Thermal properties of Deng–Fan–Eckart potential model using Poisson summation approach
The Deng–Fan–Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules. By using the improved Pekeris-type approximation, to deal with the centrifugal term, we obtain the bound-state solutions of the radial Schrödinger equation with this adopted molecula...
Saved in:
Published in | Journal of mathematical chemistry Vol. 58; no. 5; pp. 989 - 1013 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.05.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Deng–Fan–Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules. By using the improved Pekeris-type approximation, to deal with the centrifugal term, we obtain the bound-state solutions of the radial Schrödinger equation with this adopted molecular model via the Factorization Method. With the energy equation obtained, the thermodynamic properties of some selected diatomic molecules (H
2
, CO, ScN and ScF) were obtained using Poisson summation method. The unnormalized wave function is also derived. The energy spectrum for a set of diatomic molecules for different values of the vibrational
n
and rotational
ℓ
are obtained. To show the accuracy of our results, we discuss some special cases by adjusting some potential parameters and also compute the numerical eigenvalue of the Deng–Fan potential for comparison sake. However, it was found out that our results agree excellently with the results obtained via other methods. |
---|---|
AbstractList | The Deng–Fan–Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules. By using the improved Pekeris-type approximation, to deal with the centrifugal term, we obtain the bound-state solutions of the radial Schrödinger equation with this adopted molecular model via the Factorization Method. With the energy equation obtained, the thermodynamic properties of some selected diatomic molecules (H2, CO, ScN and ScF) were obtained using Poisson summation method. The unnormalized wave function is also derived. The energy spectrum for a set of diatomic molecules for different values of the vibrational n and rotational ℓ are obtained. To show the accuracy of our results, we discuss some special cases by adjusting some potential parameters and also compute the numerical eigenvalue of the Deng–Fan potential for comparison sake. However, it was found out that our results agree excellently with the results obtained via other methods. The Deng–Fan–Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules. By using the improved Pekeris-type approximation, to deal with the centrifugal term, we obtain the bound-state solutions of the radial Schrödinger equation with this adopted molecular model via the Factorization Method. With the energy equation obtained, the thermodynamic properties of some selected diatomic molecules (H 2 , CO, ScN and ScF) were obtained using Poisson summation method. The unnormalized wave function is also derived. The energy spectrum for a set of diatomic molecules for different values of the vibrational n and rotational ℓ are obtained. To show the accuracy of our results, we discuss some special cases by adjusting some potential parameters and also compute the numerical eigenvalue of the Deng–Fan potential for comparison sake. However, it was found out that our results agree excellently with the results obtained via other methods. |
Author | Osobonye, G. Sever, R. Rampho, G. J. Ikot, A. N. Edet, C. O. Okorie, U. S. |
Author_xml | – sequence: 1 givenname: C. O. orcidid: 0000-0001-7762-731X surname: Edet fullname: Edet, C. O. email: collinsokonedet@gmail.com organization: Theoretical Physics Group, Department of Physics, University of Port Harcourt – sequence: 2 givenname: U. S. surname: Okorie fullname: Okorie, U. S. organization: Theoretical Physics Group, Department of Physics, University of Port Harcourt, Department of Physics, Akwa Ibom State University – sequence: 3 givenname: G. surname: Osobonye fullname: Osobonye, G. organization: Department of Physics, Federal College of Education – sequence: 4 givenname: A. N. surname: Ikot fullname: Ikot, A. N. organization: Theoretical Physics Group, Department of Physics, University of Port Harcourt, Department of Physics, University of South Africa – sequence: 5 givenname: G. J. surname: Rampho fullname: Rampho, G. J. organization: Department of Physics, University of South Africa – sequence: 6 givenname: R. surname: Sever fullname: Sever, R. organization: Department of Physics, Middle East Technical University |
BookMark | eNp9kL1OwzAUhS0EEm3hBZgiMQf8k8TxiEoLSJVgKAuL5Th2m5LYwXYGNt6BN-RJMA0SEkMH23c43znXZwqOjTUKgAsErxCE9NojyBBMIY4HIUjT7AhMUE5xWpaMHoMJxDlLGWXoFEy930EIWVmUE_Cy3irXiTbpne2VC43yidXJrTKbr4_PpTDxXshX4ULS26BMaKK2s7Vqk8E3ZpM82cZ7axI_dJ0ITZxEH72E3J6BEy1ar85_3xl4Xi7W8_t09Xj3ML9ZpZIgFlJdMKpKWmFaUFJhnWcaFrgiVZ4RLQslhSS1yhFVWaF1BnGNclnSyChYRxWZgcvRN8a-DcoHvrODMzGSY8IQYRlGLKrwqJLOeu-U5r1rOuHeOYL8p0M-dshjh3zfIc8iVP6DZBP2vwxONO1hlIyojzlmo9zfVgeob2WrisQ |
CitedBy_id | crossref_primary_10_1002_qua_26749 crossref_primary_10_1038_s41598_021_85761_x crossref_primary_10_1016_j_heliyon_2020_e03738 crossref_primary_10_1038_s41598_022_19396_x crossref_primary_10_1007_s10765_021_02891_0 crossref_primary_10_1007_s10765_022_03091_0 crossref_primary_10_1016_j_physe_2023_115747 crossref_primary_10_1007_s00894_020_04593_0 crossref_primary_10_1016_j_heliyon_2022_e08952 crossref_primary_10_1016_j_rinp_2022_105749 crossref_primary_10_1016_j_physo_2022_100135 crossref_primary_10_15407_ujpe67_3_183 crossref_primary_10_3390_e23081060 crossref_primary_10_1142_S0217751X21501955 crossref_primary_10_1016_j_ijleo_2022_169540 crossref_primary_10_1007_s10765_023_03315_x crossref_primary_10_4236_jamp_2020_87091 crossref_primary_10_1140_epjp_s13360_021_01090_y crossref_primary_10_1016_j_chphi_2023_100444 crossref_primary_10_1016_j_comptc_2021_113337 crossref_primary_10_1002_qua_26517 crossref_primary_10_1007_s10765_021_02865_2 crossref_primary_10_1080_00268976_2023_2232472 crossref_primary_10_1021_acs_jpca_0c09512 crossref_primary_10_1038_s41598_023_28973_7 crossref_primary_10_1016_j_heliyon_2021_e08617 crossref_primary_10_1007_s10765_020_02671_2 crossref_primary_10_1007_s10909_023_02952_8 crossref_primary_10_1088_1402_4896_ac514c crossref_primary_10_1007_s10765_020_02760_2 crossref_primary_10_3390_nano12162741 crossref_primary_10_1016_j_physe_2021_114710 crossref_primary_10_1140_epjp_s13360_021_01408_w crossref_primary_10_26565_2312_4334_2022_2_02 crossref_primary_10_1007_s10909_021_02623_6 crossref_primary_10_5488_cmp_27_43301 crossref_primary_10_1080_00268976_2023_2249140 crossref_primary_10_1002_qua_26645 crossref_primary_10_1080_00268976_2023_2195952 crossref_primary_10_1142_S0217732321500413 crossref_primary_10_1016_j_physleta_2023_128732 crossref_primary_10_1007_s10909_020_02533_z crossref_primary_10_1016_j_rechem_2021_100204 crossref_primary_10_1140_epjp_s13360_021_01438_4 crossref_primary_10_1088_1402_4896_ac4717 crossref_primary_10_1016_j_physb_2024_415750 crossref_primary_10_1016_j_physe_2022_115453 crossref_primary_10_1007_s10825_022_01857_1 crossref_primary_10_1140_epjp_s13360_021_01225_1 crossref_primary_10_1142_S0217732322500109 crossref_primary_10_1016_j_physb_2023_415438 crossref_primary_10_1140_epjd_s10053_023_00718_1 crossref_primary_10_1080_00268976_2020_1821922 crossref_primary_10_1140_epjp_s13360_024_05784_x crossref_primary_10_1007_s12648_023_02767_z crossref_primary_10_1007_s12043_021_02122_z crossref_primary_10_1016_j_rinp_2025_108144 crossref_primary_10_3389_fphy_2022_988279 crossref_primary_10_3390_quantum4030016 crossref_primary_10_3390_math10152824 crossref_primary_10_1080_00268976_2024_2411327 crossref_primary_10_1142_S0219887823500603 crossref_primary_10_1007_s12648_022_02292_5 crossref_primary_10_1016_j_cjph_2024_03_028 |
Cites_doi | 10.1140/epja/i2008-10715-2 10.1016/j.cplett.2019.01.001 10.1142/S0219633615500364 10.1080/00268976.2013.804960 10.1140/epjp/i2017-11823-y 10.1007/s40094-015-0173-9 10.1016/j.cplett.2005.05.021 10.1016/j.cplett.2017.12.013 10.1088/0031-8949/83/02/025002 10.1016/j.cplett.2018.11.044 10.1088/0031-8949/89/11/115204 10.1103/PhysRevA.42.2524 10.1063/1.368712 10.1007/s10910-018-0927-0 10.1088/0305-4470/39/37/012 10.1209/0295-5075/89/10003 10.1103/PhysRevA.14.2363 10.1016/j.ces.2018.06.009 10.1016/j.ces.2019.03.033 10.1088/0253-6102/71/1/103 10.1140/epjp/i2018-12210-0 10.1016/j.ces.2018.06.027 10.1063/1.1733648 10.1016/j.cplett.2017.02.010 10.1007/BF01327754 10.1016/j.comptc.2019.03.019 10.1088/1751-8113/42/3/035303 10.1007/s10910-015-0491-9 10.1007/s10910-012-0075-x 10.1016/j.cplett.2017.12.051 10.1016/j.jms.2012.03.005 10.31349/RevMexFis.64.608 10.1088/1674-1056/23/10/100306 10.1016/j.ces.2018.03.009 10.1103/PhysRev.44.951 10.1134/S1547477114040189 10.1142/S0218301307005661 10.1007/s00894-018-3878-2 10.1007/s10910-014-0399-9 10.1016/j.aop.2007.12.002 10.1142/S0129183199000450 10.1103/PhysRev.42.210 10.31349/RevMexFis.66.1 10.3938/jkps.73.1211 10.1063/1.1740254 10.1007/s10910-011-9877-5 10.1002/qua.25383 10.1063/1.3466802 10.1007/978-1-4020-5796-0 10.1007/s00601-014-0937-9 10.1007/s10910-012-0123-6 10.1088/0256-307X/33/1/010303 10.1088/0253-6102/58/2/04 10.1103/PhysRevA.86.062510 10.1063/1.4731340 10.1016/j.cplett.2016.11.059 10.1016/j.cplett.2019.04.040 10.1007/BF01331132 10.1016/j.chemphys.2018.08.015 10.1088/1742-6596/96/1/012109 10.1007/s10910-011-9931-3 10.1007/s12043-017-1510-0 10.1140/epjp/i2017-11729-8 10.1016/j.physleta.2008.05.030 10.1007/s10910-006-9115-8 10.1007/s12648-019-01467-x 10.1016/j.cplett.2017.03.068 10.1016/j.comptc.2013.08.002 10.1103/PhysRev.34.57 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2020 Springer Nature Switzerland AG 2020. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2020 – notice: Springer Nature Switzerland AG 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10910-020-01107-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Mathematics |
EISSN | 1572-8897 |
EndPage | 1013 |
ExternalDocumentID | 10_1007_s10910_020_01107_4 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- ML- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z83 ZMTXR ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-f697e87b27673b2f54f062b3b543fc6ecac3de517e46ff402d15c877e8e0d3b53 |
IEDL.DBID | U2A |
ISSN | 0259-9791 |
IngestDate | Fri Jul 25 11:07:13 EDT 2025 Tue Jul 01 03:50:15 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Fri Feb 21 02:25:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Thermal properties Pekeris-type approximation Eckart potential Factorization method Eigenfunction Eigenvalues Deng–Fan molecular potential |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-f697e87b27673b2f54f062b3b543fc6ecac3de517e46ff402d15c877e8e0d3b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7762-731X |
PQID | 2391394219 |
PQPubID | 2043851 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2391394219 crossref_primary_10_1007_s10910_020_01107_4 crossref_citationtrail_10_1007_s10910_020_01107_4 springer_journals_10_1007_s10910_020_01107_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationTitle | Journal of mathematical chemistry |
PublicationTitleAbbrev | J Math Chem |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | JiaCSWangCWZhangLHPengXLTangHMZengRChem. Eng. Sci.2018183261:CAS:528:DC%2BC1cXktlSisL4%3D SerranoFAGuXYDongSHJ. Math. Phys.201051082103 AssiIASousAJIkotANEur. Phys. J. Plus2017132525 BayrakOKocakGBoztosunIJ. Phys. A Math. Gen.20063911521 DongSHCruz-IrissonMJ. Math. Chem.2012508811:CAS:528:DC%2BC38XjsVOgt7k%3D OyewumiKJOluwadareOJSenKDBabalolaOAJ. Math. Chem.2013519761:CAS:528:DC%2BC3sXitVOhsb0%3D JiaC-SWangC-WZhangL-HPengX-LZengRYouX-TChem. Phys. Lett.20176761501:CAS:528:DC%2BC2sXltl2ksbs%3D BerkdemirCPahlavaniMRApplication of the Nikiforov-Uvarov method in quantum mechanicsTheoretical Concept of Quantum Mechanics2012RijekaInTech DongSHGuXYJ. Phys. Conf. Ser.200896012109 FalayeBJOyewumiKJIkhdairSMHamzaviMPhys. Scr.201489115204 JiaCSZhangLHPengXLInt. J. Quantum Chem.2017117e25383 OkoiPOEdetCOMaguTORelativistic treatment of the Hellmann-generalized Morse potentialRev. Mex. Fis.202066111310.31349/RevMexFis.66.1 SunGHDongSHCommun. Theor. Phys.201258195 GreeneRLAldrichCPhys. Rev. A1976142363 HamzaviMIkhdairSMThylweKEJ. Math. Chem.2013512271:CAS:528:DC%2BC3sXhtVeltA%3D%3D OkorieUSIbekweEEIkotANOnyeajuMCChukwuochaEOJ. Kor. Phys. Soc.2018731211 JiaCSWangCWZhangLHPengXLTangHMLiuJYXiongYZengRChem. Phys. Lett.2018692571:CAS:528:DC%2BC2sXhvFGit73K IkotANZarrinkamarSYazarlooBHHassanabadiHChin. Phys.20142310100306 FalayeBJIkhdairSMHamzaviMJ. Math. Chem.20155313251:CAS:528:DC%2BC2MXlsFektr4%3D DengZHFanYPShandong Univ. J.19577162 KratzerAZ. Phys.192032891:CAS:528:DyaB3MXmvFyr FalayeBJIkhdairSMHamzaviMFew Body Syst.201556631:CAS:528:DC%2BC2MXksl2g IkotANChukwuochaEOOnyeajuMCOnateCAItaBIUdohMEPramana J. Phys.20189022 QiangWCDongSHEur. Phys. Lett.20108910003 OyewumiKJFalayeBJOnateCAOluwadareOJYahyaWAMol. Phys.201411211271:CAS:528:DC%2BC3sXptlGktrw%3D LiangGCTangHMJiaCSComput. Theor. Chem.201310201701:CAS:528:DC%2BC3sXhsVWqs7%2FF ManningMFRosenNPhys. Rev.193344951 EdetCOOkorieKOLouisHNzeata-IbeNAAny l-state solutions of the Schrodinger equation interacting with Hellmann-Kratzer potential modelIndian J. Phys.2020942432511:CAS:528:DC%2BC1MXosVCmt78%3D10.1007/s12648-019-01467-x JiaCSZhangLHWangCWChem. Phys. Lett.20176672111:CAS:528:DC%2BC28XitVKjtLfL JiangRJiaC-SWangY-QPengX-LZhangL-HChem. Phys. Lett.2019726831:CAS:528:DC%2BC1MXnvVylsL0%3D PoschlGTellerEZ. Phys.1933831431:CAS:528:DyaA2cXjtVOk BerkdemirCHanJChem. Phys. Lett.20054092031:CAS:528:DC%2BD2MXlt1Gqsrs%3D ZhangGDLiuJYZhangLHZhouWJiaCSPhys. Rev. A201286062510 GuXYDongSHJ. Math. Chem.20114920531:CAS:528:DC%2BC3MXhtVyrtrjF GuXYDongSHMaZQJ. Phys. A Math. Theor.200942035303 