CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks

In current technological era, surveillance systems generate an enormous volume of video data on a daily basis, making its analysis a difficult task for computer vision experts. Manually searching for unusual events in these massive video streams is a challenging task, since they occur inconsistently...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 11; pp. 16979 - 16995
Main Authors Ullah, Waseem, Ullah, Amin, Haq, Ijaz Ul, Muhammad, Khan, Sajjad, Muhammad, Baik, Sung Wook
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In current technological era, surveillance systems generate an enormous volume of video data on a daily basis, making its analysis a difficult task for computer vision experts. Manually searching for unusual events in these massive video streams is a challenging task, since they occur inconsistently and with low probability in real-world surveillance. In contrast, deep learning-based anomaly detection reduces human labour and its decision making ability is comparatively reliable, thereby ensuring public safety. In this paper, we present an efficient deep features-based intelligent anomaly detection framework that can operate in surveillance networks with reduced time complexity. In the proposed framework, we first extract spatiotemporal features from a series of frames by passing each one to a pre-trained Convolutional Neural Network (CNN) model. The features extracted from the sequence of frames are valuable in capturing anomalous events. We then pass the extracted deep features to multi-layer Bi-directional Long Short-term Memory (BD-LSTM) model, which can accurately classify ongoing anomalous/normal events in complex surveillance scenes of smart cities. We performed extensive experiments on various anomaly detection benchmark datasets to validate the functionality of the proposed framework within complex surveillance scenarios. We reported a 3.41% and 8.09% increase in accuracy on UCF-Crime and UCFCrime2Local datasets compared to state-of-the-art methods.
AbstractList In current technological era, surveillance systems generate an enormous volume of video data on a daily basis, making its analysis a difficult task for computer vision experts. Manually searching for unusual events in these massive video streams is a challenging task, since they occur inconsistently and with low probability in real-world surveillance. In contrast, deep learning-based anomaly detection reduces human labour and its decision making ability is comparatively reliable, thereby ensuring public safety. In this paper, we present an efficient deep features-based intelligent anomaly detection framework that can operate in surveillance networks with reduced time complexity. In the proposed framework, we first extract spatiotemporal features from a series of frames by passing each one to a pre-trained Convolutional Neural Network (CNN) model. The features extracted from the sequence of frames are valuable in capturing anomalous events. We then pass the extracted deep features to multi-layer Bi-directional Long Short-term Memory (BD-LSTM) model, which can accurately classify ongoing anomalous/normal events in complex surveillance scenes of smart cities. We performed extensive experiments on various anomaly detection benchmark datasets to validate the functionality of the proposed framework within complex surveillance scenarios. We reported a 3.41% and 8.09% increase in accuracy on UCF-Crime and UCFCrime2Local datasets compared to state-of-the-art methods.
Author Ullah, Waseem
Haq, Ijaz Ul
Ullah, Amin
Sajjad, Muhammad
Muhammad, Khan
Baik, Sung Wook
Author_xml – sequence: 1
  givenname: Waseem
  surname: Ullah
  fullname: Ullah, Waseem
  organization: Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University
– sequence: 2
  givenname: Amin
  surname: Ullah
  fullname: Ullah, Amin
  organization: Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University
– sequence: 3
  givenname: Ijaz Ul
  surname: Haq
  fullname: Haq, Ijaz Ul
  organization: Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University
– sequence: 4
  givenname: Khan
  surname: Muhammad
  fullname: Muhammad, Khan
  organization: Department of Software, Sejong University
– sequence: 5
  givenname: Muhammad
  surname: Sajjad
  fullname: Sajjad, Muhammad
  organization: Department of Computer Science, Islamia College Peshawar
– sequence: 6
  givenname: Sung Wook
  orcidid: 0000-0002-6678-7788
  surname: Baik
  fullname: Baik, Sung Wook
  email: sbaik@sejong.ac.kr
  organization: Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University
BookMark eNp9kMtOwzAQRS0EEs8fYGWJtcHjPBwvUcVLKrCgbLEcewIuaVJsl6p_TyBISCy6mlncM7pzDslu13dIyCnwc-BcXkQAngvGBWdc5bxk2Q45gEJmTEoBu8OeVZzJgsM-OYxxzjmUhcgPyMvk4YE2aNIqYKRrn95o7ZnzAW3yfWdaOn2a3dOmDzSgaVnyC6Sm6xem3VCHaYxR39G4Cp_o29Z0FmmHad2H93hM9hrTRjz5nUfk-fpqNrll08ebu8nllNkMVGJNAdbmSqkSlKkdNqXD2oIzshamrHhTSailtFVTiOEfCdblzlWZU8YVSmB2RM7Gu8vQf6wwJj3vV2GoH7UohOIAMpdDqhpTNvQxBmy09cl8P5CC8a0Grr9t6tGmHmzqH5s6G1DxD10GvzBhsx3KRigO4e4Vw1-rLdQXwZOKOQ
CitedBy_id crossref_primary_10_1145_3551893
crossref_primary_10_1007_s42979_024_03243_z
crossref_primary_10_3390_app121910011
crossref_primary_10_1002_aisy_202300706
crossref_primary_10_32604_csse_2023_034805
crossref_primary_10_1016_j_measen_2022_100510
crossref_primary_10_1093_jcde_qwae019
crossref_primary_10_1186_s13677_023_00552_1
crossref_primary_10_32604_csse_2023_035732
crossref_primary_10_1007_s11042_021_10811_5
crossref_primary_10_3390_s20216348
crossref_primary_10_1016_j_imavis_2022_104467
crossref_primary_10_32604_cmc_2022_027327
crossref_primary_10_3390_s22239383
crossref_primary_10_3390_s23135811
crossref_primary_10_1007_s42835_023_01630_9
crossref_primary_10_3390_s24072240
crossref_primary_10_1007_s00500_023_07971_x
crossref_primary_10_1016_j_rineng_2023_101026
crossref_primary_10_1093_comjnl_bxae005
crossref_primary_10_1007_s11042_024_19116_9
crossref_primary_10_1155_2022_9149164
crossref_primary_10_3390_app12115501
crossref_primary_10_1016_j_eswa_2023_120599
crossref_primary_10_1007_s13042_023_01851_4
crossref_primary_10_1080_13682199_2023_2202577
crossref_primary_10_1109_ACCESS_2021_3081050
crossref_primary_10_1007_s11042_022_12796_1
crossref_primary_10_1016_j_ijin_2022_11_005
crossref_primary_10_1007_s00521_021_06495_5
crossref_primary_10_1016_j_petrol_2021_109260
crossref_primary_10_1016_j_eswa_2024_124846
crossref_primary_10_3390_math8122133
crossref_primary_10_4018_IJPCH_311444
crossref_primary_10_1016_j_energy_2022_125718
crossref_primary_10_3390_electronics13020251
crossref_primary_10_1109_ACCESS_2024_3399841
crossref_primary_10_1007_s00521_024_10416_7
crossref_primary_10_3233_AIC_230064
crossref_primary_10_1016_j_engappai_2022_105403
crossref_primary_10_1109_MMUL_2023_3289953
crossref_primary_10_1016_j_future_2021_10_033
crossref_primary_10_1109_JSEN_2021_3103016
crossref_primary_10_1016_j_engappai_2024_109800
crossref_primary_10_3390_s21248501
crossref_primary_10_1007_s00371_023_03210_4
crossref_primary_10_1016_j_compeleceng_2022_108319
crossref_primary_10_1016_j_imavis_2024_104991
crossref_primary_10_1109_ACCESS_2023_3339379
crossref_primary_10_1016_j_measen_2023_100885
crossref_primary_10_1016_j_scs_2024_105793
crossref_primary_10_1007_s13735_022_00227_8
crossref_primary_10_1155_2024_1052344
crossref_primary_10_1007_s12652_024_04818_7
crossref_primary_10_1109_ACCESS_2023_3300658
crossref_primary_10_3390_safety9040091
crossref_primary_10_1007_s13369_023_08038_7
crossref_primary_10_1002_cpe_8238
crossref_primary_10_3390_a17070286
crossref_primary_10_3390_app10238634
crossref_primary_10_3390_s22020545
crossref_primary_10_1002_cpe_6852
crossref_primary_10_1007_s10586_021_03385_2
crossref_primary_10_1109_ACCESS_2023_3329062
crossref_primary_10_1155_2024_5459452
crossref_primary_10_7717_peerj_cs_1117
crossref_primary_10_3390_app11083523
crossref_primary_10_3390_computation12020019
crossref_primary_10_1007_s11042_025_20608_5
crossref_primary_10_1007_s10462_022_10285_3
crossref_primary_10_3390_s21082811
crossref_primary_10_1016_j_engappai_2023_106173
crossref_primary_10_1016_j_neucom_2024_129281
crossref_primary_10_1007_s11042_023_14827_x
crossref_primary_10_1016_j_chb_2024_108301
crossref_primary_10_1016_j_ipm_2023_103289
crossref_primary_10_3390_app12125864
crossref_primary_10_3390_info13010002
crossref_primary_10_1007_s11042_023_16193_0
crossref_primary_10_1109_ACCESS_2021_3109904
crossref_primary_10_1016_j_knosys_2022_109456
crossref_primary_10_1007_s42979_024_03443_7
crossref_primary_10_1016_j_imavis_2023_104710
crossref_primary_10_1007_s11760_023_02725_6
crossref_primary_10_1109_ACCESS_2024_3435144
crossref_primary_10_1016_j_iswa_2023_200236
crossref_primary_10_1109_THMS_2021_3138708
crossref_primary_10_1007_s43681_024_00541_3
crossref_primary_10_1007_s11370_021_00355_w
crossref_primary_10_3390_rs14133221
crossref_primary_10_1007_s00521_022_07540_7
crossref_primary_10_3390_biom13010070
crossref_primary_10_1109_TCSVT_2022_3182658
crossref_primary_10_1007_s11042_022_13169_4
crossref_primary_10_1016_j_compeleceng_2024_109811
crossref_primary_10_1155_2023_7868415
crossref_primary_10_3390_math10091555
crossref_primary_10_1007_s11042_023_17425_z
crossref_primary_10_1016_j_ecoinf_2021_101492
crossref_primary_10_1016_j_inffus_2022_10_008
crossref_primary_10_1088_1742_6596_2025_1_012025
crossref_primary_10_1109_ACCESS_2023_3321800
crossref_primary_10_1109_ACCESS_2024_3491868
crossref_primary_10_3390_s23042358
crossref_primary_10_32604_iasc_2022_029535
crossref_primary_10_21595_jme_2023_23401
crossref_primary_10_1111_exsy_13648
crossref_primary_10_1016_j_neucom_2023_126327
crossref_primary_10_1007_s00138_023_01397_z
crossref_primary_10_1007_s41870_023_01420_6
crossref_primary_10_3390_pr12091999
crossref_primary_10_1109_ACCESS_2020_3047732
crossref_primary_10_1108_AEAT_05_2022_0132
crossref_primary_10_1155_2022_4452128
crossref_primary_10_3390_agriculture12081226
crossref_primary_10_1007_s00371_023_03073_9
crossref_primary_10_1007_s11042_023_16382_x
crossref_primary_10_32604_csse_2023_033861
crossref_primary_10_3390_en17215369
crossref_primary_10_1155_2021_5195508
crossref_primary_10_1109_ACCESS_2024_3436653
crossref_primary_10_1007_s11042_024_20296_7
crossref_primary_10_1016_j_iot_2022_100568
Cites_doi 10.1109/TIP.2015.2479561
10.1016/j.cviu.2016.10.010
10.1007/s11042-015-2453-4
10.1109/TPAMI.2007.70825
10.1109/ACCESS.2017.2778011
10.1109/TIP.2017.2670780
10.1007/s11042-017-5309-2
10.1016/j.scs.2020.102080
10.1007/s11042-017-4488-1
10.1007/s11042-017-5255-z
10.1007/s11042-015-3133-0
10.1016/j.jocs.2017.11.006
10.1109/JIOT.2019.2950469
10.1109/CVPR.2009.5206641
10.1109/CVPR.2016.606
10.1007/978-3-642-32639-4_10
10.1109/CVPRW.2009.5206686
10.1109/CVPR.2016.90
10.1109/CVPR.2019.00133
10.1109/CVPR.2011.5995524
10.1109/CVPR.2011.5995434
10.1109/CVPR.2018.00684
10.1109/AVSS.2016.7738074
10.1109/CVPR.2016.308
10.1109/ICCV.2017.45
10.1109/ICCV.2013.338
10.21437/Interspeech.2014-80
10.1609/aaai.v33i01.33019185
10.1109/CVPR.2016.86
10.1109/TVLSI.2020.2995741
10.1109/CVPR.2010.5539872
10.1007/978-3-319-59081-3_23
10.1109/CVPR.2018.00678
10.1109/CVPR.2009.5206569
10.1109/ICME.2017.8019325
10.1109/CVPRW.2009.5206771
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-020-09406-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 16995
ExternalDocumentID 10_1007_s11042_020_09406_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-f51cc4999619abdef6debc1da7b2a680f871b77c8f5272171cd4dd83d9ad592e3
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 07:52:29 EDT 2025
Tue Jul 01 04:13:05 EDT 2025
Thu Apr 24 22:54:54 EDT 2025
Fri Feb 21 02:48:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Deep learning
Intelligent surveillance networks
LSTM
Smart surveillance
Crime detection
Anomaly detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f51cc4999619abdef6debc1da7b2a680f871b77c8f5272171cd4dd83d9ad592e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6678-7788
PQID 2529011747
PQPubID 54626
PageCount 17
ParticipantIDs proquest_journals_2529011747
crossref_citationtrail_10_1007_s11042_020_09406_3
crossref_primary_10_1007_s11042_020_09406_3
springer_journals_10_1007_s11042_020_09406_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210500
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Al-Smadi, Qawasmeh, Al-Ayyoub, Jararweh, Gupta (CR3) 2018; 27
CR19
Zhang, Jia, Yang, Yang, He, Zheng (CR37) 2017; 76
Cheng, Chen, Fang (CR6) 2015; 24
CR17
Xu, Yan, Ricci, Sebe (CR35) 2017; 156
CR39
CR16
CR38
CR15
CR14
Ullah, Ahmad, Muhammad, Sajjad, Baik (CR33) 2017; 6
CR36
CR12
Sabokrou, Fayyaz, Fathy, Klette (CR27) 2017; 26
CR11
CR10
CR32
CR31
CR30
Muhammad, Hussain, Tanveer, Sannino, de Albuquerque (CR25) 2020; 7
Wang, Qiao, Zhu, Niu, Li, Snoussi (CR34) 2018; 77
He, Shao, Sun (CR13) 2018; 77
Alsmirat, Obaidat, Jararweh, Al-Saleh (CR4) 2017; 76
CR5
Li, Mahadevan, Vasconcelos (CR18) 2013; 36
CR8
CR29
CR28
CR9
CR26
Adam, Rivlin, Shimshoni, Reinitz (CR1) 2008; 30
CR24
CR23
CR22
CR21
Cheng, Chen, Fang (CR7) 2016; 75
CR20
CR41
Al Ridhawi, Otoum, Aloqaily, Jararweh, Baker (CR2) 2020; 56
CR40
C He (9406_CR13) 2018; 77
D Xu (9406_CR35) 2017; 156
9406_CR11
9406_CR10
9406_CR32
9406_CR12
9406_CR31
9406_CR30
9406_CR19
A Ullah (9406_CR33) 2017; 6
9406_CR15
9406_CR14
9406_CR36
9406_CR17
9406_CR39
9406_CR16
9406_CR38
MA Alsmirat (9406_CR4) 2017; 76
I Al Ridhawi (9406_CR2) 2020; 56
K Muhammad (9406_CR25) 2020; 7
K-W Cheng (9406_CR7) 2016; 75
9406_CR22
9406_CR21
9406_CR24
9406_CR23
9406_CR40
A Adam (9406_CR1) 2008; 30
9406_CR20
9406_CR41
T Wang (9406_CR34) 2018; 77
9406_CR29
T Zhang (9406_CR37) 2017; 76
9406_CR26
9406_CR28
M Al-Smadi (9406_CR3) 2018; 27
9406_CR9
W Li (9406_CR18) 2013; 36
K-W Cheng (9406_CR6) 2015; 24
9406_CR5
M Sabokrou (9406_CR27) 2017; 26
9406_CR8
References_xml – volume: 24
  start-page: 5288
  year: 2015
  end-page: 5301
  ident: CR6
  article-title: Gaussian process regression-based video anomaly detection and localization with hierarchical feature representation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2479561
– ident: CR22
– volume: 156
  start-page: 117
  year: 2017
  end-page: 127
  ident: CR35
  article-title: Detecting anomalous events in videos by learning deep representations of appearance and motion
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2016.10.010
– ident: CR14
– ident: CR39
– ident: CR16
– volume: 75
  start-page: 15101
  year: 2016
  end-page: 15122
  ident: CR7
  article-title: An efficient subsequence search for video anomaly detection and localization
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-2453-4
– ident: CR12
– ident: CR30
– volume: 30
  start-page: 555
  year: 2008
  end-page: 560
  ident: CR1
  article-title: Robust real-time unusual event detection using multiple fixed-location monitors
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.70825
– ident: CR10
– volume: 6
  start-page: 1155
  year: 2017
  end-page: 1166
  ident: CR33
  article-title: Action recognition in video sequences using deep bi-directional LSTM with CNN features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2778011
– volume: 26
  start-page: 1992
  year: 2017
  end-page: 2004
  ident: CR27
  article-title: Deep-cascade: cascading 3d deep neural networks for fast anomaly detection and localization in crowded scenes
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2670780
– ident: CR29
– ident: CR8
– volume: 77
  start-page: 17375
  year: 2018
  end-page: 17395
  ident: CR34
  article-title: Abnormal event detection via covariance matrix for optical flow based feature
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5309-2
– volume: 56
  start-page: 102080
  year: 2020
  ident: CR2
  article-title: Providing secure and reliable communication for next generation networks in smart cities
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2020.102080
– ident: CR40
– volume: 76
  start-page: 22787
  year: 2017
  end-page: 22802
  ident: CR4
  article-title: A security framework for cloud-based video surveillance system
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-4488-1
– ident: CR23
– ident: CR21
– ident: CR19
– ident: CR15
– ident: CR38
– volume: 77
  start-page: 29573
  year: 2018
  end-page: 29588
  ident: CR13
  article-title: An anomaly-introduced learning method for abnormal event detection
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5255-z
– ident: CR17
– ident: CR31
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR36
– volume: 76
  start-page: 1419
  year: 2017
  end-page: 1438
  ident: CR37
  article-title: MoWLD: a robust motion image descriptor for violence detection
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-3133-0
– ident: CR5
– ident: CR28
– ident: CR41
– ident: CR26
– volume: 27
  start-page: 386
  year: 2018
  end-page: 393
  ident: CR3
  article-title: Deep recurrent neural network vs. support vector machine for aspect-based sentiment analysis of Arabic hotels’ reviews
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2017.11.006
– ident: CR24
– volume: 36
  start-page: 18
  year: 2013
  end-page: 32
  ident: CR18
  article-title: Anomaly detection and localization in crowded scenes
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: CR20
– volume: 7
  start-page: 4455
  year: 2020
  end-page: 4463
  ident: CR25
  article-title: Cost-effective video summarization using deep CNN with hierarchical weighted fusion for IoT surveillance networks
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2950469
– ident: 9406_CR24
  doi: 10.1109/CVPR.2009.5206641
– ident: 9406_CR29
  doi: 10.1109/CVPR.2016.606
– ident: 9406_CR14
  doi: 10.1007/978-3-642-32639-4_10
– ident: 9406_CR41
– ident: 9406_CR5
  doi: 10.1109/CVPRW.2009.5206686
– volume: 36
  start-page: 18
  year: 2013
  ident: 9406_CR18
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: 9406_CR10
– ident: 9406_CR12
  doi: 10.1109/CVPR.2016.90
– volume: 7
  start-page: 4455
  year: 2020
  ident: 9406_CR25
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2950469
– ident: 9406_CR40
  doi: 10.1109/CVPR.2019.00133
– volume: 76
  start-page: 22787
  year: 2017
  ident: 9406_CR4
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-4488-1
– ident: 9406_CR39
  doi: 10.1109/CVPR.2011.5995524
– ident: 9406_CR9
  doi: 10.1109/CVPR.2011.5995434
– ident: 9406_CR30
– volume: 76
  start-page: 1419
  year: 2017
  ident: 9406_CR37
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-3133-0
– volume: 30
  start-page: 555
  year: 2008
  ident: 9406_CR1
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.70825
– volume: 27
  start-page: 386
  year: 2018
  ident: 9406_CR3
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2017.11.006
– ident: 9406_CR19
  doi: 10.1109/CVPR.2018.00684
– ident: 9406_CR26
  doi: 10.1109/AVSS.2016.7738074
– ident: 9406_CR32
  doi: 10.1109/CVPR.2016.308
– ident: 9406_CR21
  doi: 10.1109/ICCV.2017.45
– volume: 6
  start-page: 1155
  year: 2017
  ident: 9406_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2778011
– ident: 9406_CR20
  doi: 10.1109/ICCV.2013.338
– ident: 9406_CR28
  doi: 10.21437/Interspeech.2014-80
– ident: 9406_CR17
– volume: 77
  start-page: 17375
  year: 2018
  ident: 9406_CR34
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5309-2
– ident: 9406_CR38
  doi: 10.1609/aaai.v33i01.33019185
– ident: 9406_CR11
  doi: 10.1109/CVPR.2016.86
– ident: 9406_CR36
  doi: 10.1109/TVLSI.2020.2995741
– volume: 24
  start-page: 5288
  year: 2015
  ident: 9406_CR6
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2479561
– ident: 9406_CR23
  doi: 10.1109/CVPR.2010.5539872
– ident: 9406_CR8
  doi: 10.1007/978-3-319-59081-3_23
– ident: 9406_CR31
  doi: 10.1109/CVPR.2018.00678
– volume: 75
  start-page: 15101
  year: 2016
  ident: 9406_CR7
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-2453-4
– volume: 26
  start-page: 1992
  year: 2017
  ident: 9406_CR27
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2670780
– ident: 9406_CR15
  doi: 10.1109/CVPR.2009.5206569
– volume: 156
  start-page: 117
  year: 2017
  ident: 9406_CR35
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2016.10.010
– volume: 56
  start-page: 102080
  year: 2020
  ident: 9406_CR2
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2020.102080
– volume: 77
  start-page: 29573
  year: 2018
  ident: 9406_CR13
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5255-z
– ident: 9406_CR22
  doi: 10.1109/ICME.2017.8019325
– ident: 9406_CR16
  doi: 10.1109/CVPRW.2009.5206771
SSID ssj0016524
Score 2.6299925
Snippet In current technological era, surveillance systems generate an enormous volume of video data on a daily basis, making its analysis a difficult task for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16979
SubjectTerms Anomalies
Artificial neural networks
Complexity
Computer Communication Networks
Computer Science
Computer vision
Crime
Data Structures and Information Theory
Datasets
Decision making
Feature extraction
Frames (data processing)
Multilayers
Multimedia Information Systems
Public safety
Special Purpose and Application-Based Systems
Surveillance
Surveillance systems
Video data
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60XvTgoypWq-zBmy7ktcnmWIqliO3FFnoy7BMKNUqTCv57d5NNq6KC52w2MLOTmdmZ7xuA60hFmlrEMhWS4ohzhk0UTrAWOiXU04p4Fpw8GsfDaXQ_IzMHCiuabvemJFn9qTdgN99CSWy6YznfYhxuww4xubtt5JoGvXXtICZulC31sPGHvoPK_LzHV3e0iTG_lUUrbzM4hH0XJqJerdcj2FJ5Gw6aEQzIWWQb9j7xCR7DU388RlpVXJ0FslesiM9x7bWqKz_08DgZIROnIhMrLrAdLI9Y_vLMFu9IqrJehuY5KlbLN2UHEpmvoLxuFS9OYDq4m_SH2A1QwMJYVok18YWoUho_ZVwqHUvFhS9ZwgMWG02YbIkniaCaBCYTTHwhIylpKFMmSRqo8BRa-UuuzgAl0rh2rT1pyX-EjphUsbQgXEa9SKWsA34jx0w4dnE75GKRbXiRrewzI_uskn0WduBm_c5rza3x5-puo57M2VmRBcTWgU1WlXTgtlHZ5vHvu53_b_kF7Aa2maXqdOxCq1yu1KWJRkp-VR2-DzlQ1Ww
  priority: 102
  providerName: Springer Nature
Title CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks
URI https://link.springer.com/article/10.1007/s11042-020-09406-3
https://www.proquest.com/docview/2529011747
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8a7QUOjMEQZVD5wA2sJWmcOCfUoha0rdE0qMQuixx_SEglLU1B4r_HL3EoIK2nHPwR6T3b7_v9AE5CHRqOFctcKk7DPBfUauGMGmkSxj2jmYfFyeM0upqEP27ZrXO4lS6tsnkTq4dazST6yL8HDCN-Vn-Oz-cPFFGjMLrqIDQ2oG2fYM5b0B4M099_XuMIEXOwttyjVjb6rmymLp7zsTQFzSfsIRfR3nvRtNI3P4RIK8kz2oFtpzKSfs3jL_BJF7vwuYFjIO527sLWm96Ce_DvIk2J0VXfzpKgu5Xkd7SWYJX7j_y6vhkTq7MSqzdOKYLME1HM7sX0mSi9rKeRu4KUj4snjeBE9i-kqNPGy68wGQ1vLq6oA1Og0t6yJTXMl7Iyb_xE5EqbSOlc-krEeSAiyxVrOeVxLLlhgbUKY1-qUCneU4lQLAl0bx9axazQB0BiZcW8MZ7CRkDShELpSGFBruBeqBPRAb-hYyZdp3EEvJhmqx7JSPvM0j6raJ_1OnD6umZe99lYO_uoYU_m7lyZrU5IB84alq2G_7_b4frdvsFmgIksVZbjEbSWi0d9bDWRZd6FDT667EK7PxoMUvxe_v057LpDaEcnQf8FRWTe2A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTtxAEC0ROCQc2BLEsPaBnJJWvLWXA0IIGAaYmQuDxClOuxcJafAAHkD8FN9IlRcGIsGNs-22VV3uet1Vrx7AdmACGxNjOVY65kGWSY4oXHCrbCJixxrhEDm51w8758HJhbiYgqeGC0Nllc2aWC7UeqTojPyPJyjjh_g52r2-4aQaRdnVRkKjcotT8_iAW7Zi5_gA5_en57UPB_sdXqsKcIXuNuZWuEqVON9NZKaNDbXJlKtllHkyxM_DLUQWRSq2wsPtUeQqHWgd-zqRWiSe8XHcLzAT-BjJiZnePnrJWoSiFtGNHY6R2K1JOhVVzyUiDG3WqGNdyP23gXCCbv9LyJZxrr0AczVAZXuVRy3ClMmXYL4Rf2D1WrAEs686GX6Hv_v9PrOm7BJaMDrcZdklr-JledjIumeDHkOEzBClDjlJ2jOZj67k8JFpM65uY5c5K-5u7w1JIeFbWF4VqRc_4PxTjLwM0_koNyvAIo2gwlpHU9shZQOpTaiJ_itjJzCJbIHb2DFVdV9zktcYppOOzGT7FG2flrZP_Rb8ennmuurq8eHd6830pPUfXqQTf2zB72bKJpffH23149G24Gtn0Oum3eP-6Rp886iEpqyvXIfp8e2d2UAMNM42S8dj8O-zPf0ZfVQW_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIlVw6AOK2BaoD-2pWCTZOI9DVbWwK-juRqiAxKnB8UNCWrJAllb8tf66ziQO2yKVG-c4TjQee77xPD6A96EJbUIVy4nSCQ-LQnJE4YJbZVOReNYIj4qTx1l0cBp-OxNnC_C7rYWhtMr2TKwPaj1VdEe-GwiK-CF-jnetS4s42h98vrrmxCBFkdaWTqNRkaG5-4XuW_XpcB_X-kMQDPonewfcMQxwhao341b4StWY309loY2NtCmUr2VcBDLCX0V3oohjlVgRoKsU-0qHWic9nUot0sD0cN5FWIrJK-rA0td-dvT9PoYRCUepm3gc7bLvSnaawj2fymLIdaP-dRHv_WsW51j3QXi2tnqDl_DcwVX2pdGvV7BgylV40VJBMHcyrMLKX30N1-DHXpYxa-qeoRWjq15WXPDGetZXj2x0fDJmiJcZYtYJJ4J7JsvppZzcMW1mzTB2UbLq9uanIWIk_Aorm5T16jWcPomY16FTTkuzASzWCDGs9TQ1IVI2lNpEmoqBZeKFJpVd8Fs55sp1OSeyjUk-789Mss9R9nkt-7zXhY_371w1PT4eHb3ZLk_u9nuVz7WzCzvtks0f_3-2N4_P9g6eoZbno8Ns-BaWA8qnqZMtN6Ezu7k1WwiIZsW20zwG50-t7H8AKQkckA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN+features+with+bi-directional+LSTM+for+real-time+anomaly+detection+in+surveillance+networks&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ullah+Waseem&rft.au=Ullah+Amin&rft.au=Haq%2C+Ijaz+Ul&rft.au=Khan%2C+Muhammad&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=11&rft.spage=16979&rft.epage=16995&rft_id=info:doi/10.1007%2Fs11042-020-09406-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon