Artificial Driving based EfficientNet for Automatic Plant Leaf Disease Classification
Plant disease (PD) detection is a substantial problem that needs to be tackled to develop the economy and improve agricultural production. Using conventional methods to classify plant leaf diseases consumes more time, undergoes vanishing gradients problems, overfitting issues, etc. However, automati...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 13; pp. 38209 - 38240 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant disease (PD) detection is a substantial problem that needs to be tackled to develop the economy and improve agricultural production. Using conventional methods to classify plant leaf diseases consumes more time, undergoes vanishing gradients problems, overfitting issues, etc. However, automatic PD detection using deep learning (DL) has attained great significance in detecting PD during the early stages. Therefore, this paper proposes a hybrid strategy based on optimized automatic DL for plant leaf disease classification (PLDC). Initially, the proposed model performs pre-processing using image resizing and Gaussian filtering. Then, the disease infected region is then segmented using the UNet technique to acquire the relevant region and enhance disease classification accuracy. During segmentation, the weight of the UNet model has been tuned by employing the hunter-prey optimization (Hunt-PO) algorithm. Next, feature extraction is accomplished by means of a gray level co-occurrence matrix (GLCM), scale-invariant feature transform (SIFT) and a Gabor filter to extract the crucial features for classification. Further, based on the extracted features, PLDC is performed using artificial driving-EfficientNet (AD-ENet). The proposed PLDC model is implemented in the python platform through the PlantVillage dataset and assessed the performance in terms of different evaluation measures. Moreover, a proposed model’s performance is compared with existing classifiers. The maximum classification accuracy obtained by the proposed PLDC model is 99.91%, superior to the existing classifiers for leaf disease classification. |
---|---|
AbstractList | Plant disease (PD) detection is a substantial problem that needs to be tackled to develop the economy and improve agricultural production. Using conventional methods to classify plant leaf diseases consumes more time, undergoes vanishing gradients problems, overfitting issues, etc. However, automatic PD detection using deep learning (DL) has attained great significance in detecting PD during the early stages. Therefore, this paper proposes a hybrid strategy based on optimized automatic DL for plant leaf disease classification (PLDC). Initially, the proposed model performs pre-processing using image resizing and Gaussian filtering. Then, the disease infected region is then segmented using the UNet technique to acquire the relevant region and enhance disease classification accuracy. During segmentation, the weight of the UNet model has been tuned by employing the hunter-prey optimization (Hunt-PO) algorithm. Next, feature extraction is accomplished by means of a gray level co-occurrence matrix (GLCM), scale-invariant feature transform (SIFT) and a Gabor filter to extract the crucial features for classification. Further, based on the extracted features, PLDC is performed using artificial driving-EfficientNet (AD-ENet). The proposed PLDC model is implemented in the python platform through the PlantVillage dataset and assessed the performance in terms of different evaluation measures. Moreover, a proposed model’s performance is compared with existing classifiers. The maximum classification accuracy obtained by the proposed PLDC model is 99.91%, superior to the existing classifiers for leaf disease classification. |
Author | Shafi, Pathan Mohd Kotwal, Jameer Gulab Kashyap, Ramgopal |
Author_xml | – sequence: 1 givenname: Jameer Gulab surname: Kotwal fullname: Kotwal, Jameer Gulab email: jameerktwl@gmail.com organization: Amity University Chhattisgarh – sequence: 2 givenname: Ramgopal surname: Kashyap fullname: Kashyap, Ramgopal organization: ASET, Amity University Chhattisgarh – sequence: 3 givenname: Pathan Mohd surname: Shafi fullname: Shafi, Pathan Mohd organization: MITSOC, MIT ADT University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6v52N3sHktbP6CoB3sOaXZSUrbZmqQW_71pV1A8eMpkeJ6Z4R2hgescIHRNyS0lRNwFSknOMsJ4RsuqYtnhDA1pIXgmBKODX_UFGoWwIYSWBcuHaDnx0RqrrWrxzNsP69Z4pQI0eG6ObXDxGSI2nceTfey2KlqNX1vlIl6AMnhmAyQcT1sVwnFQAjp3ic6NagNcfb9jtLyfv00fs8XLw9N0ssg0p3XMTJ6vlOJcFXVFgJaM5ZzpmpVErMqiZkDqQolGaKiLpqm0KUA3QBpWak3Th4_RTT9357v3PYQoN93eu7RScsJpzqnIRaKqntK-C8GDkdrG053RK9tKSuQxRNmHKFOI8hSiPCSV_VF33m6V__xf4r0UEuzW4H-u-sf6AhYEh2k |
CitedBy_id | crossref_primary_10_1016_j_imu_2024_101515 crossref_primary_10_7717_peerj_cs_2426 crossref_primary_10_7717_peerj_cs_2655 crossref_primary_10_1016_j_simpa_2024_100701 crossref_primary_10_2174_0129503779301717240607070206 crossref_primary_10_1007_s41870_024_02271_5 crossref_primary_10_1016_j_dib_2024_110216 crossref_primary_10_1007_s11042_024_20336_2 |
Cites_doi | 10.1016/j.matpr.2021.07.281 10.1109/ACCESS.2023.3274601 10.1109/ICCES48766.2020.9137986 10.1016/j.ecoinf.2023.101998 10.3390/agriculture11080707 10.3390/agriengineering3030032 10.1007/978-981-15-9712-1_51 10.1155/2022/9153699 10.1007/s40747-021-00536-1 10.1007/s41870-021-00817-5 10.3390/s21144749 10.1016/j.jphotobiol.2021.112278 10.1038/s41598-022-15163-0 10.1155/2022/9502475 10.1155/2022/4189781 10.1109/ACCESS.2022.3187203 10.20895/infotel.v14i1.735 10.1007/s42979-023-01988-7 10.1016/j.compeleceng.2022.108492 10.1007/s00500-021-06401-0 10.1016/j.ecoinf.2021.101289 10.1016/j.cma.2021.114194 10.1007/978-3-030-59338-4_4 10.13052/jmm1550-4646.1829 10.1007/s11042-023-14851-x 10.1007/s11042-021-11375-0 10.1016/j.compbiomed.2021.104778 10.1109/ICICT50816.2021.9358763 10.1109/SCEECS57921.2023.10063036 10.1109/ACCESS.2021.3069646 10.1016/j.chemolab.2022.104516 10.1007/s11042-023-14969-y 10.1038/s41598-022-14225-7 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-023-16882-w |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 38240 |
ExternalDocumentID | 10_1007_s11042_023_16882_w |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-f44baa33a5980e1622432c92607b6592e095a7d7ce95dd8cf5ecde0d26cc1f5e3 |
IEDL.DBID | BENPR |
ISSN | 1573-7721 1380-7501 |
IngestDate | Fri Jul 25 21:09:01 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Tue Jul 01 04:13:27 EDT 2025 Fri Feb 21 02:41:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Plant leaf disease Gaussian filtering Gray level co-occurrence matrix Artificial driving optimization Disease classification UNet-based segmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-f44baa33a5980e1622432c92607b6592e095a7d7ce95dd8cf5ecde0d26cc1f5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3031431747 |
PQPubID | 54626 |
PageCount | 32 |
ParticipantIDs | proquest_journals_3031431747 crossref_citationtrail_10_1007_s11042_023_16882_w crossref_primary_10_1007_s11042_023_16882_w springer_journals_10_1007_s11042_023_16882_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240400 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 4 year: 2024 text: 20240400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | WójtowiczAPiekarczykJCzerneckiBRatajkiewiczHA random forest model for the classification of wheat and rye leaf rust symptoms based on pure spectra at leaf scaleJ Photochem Photobiol, B202122310.1016/j.jphotobiol.2021.112278 Tanwar S, Singh J (2023) ResNext50 based convolution neural network-long short term memory model for plant disease classification. Multimed Tools Appl 1–19 Agarwal M, Kotecha A, Deolalikar A, Kalia R, Yadav RK and Thomas A (2023) Deep learning approaches for plant disease detection: A comparative review. In 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), 1–6 KhotimahBKPerformance of the K-nearest neighbors method on identification of maize plant nutrientsJURNAL INFOTEL202214181410.20895/infotel.v14i1.735 AhmedSHasanMBAhmedTSonyMRKabirMHLess is more: lighter and faster deep neural architecture for tomato leaf disease classificationIEEE Access202210688686888410.1109/ACCESS.2022.3187203 LiLZhangSWangBPlant disease detection and classification by deep learning—a reviewIEEE Access20219566835669810.1109/ACCESS.2021.3069646 PanchalAVPatelSCBagyalakshmiKKumarPKhanIRSoniMImage-based plant diseases detection using deep learningMater Today Proc2023803500350610.1016/j.matpr.2021.07.281 Upadhyay SK, Kumar A (2021) A novel approach for rice plant diseases classification with deep convolutional neural network. Int J Inf Technol 1–5 ZhaoWWangLMirjaliliSArtificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applicationsComput Methods Appl Mech Eng2022388433775310.1016/j.cma.2021.114194 Akbar S, Mohamed HG, Ali H, Saeed A, Ahmed A, Gul S, Ahmad A, Ali F, Ghadi YY and Assam M (2023) Identifying Neuropeptides via Evolutionary and Sequential based Multi-perspective Descriptors by Incorporation with Ensemble Classification Strategy. IEEE Access AhmedAAReddyGHA mobile-based system for detecting plant leaf diseases using deep learningAgriEngineering20213347849310.3390/agriengineering3030032 Kaur P, Gautam V (2021) Plant biotic disease identification and classification based on leaf image: A review. InProceedings of 3rd International Conference on Computing Informatics and Networks: ICCIN 2020 597–610. Springer Singapore AlsayedAAlsabeiAArifMClassification of apple tree leaves diseases using deep learning methodsInt J Comput Sci Netw Secur2021217324330 Narayanan KL, Krishnan RS, Robinson YH, Julie EG, Vimal S, Saravanan V, Kaliappan M (2022) Banana plant disease classification using hybrid convolutional neural network. Comput Intell Neurosci Kumar VV, Raghunath KK, Rajesh N, Venkatesan M, Joseph RB, Thillaiarasu N (2022) Paddy plant disease recognition, risk analysis, and classification using deep convolution neuro-fuzzy network. J Mob Multimed:325–348 Vishnoi VK, Kumar K, Kumar B (2022) A comprehensive study of feature extraction techniques for plant leaf disease detection. Multimed Tools Appl 1–53 Rajpoot V, Tiwari A, Jalal AS (2023) Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods. Multimed Tools Appl 1–27 DehghaniMTrojovskáETrojovskýPA new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training processSci Rep2022121992410.1038/s41598-022-14225-7 Yin XX, Sun L, Fu Y, Lu R, Zhang Y (2022) U-Net-based medical image segmentation. J Healthc Eng Ansari AS, Jawarneh M, Ritonga M, Jamwal P, Mohammadi MS, Veluri RK, Kumar V, Shah MA (2022) Improved support vector machine and image processing enabled methodology for detection and classification of grape leaf disease. J Food Qual LuJTanLJiangHReview on convolutional neural network (CNN) applied to plant leaf disease classificationAgriculture202111870710.3390/agriculture11080707 ChauhanMDDetection of maize disease using random forest classification algorithmTurk J Comput Math Educ (TURCOMAT)2021129715720 IslamMAShuvoMNRShamsojjamanMHasanSHossainMSKhatunTAn automated convolutional neural network based approach for paddy leaf disease detectionInt J Adv Comput Sci Appl2021121280288 Albattah W, Nawaz M, Javed A, Masood M, Albahli S (2022) A novel deep learning method for detection and classification of plant diseases. Complex Intell Syst, pp 1–8 Khalifa NE, Taha MH, Abou El-Maged LM, Hassanien AE (2021) Artificial intelligence in potato leaf disease classification: a deep learning approach. In: Machine learning and big data analytics paradigms: analysis, applications and challenges 63–79 GeethaGSamundeswariSSaranyaGMeenakshiKNithyaMPlant leaf disease classification and detection system using machine learningJ Phys: Conf Ser202017121012012IOP Publishing Akanksha E, Sharma N, Gulati K (2021) OPNN: optimized probabilistic neural network based automatic detection of maize plant disease detection. In2021 6th international conference on inventive computation technologies (ICICT) 1322–1328. IEEE KurmiYGangwarSA leaf image localization based algorithm for different crops disease classificationInf Process Agric202293456474 KayaYGÜrsoyEA novel multi-head CNN design to identify plant diseases using the fusion of RGB imagesEcol Inform20237510199810.1016/j.ecoinf.2023.101998 AhmadAAkbarSTahirMHayatMAliFiAFPs-EnC-GA: identifying antifungal peptides using sequential and evolutionary descriptors based multi-information fusion and ensemble learning approachChemom Intell Lab Syst202222210.1016/j.chemolab.2022.104516 Anamisa DR, Rachmad A, Yusuf M, Jauhari A, Erdiansa RD, Hariyawan MY (2021) Classification of diseases for rice plant based on Naive Bayes classifier with a combination of PROMETHEE. Commun Math Biol Neurosci TiwariVJoshiRCDuttaMKDense convolutional neural networks based multiclass plant disease detection and classification using leaf imagesEco Inform20216310.1016/j.ecoinf.2021.101289 AkbarSAhmadAHayatMUr RehmanAKhanSAliFiAtbP-hyb-EnC: prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning modelComput Biol Med202113710.1016/j.compbiomed.2021.104778 NarueiIKeyniaFMolahosseiniASHunter–prey optimization: algorithm and applicationsSoft Comput20222631279131410.1007/s00500-021-06401-0 LuaibiARSalmanTMMiryAHDetection of citrus leaf diseases using a deep learning techniqueInt J Electr Comput Eng20211121719 DhakshayaniJSurendiranBGF-CNN: an enhanced deep learning model with gabor filters for maize disease classificationSN Comput Sci20234553810.1007/s42979-023-01988-7 Ashok S, Kishore G, Rajesh V, Suchitra S, Sophia SG, Pavithra B (2020) Tomato leaf disease detection using deep learning techniques. In2020 5th International Conference on Communication and Electronics Systems (ICCES) 979–983. IEEE AshwinkumarSRajagopalSManimaranVJegajothiBAutomated plant leaf disease detection and classification using optimal MobileNet based convolutional neural networksMater Today: Proc202251480487 BorhaniYKhoramdelJNajafiEA deep learning based approach for automated plant disease classification using vision transformerSci Rep20221211155410.1038/s41598-022-15163-0 DhakaVSMeenaSVRaniGSinwarDIjazMFWoźniakMA survey of deep convolutional neural networks applied for prediction of plant leaf diseasesSensors20212114474910.3390/s21144749 ReddySRGVarmaGPSDavuluriRLResnet-based modified red deer optimization with DLCNN classifier for plant disease identification and classificationComput Electr Eng202310510.1016/j.compeleceng.2022.108492 AA Ahmed (16882_CR5) 2021; 3 AV Panchal (16882_CR12) 2023; 80 S Ashwinkumar (16882_CR24) 2022; 51 A Ahmad (16882_CR40) 2022; 222 W Zhao (16882_CR37) 2022; 388 J Lu (16882_CR11) 2021; 11 MA Islam (16882_CR10) 2021; 12 Y Kaya (16882_CR30) 2023; 75 M Dehghani (16882_CR38) 2022; 12 16882_CR23 16882_CR26 16882_CR25 16882_CR28 SRG Reddy (16882_CR31) 2023; 105 16882_CR27 Y Kurmi (16882_CR13) 2022; 9 MD Chauhan (16882_CR15) 2021; 12 V Tiwari (16882_CR22) 2021; 63 S Akbar (16882_CR39) 2021; 137 J Dhakshayani (16882_CR29) 2023; 4 A Alsayed (16882_CR16) 2021; 21 16882_CR19 I Naruei (16882_CR35) 2022; 26 16882_CR1 16882_CR18 16882_CR6 16882_CR33 AR Luaibi (16882_CR7) 2021; 11 16882_CR9 16882_CR34 16882_CR14 16882_CR36 16882_CR17 Y Borhani (16882_CR4) 2022; 12 BK Khotimah (16882_CR21) 2022; 14 L Li (16882_CR8) 2021; 9 G Geetha (16882_CR32) 2020; 1712 16882_CR41 VS Dhaka (16882_CR2) 2021; 21 S Ahmed (16882_CR3) 2022; 10 A Wójtowicz (16882_CR20) 2021; 223 |
References_xml | – reference: Akanksha E, Sharma N, Gulati K (2021) OPNN: optimized probabilistic neural network based automatic detection of maize plant disease detection. In2021 6th international conference on inventive computation technologies (ICICT) 1322–1328. IEEE – reference: KayaYGÜrsoyEA novel multi-head CNN design to identify plant diseases using the fusion of RGB imagesEcol Inform20237510199810.1016/j.ecoinf.2023.101998 – reference: Kumar VV, Raghunath KK, Rajesh N, Venkatesan M, Joseph RB, Thillaiarasu N (2022) Paddy plant disease recognition, risk analysis, and classification using deep convolution neuro-fuzzy network. J Mob Multimed:325–348 – reference: PanchalAVPatelSCBagyalakshmiKKumarPKhanIRSoniMImage-based plant diseases detection using deep learningMater Today Proc2023803500350610.1016/j.matpr.2021.07.281 – reference: Ashok S, Kishore G, Rajesh V, Suchitra S, Sophia SG, Pavithra B (2020) Tomato leaf disease detection using deep learning techniques. In2020 5th International Conference on Communication and Electronics Systems (ICCES) 979–983. IEEE – reference: Kaur P, Gautam V (2021) Plant biotic disease identification and classification based on leaf image: A review. InProceedings of 3rd International Conference on Computing Informatics and Networks: ICCIN 2020 597–610. Springer Singapore – reference: TiwariVJoshiRCDuttaMKDense convolutional neural networks based multiclass plant disease detection and classification using leaf imagesEco Inform20216310.1016/j.ecoinf.2021.101289 – reference: WójtowiczAPiekarczykJCzerneckiBRatajkiewiczHA random forest model for the classification of wheat and rye leaf rust symptoms based on pure spectra at leaf scaleJ Photochem Photobiol, B202122310.1016/j.jphotobiol.2021.112278 – reference: Rajpoot V, Tiwari A, Jalal AS (2023) Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods. Multimed Tools Appl 1–27 – reference: GeethaGSamundeswariSSaranyaGMeenakshiKNithyaMPlant leaf disease classification and detection system using machine learningJ Phys: Conf Ser202017121012012IOP Publishing – reference: Yin XX, Sun L, Fu Y, Lu R, Zhang Y (2022) U-Net-based medical image segmentation. J Healthc Eng – reference: Agarwal M, Kotecha A, Deolalikar A, Kalia R, Yadav RK and Thomas A (2023) Deep learning approaches for plant disease detection: A comparative review. In 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), 1–6 – reference: AhmedSHasanMBAhmedTSonyMRKabirMHLess is more: lighter and faster deep neural architecture for tomato leaf disease classificationIEEE Access202210688686888410.1109/ACCESS.2022.3187203 – reference: IslamMAShuvoMNRShamsojjamanMHasanSHossainMSKhatunTAn automated convolutional neural network based approach for paddy leaf disease detectionInt J Adv Comput Sci Appl2021121280288 – reference: NarueiIKeyniaFMolahosseiniASHunter–prey optimization: algorithm and applicationsSoft Comput20222631279131410.1007/s00500-021-06401-0 – reference: DehghaniMTrojovskáETrojovskýPA new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training processSci Rep2022121992410.1038/s41598-022-14225-7 – reference: AhmedAAReddyGHA mobile-based system for detecting plant leaf diseases using deep learningAgriEngineering20213347849310.3390/agriengineering3030032 – reference: KhotimahBKPerformance of the K-nearest neighbors method on identification of maize plant nutrientsJURNAL INFOTEL202214181410.20895/infotel.v14i1.735 – reference: AshwinkumarSRajagopalSManimaranVJegajothiBAutomated plant leaf disease detection and classification using optimal MobileNet based convolutional neural networksMater Today: Proc202251480487 – reference: AkbarSAhmadAHayatMUr RehmanAKhanSAliFiAtbP-hyb-EnC: prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning modelComput Biol Med202113710.1016/j.compbiomed.2021.104778 – reference: Khalifa NE, Taha MH, Abou El-Maged LM, Hassanien AE (2021) Artificial intelligence in potato leaf disease classification: a deep learning approach. In: Machine learning and big data analytics paradigms: analysis, applications and challenges 63–79 – reference: AhmadAAkbarSTahirMHayatMAliFiAFPs-EnC-GA: identifying antifungal peptides using sequential and evolutionary descriptors based multi-information fusion and ensemble learning approachChemom Intell Lab Syst202222210.1016/j.chemolab.2022.104516 – reference: AlsayedAAlsabeiAArifMClassification of apple tree leaves diseases using deep learning methodsInt J Comput Sci Netw Secur2021217324330 – reference: Upadhyay SK, Kumar A (2021) A novel approach for rice plant diseases classification with deep convolutional neural network. Int J Inf Technol 1–5 – reference: Narayanan KL, Krishnan RS, Robinson YH, Julie EG, Vimal S, Saravanan V, Kaliappan M (2022) Banana plant disease classification using hybrid convolutional neural network. Comput Intell Neurosci – reference: ChauhanMDDetection of maize disease using random forest classification algorithmTurk J Comput Math Educ (TURCOMAT)2021129715720 – reference: LuaibiARSalmanTMMiryAHDetection of citrus leaf diseases using a deep learning techniqueInt J Electr Comput Eng20211121719 – reference: Akbar S, Mohamed HG, Ali H, Saeed A, Ahmed A, Gul S, Ahmad A, Ali F, Ghadi YY and Assam M (2023) Identifying Neuropeptides via Evolutionary and Sequential based Multi-perspective Descriptors by Incorporation with Ensemble Classification Strategy. IEEE Access – reference: LuJTanLJiangHReview on convolutional neural network (CNN) applied to plant leaf disease classificationAgriculture202111870710.3390/agriculture11080707 – reference: Albattah W, Nawaz M, Javed A, Masood M, Albahli S (2022) A novel deep learning method for detection and classification of plant diseases. Complex Intell Syst, pp 1–8 – reference: DhakshayaniJSurendiranBGF-CNN: an enhanced deep learning model with gabor filters for maize disease classificationSN Comput Sci20234553810.1007/s42979-023-01988-7 – reference: LiLZhangSWangBPlant disease detection and classification by deep learning—a reviewIEEE Access20219566835669810.1109/ACCESS.2021.3069646 – reference: Ansari AS, Jawarneh M, Ritonga M, Jamwal P, Mohammadi MS, Veluri RK, Kumar V, Shah MA (2022) Improved support vector machine and image processing enabled methodology for detection and classification of grape leaf disease. J Food Qual – reference: Tanwar S, Singh J (2023) ResNext50 based convolution neural network-long short term memory model for plant disease classification. Multimed Tools Appl 1–19 – reference: Vishnoi VK, Kumar K, Kumar B (2022) A comprehensive study of feature extraction techniques for plant leaf disease detection. Multimed Tools Appl 1–53 – reference: DhakaVSMeenaSVRaniGSinwarDIjazMFWoźniakMA survey of deep convolutional neural networks applied for prediction of plant leaf diseasesSensors20212114474910.3390/s21144749 – reference: Anamisa DR, Rachmad A, Yusuf M, Jauhari A, Erdiansa RD, Hariyawan MY (2021) Classification of diseases for rice plant based on Naive Bayes classifier with a combination of PROMETHEE. Commun Math Biol Neurosci – reference: KurmiYGangwarSA leaf image localization based algorithm for different crops disease classificationInf Process Agric202293456474 – reference: BorhaniYKhoramdelJNajafiEA deep learning based approach for automated plant disease classification using vision transformerSci Rep20221211155410.1038/s41598-022-15163-0 – reference: ReddySRGVarmaGPSDavuluriRLResnet-based modified red deer optimization with DLCNN classifier for plant disease identification and classificationComput Electr Eng202310510.1016/j.compeleceng.2022.108492 – reference: ZhaoWWangLMirjaliliSArtificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applicationsComput Methods Appl Mech Eng2022388433775310.1016/j.cma.2021.114194 – volume: 80 start-page: 3500 year: 2023 ident: 16882_CR12 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2021.07.281 – volume: 11 start-page: 1719 issue: 2 year: 2021 ident: 16882_CR7 publication-title: Int J Electr Comput Eng – ident: 16882_CR41 doi: 10.1109/ACCESS.2023.3274601 – ident: 16882_CR33 doi: 10.1109/ICCES48766.2020.9137986 – volume: 9 start-page: 456 issue: 3 year: 2022 ident: 16882_CR13 publication-title: Inf Process Agric – volume: 75 start-page: 101998 year: 2023 ident: 16882_CR30 publication-title: Ecol Inform doi: 10.1016/j.ecoinf.2023.101998 – volume: 11 start-page: 707 issue: 8 year: 2021 ident: 16882_CR11 publication-title: Agriculture doi: 10.3390/agriculture11080707 – volume: 3 start-page: 478 issue: 3 year: 2021 ident: 16882_CR5 publication-title: AgriEngineering doi: 10.3390/agriengineering3030032 – ident: 16882_CR9 doi: 10.1007/978-981-15-9712-1_51 – ident: 16882_CR17 doi: 10.1155/2022/9153699 – ident: 16882_CR23 doi: 10.1007/s40747-021-00536-1 – ident: 16882_CR26 doi: 10.1007/s41870-021-00817-5 – volume: 21 start-page: 4749 issue: 14 year: 2021 ident: 16882_CR2 publication-title: Sensors doi: 10.3390/s21144749 – volume: 12 start-page: 715 issue: 9 year: 2021 ident: 16882_CR15 publication-title: Turk J Comput Math Educ (TURCOMAT) – ident: 16882_CR19 – volume: 223 year: 2021 ident: 16882_CR20 publication-title: J Photochem Photobiol, B doi: 10.1016/j.jphotobiol.2021.112278 – volume: 12 start-page: 11554 issue: 1 year: 2022 ident: 16882_CR4 publication-title: Sci Rep doi: 10.1038/s41598-022-15163-0 – ident: 16882_CR18 doi: 10.1155/2022/9502475 – ident: 16882_CR34 doi: 10.1155/2022/4189781 – volume: 21 start-page: 324 issue: 7 year: 2021 ident: 16882_CR16 publication-title: Int J Comput Sci Netw Secur – volume: 10 start-page: 68868 year: 2022 ident: 16882_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3187203 – volume: 12 start-page: 280 issue: 1 year: 2021 ident: 16882_CR10 publication-title: Int J Adv Comput Sci Appl – volume: 51 start-page: 480 year: 2022 ident: 16882_CR24 publication-title: Mater Today: Proc – volume: 14 start-page: 8 issue: 1 year: 2022 ident: 16882_CR21 publication-title: JURNAL INFOTEL doi: 10.20895/infotel.v14i1.735 – volume: 4 start-page: 538 issue: 5 year: 2023 ident: 16882_CR29 publication-title: SN Comput Sci doi: 10.1007/s42979-023-01988-7 – volume: 105 year: 2023 ident: 16882_CR31 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2022.108492 – volume: 26 start-page: 1279 issue: 3 year: 2022 ident: 16882_CR35 publication-title: Soft Comput doi: 10.1007/s00500-021-06401-0 – volume: 63 year: 2021 ident: 16882_CR22 publication-title: Eco Inform doi: 10.1016/j.ecoinf.2021.101289 – volume: 388 year: 2022 ident: 16882_CR37 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.114194 – ident: 16882_CR25 doi: 10.1007/978-3-030-59338-4_4 – ident: 16882_CR14 doi: 10.13052/jmm1550-4646.1829 – ident: 16882_CR27 doi: 10.1007/s11042-023-14851-x – ident: 16882_CR36 doi: 10.1007/s11042-021-11375-0 – volume: 137 year: 2021 ident: 16882_CR39 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104778 – ident: 16882_CR6 doi: 10.1109/ICICT50816.2021.9358763 – ident: 16882_CR1 doi: 10.1109/SCEECS57921.2023.10063036 – volume: 9 start-page: 56683 year: 2021 ident: 16882_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3069646 – volume: 222 year: 2022 ident: 16882_CR40 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2022.104516 – ident: 16882_CR28 doi: 10.1007/s11042-023-14969-y – volume: 12 start-page: 9924 issue: 1 year: 2022 ident: 16882_CR38 publication-title: Sci Rep doi: 10.1038/s41598-022-14225-7 – volume: 1712 start-page: 012012 issue: 1 year: 2020 ident: 16882_CR32 publication-title: J Phys: Conf Ser |
SSID | ssj0016524 |
Score | 2.6326423 |
Snippet | Plant disease (PD) detection is a substantial problem that needs to be tackled to develop the economy and improve agricultural production. Using conventional... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 38209 |
SubjectTerms | Agricultural production Algorithms Classification Classifiers Computer Communication Networks Computer Science Data Structures and Information Theory Feature extraction Gabor filters Image filters Machine learning Multimedia Information Systems Plant diseases Production methods Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAY4AYDJQDN6jUtEkfx4ltmhDsRKXdqiZNJCS0oa3T_j5Omq6AAIljlcfBTuzPdfwZ4DZFTC-ESjyNp9djMSvQDvrS89OCl1QlWlBT4Pw8jSYZe5zxmSsKWzWv3ZuUpLXUbbEbNaUk6GM8GhlcuNmFPY6xu3nIlQWDbe4g4gFz5TE_r_vqglpc-S0Vaj3M-BgOHTQkg1qXJ7Cj5l04atouEHcLu3DwiUPwFDIzv6aBIMPlq_k_QIxrKsnIskOgU5mqiiA2JYN1tbAMrcS0KqrIkyo0GdYZGmK7Y5qNrKrOIBuPXh4mnuuV4Em8RJWnGRNFEYYFTxNf0Qg9cxjIFKOVWJjMqUIoVcRlLFXKyzKRmitZKr8MIikpfoTn0Jkv5uoCiKBoeRC5CB0IpqjEiAjVrIWMudYiVT2gjfhy6YjETT-Lt7ylQDYiz1HkuRV5vunB3XbNe02j8efsfqOV3F2pVR4aon1EOyzuwX2jqXb4990u_zf9CvbxULnXOX3oVMu1ukbgUYkbe84-ALY40bY priority: 102 providerName: Springer Nature |
Title | Artificial Driving based EfficientNet for Automatic Plant Leaf Disease Classification |
URI | https://link.springer.com/article/10.1007/s11042-023-16882-w https://www.proquest.com/docview/3031431747 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB1Be4EDO6JQKh-4gUWcPSeUQhexVAhRCU5R7NgSEmpLm6q_zzhxWkCipyiK44PHnnn2eN4DuIgQ03MuQ6pw9lI3cFP0g5agVpR6GZOh4kwXOD8N_P7QvX_z3syB28xcq6x8YuGos7HQZ-TXjuZZx2DnBjeTL6pVo3R21UhobEIdXXAY1qDe7gyeX5Z5BN8zsrahRTE2MlM2UxbPMV2agjGLMl_jzMXv0LTCm39SpEXk6e7BjoGMJC5tvA8bcnQAu5UcAzGr8wC2f3ALHsJQty_pIcjd9EOfGxAdsjLSKVgjMNgMZE4Qs5J4no8L5laiJYxy8ihTRe7KzA0pVDN1R4UJj2DY7bze9qnRUKACF1dOlevyNHWc1ItCSzIfI7Zjiwh3MQHXGVWJECsNskDIyMuyUChPikxame0LwfDFOYbaaDySJ0A4Q4-EiIYrm7uSCdwpofkVF4GnFI9kA1g1fIkwBONa5-IzWVEj6yFPcMiTYsiTRQMul_9MSnqNta2blVUSs9RmyWpiNOCqstTq8_-9na7v7Qy2bAQw5S2dJtTy6VyeIwDJeQs2w26vBfW4224P9LP3_tBpmbmHX4d2_A1bndxT |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO6KsPsAJLOLsOSCEaEsLpScqcQuxY0tIqC1tUMVP8Y3MZKGABDeOURwfxi_znj2eGYCjCDW9lDrkBtHL3cBN0A9ailtR4qVCh0YKSnC-6_qtnnvz4D3MwHuVC0PXKiufmDvqdKDojPzMoTrrSHZucDF84dQ1iqKrVQuNAha3-m2CW7bxebuO63ts283G_VWLl10FuEK4Zdy4rkwSx0m8KLS08JHDHFtFqOsDSTFGjaIjCdJA6chL01AZT6tUW6ntKyXwwcF5Z2HedZDJKTO9ef0ZtfC9soluaHFkYlEm6RSpeoISYZAhufBJ1U6-E-FU3f4IyOY811yF5VKgsssCUWswo_vrsFI1f2ClL1iHpS-VDDegR-OLYhSsPnqiUwpGBJmyRl6jAqmtqzOGCpldvmaDvE4so4ZJGevoxLB6ESdieY9OmigHzCb0_sW2WzDXH_T1NjAp0P-hfpLGlq4WCvdlCDYjVeAZIyNdA1GZL1ZlOXPqqvEcTwsxk8ljNHmcmzye1ODk85thUczjz9F71arE5Y89jqcwrMFptVLT17_PtvP3bIew0Lq_68Sddvd2FxZtlE7F_aA9mMtGr3ofpU8mD3K8MXj8b4B_AN8oE5M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB21iVS1BwqliECAPcCprOL1tw9V1ZJECQlRhYjUm-td70pIKGkTRxF_jV_HjL1OWiR6y9Hyeg-zzzNvd3bmAXxMkNNLqWNuEL3cj_wM_aCjuJNkQS50bKSgAudvk3Aw9b_eBDd78KeuhaFrlbVPLB11Pld0Rt7xqM86Bjs_6hh7LeK627-4u-ekIEWZ1lpOo4LISP9e4_ZteT7s4lp_ct1-78eXAbcKA1wh9ApufF9mmedlQRI7WoQYzzxXJcjxI0n5Ro0EJIvySOkkyPNYmUCrXDu5Gyol8MHDefehGdGuqAHNq97k-vsmhxEGVlI3djjGZWFLdqrCPUFlMRgvuQiJ464fh8Ut1_0nPVtGvf5zeGbpKrus8PUC9vTsBI5rKQhmPcMJHD3oa_gSpjS-ak3BuoufdGbBKFzmrFd2rMBAN9EFQ77MLlfFvOway0g-qWBjnRnWrbJGrFTspIlK-JzCdCfWfQWN2XymXwOTAr0hsilpXOlroXCXhtAzUkWBMTLRLRC1-VJlm5uTxsavdNuWmUyeosnT0uTpugVnm2_uqtYeT45u16uS2t98mW5B2YLP9UptX_9_tjdPz_YBDhDc6Xg4Gb2FQxd5VHVZqA2NYrHS75AHFfK9BRyD211j_C9U9Rkl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Driving+based+EfficientNet+for+Automatic+Plant+Leaf+Disease+Classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Kotwal%2C+Jameer+Gulab&rft.au=Kashyap%2C+Ramgopal&rft.au=Shafi%2C+Pathan+Mohd&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=13&rft.spage=38209&rft.epage=38240&rft_id=info:doi/10.1007%2Fs11042-023-16882-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |