Thermal properties of Deng–Fan–Eckart potential model using Poisson summation approach

The Deng–Fan–Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules. By using the improved Pekeris-type approximation, to deal with the centrifugal term, we obtain the bound-state solutions of the radial Schrödinger equation with this adopted molecula...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical chemistry Vol. 58; no. 5; pp. 989 - 1013
Main Authors Edet, C. O., Okorie, U. S., Osobonye, G., Ikot, A. N., Rampho, G. J., Sever, R.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Deng–Fan–Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules. By using the improved Pekeris-type approximation, to deal with the centrifugal term, we obtain the bound-state solutions of the radial Schrödinger equation with this adopted molecular model via the Factorization Method. With the energy equation obtained, the thermodynamic properties of some selected diatomic molecules (H 2 , CO, ScN and ScF) were obtained using Poisson summation method. The unnormalized wave function is also derived. The energy spectrum for a set of diatomic molecules for different values of the vibrational n and rotational ℓ are obtained. To show the accuracy of our results, we discuss some special cases by adjusting some potential parameters and also compute the numerical eigenvalue of the Deng–Fan potential for comparison sake. However, it was found out that our results agree excellently with the results obtained via other methods.
AbstractList The Deng–Fan–Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules. By using the improved Pekeris-type approximation, to deal with the centrifugal term, we obtain the bound-state solutions of the radial Schrödinger equation with this adopted molecular model via the Factorization Method. With the energy equation obtained, the thermodynamic properties of some selected diatomic molecules (H2, CO, ScN and ScF) were obtained using Poisson summation method. The unnormalized wave function is also derived. The energy spectrum for a set of diatomic molecules for different values of the vibrational n and rotational ℓ are obtained. To show the accuracy of our results, we discuss some special cases by adjusting some potential parameters and also compute the numerical eigenvalue of the Deng–Fan potential for comparison sake. However, it was found out that our results agree excellently with the results obtained via other methods.
The Deng–Fan–Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules. By using the improved Pekeris-type approximation, to deal with the centrifugal term, we obtain the bound-state solutions of the radial Schrödinger equation with this adopted molecular model via the Factorization Method. With the energy equation obtained, the thermodynamic properties of some selected diatomic molecules (H 2 , CO, ScN and ScF) were obtained using Poisson summation method. The unnormalized wave function is also derived. The energy spectrum for a set of diatomic molecules for different values of the vibrational n and rotational ℓ are obtained. To show the accuracy of our results, we discuss some special cases by adjusting some potential parameters and also compute the numerical eigenvalue of the Deng–Fan potential for comparison sake. However, it was found out that our results agree excellently with the results obtained via other methods.
Author Osobonye, G.
Sever, R.
Rampho, G. J.
Ikot, A. N.
Edet, C. O.
Okorie, U. S.
Author_xml – sequence: 1
  givenname: C. O.
  orcidid: 0000-0001-7762-731X
  surname: Edet
  fullname: Edet, C. O.
  email: collinsokonedet@gmail.com
  organization: Theoretical Physics Group, Department of Physics, University of Port Harcourt
– sequence: 2
  givenname: U. S.
  surname: Okorie
  fullname: Okorie, U. S.
  organization: Theoretical Physics Group, Department of Physics, University of Port Harcourt, Department of Physics, Akwa Ibom State University
– sequence: 3
  givenname: G.
  surname: Osobonye
  fullname: Osobonye, G.
  organization: Department of Physics, Federal College of Education
– sequence: 4
  givenname: A. N.
  surname: Ikot
  fullname: Ikot, A. N.
  organization: Theoretical Physics Group, Department of Physics, University of Port Harcourt, Department of Physics, University of South Africa
– sequence: 5
  givenname: G. J.
  surname: Rampho
  fullname: Rampho, G. J.
  organization: Department of Physics, University of South Africa
– sequence: 6
  givenname: R.
  surname: Sever
  fullname: Sever, R.
  organization: Department of Physics, Middle East Technical University
BookMark eNp9kL1OwzAUhS0EEm3hBZgiMQf8k8TxiEoLSJVgKAuL5Th2m5LYwXYGNt6BN-RJMA0SEkMH23c43znXZwqOjTUKgAsErxCE9NojyBBMIY4HIUjT7AhMUE5xWpaMHoMJxDlLGWXoFEy930EIWVmUE_Cy3irXiTbpne2VC43yidXJrTKbr4_PpTDxXshX4ULS26BMaKK2s7Vqk8E3ZpM82cZ7axI_dJ0ITZxEH72E3J6BEy1ar85_3xl4Xi7W8_t09Xj3ML9ZpZIgFlJdMKpKWmFaUFJhnWcaFrgiVZ4RLQslhSS1yhFVWaF1BnGNclnSyChYRxWZgcvRN8a-DcoHvrODMzGSY8IQYRlGLKrwqJLOeu-U5r1rOuHeOYL8p0M-dshjh3zfIc8iVP6DZBP2vwxONO1hlIyojzlmo9zfVgeob2WrisQ
CitedBy_id crossref_primary_10_1002_qua_26749
crossref_primary_10_1038_s41598_021_85761_x
crossref_primary_10_1016_j_heliyon_2020_e03738
crossref_primary_10_1038_s41598_022_19396_x
crossref_primary_10_1007_s10765_021_02891_0
crossref_primary_10_1007_s10765_022_03091_0
crossref_primary_10_1016_j_physe_2023_115747
crossref_primary_10_1007_s00894_020_04593_0
crossref_primary_10_1016_j_heliyon_2022_e08952
crossref_primary_10_1016_j_rinp_2022_105749
crossref_primary_10_1016_j_physo_2022_100135
crossref_primary_10_15407_ujpe67_3_183
crossref_primary_10_3390_e23081060
crossref_primary_10_1142_S0217751X21501955
crossref_primary_10_1016_j_ijleo_2022_169540
crossref_primary_10_1007_s10765_023_03315_x
crossref_primary_10_4236_jamp_2020_87091
crossref_primary_10_1140_epjp_s13360_021_01090_y
crossref_primary_10_1016_j_chphi_2023_100444
crossref_primary_10_1016_j_comptc_2021_113337
crossref_primary_10_1002_qua_26517
crossref_primary_10_1007_s10765_021_02865_2
crossref_primary_10_1080_00268976_2023_2232472
crossref_primary_10_1021_acs_jpca_0c09512
crossref_primary_10_1038_s41598_023_28973_7
crossref_primary_10_1016_j_heliyon_2021_e08617
crossref_primary_10_1007_s10765_020_02671_2
crossref_primary_10_1007_s10909_023_02952_8
crossref_primary_10_1088_1402_4896_ac514c
crossref_primary_10_1007_s10765_020_02760_2
crossref_primary_10_3390_nano12162741
crossref_primary_10_1016_j_physe_2021_114710
crossref_primary_10_1140_epjp_s13360_021_01408_w
crossref_primary_10_26565_2312_4334_2022_2_02
crossref_primary_10_1007_s10909_021_02623_6
crossref_primary_10_5488_cmp_27_43301
crossref_primary_10_1080_00268976_2023_2249140
crossref_primary_10_1002_qua_26645
crossref_primary_10_1080_00268976_2023_2195952
crossref_primary_10_1142_S0217732321500413
crossref_primary_10_1016_j_physleta_2023_128732
crossref_primary_10_1007_s10909_020_02533_z
crossref_primary_10_1016_j_rechem_2021_100204
crossref_primary_10_1140_epjp_s13360_021_01438_4
crossref_primary_10_1088_1402_4896_ac4717
crossref_primary_10_1016_j_physb_2024_415750
crossref_primary_10_1016_j_physe_2022_115453
crossref_primary_10_1007_s10825_022_01857_1
crossref_primary_10_1140_epjp_s13360_021_01225_1
crossref_primary_10_1142_S0217732322500109
crossref_primary_10_1016_j_physb_2023_415438
crossref_primary_10_1140_epjd_s10053_023_00718_1
crossref_primary_10_1080_00268976_2020_1821922
crossref_primary_10_1140_epjp_s13360_024_05784_x
crossref_primary_10_1007_s12648_023_02767_z
crossref_primary_10_1007_s12043_021_02122_z
crossref_primary_10_1016_j_rinp_2025_108144
crossref_primary_10_3389_fphy_2022_988279
crossref_primary_10_3390_quantum4030016
crossref_primary_10_3390_math10152824
crossref_primary_10_1080_00268976_2024_2411327
crossref_primary_10_1142_S0219887823500603
crossref_primary_10_1007_s12648_022_02292_5
crossref_primary_10_1016_j_cjph_2024_03_028
Cites_doi 10.1140/epja/i2008-10715-2
10.1016/j.cplett.2019.01.001
10.1142/S0219633615500364
10.1080/00268976.2013.804960
10.1140/epjp/i2017-11823-y
10.1007/s40094-015-0173-9
10.1016/j.cplett.2005.05.021
10.1016/j.cplett.2017.12.013
10.1088/0031-8949/83/02/025002
10.1016/j.cplett.2018.11.044
10.1088/0031-8949/89/11/115204
10.1103/PhysRevA.42.2524
10.1063/1.368712
10.1007/s10910-018-0927-0
10.1088/0305-4470/39/37/012
10.1209/0295-5075/89/10003
10.1103/PhysRevA.14.2363
10.1016/j.ces.2018.06.009
10.1016/j.ces.2019.03.033
10.1088/0253-6102/71/1/103
10.1140/epjp/i2018-12210-0
10.1016/j.ces.2018.06.027
10.1063/1.1733648
10.1016/j.cplett.2017.02.010
10.1007/BF01327754
10.1016/j.comptc.2019.03.019
10.1088/1751-8113/42/3/035303
10.1007/s10910-015-0491-9
10.1007/s10910-012-0075-x
10.1016/j.cplett.2017.12.051
10.1016/j.jms.2012.03.005
10.31349/RevMexFis.64.608
10.1088/1674-1056/23/10/100306
10.1016/j.ces.2018.03.009
10.1103/PhysRev.44.951
10.1134/S1547477114040189
10.1142/S0218301307005661
10.1007/s00894-018-3878-2
10.1007/s10910-014-0399-9
10.1016/j.aop.2007.12.002
10.1142/S0129183199000450
10.1103/PhysRev.42.210
10.31349/RevMexFis.66.1
10.3938/jkps.73.1211
10.1063/1.1740254
10.1007/s10910-011-9877-5
10.1002/qua.25383
10.1063/1.3466802
10.1007/978-1-4020-5796-0
10.1007/s00601-014-0937-9
10.1007/s10910-012-0123-6
10.1088/0256-307X/33/1/010303
10.1088/0253-6102/58/2/04
10.1103/PhysRevA.86.062510
10.1063/1.4731340
10.1016/j.cplett.2016.11.059
10.1016/j.cplett.2019.04.040
10.1007/BF01331132
10.1016/j.chemphys.2018.08.015
10.1088/1742-6596/96/1/012109
10.1007/s10910-011-9931-3
10.1007/s12043-017-1510-0
10.1140/epjp/i2017-11729-8
10.1016/j.physleta.2008.05.030
10.1007/s10910-006-9115-8
10.1007/s12648-019-01467-x
10.1016/j.cplett.2017.03.068
10.1016/j.comptc.2013.08.002
10.1103/PhysRev.34.57
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
DOI 10.1007/s10910-020-01107-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Mathematics
EISSN 1572-8897
EndPage 1013
ExternalDocumentID 10_1007_s10910_020_01107_4
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
ML-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z83
ZMTXR
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-f697e87b27673b2f54f062b3b543fc6ecac3de517e46ff402d15c877e8e0d3b53
IEDL.DBID U2A
ISSN 0259-9791
IngestDate Fri Jul 25 11:07:13 EDT 2025
Tue Jul 01 03:50:15 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Fri Feb 21 02:25:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Thermal properties
Pekeris-type approximation
Eckart potential
Factorization method
Eigenfunction
Eigenvalues
Deng–Fan molecular potential
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f697e87b27673b2f54f062b3b543fc6ecac3de517e46ff402d15c877e8e0d3b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7762-731X
PQID 2391394219
PQPubID 2043851
PageCount 25
ParticipantIDs proquest_journals_2391394219
crossref_primary_10_1007_s10910_020_01107_4
crossref_citationtrail_10_1007_s10910_020_01107_4
springer_journals_10_1007_s10910_020_01107_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Journal of mathematical chemistry
PublicationTitleAbbrev J Math Chem
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References JiaCSWangCWZhangLHPengXLTangHMZengRChem. Eng. Sci.2018183261:CAS:528:DC%2BC1cXktlSisL4%3D
SerranoFAGuXYDongSHJ. Math. Phys.201051082103
AssiIASousAJIkotANEur. Phys. J. Plus2017132525
BayrakOKocakGBoztosunIJ. Phys. A Math. Gen.20063911521
DongSHCruz-IrissonMJ. Math. Chem.2012508811:CAS:528:DC%2BC38XjsVOgt7k%3D
OyewumiKJOluwadareOJSenKDBabalolaOAJ. Math. Chem.2013519761:CAS:528:DC%2BC3sXitVOhsb0%3D
JiaC-SWangC-WZhangL-HPengX-LZengRYouX-TChem. Phys. Lett.20176761501:CAS:528:DC%2BC2sXltl2ksbs%3D
BerkdemirCPahlavaniMRApplication of the Nikiforov-Uvarov method in quantum mechanicsTheoretical Concept of Quantum Mechanics2012RijekaInTech
DongSHGuXYJ. Phys. Conf. Ser.200896012109
FalayeBJOyewumiKJIkhdairSMHamzaviMPhys. Scr.201489115204
JiaCSZhangLHPengXLInt. J. Quantum Chem.2017117e25383
OkoiPOEdetCOMaguTORelativistic treatment of the Hellmann-generalized Morse potentialRev. Mex. Fis.202066111310.31349/RevMexFis.66.1
SunGHDongSHCommun. Theor. Phys.201258195
GreeneRLAldrichCPhys. Rev. A1976142363
HamzaviMIkhdairSMThylweKEJ. Math. Chem.2013512271:CAS:528:DC%2BC3sXhtVeltA%3D%3D
OkorieUSIbekweEEIkotANOnyeajuMCChukwuochaEOJ. Kor. Phys. Soc.2018731211
JiaCSWangCWZhangLHPengXLTangHMLiuJYXiongYZengRChem. Phys. Lett.2018692571:CAS:528:DC%2BC2sXhvFGit73K
IkotANZarrinkamarSYazarlooBHHassanabadiHChin. Phys.20142310100306
FalayeBJIkhdairSMHamzaviMJ. Math. Chem.20155313251:CAS:528:DC%2BC2MXlsFektr4%3D
DengZHFanYPShandong Univ. J.19577162
KratzerAZ. Phys.192032891:CAS:528:DyaB3MXmvFyr
FalayeBJIkhdairSMHamzaviMFew Body Syst.201556631:CAS:528:DC%2BC2MXksl2g
IkotANChukwuochaEOOnyeajuMCOnateCAItaBIUdohMEPramana J. Phys.20189022
QiangWCDongSHEur. Phys. Lett.20108910003
OyewumiKJFalayeBJOnateCAOluwadareOJYahyaWAMol. Phys.201411211271:CAS:528:DC%2BC3sXptlGktrw%3D
LiangGCTangHMJiaCSComput. Theor. Chem.201310201701:CAS:528:DC%2BC3sXhsVWqs7%2FF
ManningMFRosenNPhys. Rev.193344951
EdetCOOkorieKOLouisHNzeata-IbeNAAny l-state solutions of the Schrodinger equation interacting with Hellmann-Kratzer potential modelIndian J. Phys.2020942432511:CAS:528:DC%2BC1MXosVCmt78%3D10.1007/s12648-019-01467-x
JiaCSZhangLHWangCWChem. Phys. Lett.20176672111:CAS:528:DC%2BC28XitVKjtLfL
JiangRJiaC-SWangY-QPengX-LZhangL-HChem. Phys. Lett.2019726831:CAS:528:DC%2BC1MXnvVylsL0%3D
PoschlGTellerEZ. Phys.1933831431:CAS:528:DyaA2cXjtVOk
BerkdemirCHanJChem. Phys. Lett.20054092031:CAS:528:DC%2BD2MXlt1Gqsrs%3D
ZhangGDLiuJYZhangLHZhouWJiaCSPhys. Rev. A201286062510
GuXYDongSHJ. Math. Chem.20114920531:CAS:528:DC%2BC3MXhtVyrtrjF
GuXYDongSHMaZQJ. Phys. A Math. Theor.200942035303
IkhdairSMEur. Phys. J. A2009393071:CAS:528:DC%2BD1MXjs1OqtL8%3D
DongSHMoralesDGarcia-RaveloJInt. J. Mod. Phys. E200716189
RosenNMorsePMPhys. Rev.1932422101:CAS:528:DyaA3sXhvF2h
UdohMEOkorieUSNgwuekeMIItuenEEIkotANJ. Mol. Model.20192511:CAS:528:DC%2BC1MXhtVagt7vJ
OkorieUSIkotANOnyeajuMCChukwuochaEORev. Mex. Fis.201864608
FuKXWangMJiaCSCommun. Theor. Phys.2019711031:CAS:528:DC%2BC1MXhs1Wht7bP
HuaWPhys. Rev. A19904225241:CAS:528:DyaK3cXlsF2is7k%3D
IkotANHassanabadiHMaghsoodiEZarrinkamarSPhys. Part. Nucl. Lett.201511432
GaoJZhangMCChin. Phys. Lett.2016331010303
HamzaviMRajabiAAThylweKEInt. J. Quantum Chem.20111121
JiaC-SZhangL-HPengX-LLuoJ-XZhaoY-LLiuJ-YGuoJ-JTangL-DChem. Eng. Sci.2019202701:CAS:528:DC%2BC1MXlvVeru7w%3D
JiaCSZengRPengXLZhangLHZhaoYLChem. Eng. Sci.20181901
FalayeBJIkhdairSMHamzaviMJ. Theor. Appl. Phys.20159151
FrostAAMusulinBJ. Chem. Phys.19542210171:CAS:528:DyaG2cXntVaiuw%3D%3D
JiaCSLiuJYWangPQPhys. Lett. A200837247791:CAS:528:DC%2BD1cXntFKlt7s%3D
OluwadareOJOyewumiKJEur. Phys. J. Plus2018133422
JiangRJiaCSWangYQPengXLZhangLHChem. Phys. Lett.20197151861:CAS:528:DC%2BC1cXitlenu7nM
SongXQWangCWJiaCSChem. Phys. Lett.2017673501:CAS:528:DC%2BC2sXislGntLw%3D
DuJFGuoPJiaCSJ. Math. Chem.20145225591:CAS:528:DC%2BC2cXhsVWqt7bN
JiaC-SYouX-TLiuJ-YZhangL-HPengX-LWangY-TWeiL-SChem. Phys. Lett.2019717161:CAS:528:DC%2BC1MXhtVSjsrY%3D
WangPQZhangLHJiaCSLiuJYMol. J. Spectrosc.201227451:CAS:528:DC%2BC38XnsVGjsrs%3D
KhordadRGhanbariAComput. Theor. Chem.2019115511:CAS:528:DC%2BC1MXlvVWjur0%3D
DongSHFactorization Method in Quantum Mechanics2007BerlinSpringer
BuchowieckiMChem. Phys. Lett.20186922361:CAS:528:DC%2BC2sXitVCktrfN
DongSHGonzalez-CisnerosAAnn. Phys.200832311361:CAS:528:DC%2BD1cXksFKkt7Y%3D
LuchaWSchoberlFFInt. J. Mod. Phys. C199910607
FalayeBJOyewumiKJSadikogluFHamzaviMIkhdairSMJ. Theor. Comput. Chem.20151415500361:CAS:528:DC%2BC2MXhsVahsL3O
PengXLJiangRJiaCSZhangLHZhaoYLChem. Eng. Sci.20181901221:CAS:528:DC%2BC1cXhtFCqur%2FP
Gordillo-VázquezFJKuncJAJ. Appl. Phys.1998844693
TietzTJ. Chem. Phys.1963383036
OcakZYanarHSaltıMAydoğduOChem. Phys.20185132521:CAS:528:DC%2BC1cXhsFeqtrbL
OnateCAOnyeajuMCIkotANEbomwonyiOEur. Phys. J. Plus201713211462
JiaCSDiaoYFLiuXJWangPQLiuJYZhangGDJ. Chem. Phys.201213701410122779631
NikiforovAFUvarovVBJaffeASpecial Functions of Mathematical Physics1998BaselBirkhauser Verlag317
MorsePMPhys. Rev.192934571:CAS:528:DyaB1MXkslajsQ%3D%3D
IkhdairSMAbu-HasnaJPhys. Scr.201183025002
LiuHBYiLZJiaCSJ. Math. Chem.20185629821:CAS:528:DC%2BC1cXhtFOkurzI
IkhdairSMSeverRJ. Math. Chem.2007424611:CAS:528:DC%2BD2sXpvVKlsL8%3D
O Bayrak (1107_CR63) 2006; 39
BJ Falaye (1107_CR2) 2015; 14
KX Fu (1107_CR6) 2019; 71
FA Serrano (1107_CR48) 2010; 51
C Berkdemir (1107_CR27) 2005; 409
BJ Falaye (1107_CR52) 2015; 56
US Okorie (1107_CR19) 2018; 73
CS Jia (1107_CR22) 2018; 692
R Jiang (1107_CR72) 2019; 726
T Tietz (1107_CR13) 1963; 38
BJ Falaye (1107_CR30) 2015; 9
C Berkdemir (1107_CR37) 2012
CS Jia (1107_CR64) 2008; 372
JF Du (1107_CR67) 2014; 52
XY Gu (1107_CR45) 2009; 42
XQ Song (1107_CR53) 2017; 673
CS Jia (1107_CR10) 2017; 117
CS Jia (1107_CR25) 2018; 183
KJ Oyewumi (1107_CR57) 2013; 51
SH Dong (1107_CR44) 2008; 323
R Khordad (1107_CR4) 2019; 1155
C-S Jia (1107_CR70) 2019; 717
FJ Gordillo-Vázquez (1107_CR33) 1998; 84
G Poschl (1107_CR16) 1933; 83
M Buchowiecki (1107_CR66) 2018; 692
W Hua (1107_CR32) 1990; 42
CA Onate (1107_CR41) 2017; 132
GD Zhang (1107_CR7) 2012; 86
M Hamzavi (1107_CR29) 2013; 51
BJ Falaye (1107_CR5) 2015; 53
SH Dong (1107_CR47) 2007; 16
XY Gu (1107_CR51) 2011; 49
OJ Oluwadare (1107_CR50) 2018; 133
US Okorie (1107_CR20) 2018; 64
AN Ikot (1107_CR42) 2015; 11
SH Dong (1107_CR59) 2008; 96
RL Greene (1107_CR56) 1976; 14
KJ Oyewumi (1107_CR58) 2014; 112
PO Okoi (1107_CR18) 2020; 66
M Hamzavi (1107_CR31) 2011; 112
GH Sun (1107_CR34) 2012; 58
J Gao (1107_CR61) 2016; 33
C-S Jia (1107_CR71) 2019; 202
HB Liu (1107_CR3) 2018; 56
XL Peng (1107_CR23) 2018; 190
R Jiang (1107_CR24) 2019; 715
A Kratzer (1107_CR28) 1920; 3
CS Jia (1107_CR68) 2017; 667
GC Liang (1107_CR9) 2013; 1020
Z Ocak (1107_CR21) 2018; 513
AN Ikot (1107_CR40) 2018; 90
PQ Wang (1107_CR8) 2012; 274
PM Morse (1107_CR35) 1929; 34
CS Jia (1107_CR26) 2018; 190
SM Ikhdair (1107_CR62) 2009; 39
C-S Jia (1107_CR69) 2017; 676
IA Assi (1107_CR39) 2017; 132
CO Edet (1107_CR73) 2020; 94
CS Jia (1107_CR11) 2012; 137
AN Ikot (1107_CR54) 2014; 23
SH Dong (1107_CR38) 2007
SH Dong (1107_CR49) 2012; 50
AA Frost (1107_CR14) 1954; 22
ME Udoh (1107_CR55) 2019; 25
ZH Deng (1107_CR17) 1957; 7
WC Qiang (1107_CR43) 2010; 89
MF Manning (1107_CR15) 1933; 44
AF Nikiforov (1107_CR36) 1998
SM Ikhdair (1107_CR65) 2007; 42
N Rosen (1107_CR12) 1932; 42
SM Ikhdair (1107_CR46) 2011; 83
W Lucha (1107_CR60) 1999; 10
BJ Falaye (1107_CR1) 2014; 89
References_xml – reference: JiaCSZhangLHPengXLInt. J. Quantum Chem.2017117e25383
– reference: BerkdemirCPahlavaniMRApplication of the Nikiforov-Uvarov method in quantum mechanicsTheoretical Concept of Quantum Mechanics2012RijekaInTech
– reference: UdohMEOkorieUSNgwuekeMIItuenEEIkotANJ. Mol. Model.20192511:CAS:528:DC%2BC1MXhtVagt7vJ
– reference: JiaCSWangCWZhangLHPengXLTangHMZengRChem. Eng. Sci.2018183261:CAS:528:DC%2BC1cXktlSisL4%3D
– reference: JiaC-SYouX-TLiuJ-YZhangL-HPengX-LWangY-TWeiL-SChem. Phys. Lett.2019717161:CAS:528:DC%2BC1MXhtVSjsrY%3D
– reference: QiangWCDongSHEur. Phys. Lett.20108910003
– reference: MorsePMPhys. Rev.192934571:CAS:528:DyaB1MXkslajsQ%3D%3D
– reference: HamzaviMRajabiAAThylweKEInt. J. Quantum Chem.20111121
– reference: EdetCOOkorieKOLouisHNzeata-IbeNAAny l-state solutions of the Schrodinger equation interacting with Hellmann-Kratzer potential modelIndian J. Phys.2020942432511:CAS:528:DC%2BC1MXosVCmt78%3D10.1007/s12648-019-01467-x
– reference: BerkdemirCHanJChem. Phys. Lett.20054092031:CAS:528:DC%2BD2MXlt1Gqsrs%3D
– reference: BayrakOKocakGBoztosunIJ. Phys. A Math. Gen.20063911521
– reference: LiuHBYiLZJiaCSJ. Math. Chem.20185629821:CAS:528:DC%2BC1cXhtFOkurzI
– reference: ZhangGDLiuJYZhangLHZhouWJiaCSPhys. Rev. A201286062510
– reference: IkhdairSMAbu-HasnaJPhys. Scr.201183025002
– reference: GaoJZhangMCChin. Phys. Lett.2016331010303
– reference: JiaCSLiuJYWangPQPhys. Lett. A200837247791:CAS:528:DC%2BD1cXntFKlt7s%3D
– reference: OnateCAOnyeajuMCIkotANEbomwonyiOEur. Phys. J. Plus201713211462
– reference: JiangRJiaC-SWangY-QPengX-LZhangL-HChem. Phys. Lett.2019726831:CAS:528:DC%2BC1MXnvVylsL0%3D
– reference: Gordillo-VázquezFJKuncJAJ. Appl. Phys.1998844693
– reference: SongXQWangCWJiaCSChem. Phys. Lett.2017673501:CAS:528:DC%2BC2sXislGntLw%3D
– reference: JiaCSDiaoYFLiuXJWangPQLiuJYZhangGDJ. Chem. Phys.201213701410122779631
– reference: OkorieUSIkotANOnyeajuMCChukwuochaEORev. Mex. Fis.201864608
– reference: TietzTJ. Chem. Phys.1963383036
– reference: AssiIASousAJIkotANEur. Phys. J. Plus2017132525
– reference: IkotANChukwuochaEOOnyeajuMCOnateCAItaBIUdohMEPramana J. Phys.20189022
– reference: IkotANZarrinkamarSYazarlooBHHassanabadiHChin. Phys.20142310100306
– reference: JiaC-SZhangL-HPengX-LLuoJ-XZhaoY-LLiuJ-YGuoJ-JTangL-DChem. Eng. Sci.2019202701:CAS:528:DC%2BC1MXlvVeru7w%3D
– reference: KhordadRGhanbariAComput. Theor. Chem.2019115511:CAS:528:DC%2BC1MXlvVWjur0%3D
– reference: OyewumiKJOluwadareOJSenKDBabalolaOAJ. Math. Chem.2013519761:CAS:528:DC%2BC3sXitVOhsb0%3D
– reference: RosenNMorsePMPhys. Rev.1932422101:CAS:528:DyaA3sXhvF2h
– reference: FalayeBJIkhdairSMHamzaviMJ. Theor. Appl. Phys.20159151
– reference: SunGHDongSHCommun. Theor. Phys.201258195
– reference: DongSHGuXYJ. Phys. Conf. Ser.200896012109
– reference: DongSHFactorization Method in Quantum Mechanics2007BerlinSpringer
– reference: IkotANHassanabadiHMaghsoodiEZarrinkamarSPhys. Part. Nucl. Lett.201511432
– reference: DongSHCruz-IrissonMJ. Math. Chem.2012508811:CAS:528:DC%2BC38XjsVOgt7k%3D
– reference: OcakZYanarHSaltıMAydoğduOChem. Phys.20185132521:CAS:528:DC%2BC1cXhsFeqtrbL
– reference: FalayeBJIkhdairSMHamzaviMJ. Math. Chem.20155313251:CAS:528:DC%2BC2MXlsFektr4%3D
– reference: LuchaWSchoberlFFInt. J. Mod. Phys. C199910607
– reference: OkorieUSIbekweEEIkotANOnyeajuMCChukwuochaEOJ. Kor. Phys. Soc.2018731211
– reference: HamzaviMIkhdairSMThylweKEJ. Math. Chem.2013512271:CAS:528:DC%2BC3sXhtVeltA%3D%3D
– reference: KratzerAZ. Phys.192032891:CAS:528:DyaB3MXmvFyr
– reference: JiaCSZengRPengXLZhangLHZhaoYLChem. Eng. Sci.20181901
– reference: JiaC-SWangC-WZhangL-HPengX-LZengRYouX-TChem. Phys. Lett.20176761501:CAS:528:DC%2BC2sXltl2ksbs%3D
– reference: ManningMFRosenNPhys. Rev.193344951
– reference: SerranoFAGuXYDongSHJ. Math. Phys.201051082103
– reference: OkoiPOEdetCOMaguTORelativistic treatment of the Hellmann-generalized Morse potentialRev. Mex. Fis.202066111310.31349/RevMexFis.66.1
– reference: JiangRJiaCSWangYQPengXLZhangLHChem. Phys. Lett.20197151861:CAS:528:DC%2BC1cXitlenu7nM
– reference: DongSHGonzalez-CisnerosAAnn. Phys.200832311361:CAS:528:DC%2BD1cXksFKkt7Y%3D
– reference: IkhdairSMEur. Phys. J. A2009393071:CAS:528:DC%2BD1MXjs1OqtL8%3D
– reference: JiaCSWangCWZhangLHPengXLTangHMLiuJYXiongYZengRChem. Phys. Lett.2018692571:CAS:528:DC%2BC2sXhvFGit73K
– reference: GuXYDongSHJ. Math. Chem.20114920531:CAS:528:DC%2BC3MXhtVyrtrjF
– reference: FalayeBJOyewumiKJIkhdairSMHamzaviMPhys. Scr.201489115204
– reference: BuchowieckiMChem. Phys. Lett.20186922361:CAS:528:DC%2BC2sXitVCktrfN
– reference: DongSHMoralesDGarcia-RaveloJInt. J. Mod. Phys. E200716189
– reference: OluwadareOJOyewumiKJEur. Phys. J. Plus2018133422
– reference: PoschlGTellerEZ. Phys.1933831431:CAS:528:DyaA2cXjtVOk
– reference: GreeneRLAldrichCPhys. Rev. A1976142363
– reference: FuKXWangMJiaCSCommun. Theor. Phys.2019711031:CAS:528:DC%2BC1MXhs1Wht7bP
– reference: LiangGCTangHMJiaCSComput. Theor. Chem.201310201701:CAS:528:DC%2BC3sXhsVWqs7%2FF
– reference: GuXYDongSHMaZQJ. Phys. A Math. Theor.200942035303
– reference: PengXLJiangRJiaCSZhangLHZhaoYLChem. Eng. Sci.20181901221:CAS:528:DC%2BC1cXhtFCqur%2FP
– reference: NikiforovAFUvarovVBJaffeASpecial Functions of Mathematical Physics1998BaselBirkhauser Verlag317
– reference: WangPQZhangLHJiaCSLiuJYMol. J. Spectrosc.201227451:CAS:528:DC%2BC38XnsVGjsrs%3D
– reference: JiaCSZhangLHWangCWChem. Phys. Lett.20176672111:CAS:528:DC%2BC28XitVKjtLfL
– reference: FalayeBJIkhdairSMHamzaviMFew Body Syst.201556631:CAS:528:DC%2BC2MXksl2g
– reference: OyewumiKJFalayeBJOnateCAOluwadareOJYahyaWAMol. Phys.201411211271:CAS:528:DC%2BC3sXptlGktrw%3D
– reference: FrostAAMusulinBJ. Chem. Phys.19542210171:CAS:528:DyaG2cXntVaiuw%3D%3D
– reference: DengZHFanYPShandong Univ. J.19577162
– reference: IkhdairSMSeverRJ. Math. Chem.2007424611:CAS:528:DC%2BD2sXpvVKlsL8%3D
– reference: FalayeBJOyewumiKJSadikogluFHamzaviMIkhdairSMJ. Theor. Comput. Chem.20151415500361:CAS:528:DC%2BC2MXhsVahsL3O
– reference: DuJFGuoPJiaCSJ. Math. Chem.20145225591:CAS:528:DC%2BC2cXhsVWqt7bN
– reference: HuaWPhys. Rev. A19904225241:CAS:528:DyaK3cXlsF2is7k%3D
– volume: 39
  start-page: 307
  year: 2009
  ident: 1107_CR62
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/i2008-10715-2
– volume: 717
  start-page: 16
  year: 2019
  ident: 1107_CR70
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2019.01.001
– volume: 14
  start-page: 1550036
  year: 2015
  ident: 1107_CR2
  publication-title: J. Theor. Comput. Chem.
  doi: 10.1142/S0219633615500364
– volume: 112
  start-page: 127
  issue: 1
  year: 2014
  ident: 1107_CR58
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2013.804960
– volume: 132
  start-page: 525
  year: 2017
  ident: 1107_CR39
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2017-11823-y
– volume: 9
  start-page: 151
  year: 2015
  ident: 1107_CR30
  publication-title: J. Theor. Appl. Phys.
  doi: 10.1007/s40094-015-0173-9
– volume: 409
  start-page: 203
  year: 2005
  ident: 1107_CR27
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2005.05.021
– volume: 692
  start-page: 57
  year: 2018
  ident: 1107_CR22
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2017.12.013
– volume: 83
  start-page: 025002
  year: 2011
  ident: 1107_CR46
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/83/02/025002
– volume: 715
  start-page: 186
  year: 2019
  ident: 1107_CR24
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2018.11.044
– volume: 89
  start-page: 115204
  year: 2014
  ident: 1107_CR1
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/89/11/115204
– volume: 42
  start-page: 2524
  year: 1990
  ident: 1107_CR32
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.42.2524
– volume-title: Theoretical Concept of Quantum Mechanics
  year: 2012
  ident: 1107_CR37
– volume: 84
  start-page: 4693
  year: 1998
  ident: 1107_CR33
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.368712
– volume: 56
  start-page: 2982
  year: 2018
  ident: 1107_CR3
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-018-0927-0
– volume: 39
  start-page: 11521
  year: 2006
  ident: 1107_CR63
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/39/37/012
– volume: 89
  start-page: 10003
  year: 2010
  ident: 1107_CR43
  publication-title: Eur. Phys. Lett.
  doi: 10.1209/0295-5075/89/10003
– volume: 14
  start-page: 2363
  year: 1976
  ident: 1107_CR56
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.14.2363
– volume: 190
  start-page: 1
  year: 2018
  ident: 1107_CR26
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.06.009
– volume: 112
  start-page: 1
  year: 2011
  ident: 1107_CR31
  publication-title: Int. J. Quantum Chem.
– volume: 202
  start-page: 70
  year: 2019
  ident: 1107_CR71
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.03.033
– volume: 71
  start-page: 103
  year: 2019
  ident: 1107_CR6
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/71/1/103
– volume: 133
  start-page: 422
  year: 2018
  ident: 1107_CR50
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2018-12210-0
– volume: 190
  start-page: 122
  year: 2018
  ident: 1107_CR23
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.06.027
– volume: 38
  start-page: 3036
  year: 1963
  ident: 1107_CR13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1733648
– volume: 673
  start-page: 50
  year: 2017
  ident: 1107_CR53
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2017.02.010
– volume: 3
  start-page: 289
  year: 1920
  ident: 1107_CR28
  publication-title: Z. Phys.
  doi: 10.1007/BF01327754
– volume: 1155
  start-page: 1
  year: 2019
  ident: 1107_CR4
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2019.03.019
– volume: 42
  start-page: 035303
  year: 2009
  ident: 1107_CR45
  publication-title: J. Phys. A Math. Theor.
  doi: 10.1088/1751-8113/42/3/035303
– volume: 53
  start-page: 1325
  year: 2015
  ident: 1107_CR5
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-015-0491-9
– volume: 51
  start-page: 227
  year: 2013
  ident: 1107_CR29
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-012-0075-x
– volume: 692
  start-page: 236
  year: 2018
  ident: 1107_CR66
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2017.12.051
– volume: 274
  start-page: 5
  year: 2012
  ident: 1107_CR8
  publication-title: Mol. J. Spectrosc.
  doi: 10.1016/j.jms.2012.03.005
– volume: 64
  start-page: 608
  year: 2018
  ident: 1107_CR20
  publication-title: Rev. Mex. Fis.
  doi: 10.31349/RevMexFis.64.608
– volume: 23
  start-page: 100306
  issue: 10
  year: 2014
  ident: 1107_CR54
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/23/10/100306
– volume: 183
  start-page: 26
  year: 2018
  ident: 1107_CR25
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.03.009
– volume: 44
  start-page: 951
  year: 1933
  ident: 1107_CR15
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.44.951
– volume: 7
  start-page: 162
  year: 1957
  ident: 1107_CR17
  publication-title: Shandong Univ. J.
– volume: 11
  start-page: 432
  year: 2015
  ident: 1107_CR42
  publication-title: Phys. Part. Nucl. Lett.
  doi: 10.1134/S1547477114040189
– start-page: 317
  volume-title: Special Functions of Mathematical Physics
  year: 1998
  ident: 1107_CR36
– volume: 16
  start-page: 189
  year: 2007
  ident: 1107_CR47
  publication-title: Int. J. Mod. Phys. E
  doi: 10.1142/S0218301307005661
– volume: 25
  start-page: 1
  year: 2019
  ident: 1107_CR55
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-018-3878-2
– volume: 52
  start-page: 2559
  year: 2014
  ident: 1107_CR67
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-014-0399-9
– volume: 323
  start-page: 1136
  year: 2008
  ident: 1107_CR44
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2007.12.002
– volume: 10
  start-page: 607
  year: 1999
  ident: 1107_CR60
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183199000450
– volume: 42
  start-page: 210
  year: 1932
  ident: 1107_CR12
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.42.210
– volume: 66
  start-page: 1
  issue: 1
  year: 2020
  ident: 1107_CR18
  publication-title: Rev. Mex. Fis.
  doi: 10.31349/RevMexFis.66.1
– volume: 73
  start-page: 1211
  year: 2018
  ident: 1107_CR19
  publication-title: J. Kor. Phys. Soc.
  doi: 10.3938/jkps.73.1211
– volume: 22
  start-page: 1017
  year: 1954
  ident: 1107_CR14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740254
– volume: 49
  start-page: 2053
  year: 2011
  ident: 1107_CR51
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-011-9877-5
– volume: 117
  start-page: e25383
  year: 2017
  ident: 1107_CR10
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25383
– volume: 51
  start-page: 082103
  year: 2010
  ident: 1107_CR48
  publication-title: J. Math. Phys.
  doi: 10.1063/1.3466802
– volume-title: Factorization Method in Quantum Mechanics
  year: 2007
  ident: 1107_CR38
  doi: 10.1007/978-1-4020-5796-0
– volume: 56
  start-page: 63
  year: 2015
  ident: 1107_CR52
  publication-title: Few Body Syst.
  doi: 10.1007/s00601-014-0937-9
– volume: 51
  start-page: 976
  year: 2013
  ident: 1107_CR57
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-012-0123-6
– volume: 33
  start-page: 010303
  issue: 1
  year: 2016
  ident: 1107_CR61
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/33/1/010303
– volume: 58
  start-page: 195
  year: 2012
  ident: 1107_CR34
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/58/2/04
– volume: 86
  start-page: 062510
  year: 2012
  ident: 1107_CR7
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.062510
– volume: 137
  start-page: 014101
  year: 2012
  ident: 1107_CR11
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4731340
– volume: 667
  start-page: 211
  year: 2017
  ident: 1107_CR68
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.11.059
– volume: 726
  start-page: 83
  year: 2019
  ident: 1107_CR72
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2019.04.040
– volume: 83
  start-page: 143
  year: 1933
  ident: 1107_CR16
  publication-title: Z. Phys.
  doi: 10.1007/BF01331132
– volume: 513
  start-page: 252
  year: 2018
  ident: 1107_CR21
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2018.08.015
– volume: 96
  start-page: 012109
  year: 2008
  ident: 1107_CR59
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/96/1/012109
– volume: 50
  start-page: 881
  year: 2012
  ident: 1107_CR49
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-011-9931-3
– volume: 90
  start-page: 22
  year: 2018
  ident: 1107_CR40
  publication-title: Pramana J. Phys.
  doi: 10.1007/s12043-017-1510-0
– volume: 132
  start-page: 462
  issue: 11
  year: 2017
  ident: 1107_CR41
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2017-11729-8
– volume: 372
  start-page: 4779
  year: 2008
  ident: 1107_CR64
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2008.05.030
– volume: 42
  start-page: 461
  year: 2007
  ident: 1107_CR65
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-006-9115-8
– volume: 94
  start-page: 243
  year: 2020
  ident: 1107_CR73
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-019-01467-x
– volume: 676
  start-page: 150
  year: 2017
  ident: 1107_CR69
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2017.03.068
– volume: 1020
  start-page: 170
  year: 2013
  ident: 1107_CR9
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2013.08.002
– volume: 34
  start-page: 57
  year: 1929
  ident: 1107_CR35
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.34.57
SSID ssj0009868
Score 2.5136712
Snippet The Deng–Fan–Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules. By using the improved Pekeris-type...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 989
SubjectTerms Atomic interactions
Chemistry
Chemistry and Materials Science
Diatomic molecules
Eigenvalues
Energy spectra
Math. Applications in Chemistry
Morse potential
Original Paper
Physical Chemistry
Schrodinger equation
Theoretical and Computational Chemistry
Thermodynamic properties
Wave functions
Title Thermal properties of Deng–Fan–Eckart potential model using Poisson summation approach
URI https://link.springer.com/article/10.1007/s10910-020-01107-4
https://www.proquest.com/docview/2391394219
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BHYAB8RTlJQ9sYCm1HTsZC7QgUCsGKgFLFDs2A1VS0bLzH_iH_BLOIWkBARJLMuTs4V4-5-6-Azg0LNaKRxllmY2osFJTHeiUppK7WApn0sx3I_f68mIgLm_D26opbFxXu9cpydJTf2p2i33ilvlCKry0UDEPjdDf3VGLB6w9g9qNygY4PMxjGqu4VbXK_LzH1-NoFmN-S4uWp013FVaqMJG0P-S6BnM2X4fF03o62zos96Z4q-MNuEdpo4cdkpH_t_7kQVJJ4ciZzR_eXl67aY7PjnlENSGjYuILhJC2HIJDfOH7A7kuUABFTspeNi8rUoONb8Kg27k5vaDV1ARq0Jwm1MlY2UhppqTimrlQuEAyzXUouDPSmtTwzIYtZYV0Dq-PWSs0kcI1NsiQim_BQl7kdhtIGpmAM-2YClPBbRCZWKMNp0JGxmLo2IRWzbzEVJDifrLFMJmBIXuGJ8jwpGR4IppwNF0z-gDU-JN6r5ZJUhnXOGHcY5kK9LVNOK7lNPv8-247_yPfhSVWqoovb9yDhcnTs93HEGSiD6DR7p6c9P37_O6qc1Bq4DuVI9a8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xGIAB8RTl6YENLKW2YzsjAqryKGKgEmKJYsdmoEoqWnb-A_-QX8I5JBQQILFk8dnDvR3ffQewb1liFNc5ZbnTVDhpqIlMRjPJfSKFt1keupF7V7LbF-e38W3dFDZqqt2bJ8nKU39qdkvCwy0LhVR4aaFiGmYxGdChkKvPjiZQu7pqgMNgntBEJe26VebnM76Go0mO-e1ZtIo2nSVYrNNEcvQu12WYcsUKzB0309lWYKH3gbc6WoU7lDZ62AEZhn_rjwEklZSenLji_vX5pZMV-D21D6gmZFiOQ4EQ0lZDcEgofL8n1yUKoCxI1csWZEUasPE16HdOb467tJ6aQC2a05h6mSinlWFKKm6Yj4WPJDPcxIJ7K53NLM9d3FZOSO_x-pi3Y6sV7nFRjlR8HWaKsnAbQDJtI86MZyrOBHeRtolBG86E1NZh6tiCdsO81NaQ4mGyxSCdgCEHhqfI8LRieCpacPCxZ_gOqPEn9XYjk7Q2rlHKeMAyFehrW3DYyGmy_Ptpm_8j34O57k3vMr08u7rYgnlWqU0oddyGmfHjk9vBdGRsdivtewNk_daf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwEB1xSBwF4hTL6YIOLBLbsZNytbDiFgUrIZooduwtQMkKlp5_4A_5EsbZhAUESDRpMraUmbFnHM97A7BnWKIVj3PKchtTYaWmOtAZzSR3iRTOZLlHI19eyZOeOLuNbj-h-Ktq9-ZKcoRp8CxNxfBwkLvDT8C3xF_iMl9UhQcYKiZhGrfj0Pt1j7XHtLtxBYbDwJ7QRCVhDZv5eY6voWmcb367Iq0iT3cRFuqUkbRHNl6CCVssw2yn6dS2DPOXH9yrTytwh5bH3faBDPx_9kdPmEpKR45s0X97ee1mBT6PzT26DBmU_pvRA0nVEIf4Ivg-uS7RGGVBKlybtxtpiMdXodc9vumc0LqDAjWoiyF1MlE2VpopqbhmLhIukExzHQnujLQmMzy3UaiskM7hUTIPIxMrHGODHKX4GkwVZWHXgWSxCTjTjqkoE9wGsUk0rudMyNhYTCNbEDbKS01NL-67XDykY2Jkr_AUFZ5WCk9FC_Y_xgxG5Bp_Sm81NknrhfaUMu55TQXuuy04aOw0fv37bBv_E9-FmeujbnpxenW-CXOs8hpf9bgFU8PHZ7uNmclQ71TO9w7pG9rb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+properties+of+Deng%E2%80%93Fan%E2%80%93Eckart+potential+model+using+Poisson+summation+approach&rft.jtitle=Journal+of+mathematical+chemistry&rft.au=Edet%2C+C.+O.&rft.au=Okorie%2C+U.+S.&rft.au=Osobonye%2C+G.&rft.au=Ikot%2C+A.+N.&rft.date=2020-05-01&rft.issn=0259-9791&rft.eissn=1572-8897&rft.volume=58&rft.issue=5&rft.spage=989&rft.epage=1013&rft_id=info:doi/10.1007%2Fs10910-020-01107-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10910_020_01107_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0259-9791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0259-9791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0259-9791&client=summon