IkhdairSMEur. Phys. J. A2009393071:CAS:528:DC%2BD1MXjs1OqtL8%3D DongSHMoralesDGarcia-RaveloJInt. J. Mod. Phys. E200716189 RosenNMorsePMPhys. Rev.1932422101:CAS:528:DyaA3sXhvF2h UdohMEOkorieUSNgwuekeMIItuenEEIkotANJ. Mol. Model.20192511:CAS:528:DC%2BC1MXhtVagt7vJ OkorieUSIkotANOnyeajuMCChukwuochaEORev. Mex. Fis.201864608 FuKXWangMJiaCSCommun. Theor. Phys.2019711031:CAS:528:DC%2BC1MXhs1Wht7bP HuaWPhys. Rev. A19904225241:CAS:528:DyaK3cXlsF2is7k%3D IkotANHassanabadiHMaghsoodiEZarrinkamarSPhys. Part. Nucl. Lett.201511432 GaoJZhangMCChin. Phys. Lett.2016331010303 HamzaviMRajabiAAThylweKEInt. J. Quantum Chem.20111121 JiaC-SZhangL-HPengX-LLuoJ-XZhaoY-LLiuJ-YGuoJ-JTangL-DChem. Eng. Sci.2019202701:CAS:528:DC%2BC1MXlvVeru7w%3D JiaCSZengRPengXLZhangLHZhaoYLChem. Eng. Sci.20181901 FalayeBJIkhdairSMHamzaviMJ. Theor. Appl. Phys.20159151 FrostAAMusulinBJ. Chem. Phys.19542210171:CAS:528:DyaG2cXntVaiuw%3D%3D JiaCSLiuJYWangPQPhys. Lett. A200837247791:CAS:528:DC%2BD1cXntFKlt7s%3D OluwadareOJOyewumiKJEur. Phys. J. Plus2018133422 JiangRJiaCSWangYQPengXLZhangLHChem. Phys. Lett.20197151861:CAS:528:DC%2BC1cXitlenu7nM SongXQWangCWJiaCSChem. Phys. Lett.2017673501:CAS:528:DC%2BC2sXislGntLw%3D DuJFGuoPJiaCSJ. Math. Chem.20145225591:CAS:528:DC%2BC2cXhsVWqt7bN JiaC-SYouX-TLiuJ-YZhangL-HPengX-LWangY-TWeiL-SChem. Phys. Lett.2019717161:CAS:528:DC%2BC1MXhtVSjsrY%3D WangPQZhangLHJiaCSLiuJYMol. J. Spectrosc.201227451:CAS:528:DC%2BC38XnsVGjsrs%3D KhordadRGhanbariAComput. Theor. Chem.2019115511:CAS:528:DC%2BC1MXlvVWjur0%3D DongSHFactorization Method in Quantum Mechanics2007BerlinSpringer BuchowieckiMChem. Phys. Lett.20186922361:CAS:528:DC%2BC2sXitVCktrfN DongSHGonzalez-CisnerosAAnn. Phys.200832311361:CAS:528:DC%2BD1cXksFKkt7Y%3D LuchaWSchoberlFFInt. J. Mod. Phys. C199910607 FalayeBJOyewumiKJSadikogluFHamzaviMIkhdairSMJ. Theor. Comput. Chem.20151415500361:CAS:528:DC%2BC2MXhsVahsL3O PengXLJiangRJiaCSZhangLHZhaoYLChem. Eng. Sci.20181901221:CAS:528:DC%2BC1cXhtFCqur%2FP Gordillo-VázquezFJKuncJAJ. Appl. Phys.1998844693 TietzTJ. Chem. Phys.1963383036 OcakZYanarHSaltıMAydoğduOChem. Phys.20185132521:CAS:528:DC%2BC1cXhsFeqtrbL OnateCAOnyeajuMCIkotANEbomwonyiOEur. Phys. J. Plus201713211462 JiaCSDiaoYFLiuXJWangPQLiuJYZhangGDJ. Chem. Phys.201213701410122779631 NikiforovAFUvarovVBJaffeASpecial Functions of Mathematical Physics1998BaselBirkhauser Verlag317 MorsePMPhys. Rev.192934571:CAS:528:DyaB1MXkslajsQ%3D%3D IkhdairSMAbu-HasnaJPhys. Scr.201183025002 LiuHBYiLZJiaCSJ. Math. Chem.20185629821:CAS:528:DC%2BC1cXhtFOkurzI IkhdairSMSeverRJ. Math. Chem.2007424611:CAS:528:DC%2BD2sXpvVKlsL8%3D O Bayrak (1107_CR63) 2006; 39 BJ Falaye (1107_CR2) 2015; 14 KX Fu (1107_CR6) 2019; 71 FA Serrano (1107_CR48) 2010; 51 C Berkdemir (1107_CR27) 2005; 409 BJ Falaye (1107_CR52) 2015; 56 US Okorie (1107_CR19) 2018; 73 CS Jia (1107_CR22) 2018; 692 R Jiang (1107_CR72) 2019; 726 T Tietz (1107_CR13) 1963; 38 BJ Falaye (1107_CR30) 2015; 9 C Berkdemir (1107_CR37) 2012 CS Jia (1107_CR64) 2008; 372 JF Du (1107_CR67) 2014; 52 XY Gu (1107_CR45) 2009; 42 XQ Song (1107_CR53) 2017; 673 CS Jia (1107_CR10) 2017; 117 CS Jia (1107_CR25) 2018; 183 KJ Oyewumi (1107_CR57) 2013; 51 SH Dong (1107_CR44) 2008; 323 R Khordad (1107_CR4) 2019; 1155 C-S Jia (1107_CR70) 2019; 717 FJ Gordillo-Vázquez (1107_CR33) 1998; 84 G Poschl (1107_CR16) 1933; 83 M Buchowiecki (1107_CR66) 2018; 692 W Hua (1107_CR32) 1990; 42 CA Onate (1107_CR41) 2017; 132 GD Zhang (1107_CR7) 2012; 86 M Hamzavi (1107_CR29) 2013; 51 BJ Falaye (1107_CR5) 2015; 53 SH Dong (1107_CR47) 2007; 16 XY Gu (1107_CR51) 2011; 49 OJ Oluwadare (1107_CR50) 2018; 133 US Okorie (1107_CR20) 2018; 64 AN Ikot (1107_CR42) 2015; 11 SH Dong (1107_CR59) 2008; 96 RL Greene (1107_CR56) 1976; 14 KJ Oyewumi (1107_CR58) 2014; 112 PO Okoi (1107_CR18) 2020; 66 M Hamzavi (1107_CR31) 2011; 112 GH Sun (1107_CR34) 2012; 58 J Gao (1107_CR61) 2016; 33 C-S Jia (1107_CR71) 2019; 202 HB Liu (1107_CR3) 2018; 56 XL Peng (1107_CR23) 2018; 190 R Jiang (1107_CR24) 2019; 715 A Kratzer (1107_CR28) 1920; 3 CS Jia (1107_CR68) 2017; 667 GC Liang (1107_CR9) 2013; 1020 Z Ocak (1107_CR21) 2018; 513 AN Ikot (1107_CR40) 2018; 90 PQ Wang (1107_CR8) 2012; 274 PM Morse (1107_CR35) 1929; 34 CS Jia (1107_CR26) 2018; 190 SM Ikhdair (1107_CR62) 2009; 39 C-S Jia (1107_CR69) 2017; 676 IA Assi (1107_CR39) 2017; 132 CO Edet (1107_CR73) 2020; 94 CS Jia (1107_CR11) 2012; 137 AN Ikot (1107_CR54) 2014; 23 SH Dong (1107_CR38) 2007 SH Dong (1107_CR49) 2012; 50 AA Frost (1107_CR14) 1954; 22 ME Udoh (1107_CR55) 2019; 25 ZH Deng (1107_CR17) 1957; 7 WC Qiang (1107_CR43) 2010; 89 MF Manning (1107_CR15) 1933; 44 AF Nikiforov (1107_CR36) 1998 SM Ikhdair (1107_CR65) 2007; 42 N Rosen (1107_CR12) 1932; 42 SM Ikhdair (1107_CR46) 2011; 83 W Lucha (1107_CR60) 1999; 10 BJ Falaye (1107_CR1) 2014; 89 |
References_xml | – reference: JiaCSZhangLHPengXLInt. J. Quantum Chem.2017117e25383 – reference: BerkdemirCPahlavaniMRApplication of the Nikiforov-Uvarov method in quantum mechanicsTheoretical Concept of Quantum Mechanics2012RijekaInTech – reference: UdohMEOkorieUSNgwuekeMIItuenEEIkotANJ. Mol. Model.20192511:CAS:528:DC%2BC1MXhtVagt7vJ – reference: JiaCSWangCWZhangLHPengXLTangHMZengRChem. Eng. Sci.2018183261:CAS:528:DC%2BC1cXktlSisL4%3D – reference: JiaC-SYouX-TLiuJ-YZhangL-HPengX-LWangY-TWeiL-SChem. Phys. Lett.2019717161:CAS:528:DC%2BC1MXhtVSjsrY%3D – reference: QiangWCDongSHEur. Phys. Lett.20108910003 – reference: MorsePMPhys. Rev.192934571:CAS:528:DyaB1MXkslajsQ%3D%3D – reference: HamzaviMRajabiAAThylweKEInt. J. Quantum Chem.20111121 – reference: EdetCOOkorieKOLouisHNzeata-IbeNAAny l-state solutions of the Schrodinger equation interacting with Hellmann-Kratzer potential modelIndian J. Phys.2020942432511:CAS:528:DC%2BC1MXosVCmt78%3D10.1007/s12648-019-01467-x – reference: BerkdemirCHanJChem. Phys. Lett.20054092031:CAS:528:DC%2BD2MXlt1Gqsrs%3D – reference: BayrakOKocakGBoztosunIJ. Phys. A Math. Gen.20063911521 – reference: LiuHBYiLZJiaCSJ. Math. Chem.20185629821:CAS:528:DC%2BC1cXhtFOkurzI – reference: ZhangGDLiuJYZhangLHZhouWJiaCSPhys. Rev. A201286062510 – reference: IkhdairSMAbu-HasnaJPhys. Scr.201183025002 – reference: GaoJZhangMCChin. Phys. Lett.2016331010303 – reference: JiaCSLiuJYWangPQPhys. Lett. A200837247791:CAS:528:DC%2BD1cXntFKlt7s%3D – reference: OnateCAOnyeajuMCIkotANEbomwonyiOEur. Phys. J. Plus201713211462 – reference: JiangRJiaC-SWangY-QPengX-LZhangL-HChem. Phys. Lett.2019726831:CAS:528:DC%2BC1MXnvVylsL0%3D – reference: Gordillo-VázquezFJKuncJAJ. Appl. Phys.1998844693 – reference: SongXQWangCWJiaCSChem. Phys. Lett.2017673501:CAS:528:DC%2BC2sXislGntLw%3D – reference: JiaCSDiaoYFLiuXJWangPQLiuJYZhangGDJ. Chem. Phys.201213701410122779631 – reference: OkorieUSIkotANOnyeajuMCChukwuochaEORev. Mex. Fis.201864608 – reference: TietzTJ. Chem. Phys.1963383036 – reference: AssiIASousAJIkotANEur. Phys. J. Plus2017132525 – reference: IkotANChukwuochaEOOnyeajuMCOnateCAItaBIUdohMEPramana J. Phys.20189022 – reference: IkotANZarrinkamarSYazarlooBHHassanabadiHChin. Phys.20142310100306 – reference: JiaC-SZhangL-HPengX-LLuoJ-XZhaoY-LLiuJ-YGuoJ-JTangL-DChem. Eng. Sci.2019202701:CAS:528:DC%2BC1MXlvVeru7w%3D – reference: KhordadRGhanbariAComput. Theor. Chem.2019115511:CAS:528:DC%2BC1MXlvVWjur0%3D – reference: OyewumiKJOluwadareOJSenKDBabalolaOAJ. Math. Chem.2013519761:CAS:528:DC%2BC3sXitVOhsb0%3D – reference: RosenNMorsePMPhys. Rev.1932422101:CAS:528:DyaA3sXhvF2h – reference: FalayeBJIkhdairSMHamzaviMJ. Theor. Appl. Phys.20159151 – reference: SunGHDongSHCommun. Theor. Phys.201258195 – reference: DongSHGuXYJ. Phys. Conf. Ser.200896012109 – reference: DongSHFactorization Method in Quantum Mechanics2007BerlinSpringer – reference: IkotANHassanabadiHMaghsoodiEZarrinkamarSPhys. Part. Nucl. Lett.201511432 – reference: DongSHCruz-IrissonMJ. Math. Chem.2012508811:CAS:528:DC%2BC38XjsVOgt7k%3D – reference: OcakZYanarHSaltıMAydoğduOChem. Phys.20185132521:CAS:528:DC%2BC1cXhsFeqtrbL – reference: FalayeBJIkhdairSMHamzaviMJ. Math. Chem.20155313251:CAS:528:DC%2BC2MXlsFektr4%3D – reference: LuchaWSchoberlFFInt. J. Mod. Phys. C199910607 – reference: OkorieUSIbekweEEIkotANOnyeajuMCChukwuochaEOJ. Kor. Phys. Soc.2018731211 – reference: HamzaviMIkhdairSMThylweKEJ. Math. Chem.2013512271:CAS:528:DC%2BC3sXhtVeltA%3D%3D – reference: KratzerAZ. Phys.192032891:CAS:528:DyaB3MXmvFyr – reference: JiaCSZengRPengXLZhangLHZhaoYLChem. Eng. Sci.20181901 – reference: JiaC-SWangC-WZhangL-HPengX-LZengRYouX-TChem. Phys. Lett.20176761501:CAS:528:DC%2BC2sXltl2ksbs%3D – reference: ManningMFRosenNPhys. Rev.193344951 – reference: SerranoFAGuXYDongSHJ. Math. Phys.201051082103 – reference: OkoiPOEdetCOMaguTORelativistic treatment of the Hellmann-generalized Morse potentialRev. Mex. Fis.202066111310.31349/RevMexFis.66.1 – reference: JiangRJiaCSWangYQPengXLZhangLHChem. Phys. Lett.20197151861:CAS:528:DC%2BC1cXitlenu7nM – reference: DongSHGonzalez-CisnerosAAnn. Phys.200832311361:CAS:528:DC%2BD1cXksFKkt7Y%3D – reference: IkhdairSMEur. Phys. J. A2009393071:CAS:528:DC%2BD1MXjs1OqtL8%3D – reference: JiaCSWangCWZhangLHPengXLTangHMLiuJYXiongYZengRChem. Phys. Lett.2018692571:CAS:528:DC%2BC2sXhvFGit73K – reference: GuXYDongSHJ. Math. Chem.20114920531:CAS:528:DC%2BC3MXhtVyrtrjF – reference: FalayeBJOyewumiKJIkhdairSMHamzaviMPhys. Scr.201489115204 – reference: BuchowieckiMChem. Phys. Lett.20186922361:CAS:528:DC%2BC2sXitVCktrfN – reference: DongSHMoralesDGarcia-RaveloJInt. J. Mod. Phys. E200716189 – reference: OluwadareOJOyewumiKJEur. Phys. J. Plus2018133422 – reference: PoschlGTellerEZ. Phys.1933831431:CAS:528:DyaA2cXjtVOk – reference: GreeneRLAldrichCPhys. Rev. A1976142363 – reference: FuKXWangMJiaCSCommun. Theor. Phys.2019711031:CAS:528:DC%2BC1MXhs1Wht7bP – reference: LiangGCTangHMJiaCSComput. Theor. Chem.201310201701:CAS:528:DC%2BC3sXhsVWqs7%2FF – reference: GuXYDongSHMaZQJ. Phys. A Math. Theor.200942035303 – reference: PengXLJiangRJiaCSZhangLHZhaoYLChem. Eng. Sci.20181901221:CAS:528:DC%2BC1cXhtFCqur%2FP – reference: NikiforovAFUvarovVBJaffeASpecial Functions of Mathematical Physics1998BaselBirkhauser Verlag317 – reference: WangPQZhangLHJiaCSLiuJYMol. J. Spectrosc.201227451:CAS:528:DC%2BC38XnsVGjsrs%3D – reference: JiaCSZhangLHWangCWChem. Phys. Lett.20176672111:CAS:528:DC%2BC28XitVKjtLfL – reference: FalayeBJIkhdairSMHamzaviMFew Body Syst.201556631:CAS:528:DC%2BC2MXksl2g – reference: OyewumiKJFalayeBJOnateCAOluwadareOJYahyaWAMol. Phys.201411211271:CAS:528:DC%2BC3sXptlGktrw%3D – reference: FrostAAMusulinBJ. Chem. Phys.19542210171:CAS:528:DyaG2cXntVaiuw%3D%3D – reference: DengZHFanYPShandong Univ. J.19577162 – reference: IkhdairSMSeverRJ. Math. Chem.2007424611:CAS:528:DC%2BD2sXpvVKlsL8%3D – reference: FalayeBJOyewumiKJSadikogluFHamzaviMIkhdairSMJ. Theor. Comput. Chem.20151415500361:CAS:528:DC%2BC2MXhsVahsL3O – reference: DuJFGuoPJiaCSJ. Math. Chem.20145225591:CAS:528:DC%2BC2cXhsVWqt7bN – reference: HuaWPhys. Rev. A19904225241:CAS:528:DyaK3cXlsF2is7k%3D – volume: 39 start-page: 307 year: 2009 ident: 1107_CR62 publication-title: Eur. Phys. J. A doi: 10.1140/epja/i2008-10715-2 – volume: 717 start-page: 16 year: 2019 ident: 1107_CR70 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2019.01.001 – volume: 14 start-page: 1550036 year: 2015 ident: 1107_CR2 publication-title: J. Theor. Comput. Chem. doi: 10.1142/S0219633615500364 – volume: 112 start-page: 127 issue: 1 year: 2014 ident: 1107_CR58 publication-title: Mol. Phys. doi: 10.1080/00268976.2013.804960 – volume: 132 start-page: 525 year: 2017 ident: 1107_CR39 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11823-y – volume: 9 start-page: 151 year: 2015 ident: 1107_CR30 publication-title: J. Theor. Appl. Phys. doi: 10.1007/s40094-015-0173-9 – volume: 409 start-page: 203 year: 2005 ident: 1107_CR27 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2005.05.021 – volume: 692 start-page: 57 year: 2018 ident: 1107_CR22 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2017.12.013 – volume: 83 start-page: 025002 year: 2011 ident: 1107_CR46 publication-title: Phys. Scr. doi: 10.1088/0031-8949/83/02/025002 – volume: 715 start-page: 186 year: 2019 ident: 1107_CR24 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2018.11.044 – volume: 89 start-page: 115204 year: 2014 ident: 1107_CR1 publication-title: Phys. Scr. doi: 10.1088/0031-8949/89/11/115204 – volume: 42 start-page: 2524 year: 1990 ident: 1107_CR32 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.42.2524 – volume-title: Theoretical Concept of Quantum Mechanics year: 2012 ident: 1107_CR37 – volume: 84 start-page: 4693 year: 1998 ident: 1107_CR33 publication-title: J. Appl. Phys. doi: 10.1063/1.368712 – volume: 56 start-page: 2982 year: 2018 ident: 1107_CR3 publication-title: J. Math. Chem. doi: 10.1007/s10910-018-0927-0 – volume: 39 start-page: 11521 year: 2006 ident: 1107_CR63 publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/39/37/012 – volume: 89 start-page: 10003 year: 2010 ident: 1107_CR43 publication-title: Eur. Phys. Lett. doi: 10.1209/0295-5075/89/10003 – volume: 14 start-page: 2363 year: 1976 ident: 1107_CR56 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.14.2363 – volume: 190 start-page: 1 year: 2018 ident: 1107_CR26 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.06.009 – volume: 112 start-page: 1 year: 2011 ident: 1107_CR31 publication-title: Int. J. Quantum Chem. – volume: 202 start-page: 70 year: 2019 ident: 1107_CR71 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.03.033 – volume: 71 start-page: 103 year: 2019 ident: 1107_CR6 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/71/1/103 – volume: 133 start-page: 422 year: 2018 ident: 1107_CR50 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2018-12210-0 – volume: 190 start-page: 122 year: 2018 ident: 1107_CR23 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.06.027 – volume: 38 start-page: 3036 year: 1963 ident: 1107_CR13 publication-title: J. Chem. Phys. doi: 10.1063/1.1733648 – volume: 673 start-page: 50 year: 2017 ident: 1107_CR53 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2017.02.010 – volume: 3 start-page: 289 year: 1920 ident: 1107_CR28 publication-title: Z. Phys. doi: 10.1007/BF01327754 – volume: 1155 start-page: 1 year: 2019 ident: 1107_CR4 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2019.03.019 – volume: 42 start-page: 035303 year: 2009 ident: 1107_CR45 publication-title: J. Phys. A Math. Theor. doi: 10.1088/1751-8113/42/3/035303 – volume: 53 start-page: 1325 year: 2015 ident: 1107_CR5 publication-title: J. Math. Chem. doi: 10.1007/s10910-015-0491-9 – volume: 51 start-page: 227 year: 2013 ident: 1107_CR29 publication-title: J. Math. Chem. doi: 10.1007/s10910-012-0075-x – volume: 692 start-page: 236 year: 2018 ident: 1107_CR66 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2017.12.051 – volume: 274 start-page: 5 year: 2012 ident: 1107_CR8 publication-title: Mol. J. Spectrosc. doi: 10.1016/j.jms.2012.03.005 – volume: 64 start-page: 608 year: 2018 ident: 1107_CR20 publication-title: Rev. Mex. Fis. doi: 10.31349/RevMexFis.64.608 – volume: 23 start-page: 100306 issue: 10 year: 2014 ident: 1107_CR54 publication-title: Chin. Phys. doi: 10.1088/1674-1056/23/10/100306 – volume: 183 start-page: 26 year: 2018 ident: 1107_CR25 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.03.009 – volume: 44 start-page: 951 year: 1933 ident: 1107_CR15 publication-title: Phys. Rev. doi: 10.1103/PhysRev.44.951 – volume: 7 start-page: 162 year: 1957 ident: 1107_CR17 publication-title: Shandong Univ. J. – volume: 11 start-page: 432 year: 2015 ident: 1107_CR42 publication-title: Phys. Part. Nucl. Lett. doi: 10.1134/S1547477114040189 – start-page: 317 volume-title: Special Functions of Mathematical Physics year: 1998 ident: 1107_CR36 – volume: 16 start-page: 189 year: 2007 ident: 1107_CR47 publication-title: Int. J. Mod. Phys. E doi: 10.1142/S0218301307005661 – volume: 25 start-page: 1 year: 2019 ident: 1107_CR55 publication-title: J. Mol. Model. doi: 10.1007/s00894-018-3878-2 – volume: 52 start-page: 2559 year: 2014 ident: 1107_CR67 publication-title: J. Math. Chem. doi: 10.1007/s10910-014-0399-9 – volume: 323 start-page: 1136 year: 2008 ident: 1107_CR44 publication-title: Ann. Phys. doi: 10.1016/j.aop.2007.12.002 – volume: 10 start-page: 607 year: 1999 ident: 1107_CR60 publication-title: Int. J. Mod. Phys. C doi: 10.1142/S0129183199000450 – volume: 42 start-page: 210 year: 1932 ident: 1107_CR12 publication-title: Phys. Rev. doi: 10.1103/PhysRev.42.210 – volume: 66 start-page: 1 issue: 1 year: 2020 ident: 1107_CR18 publication-title: Rev. Mex. Fis. doi: 10.31349/RevMexFis.66.1 – volume: 73 start-page: 1211 year: 2018 ident: 1107_CR19 publication-title: J. Kor. Phys. Soc. doi: 10.3938/jkps.73.1211 – volume: 22 start-page: 1017 year: 1954 ident: 1107_CR14 publication-title: J. Chem. Phys. doi: 10.1063/1.1740254 – volume: 49 start-page: 2053 year: 2011 ident: 1107_CR51 publication-title: J. Math. Chem. doi: 10.1007/s10910-011-9877-5 – volume: 117 start-page: e25383 year: 2017 ident: 1107_CR10 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.25383 – volume: 51 start-page: 082103 year: 2010 ident: 1107_CR48 publication-title: J. Math. Phys. doi: 10.1063/1.3466802 – volume-title: Factorization Method in Quantum Mechanics year: 2007 ident: 1107_CR38 doi: 10.1007/978-1-4020-5796-0 – volume: 56 start-page: 63 year: 2015 ident: 1107_CR52 publication-title: Few Body Syst. doi: 10.1007/s00601-014-0937-9 – volume: 51 start-page: 976 year: 2013 ident: 1107_CR57 publication-title: J. Math. Chem. doi: 10.1007/s10910-012-0123-6 – volume: 33 start-page: 010303 issue: 1 year: 2016 ident: 1107_CR61 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/33/1/010303 – volume: 58 start-page: 195 year: 2012 ident: 1107_CR34 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/58/2/04 – volume: 86 start-page: 062510 year: 2012 ident: 1107_CR7 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.062510 – volume: 137 start-page: 014101 year: 2012 ident: 1107_CR11 publication-title: J. Chem. Phys. doi: 10.1063/1.4731340 – volume: 667 start-page: 211 year: 2017 ident: 1107_CR68 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.11.059 – volume: 726 start-page: 83 year: 2019 ident: 1107_CR72 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2019.04.040 – volume: 83 start-page: 143 year: 1933 ident: 1107_CR16 publication-title: Z. Phys. doi: 10.1007/BF01331132 – volume: 513 start-page: 252 year: 2018 ident: 1107_CR21 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2018.08.015 – volume: 96 start-page: 012109 year: 2008 ident: 1107_CR59 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/96/1/012109 – volume: 50 start-page: 881 year: 2012 ident: 1107_CR49 publication-title: J. Math. Chem. doi: 10.1007/s10910-011-9931-3 – volume: 90 start-page: 22 year: 2018 ident: 1107_CR40 publication-title: Pramana J. Phys. doi: 10.1007/s12043-017-1510-0 – volume: 132 start-page: 462 issue: 11 year: 2017 ident: 1107_CR41 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11729-8 – volume: 372 start-page: 4779 year: 2008 ident: 1107_CR64 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2008.05.030 – volume: 42 start-page: 461 year: 2007 ident: 1107_CR65 publication-title: J. Math. Chem. doi: 10.1007/s10910-006-9115-8 – volume: 94 start-page: 243 year: 2020 ident: 1107_CR73 publication-title: Indian J. Phys. doi: 10.1007/s12648-019-01467-x – volume: 676 start-page: 150 year: 2017 ident: 1107_CR69 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2017.03.068 – volume: 1020 start-page: 170 year: 2013 ident: 1107_CR9 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2013.08.002 – volume: 34 start-page: 57 year: 1929 ident: 1107_CR35 publication-title: Phys. Rev. doi: 10.1103/PhysRev.34.57 |
SSID | ssj0009868 |
Score | 2.5136712 |
Snippet | The Deng–Fan–Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules. By using the improved Pekeris-type... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 989 |
SubjectTerms | Atomic interactions Chemistry Chemistry and Materials Science Diatomic molecules Eigenvalues Energy spectra Math. Applications in Chemistry Morse potential Original Paper Physical Chemistry Schrodinger equation Theoretical and Computational Chemistry Thermodynamic properties Wave functions |
Title | Thermal properties of Deng–Fan–Eckart potential model using Poisson summation approach |
URI | https://link.springer.com/article/10.1007/s10910-020-01107-4 https://www.proquest.com/docview/2391394219 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BHYAB8RTlJQ9sYCm1HTsZC7QgUCsGKgFLFDs2A1VS0bLzH_iH_BLOIWkBARJLMuTs4V4-5-6-Azg0LNaKRxllmY2osFJTHeiUppK7WApn0sx3I_f68mIgLm_D26opbFxXu9cpydJTf2p2i33ilvlCKry0UDEPjdDf3VGLB6w9g9qNygY4PMxjGqu4VbXK_LzH1-NoFmN-S4uWp013FVaqMJG0P-S6BnM2X4fF03o62zos96Z4q-MNuEdpo4cdkpH_t_7kQVJJ4ciZzR_eXl67aY7PjnlENSGjYuILhJC2HIJDfOH7A7kuUABFTspeNi8rUoONb8Kg27k5vaDV1ARq0Jwm1MlY2UhppqTimrlQuEAyzXUouDPSmtTwzIYtZYV0Dq-PWSs0kcI1NsiQim_BQl7kdhtIGpmAM-2YClPBbRCZWKMNp0JGxmLo2IRWzbzEVJDifrLFMJmBIXuGJ8jwpGR4IppwNF0z-gDU-JN6r5ZJUhnXOGHcY5kK9LVNOK7lNPv8-247_yPfhSVWqoovb9yDhcnTs93HEGSiD6DR7p6c9P37_O6qc1Bq4DuVI9a8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xGIAB8RTl6YENLKW2YzsjAqryKGKgEmKJYsdmoEoqWnb-A_-QX8I5JBQQILFk8dnDvR3ffQewb1liFNc5ZbnTVDhpqIlMRjPJfSKFt1keupF7V7LbF-e38W3dFDZqqt2bJ8nKU39qdkvCwy0LhVR4aaFiGmYxGdChkKvPjiZQu7pqgMNgntBEJe26VebnM76Go0mO-e1ZtIo2nSVYrNNEcvQu12WYcsUKzB0309lWYKH3gbc6WoU7lDZ62AEZhn_rjwEklZSenLji_vX5pZMV-D21D6gmZFiOQ4EQ0lZDcEgofL8n1yUKoCxI1csWZEUasPE16HdOb467tJ6aQC2a05h6mSinlWFKKm6Yj4WPJDPcxIJ7K53NLM9d3FZOSO_x-pi3Y6sV7nFRjlR8HWaKsnAbQDJtI86MZyrOBHeRtolBG86E1NZh6tiCdsO81NaQ4mGyxSCdgCEHhqfI8LRieCpacPCxZ_gOqPEn9XYjk7Q2rlHKeMAyFehrW3DYyGmy_Ptpm_8j34O57k3vMr08u7rYgnlWqU0oddyGmfHjk9vBdGRsdivtewNk_daf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwEB1xSBwF4hTL6YIOLBLbsZNytbDiFgUrIZooduwtQMkKlp5_4A_5EsbZhAUESDRpMraUmbFnHM97A7BnWKIVj3PKchtTYaWmOtAZzSR3iRTOZLlHI19eyZOeOLuNbj-h-Ktq9-ZKcoRp8CxNxfBwkLvDT8C3xF_iMl9UhQcYKiZhGrfj0Pt1j7XHtLtxBYbDwJ7QRCVhDZv5eY6voWmcb367Iq0iT3cRFuqUkbRHNl6CCVssw2yn6dS2DPOXH9yrTytwh5bH3faBDPx_9kdPmEpKR45s0X97ee1mBT6PzT26DBmU_pvRA0nVEIf4Ivg-uS7RGGVBKlybtxtpiMdXodc9vumc0LqDAjWoiyF1MlE2VpopqbhmLhIukExzHQnujLQmMzy3UaiskM7hUTIPIxMrHGODHKX4GkwVZWHXgWSxCTjTjqkoE9wGsUk0rudMyNhYTCNbEDbKS01NL-67XDykY2Jkr_AUFZ5WCk9FC_Y_xgxG5Bp_Sm81NknrhfaUMu55TQXuuy04aOw0fv37bBv_E9-FmeujbnpxenW-CXOs8hpf9bgFU8PHZ7uNmclQ71TO9w7pG9rb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+properties+of+Deng%E2%80%93Fan%E2%80%93Eckart+potential+model+using+Poisson+summation+approach&rft.jtitle=Journal+of+mathematical+chemistry&rft.au=Edet%2C+C.+O.&rft.au=Okorie%2C+U.+S.&rft.au=Osobonye%2C+G.&rft.au=Ikot%2C+A.+N.&rft.date=2020-05-01&rft.issn=0259-9791&rft.eissn=1572-8897&rft.volume=58&rft.issue=5&rft.spage=989&rft.epage=1013&rft_id=info:doi/10.1007%2Fs10910-020-01107-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10910_020_01107_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0259-9791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0259-9791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0259-9791&client=summon |