Novel hybrid-type solutions for the (3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients
In this article, the bilinear form, Bäcklund transformation, Lax pair and infinite conservation laws of the (3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients are constructed based on the Bell polynomials approach. N-soliton solutions are studied by m...
Saved in:
Published in | Nonlinear dynamics Vol. 107; no. 1; pp. 1163 - 1177 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.01.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0924-090X 1573-269X |
DOI | 10.1007/s11071-021-07019-5 |
Cover
Loading…
Abstract | In this article, the bilinear form, Bäcklund transformation, Lax pair and infinite conservation laws of the (3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients are constructed based on the Bell polynomials approach. N-soliton solutions are studied by means of introducing the complex conjugate condition technique and selecting appropriate test functions and parameters, including the hybrid solution of the
a
-order kink waves,
b
-order periodic-kink waves and
c
-order periodic-breather waves. The homoclinic test method is applied to investigate their dynamical interaction properties between different forms of hybrid-type solutions. Besides, a number of examples are presented by choosing different types of interactions among the hybrid-type solutions. Finally, we analyze the wave propagation direction and velocity to reflect the novel evolutionary behaviors in the three-dimensional profile of the model. These results are helpful to the study of local wave interactions in nonlinear mathematical physics. |
---|---|
AbstractList | In this article, the bilinear form, Bäcklund transformation, Lax pair and infinite conservation laws of the (3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients are constructed based on the Bell polynomials approach. N-soliton solutions are studied by means of introducing the complex conjugate condition technique and selecting appropriate test functions and parameters, including the hybrid solution of the a-order kink waves, b-order periodic-kink waves and c-order periodic-breather waves. The homoclinic test method is applied to investigate their dynamical interaction properties between different forms of hybrid-type solutions. Besides, a number of examples are presented by choosing different types of interactions among the hybrid-type solutions. Finally, we analyze the wave propagation direction and velocity to reflect the novel evolutionary behaviors in the three-dimensional profile of the model. These results are helpful to the study of local wave interactions in nonlinear mathematical physics. In this article, the bilinear form, Bäcklund transformation, Lax pair and infinite conservation laws of the (3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients are constructed based on the Bell polynomials approach. N-soliton solutions are studied by means of introducing the complex conjugate condition technique and selecting appropriate test functions and parameters, including the hybrid solution of the a -order kink waves, b -order periodic-kink waves and c -order periodic-breather waves. The homoclinic test method is applied to investigate their dynamical interaction properties between different forms of hybrid-type solutions. Besides, a number of examples are presented by choosing different types of interactions among the hybrid-type solutions. Finally, we analyze the wave propagation direction and velocity to reflect the novel evolutionary behaviors in the three-dimensional profile of the model. These results are helpful to the study of local wave interactions in nonlinear mathematical physics. |
Author | Bao, Taogetusang Han, Peng-Fei |
Author_xml | – sequence: 1 givenname: Peng-Fei orcidid: 0000-0003-1164-5819 surname: Han fullname: Han, Peng-Fei organization: College of Mathematics Science, Inner Mongolia Normal University – sequence: 2 givenname: Taogetusang surname: Bao fullname: Bao, Taogetusang email: tgts@imnu.edu.cn organization: College of Mathematics Science, Inner Mongolia Normal University |
BookMark | eNp9kM-KFDEQxoOs4OzqC3gKeFEkWkm6O91HXfyHi14U9hYyncpMdnuT3iSz0p68evYNfRIzO4LgYQMhBVW_r_J9x-QoxICEPObwggOol5lzUJyBqFcBH1h7j6x4qyQT3XB-RFYwiIbBAOcPyHHOFwAgBfQr8vNTvMGJbpd18paVZUaa47QrPoZMXUy0bJE-lc_5M2b9FYZcG2aiGwyYzOS_o6Wv4yYu5maqzcvl949fH2OIM07jFsNlpHi9M3s1-s2XLS1Vg1mcMVgMhY4RnfOjr3V-SO47M2V89Pc9IV_fvvly-p6dfX734fTVGRslHwpznTHCikaAQCX6vrHNemgGqaxroZctH5QzQjRr2ysjOzeaoefgRD_KdT2dPCFPDrpzitc7zEVfxF2qprIWHe8apRTsp8Rhakwx54ROz8lfmbRoDnofuT5Ermvk-jZy3Vao_w8afbl1X5Lx092oPKC57gkbTP9-dQf1B-0lm5Y |
CitedBy_id | crossref_primary_10_1007_s11071_022_07658_2 crossref_primary_10_1007_s11082_023_05440_1 crossref_primary_10_1007_s11071_022_07920_7 crossref_primary_10_1007_s11071_023_09090_6 crossref_primary_10_1007_s11071_023_09062_w crossref_primary_10_1016_j_padiff_2025_101136 crossref_primary_10_3934_math_2023864 crossref_primary_10_1007_s11071_023_08348_3 crossref_primary_10_1140_epjp_s13360_022_02413_3 crossref_primary_10_1007_s11071_022_07327_4 crossref_primary_10_1080_00207160_2023_2219349 crossref_primary_10_1007_s11071_022_08097_9 crossref_primary_10_1007_s11071_022_08209_5 crossref_primary_10_1007_s11071_023_08424_8 |
Cites_doi | 10.1007/s00366-020-01175-9 10.1016/j.camwa.2019.03.008 10.1016/j.cnsns.2020.105613 10.1016/j.camwa.2016.03.022 10.1007/s11071-021-06603-z 10.1088/1402-4896/ab7f48 10.1007/s11071-019-04866-1 10.1088/1674-1056/23/3/030201 10.1007/s11071-017-3429-x 10.1142/S0217984920503297 10.1002/mma.5899 10.1007/s11071-020-06167-4 10.1142/S0217984917502165 10.1016/j.camwa.2019.03.048 10.1016/j.chaos.2021.111029 10.1007/s11071-019-04956-0 10.1016/j.aml.2019.106063 10.1002/mma.6931 10.1007/s11071-018-4222-1 10.1007/s11071-019-05458-9 10.1108/HFF-10-2019-0760 10.1002/mma.6000 10.1002/mma.7093 10.1016/j.aml.2018.12.005 10.1007/s11071-019-05110-6 10.1140/epjp/s13360-020-01023-1 10.1016/j.physleta.2021.127429 10.1016/j.jmaa.2012.11.028 10.1140/epjp/i2015-15215-1 10.1142/S0217979220502215 10.1016/j.cjph.2019.11.005 10.1007/s11071-016-2755-8 10.1140/epjp/s13360-020-00405-9 10.1007/s11071-018-4196-z 10.1007/s11071-018-4085-5 10.1007/s12043-018-1700-4 10.1007/s11071-018-4724-x 10.1016/j.rinp.2020.103329 10.1007/s11071-021-06291-9 10.1140/epjp/s13360-020-00883-x 10.1007/s11071-014-1678-5 10.1017/CBO9780511543043 10.1088/1402-4896/ab52c1 10.1016/j.oceaneng.2014.12.017 10.1140/epjp/s13360-021-01918-7 10.1002/mma.5721 10.1140/epjp/s13360-021-01828-8 10.1007/s11071-019-05294-x 10.1002/mma.7490 10.1142/S021797922150079X 10.1007/s12043-020-01987-w 10.1016/j.camwa.2018.03.022 10.1007/s11071-020-06154-9 10.1007/s11071-020-05926-7 10.1142/S0217979221502337 10.1016/j.aml.2019.05.025 10.1007/s12043-021-02082-4 10.1140/epjp/s13360-021-01925-8 10.1016/j.camwa.2017.08.033 10.1088/1402-4896/aba5ae 10.1007/s11071-019-05269-y 10.1007/s11071-018-04736-2 10.1016/j.rinp.2020.103532 10.1016/j.cnsns.2019.105116 10.1007/s11071-016-3110-9 10.1016/j.geomphys.2020.103598 10.1063/5.0019219 10.1140/epjp/s13360-020-00629-9 10.1007/s11071-016-2905-z 10.1016/j.rinp.2020.103769 10.1016/j.physleta.2019.125907 10.1007/s11071-020-06186-1 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s11071-021-07019-5 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-269X |
EndPage | 1177 |
ExternalDocumentID | 10_1007_s11071_021_07019_5 |
GrantInformation_xml | – fundername: Natural Science Foundation of Inner Mongolia grantid: (Grant No. 2020LH01008) funderid: http://dx.doi.org/10.13039/501100004763 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-f6aa2d24202e72884d4b94937df50835197fa224bd87a36fca9810f28c3bbbb63 |
IEDL.DBID | 8FG |
ISSN | 0924-090X |
IngestDate | Fri Jul 25 11:17:29 EDT 2025 Tue Jul 01 01:52:09 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Fri Feb 21 02:46:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hybrid-type solutions (3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients Bell polynomials approach Infinite conservation laws Hirota bilinear method Bäcklund transformation Homoclinic test method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-f6aa2d24202e72884d4b94937df50835197fa224bd87a36fca9810f28c3bbbb63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1164-5819 |
PQID | 2616477706 |
PQPubID | 2043746 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2616477706 crossref_primary_10_1007_s11071_021_07019_5 crossref_citationtrail_10_1007_s11071_021_07019_5 springer_journals_10_1007_s11071_021_07019_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
PublicationTitle | Nonlinear dynamics |
PublicationTitleAbbrev | Nonlinear Dyn |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Wazwaz (CR32) 2005; 170 Kumar, Kumar, Kharbanda (CR42) 2020; 95 Zhao, Manafian, Zaya, Mohammed (CR57) 2021; 44 Zhao, Tian, Tian, Yang (CR67) 2021; 103 Han, Bao (CR34) 2021; 103 Wang, Gao, Jia, Deng, Hu (CR53) 2017; 31 Osman, Inc, Liu, Hosseini, Yusuf (CR1) 2020; 95 Osman, Wazwaz (CR73) 2019; 42 Han, Bao (CR55) 2021; 136 Tan, Zhang, Zhang (CR51) 2020; 101 Jadaun, Kumar (CR30) 2018; 93 Osman (CR69) 2019; 96 Han, Bao (CR27) 2021; 35 Ilhan, Manafian, Shahriari (CR25) 2019; 78 Manafian, Mohammadi-Ivatloo, Abapour (CR5) 2019; 356 Chen, Tian, Qu, Li, Sun, Du (CR19) 2021; 148 Wang, Wei (CR8) 2020; 102 Liu, Wazwaz (CR11) 2021; 44 Xu, Wazwaz (CR2) 2019; 98 Shen, Tian, Liu (CR62) 2021; 405 Nisar, Ilhan, Abdulazeez, Manafian, Mohammed, Osman (CR47) 2021; 21 Liu, Zhu (CR13) 2021; 103 Lü, Hua, Chen, Tang (CR36) 2021; 95 Liu, Tian, Wamg (CR64) 2021; 136 Zhao, Zhaqilao (CR10) 2020; 135 Kumar, Niwas, Wazwaz (CR22) 2020; 95 Fan, Bao (CR74) 2021; 35 Wang, Wei, Geng (CR3) 2020; 83 Yan, Tian, Dong, Zou (CR9) 2019; 92 Kumar, Kumar, Wazwaz (CR41) 2020; 135 Kumar, Kumar (CR40) 2019; 98 Gupta, Kumar, Jiwari (CR44) 2015; 79 Manafian, Mohammadi Ivatloo, Abapour (CR56) 2020; 43 Mao, Tian, Zou, Zhang, Yan (CR7) 2019; 95 Lü, Chen, Ma (CR37) 2016; 86 Osman, Baleanu, Adem, Hosseini, Mirzazadeh, Eslami (CR59) 2020; 63 Han, Bao (CR68) 2021; 44 Manafian, Lakestani (CR14) 2020; 150 Osman, Machado (CR66) 2018; 93 Gao (CR38) 2015; 96 Liu, Osman, Zhu, Zhou, Baleanu (CR58) 2020; 10 Jiwari, Kumar, Singh (CR46) 2020 Zhaqilao (CR4) 2020; 99 Osman (CR16) 2018; 75 Kumar, Kumar (CR28) 2020; 34 Kumar, Rani (CR43) 2020; 94 Ma (CR39) 2019; 97 Wazwaz (CR54) 2019; 30 Xu (CR12) 2019; 97 Wazwaz, El-Tantawy (CR35) 2017; 88 Han, Bao (CR72) 2021; 105 Wang, Tian (CR21) 2021; 136 Osman, Abdel-Gawad (CR65) 2015; 130 Yadav, Jiwari (CR20) 2019; 95 Manafian, Lakestani (CR60) 2019; 92 Chai, Tian, Sun, Xie (CR17) 2016; 71 CR23 Kumar, Rani (CR29) 2021; 95 Lü, Ma (CR33) 2016; 85 Liu, Zhu (CR48) 2019; 78 Liu, Zhu, Osman, Ma (CR61) 2020; 135 Wang, Chen (CR70) 2013; 400 Lan (CR26) 2019; 94 Liu, Zhu, Zhou, Xiong (CR15) 2019; 97 Ismael, Bulut, Park, Osman (CR6) 2020; 19 Liu, Zhu, Zhou (CR24) 2020; 43 Tan (CR50) 2019; 383 Liu, Xiong (CR52) 2020; 19 Kumar, Gupta, Jiwari (CR45) 2014; 23 Osman (CR49) 2016; 87 Wang, Wang (CR18) 2018; 75 Zhao, Tian, Du, Hu, Liu (CR63) 2021; 136 Hirota (CR71) 2004 Kumar, Jiwari, Mittal, Awrejcewicz (CR31) 2021; 104 JJ Mao (7019_CR7) 2019; 95 JG Liu (7019_CR58) 2020; 10 LL Fan (7019_CR74) 2021; 35 X Zhao (7019_CR67) 2021; 103 J Manafian (7019_CR60) 2019; 92 S Kumar (7019_CR28) 2020; 34 S Kumar (7019_CR42) 2020; 95 PF Han (7019_CR27) 2021; 35 RK Gupta (7019_CR44) 2015; 79 S Kumar (7019_CR29) 2021; 95 KS Nisar (7019_CR47) 2021; 21 X Lü (7019_CR33) 2016; 85 J Chai (7019_CR17) 2016; 71 M Wang (7019_CR21) 2021; 136 AM Wazwaz (7019_CR35) 2017; 88 J Manafian (7019_CR5) 2019; 356 Y Shen (7019_CR62) 2021; 405 MS Osman (7019_CR49) 2016; 87 OA Ilhan (7019_CR25) 2019; 78 X Zhao (7019_CR63) 2021; 136 S Kumar (7019_CR40) 2019; 98 YH Wang (7019_CR70) 2013; 400 X Lü (7019_CR36) 2021; 95 MS Osman (7019_CR65) 2015; 130 W Tan (7019_CR51) 2020; 101 X Lü (7019_CR37) 2016; 86 S Kumar (7019_CR22) 2020; 95 MS Osman (7019_CR1) 2020; 95 V Jadaun (7019_CR30) 2018; 93 SS Chen (7019_CR19) 2021; 148 JG Liu (7019_CR24) 2020; 43 7019_CR23 PF Han (7019_CR72) 2021; 105 ZZ Lan (7019_CR26) 2019; 94 JG Liu (7019_CR52) 2020; 19 R Hirota (7019_CR71) 2004 JG Liu (7019_CR11) 2021; 44 MS Osman (7019_CR66) 2018; 93 PF Han (7019_CR55) 2021; 136 Zhaqilao (7019_CR4) 2020; 99 GQ Xu (7019_CR12) 2019; 97 J Zhao (7019_CR57) 2021; 44 PF Han (7019_CR34) 2021; 103 S Kumar (7019_CR31) 2021; 104 PF Han (7019_CR68) 2021; 44 AM Wazwaz (7019_CR32) 2005; 170 MS Osman (7019_CR69) 2019; 96 AM Wazwaz (7019_CR54) 2019; 30 JG Liu (7019_CR13) 2021; 103 YL Wang (7019_CR53) 2017; 31 S Kumar (7019_CR43) 2020; 94 MS Osman (7019_CR73) 2019; 42 J Manafian (7019_CR56) 2020; 43 SH Liu (7019_CR64) 2021; 136 X Wang (7019_CR3) 2020; 83 JG Liu (7019_CR15) 2019; 97 S Kumar (7019_CR41) 2020; 135 J Manafian (7019_CR14) 2020; 150 HF Ismael (7019_CR6) 2020; 19 X Wang (7019_CR8) 2020; 102 X Wang (7019_CR18) 2018; 75 MS Osman (7019_CR16) 2018; 75 GQ Xu (7019_CR2) 2019; 98 D Zhao (7019_CR10) 2020; 135 MS Osman (7019_CR59) 2020; 63 JG Liu (7019_CR61) 2020; 135 YL Ma (7019_CR39) 2019; 97 JG Liu (7019_CR48) 2019; 78 XY Gao (7019_CR38) 2015; 96 R Jiwari (7019_CR46) 2020 XW Yan (7019_CR9) 2019; 92 W Tan (7019_CR50) 2019; 383 OP Yadav (7019_CR20) 2019; 95 V Kumar (7019_CR45) 2014; 23 |
References_xml | – volume: 136 start-page: 1002 year: 2021 ident: CR21 article-title: In an inhomogeneous multicomponent optical fiber: Lax pair, generalized Darboux transformation and vector breathers for a three-coupled variable-coefficient nonlinear Schrödinger system publication-title: Eur. Phys. J. Plus – volume: 95 start-page: 2825 year: 2019 end-page: 2836 ident: CR20 article-title: Some soliton-type analytical solutions and numerical simulation of nonlinear Schrödinger equation publication-title: Nonlinear Dyn. – volume: 150 start-page: 103598 year: 2020 ident: CR14 article-title: N-lump and interaction solutions of localized waves to the (2+1)-dimensional variable-coefficient Caudrey–Dodd–Gibbon–Kotera–Sawada equation publication-title: J. Geom. Phys. – volume: 96 start-page: 1491 year: 2019 end-page: 1496 ident: CR69 article-title: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation publication-title: Nonlinear Dyn. – volume: 135 start-page: 870 issue: 11 year: 2020 ident: CR41 article-title: New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method publication-title: Eur. Phys. J. Plus – volume: 78 start-page: 848 year: 2019 end-page: 856 ident: CR48 article-title: Breather wave solutions for the generalized shallow water wave equation with variable coefficients in the atmosphere, rivers, lakes and oceans publication-title: Comput. Math. Appl. – volume: 34 start-page: 2050221 issue: 25 year: 2020 ident: CR28 article-title: Lie symmetry analysis and dynamical structures of soliton solutions for the (2+1)-dimensional modified CBS equation publication-title: Int. J. Mod. Phys. B – volume: 95 start-page: 065207 issue: 6 year: 2020 ident: CR42 article-title: Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations publication-title: Phys. Scr. – volume: 75 start-page: 4201 issue: 12 year: 2018 end-page: 4213 ident: CR18 article-title: Darboux transformation and nonautonomous solitons for a modified Kadomtsev–Petviashvili equation with variable coefficients publication-title: Comput. Math. Appl. – volume: 94 start-page: 126 year: 2019 end-page: 132 ident: CR26 article-title: Periodic, breather and rogue wave solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid dynamics publication-title: Appl. Math. Lett. – volume: 405 start-page: 127429 year: 2021 ident: CR62 article-title: Solitonic fusion and fission for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves publication-title: Phys. Lett. A – volume: 95 start-page: 105613 year: 2021 ident: CR36 article-title: Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, B cklund transformation, Lax pair and infinitely many conservation laws publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 44 start-page: 2200 year: 2021 end-page: 2208 ident: CR11 article-title: Breather wave and lump-type solutions of new (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation in incompressible fluid publication-title: Math. Methods Appl. Sci. – volume: 30 start-page: 4259 issue: 9 year: 2019 end-page: 4266 ident: CR54 article-title: Painlevé analysis for new (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equations with constant and time-dependent coefficients publication-title: Int. J. Numer. Method. H. – volume: 83 start-page: 105116 year: 2020 ident: CR3 article-title: Rational solutions for a (3+1)-dimensional nonlinear evolution equation publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 44 start-page: 5079 year: 2021 end-page: 5098 ident: CR57 article-title: Multiple rogue wave, lump-periodic, lump-soliton, and interaction between k-lump and k-stripe soliton solutions for the generalized KP equation publication-title: Math. Methods Appl. Sci. – volume: 79 start-page: 455 year: 2015 end-page: 464 ident: CR44 article-title: Exact and numerical solutions of coupled short pulse equation with time-dependent coefficients publication-title: Nonlinear Dyn. – volume: 35 start-page: 2150079 issue: 6 year: 2021 ident: CR27 article-title: Integrability aspects and some abundant solutions for a new (4+1)-dimensional KdV-like equation publication-title: Int. J. Mod. Phys. B – volume: 93 start-page: 349 year: 2018 end-page: 360 ident: CR30 article-title: Lie symmetry analysis and invariant solutions of (3+1)-dimensional Calogero–Bogoyavlenskii–Schiff equation publication-title: Nonlinear Dyn. – volume: 103 start-page: 1841 year: 2021 end-page: 1850 ident: CR13 article-title: Multiple rogue wave, breather wave and interaction solutions of a generalized (3+1)-dimensional variable-coefficient nonlinear wave equation publication-title: Nonlinear Dyn. – volume: 78 start-page: 2429 year: 2019 end-page: 2448 ident: CR25 article-title: Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev–Petviashvili equation publication-title: Comput. Math. Appl. – volume: 43 start-page: 1753 issue: 4 year: 2020 end-page: 1774 ident: CR56 article-title: Breather wave, periodic, and cross-kink solutions to the generalized Bogoyavlensky–Konopelchenko equation publication-title: Math. Methods Appl. Sci. – volume: 87 start-page: 1209 year: 2016 end-page: 1216 ident: CR49 article-title: Nonlinear interaction of solitary waves described by multi-rational wave solutions of the (2+1)-dimensional Kadomtsev–Petviashvili equation with variable coefficients publication-title: Nonlinear Dyn. – volume: 75 start-page: 1 year: 2018 end-page: 6 ident: CR16 article-title: On multi-soliton solutions for the (2+1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide publication-title: Comput. Math. Appl. – volume: 86 start-page: 523 issue: 1 year: 2016 end-page: 534 ident: CR37 article-title: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation publication-title: Nonlinear Dyn. – volume: 170 start-page: 347 year: 2005 end-page: 360 ident: CR32 article-title: The Camassa–Holm–KP equations with compact and noncompact travelling wave solutions publication-title: Appl. Math. Comput. – volume: 43 start-page: 458 year: 2020 end-page: 465 ident: CR24 article-title: Breather wave solutions for the Kadomtsev–Petviashvili equation with variable coefficients in a fluid based on the variable-coefficient three-wave approach publication-title: Math. Meth. Appl. Sci. – volume: 148 start-page: 111029 year: 2021 ident: CR19 article-title: Alfvén solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrödinger equation in an inhomogeneous plasma publication-title: Chaos Solitons Fract. – volume: 19 start-page: 103532 year: 2020 ident: CR52 article-title: Multi-wave, breather wave and lump solutions of the Boiti–Leon–Manna–Pempinelli equation with variable coefficients publication-title: Results Phys. – volume: 96 start-page: 245 year: 2015 end-page: 247 ident: CR38 article-title: Bäcklund transformation and shock-wave-type solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid mechanics publication-title: Ocean Eng. – volume: 356 start-page: 13 year: 2019 end-page: 41 ident: CR5 article-title: Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation publication-title: Appl. Math. Comput. – volume: 63 start-page: 122 year: 2020 end-page: 129 ident: CR59 article-title: Double-wave solutions and Lie symmetry analysis to the (2+1)-dimensional coupled Burgers equations publication-title: Chin. J. Phys. – volume: 135 start-page: 412 year: 2020 ident: CR61 article-title: An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model publication-title: Eur. Phys. J. Plus – volume: 71 start-page: 2060 year: 2016 end-page: 2068 ident: CR17 article-title: Solitons and rouge waves for a generalized (3+1)-dimensional variable-coefficient Kadomtsev–Petviashvili equation in fluid mechanics publication-title: Comput. Math. Appl. – year: 2004 ident: CR71 publication-title: The Direct Method in Soliton Theory – volume: 21 start-page: 103769 year: 2021 ident: CR47 article-title: Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method publication-title: Results Phys. – volume: 31 start-page: 1750216 year: 2017 ident: CR53 article-title: Solitons for a (2+1)-dimensional variable-coefficient Bogoyavlensky–Konopelchenko equation in a fluid publication-title: Mod. Phys. Lett. B – volume: 97 start-page: 81 year: 2019 end-page: 87 ident: CR12 article-title: Painlev analysis, lump-kink solutions and localized excitation solutions for the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation publication-title: Appl. Math. Lett. – volume: 99 start-page: 2945 year: 2020 end-page: 2960 ident: CR4 article-title: Nonlinear dynamics of higher-order rogue waves in a novel complex nonlinear wave equation publication-title: Nonlinear Dyn. – volume: 94 start-page: 116 year: 2020 ident: CR43 article-title: Lie symmetry reductions and dynamics of soliton solutions of (2+1)-dimensional Pavlov equation publication-title: Pramana J. Phys. – volume: 88 start-page: 3017 year: 2017 end-page: 3021 ident: CR35 article-title: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method publication-title: Nonlinear Dyn. – volume: 10 start-page: 105325 year: 2020 ident: CR58 article-title: The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium publication-title: AIP Adv. – volume: 19 start-page: 103329 year: 2020 ident: CR6 article-title: M-lump, N-soliton solutions, and the collision phenomena for the (2+1)-dimensional Date–Jimbo–Kashiwara–Miwa equation publication-title: Results Phys. – volume: 101 start-page: 106063 year: 2020 ident: CR51 article-title: Evolutionary behavior of breathers and interaction solutions with M-solitons for (2+1)-dimensional KdV system publication-title: Appl. Math. Lett. – ident: CR23 – volume: 400 start-page: 624 year: 2013 end-page: 634 ident: CR70 article-title: Binary Bell polynomial manipulations on the integrability of a generalized (2+1)-dimensional Korteweg-de Vries equation publication-title: J. Math. Anal. Appl. – volume: 135 start-page: 617 year: 2020 ident: CR10 article-title: Three-wave interactions in a more general (2+1)-dimensional Boussinesq equation publication-title: Eur. Phys. J. Plus – volume: 102 start-page: 363 year: 2020 end-page: 377 ident: CR8 article-title: Antidark solitons and soliton molecules in a (3+1)-dimensional nonlinear evolution equation publication-title: Nonlinear Dyn. – volume: 136 start-page: 925 year: 2021 ident: CR55 article-title: Dynamic analysis of hybrid solutions for the new (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation with time-dependent coefficients in incompressible fluid publication-title: Eur. Phys. J. Plus – volume: 93 start-page: 733 year: 2018 end-page: 740 ident: CR66 article-title: New nonautonomous combined multi-wave solutions for (2+1)-dimensional variable coefficients KdV equation publication-title: Nonlinear Dyn. – volume: 44 start-page: 11307 year: 2021 end-page: 11323 ident: CR68 article-title: Bäcklund transformation and some different types of N-soliton solutions to the (3+1)-dimensional generalized nonlinear evolution equation for the shallow-water waves publication-title: Math. Methods Appl. Sci. – volume: 103 start-page: 1817 year: 2021 end-page: 1829 ident: CR34 article-title: Construction of abundant solutions for two kinds of (3+1)-dimensional equations with time-dependent coefficients publication-title: Nonlinear Dyn. – volume: 136 start-page: 159 year: 2021 ident: CR63 article-title: Bilinear Bäcklund transformation, kink and breather-wave solutions for a generalized (2+1)-dimensional Hirota–Satsuma–Ito equation in fluid mechanics publication-title: Eur. Phys. J. Plus – volume: 105 start-page: 717 year: 2021 end-page: 734 ident: CR72 article-title: Interaction of multiple superposition solutions for the (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation publication-title: Nonlinear Dyn. – volume: 95 start-page: 095204 issue: 9 year: 2020 ident: CR22 article-title: Lie symmetry analysis, exact analytical solutions and dynamics of solitons for (2+1)-dimensional NNV equations publication-title: Phys. Scr. – volume: 95 start-page: 3005 year: 2019 end-page: 3017 ident: CR7 article-title: Bilinear formalism, lump solution, lumpoff and instanton/rogue wave solution of a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation publication-title: Nonlinear Dyn. – volume: 104 start-page: 661 year: 2021 end-page: 682 ident: CR31 article-title: Dark and bright soliton solutions and computational modeling of nonlinear regularized long wave model publication-title: Nonlinear Dyn. – volume: 85 start-page: 1217 issue: 2 year: 2016 end-page: 1222 ident: CR33 article-title: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation publication-title: Nonlinear Dyn. – volume: 42 start-page: 6277 year: 2019 end-page: 6283 ident: CR73 article-title: A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation publication-title: Math. Methods Appl. Sci. – volume: 97 start-page: 95 year: 2019 end-page: 105 ident: CR39 article-title: Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers publication-title: Nonlinear Dyn. – volume: 98 start-page: 1891 issue: 3 year: 2019 end-page: 1903 ident: CR40 article-title: Lie symmetry reductions and group invariant solutions of (2+1)-dimensional modified Veronese web equation publication-title: Nonlinear Dyn. – volume: 35 start-page: 2150233 issue: 23 year: 2021 ident: CR74 article-title: Lumps and interaction solutions to the (4+1)-dimensional variable-coefficient Kadomtsev–Petviashvili equation in fluid mechanics publication-title: Int. J. Mod. Phys. B – volume: 92 start-page: 709 year: 2019 end-page: 720 ident: CR9 article-title: Bäcklund transformation, rogue wave solutions and interaction phenomena for a (3+1)-dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation publication-title: Nonlinear Dyn. – year: 2020 ident: CR46 article-title: Lie group analysis, exact solutions and conservation laws to compressible isentropic Navier–Stokes equation publication-title: Eng. Comput. doi: 10.1007/s00366-020-01175-9 – volume: 95 start-page: 035229 year: 2020 ident: CR1 article-title: Different wave structures and stability analysis for the generalized (2+1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation publication-title: Phys. Scr. – volume: 92 start-page: 41 year: 2019 ident: CR60 article-title: Lump-type solutions and interaction phenomenon to the bidirectional Sawada–Kotera equation publication-title: Pramana-J. Phys. – volume: 98 start-page: 1379 year: 2019 end-page: 1390 ident: CR2 article-title: Integrability aspects and localized wave solutions for a new (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation publication-title: Nonlinear Dyn. – volume: 383 start-page: 125907 year: 2019 ident: CR50 article-title: Evolution of breathers and interaction between high-order lump solutions and N-solitons for Breaking Soliton system publication-title: Phys. Lett. A – volume: 103 start-page: 1785 year: 2021 end-page: 1794 ident: CR67 article-title: Bilinear Bäcklund transformation, Lax pair and interactions of nonlinear waves for a generalized (2+1)-dimensional nonlinear wave equation in nonlinear optics/fluid mechanics/plasma physics publication-title: Nonlinear Dyn. – volume: 136 start-page: 917 year: 2021 ident: CR64 article-title: Painlevé analysis, bilinear form, Bäcklund transformation, solitons, periodic waves and asymptotic properties for a generalized Calogero–Bogoyavlenskii–Konopelchenko–Schiff system in a fluid or plasma publication-title: Eur. Phys. J. Plus – volume: 95 start-page: 51 issue: 2 year: 2021 ident: CR29 article-title: Lie symmetry analysis, group-invariant solutions and dynamics of solitons to the (2+1)-dimensional Bogoyavlenskii–Schieff equation publication-title: Pramana J. Phys. – volume: 23 start-page: 030201 issue: 3 year: 2014 ident: CR45 article-title: Lie group analysis, numerical and non-traveling wave solutions for the (2+1)-dimensional diffusion-advection equation with variable coefficients publication-title: Chin. Phys. B – volume: 130 start-page: 215 year: 2015 ident: CR65 article-title: Multi-wave solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equations with variable coefficients publication-title: Eur. Phys. J. Plus – volume: 97 start-page: 2127 year: 2019 end-page: 2134 ident: CR15 article-title: Multi-waves, breather wave and lump-stripe interaction solutions in a (2+1)-dimensional variable-coefficient Korteweg-de Vries equation publication-title: Nonlinear Dyn. – volume: 78 start-page: 848 year: 2019 ident: 7019_CR48 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2019.03.008 – volume: 95 start-page: 105613 year: 2021 ident: 7019_CR36 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2020.105613 – volume: 71 start-page: 2060 year: 2016 ident: 7019_CR17 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.03.022 – volume: 105 start-page: 717 year: 2021 ident: 7019_CR72 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06603-z – volume: 95 start-page: 065207 issue: 6 year: 2020 ident: 7019_CR42 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab7f48 – volume: 96 start-page: 1491 year: 2019 ident: 7019_CR69 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-04866-1 – volume: 356 start-page: 13 year: 2019 ident: 7019_CR5 publication-title: Appl. Math. Comput. – volume: 23 start-page: 030201 issue: 3 year: 2014 ident: 7019_CR45 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/23/3/030201 – volume: 88 start-page: 3017 year: 2017 ident: 7019_CR35 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3429-x – ident: 7019_CR23 doi: 10.1142/S0217984920503297 – volume: 43 start-page: 458 year: 2020 ident: 7019_CR24 publication-title: Math. Meth. Appl. Sci. doi: 10.1002/mma.5899 – year: 2020 ident: 7019_CR46 publication-title: Eng. Comput. doi: 10.1007/s00366-020-01175-9 – volume: 103 start-page: 1817 year: 2021 ident: 7019_CR34 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-06167-4 – volume: 31 start-page: 1750216 year: 2017 ident: 7019_CR53 publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984917502165 – volume: 78 start-page: 2429 year: 2019 ident: 7019_CR25 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2019.03.048 – volume: 148 start-page: 111029 year: 2021 ident: 7019_CR19 publication-title: Chaos Solitons Fract. doi: 10.1016/j.chaos.2021.111029 – volume: 97 start-page: 95 year: 2019 ident: 7019_CR39 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-04956-0 – volume: 101 start-page: 106063 year: 2020 ident: 7019_CR51 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.106063 – volume: 44 start-page: 2200 year: 2021 ident: 7019_CR11 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6931 – volume: 93 start-page: 733 year: 2018 ident: 7019_CR66 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4222-1 – volume: 99 start-page: 2945 year: 2020 ident: 7019_CR4 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05458-9 – volume: 30 start-page: 4259 issue: 9 year: 2019 ident: 7019_CR54 publication-title: Int. J. Numer. Method. H. doi: 10.1108/HFF-10-2019-0760 – volume: 43 start-page: 1753 issue: 4 year: 2020 ident: 7019_CR56 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6000 – volume: 44 start-page: 5079 year: 2021 ident: 7019_CR57 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.7093 – volume: 94 start-page: 126 year: 2019 ident: 7019_CR26 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2018.12.005 – volume: 97 start-page: 2127 year: 2019 ident: 7019_CR15 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05110-6 – volume: 136 start-page: 159 year: 2021 ident: 7019_CR63 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-01023-1 – volume: 405 start-page: 127429 year: 2021 ident: 7019_CR62 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2021.127429 – volume: 400 start-page: 624 year: 2013 ident: 7019_CR70 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2012.11.028 – volume: 130 start-page: 215 year: 2015 ident: 7019_CR65 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2015-15215-1 – volume: 34 start-page: 2050221 issue: 25 year: 2020 ident: 7019_CR28 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979220502215 – volume: 170 start-page: 347 year: 2005 ident: 7019_CR32 publication-title: Appl. Math. Comput. – volume: 63 start-page: 122 year: 2020 ident: 7019_CR59 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2019.11.005 – volume: 85 start-page: 1217 issue: 2 year: 2016 ident: 7019_CR33 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2755-8 – volume: 135 start-page: 412 year: 2020 ident: 7019_CR61 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00405-9 – volume: 93 start-page: 349 year: 2018 ident: 7019_CR30 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4196-z – volume: 92 start-page: 709 year: 2019 ident: 7019_CR9 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4085-5 – volume: 92 start-page: 41 year: 2019 ident: 7019_CR60 publication-title: Pramana-J. Phys. doi: 10.1007/s12043-018-1700-4 – volume: 95 start-page: 2825 year: 2019 ident: 7019_CR20 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4724-x – volume: 19 start-page: 103329 year: 2020 ident: 7019_CR6 publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103329 – volume: 104 start-page: 661 year: 2021 ident: 7019_CR31 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06291-9 – volume: 135 start-page: 870 issue: 11 year: 2020 ident: 7019_CR41 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00883-x – volume: 79 start-page: 455 year: 2015 ident: 7019_CR44 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1678-5 – volume-title: The Direct Method in Soliton Theory year: 2004 ident: 7019_CR71 doi: 10.1017/CBO9780511543043 – volume: 95 start-page: 035229 year: 2020 ident: 7019_CR1 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab52c1 – volume: 96 start-page: 245 year: 2015 ident: 7019_CR38 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2014.12.017 – volume: 136 start-page: 1002 year: 2021 ident: 7019_CR21 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-021-01918-7 – volume: 42 start-page: 6277 year: 2019 ident: 7019_CR73 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5721 – volume: 136 start-page: 917 year: 2021 ident: 7019_CR64 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-021-01828-8 – volume: 98 start-page: 1891 issue: 3 year: 2019 ident: 7019_CR40 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05294-x – volume: 44 start-page: 11307 year: 2021 ident: 7019_CR68 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.7490 – volume: 35 start-page: 2150079 issue: 6 year: 2021 ident: 7019_CR27 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S021797922150079X – volume: 94 start-page: 116 year: 2020 ident: 7019_CR43 publication-title: Pramana J. Phys. doi: 10.1007/s12043-020-01987-w – volume: 75 start-page: 4201 issue: 12 year: 2018 ident: 7019_CR18 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.03.022 – volume: 103 start-page: 1785 year: 2021 ident: 7019_CR67 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-06154-9 – volume: 102 start-page: 363 year: 2020 ident: 7019_CR8 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05926-7 – volume: 35 start-page: 2150233 issue: 23 year: 2021 ident: 7019_CR74 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979221502337 – volume: 97 start-page: 81 year: 2019 ident: 7019_CR12 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.05.025 – volume: 95 start-page: 51 issue: 2 year: 2021 ident: 7019_CR29 publication-title: Pramana J. Phys. doi: 10.1007/s12043-021-02082-4 – volume: 136 start-page: 925 year: 2021 ident: 7019_CR55 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-021-01925-8 – volume: 75 start-page: 1 year: 2018 ident: 7019_CR16 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2017.08.033 – volume: 95 start-page: 095204 issue: 9 year: 2020 ident: 7019_CR22 publication-title: Phys. Scr. doi: 10.1088/1402-4896/aba5ae – volume: 98 start-page: 1379 year: 2019 ident: 7019_CR2 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05269-y – volume: 95 start-page: 3005 year: 2019 ident: 7019_CR7 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-04736-2 – volume: 19 start-page: 103532 year: 2020 ident: 7019_CR52 publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103532 – volume: 83 start-page: 105116 year: 2020 ident: 7019_CR3 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2019.105116 – volume: 87 start-page: 1209 year: 2016 ident: 7019_CR49 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-3110-9 – volume: 150 start-page: 103598 year: 2020 ident: 7019_CR14 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2020.103598 – volume: 10 start-page: 105325 year: 2020 ident: 7019_CR58 publication-title: AIP Adv. doi: 10.1063/5.0019219 – volume: 135 start-page: 617 year: 2020 ident: 7019_CR10 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00629-9 – volume: 86 start-page: 523 issue: 1 year: 2016 ident: 7019_CR37 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2905-z – volume: 21 start-page: 103769 year: 2021 ident: 7019_CR47 publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103769 – volume: 383 start-page: 125907 year: 2019 ident: 7019_CR50 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2019.125907 – volume: 103 start-page: 1841 year: 2021 ident: 7019_CR13 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-06186-1 |
SSID | ssj0003208 |
Score | 2.4133735 |
Snippet | In this article, the bilinear form, Bäcklund transformation, Lax pair and infinite conservation laws of the (3+1)-dimensional generalized... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1163 |
SubjectTerms | Automotive Engineering Classical Mechanics Combinatorial analysis Conservation laws Control Dynamical Systems Engineering Mechanical Engineering Original Paper Polynomials Propagation Propagation velocity Solitary waves Test methods Time dependence Vibration Wave interaction Wave propagation |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwKCAKBXlgABVLieM8OhZEVYHoRKVukZ3YBbVKCgmVysTKzD_kl3DOowEESETKFNtDzvbdd_b3HULHrskUVbZDLG56hJmCEw8cCwEsEdqmZQtX6BPdm77TG7CroT0sSGFJedu9PJLMduqK7AZIBaAvhVdriBN7Ga3YgN31vB7QzmL_tWhWh84AZKGzEMOCKvPzGF_dURVjfjsWzbxNdxOtF2Ei7uR23UJLMqqjjSJkxMWCTOpo7ZOe4DZ67cczOcF3c03DIjq7ihdTC0N0iiHawydWyzwloVb1zxU58CiXnr5_hqHP41E85zPwRcl4_v7ydh1H8VROwLTROMbyIVcGxzp9i3VdelJW0U1xEMtMj0JfzdhBg-7l7UWPFLUWSACLMCXK4ZyG4K8NKl3qeSxkos0gdgmVFozX9FbFwd2L0HO55aiAtz3TUNQLLAGPY-2iWhRHcg_hkDNDhczwRADYTwLG5sy1AlNl6M6mDWSWv9wPCiFyXQ9j4lcSytpMPpjJz8zk2w3UWvSZ5jIcf7Zulpb0iyWZ-AAVNenWNZwGOiutW33-fbT9_zU_QKtUUySyNE0T1dLHJ3kIgUsqjrJ5-gHU7uT2 priority: 102 providerName: Springer Nature |
Title | Novel hybrid-type solutions for the (3+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation with time-dependent coefficients |
URI | https://link.springer.com/article/10.1007/s11071-021-07019-5 https://www.proquest.com/docview/2616477706 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELVauLQHSmmrbgvIhx5A1GrsOIk5oaXaBYG6QqgrbU-RE9sUsYqX7hZpe-q1Z_4hv4SZxNltkUqkKFI-5pAZe96MPW8I-ZBx6YRLUhZrrpjkhWYKHAuDWMIkPE6KrMAV3S-D9HgoT0bJKCTcpmFbZTsn1hO18SXmyD8B0seaySxKDybXDLtG4epqaKHxlKxy8DRo4ap_tJiJY1F3pIsgxsB8xCgUzTSlcxD3QCAt4ERGcpb865iWaPPBAmntd_rrZC0ARtptNPySPLHVBnkRwCMNQ3O6QZ7_xSz4ivwZ-Bs7pt_nWJDFMM9KF0ZGAadSwH10J97ju8wgv3_DzUEvGhLqy18g-tBf-Lm-Aa80vZrf_b499ZWf2DEoubry1F43HOEUE7kUO9Sztp_ujJbe1swUuEnjNRn2e18_H7PQdYGVMBxnzKVaCwOeOxI2E0pJI4t9CSjGOKSOx0JXp8HxF0ZlOk5dqfcVj5xQZVzAkcZvyErlK_uWUKNl5IyMVFFCFGgh2tYyi0vu6jgvER3C21-el4GSHDtjjPMlmTKqKQc15bWa8qRD9hbfTBpCjkff3mw1mYfBOc2XptQhH1vtLh__X9q7x6W9J88EFkfUCZpNsjL78dNuAWSZFdu1XW6T1e7Rt9MeXA97g7NzuDsU3XuEAuw- |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOPAqILQV8AAlULBLbSbwHhHgtW7bdUyvtLTixU6qu4i0bipYTV878D34Uv4SZPHYBid4aKac4c8hMZuYbe74BeJiEqhBFFHNpQs1VmBmuMbBwxBI2CmWUJRnt6O6N4-GBej-JJmvws-uFoWOVnU-sHbX1OdXIn2GmTz2TSRC_mJ1wmhpFu6vdCI3GLEZu8QUh2_z5zhvU7yMhBm_3Xw95O1WA52huFS9iY4TFyBQIlwitlVVZX2GUtgVRo1MjZ2EwsGVWJ0bGRW76OgwKoXOZ4RVLlHsBLiop-3SEUA_eLT2_FPUEvAAxDdU_Jm2TTtOqhzgLgbvAmxjQefR3IFxlt_9syNZxbnAdrrYJKnvZWNQNWHPlBlxrk1XWuoL5Blz5g8nwJnwf-1M3ZR8X1ADGqa7LlkbNMC9mmGeyx3I7fMItzRNouEDYYUN6ffQVRb_yh35hTjEKzo8Xv779GPnSz9wUjao89sydNJzkjArHrEIZvJvfW7Hcu5oJgw6F3IKDc9HHbVgvfenuALNGBYVVgc5yRJ0O0b1RiczDosaVkehB2H3yNG8p0GkSxzRdkTeTmlJUU1qrKY16sL18Z9YQgJy5eqvTZNo6g3m6Mt0ePO20u3r8f2mbZ0t7AJeG-3u76e7OeHQXLgtqzKiLQ1uwXn367O5hulRl92sbZfDhvH-K36AYJIo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiF6KLSAun2ADxxAxWrsOI89bltWpYUVB1baW-TEdqm6SrbdtNJy4tpz_2F_CTN57LYIkIiUU2wfMrZnvrG_bwDeRkI56YKQ-1rEXIlU8xgdC0csYQLhB2mU0onul0F4NFTHo2B0j8Vf3XZvjyRrTgOpNOXl3sS4vQXxDVELwmCJL-mJ8-ARPMbtWNClrqHszfdiX1Y16TxEGZSRGDW0mT-P8dA1LeLN345IK8_Tfw6rTcjIerWN12DJ5uvwrAkfWbM4p-uwck9b8AXcDIprO2bfZ0TJ4pRpZfNpxjBSZRj5sXf-rnjPDSn81-oc7LSWoT77gUPvF6fFTF-jX5qez-5-3p4UeTGxYzRzfl4we1GrhDNK5TKqUc_birolywpbaVPQNY2XMOx__HZwxJu6CzzDBVlyF2otDfpuT9pIxrEyKu0qjGOMI_F4oro6ja4_NXGk_dBluhsLz8k481N8Qv8VLOdFbjeAGa08Z5QXpxniQIt4W6vIz4SrkF4gOyDaX55kjSg51cYYJws5ZTJTgmZKKjMlQQd2530mtSTHP1tvt5ZMmuU5TRA2EgE38sIOfGitu_j899E2_6_5G3jy9bCffP40ONmCp5KYE1X2ZhuWy8sru4PxTJm-rqbsLyI47CU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+hybrid-type+solutions+for+the+%283%2B1%29-dimensional+generalized+Bogoyavlensky%E2%80%93Konopelchenko+equation+with+time-dependent+coefficients&rft.jtitle=Nonlinear+dynamics&rft.au=Han%2C+Peng-Fei&rft.au=Bao%2C+Taogetusang&rft.date=2022-01-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=107&rft.issue=1&rft.spage=1163&rft.epage=1177&rft_id=info:doi/10.1007%2Fs11071-021-07019-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_021_07019_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |