CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks
In current technological era, surveillance systems generate an enormous volume of video data on a daily basis, making its analysis a difficult task for computer vision experts. Manually searching for unusual events in these massive video streams is a challenging task, since they occur inconsistently...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 11; pp. 16979 - 16995 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In current technological era, surveillance systems generate an enormous volume of video data on a daily basis, making its analysis a difficult task for computer vision experts. Manually searching for unusual events in these massive video streams is a challenging task, since they occur inconsistently and with low probability in real-world surveillance. In contrast, deep learning-based anomaly detection reduces human labour and its decision making ability is comparatively reliable, thereby ensuring public safety. In this paper, we present an efficient deep features-based intelligent anomaly detection framework that can operate in surveillance networks with reduced time complexity. In the proposed framework, we first extract spatiotemporal features from a series of frames by passing each one to a pre-trained Convolutional Neural Network (CNN) model. The features extracted from the sequence of frames are valuable in capturing anomalous events. We then pass the extracted deep features to multi-layer Bi-directional Long Short-term Memory (BD-LSTM) model, which can accurately classify ongoing anomalous/normal events in complex surveillance scenes of smart cities. We performed extensive experiments on various anomaly detection benchmark datasets to validate the functionality of the proposed framework within complex surveillance scenarios. We reported a 3.41% and 8.09% increase in accuracy on UCF-Crime and UCFCrime2Local datasets compared to state-of-the-art methods. |
---|---|
AbstractList | In current technological era, surveillance systems generate an enormous volume of video data on a daily basis, making its analysis a difficult task for computer vision experts. Manually searching for unusual events in these massive video streams is a challenging task, since they occur inconsistently and with low probability in real-world surveillance. In contrast, deep learning-based anomaly detection reduces human labour and its decision making ability is comparatively reliable, thereby ensuring public safety. In this paper, we present an efficient deep features-based intelligent anomaly detection framework that can operate in surveillance networks with reduced time complexity. In the proposed framework, we first extract spatiotemporal features from a series of frames by passing each one to a pre-trained Convolutional Neural Network (CNN) model. The features extracted from the sequence of frames are valuable in capturing anomalous events. We then pass the extracted deep features to multi-layer Bi-directional Long Short-term Memory (BD-LSTM) model, which can accurately classify ongoing anomalous/normal events in complex surveillance scenes of smart cities. We performed extensive experiments on various anomaly detection benchmark datasets to validate the functionality of the proposed framework within complex surveillance scenarios. We reported a 3.41% and 8.09% increase in accuracy on UCF-Crime and UCFCrime2Local datasets compared to state-of-the-art methods. |
Author | Ullah, Waseem Haq, Ijaz Ul Ullah, Amin Sajjad, Muhammad Muhammad, Khan Baik, Sung Wook |
Author_xml | – sequence: 1 givenname: Waseem surname: Ullah fullname: Ullah, Waseem organization: Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University – sequence: 2 givenname: Amin surname: Ullah fullname: Ullah, Amin organization: Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University – sequence: 3 givenname: Ijaz Ul surname: Haq fullname: Haq, Ijaz Ul organization: Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University – sequence: 4 givenname: Khan surname: Muhammad fullname: Muhammad, Khan organization: Department of Software, Sejong University – sequence: 5 givenname: Muhammad surname: Sajjad fullname: Sajjad, Muhammad organization: Department of Computer Science, Islamia College Peshawar – sequence: 6 givenname: Sung Wook orcidid: 0000-0002-6678-7788 surname: Baik fullname: Baik, Sung Wook email: sbaik@sejong.ac.kr organization: Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University |
BookMark | eNp9kMtOwzAQRS0EEs8fYGWJtcHjPBwvUcVLKrCgbLEcewIuaVJsl6p_TyBISCy6mlncM7pzDslu13dIyCnwc-BcXkQAngvGBWdc5bxk2Q45gEJmTEoBu8OeVZzJgsM-OYxxzjmUhcgPyMvk4YE2aNIqYKRrn95o7ZnzAW3yfWdaOn2a3dOmDzSgaVnyC6Sm6xem3VCHaYxR39G4Cp_o29Z0FmmHad2H93hM9hrTRjz5nUfk-fpqNrll08ebu8nllNkMVGJNAdbmSqkSlKkdNqXD2oIzshamrHhTSailtFVTiOEfCdblzlWZU8YVSmB2RM7Gu8vQf6wwJj3vV2GoH7UohOIAMpdDqhpTNvQxBmy09cl8P5CC8a0Grr9t6tGmHmzqH5s6G1DxD10GvzBhsx3KRigO4e4Vw1-rLdQXwZOKOQ |
CitedBy_id | crossref_primary_10_1145_3551893 crossref_primary_10_1007_s42979_024_03243_z crossref_primary_10_3390_app121910011 crossref_primary_10_1002_aisy_202300706 crossref_primary_10_32604_csse_2023_034805 crossref_primary_10_1016_j_measen_2022_100510 crossref_primary_10_1093_jcde_qwae019 crossref_primary_10_1186_s13677_023_00552_1 crossref_primary_10_32604_csse_2023_035732 crossref_primary_10_1007_s11042_021_10811_5 crossref_primary_10_3390_s20216348 crossref_primary_10_1016_j_imavis_2022_104467 crossref_primary_10_32604_cmc_2022_027327 crossref_primary_10_3390_s22239383 crossref_primary_10_3390_s23135811 crossref_primary_10_1007_s42835_023_01630_9 crossref_primary_10_3390_s24072240 crossref_primary_10_1007_s00500_023_07971_x crossref_primary_10_1016_j_rineng_2023_101026 crossref_primary_10_1093_comjnl_bxae005 crossref_primary_10_1007_s11042_024_19116_9 crossref_primary_10_1155_2022_9149164 crossref_primary_10_3390_app12115501 crossref_primary_10_1016_j_eswa_2023_120599 crossref_primary_10_1007_s13042_023_01851_4 crossref_primary_10_1080_13682199_2023_2202577 crossref_primary_10_1109_ACCESS_2021_3081050 crossref_primary_10_1007_s11042_022_12796_1 crossref_primary_10_1016_j_ijin_2022_11_005 crossref_primary_10_1007_s00521_021_06495_5 crossref_primary_10_1016_j_petrol_2021_109260 crossref_primary_10_1016_j_eswa_2024_124846 crossref_primary_10_3390_math8122133 crossref_primary_10_4018_IJPCH_311444 crossref_primary_10_1016_j_energy_2022_125718 crossref_primary_10_3390_electronics13020251 crossref_primary_10_1109_ACCESS_2024_3399841 crossref_primary_10_1007_s00521_024_10416_7 crossref_primary_10_3233_AIC_230064 crossref_primary_10_1016_j_engappai_2022_105403 crossref_primary_10_1109_MMUL_2023_3289953 crossref_primary_10_1016_j_future_2021_10_033 crossref_primary_10_1109_JSEN_2021_3103016 crossref_primary_10_1016_j_engappai_2024_109800 crossref_primary_10_3390_s21248501 crossref_primary_10_1007_s00371_023_03210_4 crossref_primary_10_1016_j_compeleceng_2022_108319 crossref_primary_10_1016_j_imavis_2024_104991 crossref_primary_10_1109_ACCESS_2023_3339379 crossref_primary_10_1016_j_measen_2023_100885 crossref_primary_10_1016_j_scs_2024_105793 crossref_primary_10_1007_s13735_022_00227_8 crossref_primary_10_1155_2024_1052344 crossref_primary_10_1007_s12652_024_04818_7 crossref_primary_10_1109_ACCESS_2023_3300658 crossref_primary_10_3390_safety9040091 crossref_primary_10_1007_s13369_023_08038_7 crossref_primary_10_1002_cpe_8238 crossref_primary_10_3390_a17070286 crossref_primary_10_3390_app10238634 crossref_primary_10_3390_s22020545 crossref_primary_10_1002_cpe_6852 crossref_primary_10_1007_s10586_021_03385_2 crossref_primary_10_1109_ACCESS_2023_3329062 crossref_primary_10_1155_2024_5459452 crossref_primary_10_7717_peerj_cs_1117 crossref_primary_10_3390_app11083523 crossref_primary_10_3390_computation12020019 crossref_primary_10_1007_s11042_025_20608_5 crossref_primary_10_1007_s10462_022_10285_3 crossref_primary_10_3390_s21082811 crossref_primary_10_1016_j_engappai_2023_106173 crossref_primary_10_1016_j_neucom_2024_129281 crossref_primary_10_1007_s11042_023_14827_x crossref_primary_10_1016_j_chb_2024_108301 crossref_primary_10_1016_j_ipm_2023_103289 crossref_primary_10_3390_app12125864 crossref_primary_10_3390_info13010002 crossref_primary_10_1007_s11042_023_16193_0 crossref_primary_10_1109_ACCESS_2021_3109904 crossref_primary_10_1016_j_knosys_2022_109456 crossref_primary_10_1007_s42979_024_03443_7 crossref_primary_10_1016_j_imavis_2023_104710 crossref_primary_10_1007_s11760_023_02725_6 crossref_primary_10_1109_ACCESS_2024_3435144 crossref_primary_10_1016_j_iswa_2023_200236 crossref_primary_10_1109_THMS_2021_3138708 crossref_primary_10_1007_s43681_024_00541_3 crossref_primary_10_1007_s11370_021_00355_w crossref_primary_10_3390_rs14133221 crossref_primary_10_1007_s00521_022_07540_7 crossref_primary_10_3390_biom13010070 crossref_primary_10_1109_TCSVT_2022_3182658 crossref_primary_10_1007_s11042_022_13169_4 crossref_primary_10_1016_j_compeleceng_2024_109811 crossref_primary_10_1155_2023_7868415 crossref_primary_10_3390_math10091555 crossref_primary_10_1007_s11042_023_17425_z crossref_primary_10_1016_j_ecoinf_2021_101492 crossref_primary_10_1016_j_inffus_2022_10_008 crossref_primary_10_1088_1742_6596_2025_1_012025 crossref_primary_10_1109_ACCESS_2023_3321800 crossref_primary_10_1109_ACCESS_2024_3491868 crossref_primary_10_3390_s23042358 crossref_primary_10_32604_iasc_2022_029535 crossref_primary_10_21595_jme_2023_23401 crossref_primary_10_1111_exsy_13648 crossref_primary_10_1016_j_neucom_2023_126327 crossref_primary_10_1007_s00138_023_01397_z crossref_primary_10_1007_s41870_023_01420_6 crossref_primary_10_3390_pr12091999 crossref_primary_10_1109_ACCESS_2020_3047732 crossref_primary_10_1108_AEAT_05_2022_0132 crossref_primary_10_1155_2022_4452128 crossref_primary_10_3390_agriculture12081226 crossref_primary_10_1007_s00371_023_03073_9 crossref_primary_10_1007_s11042_023_16382_x crossref_primary_10_32604_csse_2023_033861 crossref_primary_10_3390_en17215369 crossref_primary_10_1155_2021_5195508 crossref_primary_10_1109_ACCESS_2024_3436653 crossref_primary_10_1007_s11042_024_20296_7 crossref_primary_10_1016_j_iot_2022_100568 |
Cites_doi | 10.1109/TIP.2015.2479561 10.1016/j.cviu.2016.10.010 10.1007/s11042-015-2453-4 10.1109/TPAMI.2007.70825 10.1109/ACCESS.2017.2778011 10.1109/TIP.2017.2670780 10.1007/s11042-017-5309-2 10.1016/j.scs.2020.102080 10.1007/s11042-017-4488-1 10.1007/s11042-017-5255-z 10.1007/s11042-015-3133-0 10.1016/j.jocs.2017.11.006 10.1109/JIOT.2019.2950469 10.1109/CVPR.2009.5206641 10.1109/CVPR.2016.606 10.1007/978-3-642-32639-4_10 10.1109/CVPRW.2009.5206686 10.1109/CVPR.2016.90 10.1109/CVPR.2019.00133 10.1109/CVPR.2011.5995524 10.1109/CVPR.2011.5995434 10.1109/CVPR.2018.00684 10.1109/AVSS.2016.7738074 10.1109/CVPR.2016.308 10.1109/ICCV.2017.45 10.1109/ICCV.2013.338 10.21437/Interspeech.2014-80 10.1609/aaai.v33i01.33019185 10.1109/CVPR.2016.86 10.1109/TVLSI.2020.2995741 10.1109/CVPR.2010.5539872 10.1007/978-3-319-59081-3_23 10.1109/CVPR.2018.00678 10.1109/CVPR.2009.5206569 10.1109/ICME.2017.8019325 10.1109/CVPRW.2009.5206771 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11042-020-09406-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 16995 |
ExternalDocumentID | 10_1007_s11042_020_09406_3 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c319t-f51cc4999619abdef6debc1da7b2a680f871b77c8f5272171cd4dd83d9ad592e3 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 07:52:29 EDT 2025 Tue Jul 01 04:13:05 EDT 2025 Thu Apr 24 22:54:54 EDT 2025 Fri Feb 21 02:48:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Deep learning Intelligent surveillance networks LSTM Smart surveillance Crime detection Anomaly detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-f51cc4999619abdef6debc1da7b2a680f871b77c8f5272171cd4dd83d9ad592e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6678-7788 |
PQID | 2529011747 |
PQPubID | 54626 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2529011747 crossref_citationtrail_10_1007_s11042_020_09406_3 crossref_primary_10_1007_s11042_020_09406_3 springer_journals_10_1007_s11042_020_09406_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210500 2021-05-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210500 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Al-Smadi, Qawasmeh, Al-Ayyoub, Jararweh, Gupta (CR3) 2018; 27 CR19 Zhang, Jia, Yang, Yang, He, Zheng (CR37) 2017; 76 Cheng, Chen, Fang (CR6) 2015; 24 CR17 Xu, Yan, Ricci, Sebe (CR35) 2017; 156 CR39 CR16 CR38 CR15 CR14 Ullah, Ahmad, Muhammad, Sajjad, Baik (CR33) 2017; 6 CR36 CR12 Sabokrou, Fayyaz, Fathy, Klette (CR27) 2017; 26 CR11 CR10 CR32 CR31 CR30 Muhammad, Hussain, Tanveer, Sannino, de Albuquerque (CR25) 2020; 7 Wang, Qiao, Zhu, Niu, Li, Snoussi (CR34) 2018; 77 He, Shao, Sun (CR13) 2018; 77 Alsmirat, Obaidat, Jararweh, Al-Saleh (CR4) 2017; 76 CR5 Li, Mahadevan, Vasconcelos (CR18) 2013; 36 CR8 CR29 CR28 CR9 CR26 Adam, Rivlin, Shimshoni, Reinitz (CR1) 2008; 30 CR24 CR23 CR22 CR21 Cheng, Chen, Fang (CR7) 2016; 75 CR20 CR41 Al Ridhawi, Otoum, Aloqaily, Jararweh, Baker (CR2) 2020; 56 CR40 C He (9406_CR13) 2018; 77 D Xu (9406_CR35) 2017; 156 9406_CR11 9406_CR10 9406_CR32 9406_CR12 9406_CR31 9406_CR30 9406_CR19 A Ullah (9406_CR33) 2017; 6 9406_CR15 9406_CR14 9406_CR36 9406_CR17 9406_CR39 9406_CR16 9406_CR38 MA Alsmirat (9406_CR4) 2017; 76 I Al Ridhawi (9406_CR2) 2020; 56 K Muhammad (9406_CR25) 2020; 7 K-W Cheng (9406_CR7) 2016; 75 9406_CR22 9406_CR21 9406_CR24 9406_CR23 9406_CR40 A Adam (9406_CR1) 2008; 30 9406_CR20 9406_CR41 T Wang (9406_CR34) 2018; 77 9406_CR29 T Zhang (9406_CR37) 2017; 76 9406_CR26 9406_CR28 M Al-Smadi (9406_CR3) 2018; 27 9406_CR9 W Li (9406_CR18) 2013; 36 K-W Cheng (9406_CR6) 2015; 24 9406_CR5 M Sabokrou (9406_CR27) 2017; 26 9406_CR8 |
References_xml | – volume: 24 start-page: 5288 year: 2015 end-page: 5301 ident: CR6 article-title: Gaussian process regression-based video anomaly detection and localization with hierarchical feature representation publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2479561 – ident: CR22 – volume: 156 start-page: 117 year: 2017 end-page: 127 ident: CR35 article-title: Detecting anomalous events in videos by learning deep representations of appearance and motion publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2016.10.010 – ident: CR14 – ident: CR39 – ident: CR16 – volume: 75 start-page: 15101 year: 2016 end-page: 15122 ident: CR7 article-title: An efficient subsequence search for video anomaly detection and localization publication-title: Multimed Tools Appl doi: 10.1007/s11042-015-2453-4 – ident: CR12 – ident: CR30 – volume: 30 start-page: 555 year: 2008 end-page: 560 ident: CR1 article-title: Robust real-time unusual event detection using multiple fixed-location monitors publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.70825 – ident: CR10 – volume: 6 start-page: 1155 year: 2017 end-page: 1166 ident: CR33 article-title: Action recognition in video sequences using deep bi-directional LSTM with CNN features publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2778011 – volume: 26 start-page: 1992 year: 2017 end-page: 2004 ident: CR27 article-title: Deep-cascade: cascading 3d deep neural networks for fast anomaly detection and localization in crowded scenes publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2670780 – ident: CR29 – ident: CR8 – volume: 77 start-page: 17375 year: 2018 end-page: 17395 ident: CR34 article-title: Abnormal event detection via covariance matrix for optical flow based feature publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5309-2 – volume: 56 start-page: 102080 year: 2020 ident: CR2 article-title: Providing secure and reliable communication for next generation networks in smart cities publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102080 – ident: CR40 – volume: 76 start-page: 22787 year: 2017 end-page: 22802 ident: CR4 article-title: A security framework for cloud-based video surveillance system publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-4488-1 – ident: CR23 – ident: CR21 – ident: CR19 – ident: CR15 – ident: CR38 – volume: 77 start-page: 29573 year: 2018 end-page: 29588 ident: CR13 article-title: An anomaly-introduced learning method for abnormal event detection publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5255-z – ident: CR17 – ident: CR31 – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR36 – volume: 76 start-page: 1419 year: 2017 end-page: 1438 ident: CR37 article-title: MoWLD: a robust motion image descriptor for violence detection publication-title: Multimed Tools Appl doi: 10.1007/s11042-015-3133-0 – ident: CR5 – ident: CR28 – ident: CR41 – ident: CR26 – volume: 27 start-page: 386 year: 2018 end-page: 393 ident: CR3 article-title: Deep recurrent neural network vs. support vector machine for aspect-based sentiment analysis of Arabic hotels’ reviews publication-title: J Comput Sci doi: 10.1016/j.jocs.2017.11.006 – ident: CR24 – volume: 36 start-page: 18 year: 2013 end-page: 32 ident: CR18 article-title: Anomaly detection and localization in crowded scenes publication-title: IEEE Trans Pattern Anal Mach Intell – ident: CR20 – volume: 7 start-page: 4455 year: 2020 end-page: 4463 ident: CR25 article-title: Cost-effective video summarization using deep CNN with hierarchical weighted fusion for IoT surveillance networks publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2019.2950469 – ident: 9406_CR24 doi: 10.1109/CVPR.2009.5206641 – ident: 9406_CR29 doi: 10.1109/CVPR.2016.606 – ident: 9406_CR14 doi: 10.1007/978-3-642-32639-4_10 – ident: 9406_CR41 – ident: 9406_CR5 doi: 10.1109/CVPRW.2009.5206686 – volume: 36 start-page: 18 year: 2013 ident: 9406_CR18 publication-title: IEEE Trans Pattern Anal Mach Intell – ident: 9406_CR10 – ident: 9406_CR12 doi: 10.1109/CVPR.2016.90 – volume: 7 start-page: 4455 year: 2020 ident: 9406_CR25 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2019.2950469 – ident: 9406_CR40 doi: 10.1109/CVPR.2019.00133 – volume: 76 start-page: 22787 year: 2017 ident: 9406_CR4 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-4488-1 – ident: 9406_CR39 doi: 10.1109/CVPR.2011.5995524 – ident: 9406_CR9 doi: 10.1109/CVPR.2011.5995434 – ident: 9406_CR30 – volume: 76 start-page: 1419 year: 2017 ident: 9406_CR37 publication-title: Multimed Tools Appl doi: 10.1007/s11042-015-3133-0 – volume: 30 start-page: 555 year: 2008 ident: 9406_CR1 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.70825 – volume: 27 start-page: 386 year: 2018 ident: 9406_CR3 publication-title: J Comput Sci doi: 10.1016/j.jocs.2017.11.006 – ident: 9406_CR19 doi: 10.1109/CVPR.2018.00684 – ident: 9406_CR26 doi: 10.1109/AVSS.2016.7738074 – ident: 9406_CR32 doi: 10.1109/CVPR.2016.308 – ident: 9406_CR21 doi: 10.1109/ICCV.2017.45 – volume: 6 start-page: 1155 year: 2017 ident: 9406_CR33 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2778011 – ident: 9406_CR20 doi: 10.1109/ICCV.2013.338 – ident: 9406_CR28 doi: 10.21437/Interspeech.2014-80 – ident: 9406_CR17 – volume: 77 start-page: 17375 year: 2018 ident: 9406_CR34 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5309-2 – ident: 9406_CR38 doi: 10.1609/aaai.v33i01.33019185 – ident: 9406_CR11 doi: 10.1109/CVPR.2016.86 – ident: 9406_CR36 doi: 10.1109/TVLSI.2020.2995741 – volume: 24 start-page: 5288 year: 2015 ident: 9406_CR6 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2479561 – ident: 9406_CR23 doi: 10.1109/CVPR.2010.5539872 – ident: 9406_CR8 doi: 10.1007/978-3-319-59081-3_23 – ident: 9406_CR31 doi: 10.1109/CVPR.2018.00678 – volume: 75 start-page: 15101 year: 2016 ident: 9406_CR7 publication-title: Multimed Tools Appl doi: 10.1007/s11042-015-2453-4 – volume: 26 start-page: 1992 year: 2017 ident: 9406_CR27 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2670780 – ident: 9406_CR15 doi: 10.1109/CVPR.2009.5206569 – volume: 156 start-page: 117 year: 2017 ident: 9406_CR35 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2016.10.010 – volume: 56 start-page: 102080 year: 2020 ident: 9406_CR2 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102080 – volume: 77 start-page: 29573 year: 2018 ident: 9406_CR13 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5255-z – ident: 9406_CR22 doi: 10.1109/ICME.2017.8019325 – ident: 9406_CR16 doi: 10.1109/CVPRW.2009.5206771 |
SSID | ssj0016524 |
Score | 2.6299925 |
Snippet | In current technological era, surveillance systems generate an enormous volume of video data on a daily basis, making its analysis a difficult task for... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16979 |
SubjectTerms | Anomalies Artificial neural networks Complexity Computer Communication Networks Computer Science Computer vision Crime Data Structures and Information Theory Datasets Decision making Feature extraction Frames (data processing) Multilayers Multimedia Information Systems Public safety Special Purpose and Application-Based Systems Surveillance Surveillance systems Video data |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60XvTgoypWq-zBmy7ktcnmWIqliO3FFnoy7BMKNUqTCv57d5NNq6KC52w2MLOTmdmZ7xuA60hFmlrEMhWS4ohzhk0UTrAWOiXU04p4Fpw8GsfDaXQ_IzMHCiuabvemJFn9qTdgN99CSWy6YznfYhxuww4xubtt5JoGvXXtICZulC31sPGHvoPK_LzHV3e0iTG_lUUrbzM4hH0XJqJerdcj2FJ5Gw6aEQzIWWQb9j7xCR7DU388RlpVXJ0FslesiM9x7bWqKz_08DgZIROnIhMrLrAdLI9Y_vLMFu9IqrJehuY5KlbLN2UHEpmvoLxuFS9OYDq4m_SH2A1QwMJYVok18YWoUho_ZVwqHUvFhS9ZwgMWG02YbIkniaCaBCYTTHwhIylpKFMmSRqo8BRa-UuuzgAl0rh2rT1pyX-EjphUsbQgXEa9SKWsA34jx0w4dnE75GKRbXiRrewzI_uskn0WduBm_c5rza3x5-puo57M2VmRBcTWgU1WlXTgtlHZ5vHvu53_b_kF7Aa2maXqdOxCq1yu1KWJRkp-VR2-DzlQ1Ww priority: 102 providerName: Springer Nature |
Title | CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks |
URI | https://link.springer.com/article/10.1007/s11042-020-09406-3 https://www.proquest.com/docview/2529011747 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8a7QUOjMEQZVD5wA2sJWmcOCfUoha0rdE0qMQuixx_SEglLU1B4r_HL3EoIK2nHPwR6T3b7_v9AE5CHRqOFctcKk7DPBfUauGMGmkSxj2jmYfFyeM0upqEP27ZrXO4lS6tsnkTq4dazST6yL8HDCN-Vn-Oz-cPFFGjMLrqIDQ2oG2fYM5b0B4M099_XuMIEXOwttyjVjb6rmymLp7zsTQFzSfsIRfR3nvRtNI3P4RIK8kz2oFtpzKSfs3jL_BJF7vwuYFjIO527sLWm96Ce_DvIk2J0VXfzpKgu5Xkd7SWYJX7j_y6vhkTq7MSqzdOKYLME1HM7sX0mSi9rKeRu4KUj4snjeBE9i-kqNPGy68wGQ1vLq6oA1Og0t6yJTXMl7Iyb_xE5EqbSOlc-krEeSAiyxVrOeVxLLlhgbUKY1-qUCneU4lQLAl0bx9axazQB0BiZcW8MZ7CRkDShELpSGFBruBeqBPRAb-hYyZdp3EEvJhmqx7JSPvM0j6raJ_1OnD6umZe99lYO_uoYU_m7lyZrU5IB84alq2G_7_b4frdvsFmgIksVZbjEbSWi0d9bDWRZd6FDT667EK7PxoMUvxe_v057LpDaEcnQf8FRWTe2A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTtxAEC0ROCQc2BLEsPaBnJJWvLWXA0IIGAaYmQuDxClOuxcJafAAHkD8FN9IlRcGIsGNs-22VV3uet1Vrx7AdmACGxNjOVY65kGWSY4oXHCrbCJixxrhEDm51w8758HJhbiYgqeGC0Nllc2aWC7UeqTojPyPJyjjh_g52r2-4aQaRdnVRkKjcotT8_iAW7Zi5_gA5_en57UPB_sdXqsKcIXuNuZWuEqVON9NZKaNDbXJlKtllHkyxM_DLUQWRSq2wsPtUeQqHWgd-zqRWiSe8XHcLzAT-BjJiZnePnrJWoSiFtGNHY6R2K1JOhVVzyUiDG3WqGNdyP23gXCCbv9LyJZxrr0AczVAZXuVRy3ClMmXYL4Rf2D1WrAEs686GX6Hv_v9PrOm7BJaMDrcZdklr-JledjIumeDHkOEzBClDjlJ2jOZj67k8JFpM65uY5c5K-5u7w1JIeFbWF4VqRc_4PxTjLwM0_koNyvAIo2gwlpHU9shZQOpTaiJ_itjJzCJbIHb2DFVdV9zktcYppOOzGT7FG2flrZP_Rb8ennmuurq8eHd6830pPUfXqQTf2zB72bKJpffH23149G24Gtn0Oum3eP-6Rp886iEpqyvXIfp8e2d2UAMNM42S8dj8O-zPf0ZfVQW_g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIlVw6AOK2BaoD-2pWCTZOI9DVbWwK-juRqiAxKnB8UNCWrJAllb8tf66ziQO2yKVG-c4TjQee77xPD6A96EJbUIVy4nSCQ-LQnJE4YJbZVOReNYIj4qTx1l0cBp-OxNnC_C7rYWhtMr2TKwPaj1VdEe-GwiK-CF-jnetS4s42h98vrrmxCBFkdaWTqNRkaG5-4XuW_XpcB_X-kMQDPonewfcMQxwhao341b4StWY309loY2NtCmUr2VcBDLCX0V3oohjlVgRoKsU-0qHWic9nUot0sD0cN5FWIrJK-rA0td-dvT9PoYRCUepm3gc7bLvSnaawj2fymLIdaP-dRHv_WsW51j3QXi2tnqDl_DcwVX2pdGvV7BgylV40VJBMHcyrMLKX30N1-DHXpYxa-qeoRWjq15WXPDGetZXj2x0fDJmiJcZYtYJJ4J7JsvppZzcMW1mzTB2UbLq9uanIWIk_Aorm5T16jWcPomY16FTTkuzASzWCDGs9TQ1IVI2lNpEmoqBZeKFJpVd8Fs55sp1OSeyjUk-789Mss9R9nkt-7zXhY_371w1PT4eHb3ZLk_u9nuVz7WzCzvtks0f_3-2N4_P9g6eoZbno8Ns-BaWA8qnqZMtN6Ezu7k1WwiIZsW20zwG50-t7H8AKQkckA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN+features+with+bi-directional+LSTM+for+real-time+anomaly+detection+in+surveillance+networks&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ullah+Waseem&rft.au=Ullah+Amin&rft.au=Haq%2C+Ijaz+Ul&rft.au=Khan%2C+Muhammad&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=11&rft.spage=16979&rft.epage=16995&rft_id=info:doi/10.1007%2Fs11042-020-09406-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |