_CR33
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2755-8
– volume: 135
  start-page: 412
  year: 2020
  ident: 7019_CR61
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00405-9
– volume: 93
  start-page: 349
  year: 2018
  ident: 7019_CR30
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4196-z
– volume: 92
  start-page: 709
  year: 2019
  ident: 7019_CR9
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4085-5
– volume: 92
  start-page: 41
  year: 2019
  ident: 7019_CR60
  publication-title: Pramana-J. Phys.
  doi: 10.1007/s12043-018-1700-4
– volume: 95
  start-page: 2825
  year: 2019
  ident: 7019_CR20
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4724-x
– volume: 19
  start-page: 103329
  year: 2020
  ident: 7019_CR6
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103329
– volume: 104
  start-page: 661
  year: 2021
  ident: 7019_CR31
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06291-9
– volume: 135
  start-page: 870
  issue: 11
  year: 2020
  ident: 7019_CR41
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00883-x
– volume: 79
  start-page: 455
  year: 2015
  ident: 7019_CR44
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1678-5
– volume-title: The Direct Method in Soliton Theory
  year: 2004
  ident: 7019_CR71
  doi: 10.1017/CBO9780511543043
– volume: 95
  start-page: 035229
  year: 2020
  ident: 7019_CR1
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab52c1
– volume: 96
  start-page: 245
  year: 2015
  ident: 7019_CR38
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2014.12.017
– volume: 136
  start-page: 1002
  year: 2021
  ident: 7019_CR21
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-021-01918-7
– volume: 42
  start-page: 6277
  year: 2019
  ident: 7019_CR73
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5721
– volume: 136
  start-page: 917
  year: 2021
  ident: 7019_CR64
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-021-01828-8
– volume: 98
  start-page: 1891
  issue: 3
  year: 2019
  ident: 7019_CR40
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05294-x
– volume: 44
  start-page: 11307
  year: 2021
  ident: 7019_CR68
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.7490
– volume: 35
  start-page: 2150079
  issue: 6
  year: 2021
  ident: 7019_CR27
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S021797922150079X
– volume: 94
  start-page: 116
  year: 2020
  ident: 7019_CR43
  publication-title: Pramana J. Phys.
  doi: 10.1007/s12043-020-01987-w
– volume: 75
  start-page: 4201
  issue: 12
  year: 2018
  ident: 7019_CR18
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.03.022
– volume: 103
  start-page: 1785
  year: 2021
  ident: 7019_CR67
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06154-9
– volume: 102
  start-page: 363
  year: 2020
  ident: 7019_CR8
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05926-7
– volume: 35
  start-page: 2150233
  issue: 23
  year: 2021
  ident: 7019_CR74
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979221502337
– volume: 97
  start-page: 81
  year: 2019
  ident: 7019_CR12
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.05.025
– volume: 95
  start-page: 51
  issue: 2
  year: 2021
  ident: 7019_CR29
  publication-title: Pramana J. Phys.
  doi: 10.1007/s12043-021-02082-4
– volume: 136
  start-page: 925
  year: 2021
  ident: 7019_CR55
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-021-01925-8
– volume: 75
  start-page: 1
  year: 2018
  ident: 7019_CR16
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2017.08.033
– volume: 95
  start-page: 095204
  issue: 9
  year: 2020
  ident: 7019_CR22
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/aba5ae
– volume: 98
  start-page: 1379
  year: 2019
  ident: 7019_CR2
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05269-y
– volume: 95
  start-page: 3005
  year: 2019
  ident: 7019_CR7
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-04736-2
– volume: 19
  start-page: 103532
  year: 2020
  ident: 7019_CR52
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103532
– volume: 83
  start-page: 105116
  year: 2020
  ident: 7019_CR3
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2019.105116
– volume: 87
  start-page: 1209
  year: 2016
  ident: 7019_CR49
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-3110-9
– volume: 150
  start-page: 103598
  year: 2020
  ident: 7019_CR14
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2020.103598
– volume: 10
  start-page: 105325
  year: 2020
  ident: 7019_CR58
  publication-title: AIP Adv.
  doi: 10.1063/5.0019219
– volume: 135
  start-page: 617
  year: 2020
  ident: 7019_CR10
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00629-9
– volume: 86
  start-page: 523
  issue: 1
  year: 2016
  ident: 7019_CR37
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2905-z
– volume: 21
  start-page: 103769
  year: 2021
  ident: 7019_CR47
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103769
– volume: 383
  start-page: 125907
  year: 2019
  ident: 7019_CR50
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2019.125907
– volume: 103
  start-page: 1841
  year: 2021
  ident: 7019_CR13
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06186-1
SSID ssj0003208
Score 2.4133735
Snippet In this article, the bilinear form, Bäcklund transformation, Lax pair and infinite conservation laws of the (3+1)-dimensional generalized...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1163
SubjectTerms Automotive Engineering
Classical Mechanics
Combinatorial analysis
Conservation laws
Control
Dynamical Systems
Engineering
Mechanical Engineering
Original Paper
Polynomials
Propagation
Propagation velocity
Solitary waves
Test methods
Time dependence
Vibration
Wave interaction
Wave propagation
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwKCAKBXlgABVLieM8OhZEVYHoRKVukZ3YBbVKCgmVysTKzD_kl3DOowEESETKFNtDzvbdd_b3HULHrskUVbZDLG56hJmCEw8cCwEsEdqmZQtX6BPdm77TG7CroT0sSGFJedu9PJLMduqK7AZIBaAvhVdriBN7Ga3YgN31vB7QzmL_tWhWh84AZKGzEMOCKvPzGF_dURVjfjsWzbxNdxOtF2Ei7uR23UJLMqqjjSJkxMWCTOpo7ZOe4DZ67cczOcF3c03DIjq7ihdTC0N0iiHawydWyzwloVb1zxU58CiXnr5_hqHP41E85zPwRcl4_v7ydh1H8VROwLTROMbyIVcGxzp9i3VdelJW0U1xEMtMj0JfzdhBg-7l7UWPFLUWSACLMCXK4ZyG4K8NKl3qeSxkos0gdgmVFozX9FbFwd2L0HO55aiAtz3TUNQLLAGPY-2iWhRHcg_hkDNDhczwRADYTwLG5sy1AlNl6M6mDWSWv9wPCiFyXQ9j4lcSytpMPpjJz8zk2w3UWvSZ5jIcf7Zulpb0iyWZ-AAVNenWNZwGOiutW33-fbT9_zU_QKtUUySyNE0T1dLHJ3kIgUsqjrJ5-gHU7uT2
  priority: 102
  providerName: Springer Nature
Title Novel hybrid-type solutions for the (3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients
URI https://link.springer.com/article/10.1007/s11071-021-07019-5
https://www.proquest.com/docview/2616477706
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELVauLQHSmmrbgvIhx5A1GrsOIk5oaXaBYG6QqgrbU-RE9sUsYqX7hZpe-q1Z_4hv4SZxNltkUqkKFI-5pAZe96MPW8I-ZBx6YRLUhZrrpjkhWYKHAuDWMIkPE6KrMAV3S-D9HgoT0bJKCTcpmFbZTsn1hO18SXmyD8B0seaySxKDybXDLtG4epqaKHxlKxy8DRo4ap_tJiJY1F3pIsgxsB8xCgUzTSlcxD3QCAt4ERGcpb865iWaPPBAmntd_rrZC0ARtptNPySPLHVBnkRwCMNQ3O6QZ7_xSz4ivwZ-Bs7pt_nWJDFMM9KF0ZGAadSwH10J97ju8wgv3_DzUEvGhLqy18g-tBf-Lm-Aa80vZrf_b499ZWf2DEoubry1F43HOEUE7kUO9Sztp_ujJbe1swUuEnjNRn2e18_H7PQdYGVMBxnzKVaCwOeOxI2E0pJI4t9CSjGOKSOx0JXp8HxF0ZlOk5dqfcVj5xQZVzAkcZvyErlK_uWUKNl5IyMVFFCFGgh2tYyi0vu6jgvER3C21-el4GSHDtjjPMlmTKqKQc15bWa8qRD9hbfTBpCjkff3mw1mYfBOc2XptQhH1vtLh__X9q7x6W9J88EFkfUCZpNsjL78dNuAWSZFdu1XW6T1e7Rt9MeXA97g7NzuDsU3XuEAuw-
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOPAqILQV8AAlULBLbSbwHhHgtW7bdUyvtLTixU6qu4i0bipYTV878D34Uv4SZPHYBid4aKac4c8hMZuYbe74BeJiEqhBFFHNpQs1VmBmuMbBwxBI2CmWUJRnt6O6N4-GBej-JJmvws-uFoWOVnU-sHbX1OdXIn2GmTz2TSRC_mJ1wmhpFu6vdCI3GLEZu8QUh2_z5zhvU7yMhBm_3Xw95O1WA52huFS9iY4TFyBQIlwitlVVZX2GUtgVRo1MjZ2EwsGVWJ0bGRW76OgwKoXOZ4RVLlHsBLiop-3SEUA_eLT2_FPUEvAAxDdU_Jm2TTtOqhzgLgbvAmxjQefR3IFxlt_9syNZxbnAdrrYJKnvZWNQNWHPlBlxrk1XWuoL5Blz5g8nwJnwf-1M3ZR8X1ADGqa7LlkbNMC9mmGeyx3I7fMItzRNouEDYYUN6ffQVRb_yh35hTjEKzo8Xv779GPnSz9wUjao89sydNJzkjArHrEIZvJvfW7Hcu5oJgw6F3IKDc9HHbVgvfenuALNGBYVVgc5yRJ0O0b1RiczDosaVkehB2H3yNG8p0GkSxzRdkTeTmlJUU1qrKY16sL18Z9YQgJy5eqvTZNo6g3m6Mt0ePO20u3r8f2mbZ0t7AJeG-3u76e7OeHQXLgtqzKiLQ1uwXn367O5hulRl92sbZfDhvH-K36AYJIo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiF6KLSAun2ADxxAxWrsOI89bltWpYUVB1baW-TEdqm6SrbdtNJy4tpz_2F_CTN57LYIkIiUU2wfMrZnvrG_bwDeRkI56YKQ-1rEXIlU8xgdC0csYQLhB2mU0onul0F4NFTHo2B0j8Vf3XZvjyRrTgOpNOXl3sS4vQXxDVELwmCJL-mJ8-ARPMbtWNClrqHszfdiX1Y16TxEGZSRGDW0mT-P8dA1LeLN345IK8_Tfw6rTcjIerWN12DJ5uvwrAkfWbM4p-uwck9b8AXcDIprO2bfZ0TJ4pRpZfNpxjBSZRj5sXf-rnjPDSn81-oc7LSWoT77gUPvF6fFTF-jX5qez-5-3p4UeTGxYzRzfl4we1GrhDNK5TKqUc_birolywpbaVPQNY2XMOx__HZwxJu6CzzDBVlyF2otDfpuT9pIxrEyKu0qjGOMI_F4oro6ja4_NXGk_dBluhsLz8k481N8Qv8VLOdFbjeAGa08Z5QXpxniQIt4W6vIz4SrkF4gOyDaX55kjSg51cYYJws5ZTJTgmZKKjMlQQd2530mtSTHP1tvt5ZMmuU5TRA2EgE38sIOfGitu_j899E2_6_5G3jy9bCffP40ONmCp5KYE1X2ZhuWy8sru4PxTJm-rqbsLyI47CU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+hybrid-type+solutions+for+the+%283%2B1%29-dimensional+generalized+Bogoyavlensky%E2%80%93Konopelchenko+equation+with+time-dependent+coefficients&rft.jtitle=Nonlinear+dynamics&rft.au=Han%2C+Peng-Fei&rft.au=Bao%2C+Taogetusang&rft.date=2022-01-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=107&rft.issue=1&rft.spage=1163&rft.epage=1177&rft_id=info:doi/10.1007%2Fs11071-021-07019-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_021_07019_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon