Artificial Driving based EfficientNet for Automatic Plant Leaf Disease Classification

Plant disease (PD) detection is a substantial problem that needs to be tackled to develop the economy and improve agricultural production. Using conventional methods to classify plant leaf diseases consumes more time, undergoes vanishing gradients problems, overfitting issues, etc. However, automati...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 13; pp. 38209 - 38240
Main Authors Kotwal, Jameer Gulab, Kashyap, Ramgopal, Shafi, Pathan Mohd
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant disease (PD) detection is a substantial problem that needs to be tackled to develop the economy and improve agricultural production. Using conventional methods to classify plant leaf diseases consumes more time, undergoes vanishing gradients problems, overfitting issues, etc. However, automatic PD detection using deep learning (DL) has attained great significance in detecting PD during the early stages. Therefore, this paper proposes a hybrid strategy based on optimized automatic DL for plant leaf disease classification (PLDC). Initially, the proposed model performs pre-processing using image resizing and Gaussian filtering. Then, the disease infected region is then segmented using the UNet technique to acquire the relevant region and enhance disease classification accuracy. During segmentation, the weight of the UNet model has been tuned by employing the hunter-prey optimization (Hunt-PO) algorithm. Next, feature extraction is accomplished by means of a gray level co-occurrence matrix (GLCM), scale-invariant feature transform (SIFT) and a Gabor filter to extract the crucial features for classification. Further, based on the extracted features, PLDC is performed using artificial driving-EfficientNet (AD-ENet). The proposed PLDC model is implemented in the python platform through the PlantVillage dataset and assessed the performance in terms of different evaluation measures. Moreover, a proposed model’s performance is compared with existing classifiers. The maximum classification accuracy obtained by the proposed PLDC model is 99.91%, superior to the existing classifiers for leaf disease classification.
AbstractList Plant disease (PD) detection is a substantial problem that needs to be tackled to develop the economy and improve agricultural production. Using conventional methods to classify plant leaf diseases consumes more time, undergoes vanishing gradients problems, overfitting issues, etc. However, automatic PD detection using deep learning (DL) has attained great significance in detecting PD during the early stages. Therefore, this paper proposes a hybrid strategy based on optimized automatic DL for plant leaf disease classification (PLDC). Initially, the proposed model performs pre-processing using image resizing and Gaussian filtering. Then, the disease infected region is then segmented using the UNet technique to acquire the relevant region and enhance disease classification accuracy. During segmentation, the weight of the UNet model has been tuned by employing the hunter-prey optimization (Hunt-PO) algorithm. Next, feature extraction is accomplished by means of a gray level co-occurrence matrix (GLCM), scale-invariant feature transform (SIFT) and a Gabor filter to extract the crucial features for classification. Further, based on the extracted features, PLDC is performed using artificial driving-EfficientNet (AD-ENet). The proposed PLDC model is implemented in the python platform through the PlantVillage dataset and assessed the performance in terms of different evaluation measures. Moreover, a proposed model’s performance is compared with existing classifiers. The maximum classification accuracy obtained by the proposed PLDC model is 99.91%, superior to the existing classifiers for leaf disease classification.
Author Shafi, Pathan Mohd
Kotwal, Jameer Gulab
Kashyap, Ramgopal
Author_xml – sequence: 1
  givenname: Jameer Gulab
  surname: Kotwal
  fullname: Kotwal, Jameer Gulab
  email: jameerktwl@gmail.com
  organization: Amity University Chhattisgarh
– sequence: 2
  givenname: Ramgopal
  surname: Kashyap
  fullname: Kashyap, Ramgopal
  organization: ASET, Amity University Chhattisgarh
– sequence: 3
  givenname: Pathan Mohd
  surname: Shafi
  fullname: Shafi, Pathan Mohd
  organization: MITSOC, MIT ADT University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6v52N3sHktbP6CoB3sOaXZSUrbZmqQW_71pV1A8eMpkeJ6Z4R2hgescIHRNyS0lRNwFSknOMsJ4RsuqYtnhDA1pIXgmBKODX_UFGoWwIYSWBcuHaDnx0RqrrWrxzNsP69Z4pQI0eG6ObXDxGSI2nceTfey2KlqNX1vlIl6AMnhmAyQcT1sVwnFQAjp3ic6NagNcfb9jtLyfv00fs8XLw9N0ssg0p3XMTJ6vlOJcFXVFgJaM5ZzpmpVErMqiZkDqQolGaKiLpqm0KUA3QBpWak3Th4_RTT9357v3PYQoN93eu7RScsJpzqnIRaKqntK-C8GDkdrG053RK9tKSuQxRNmHKFOI8hSiPCSV_VF33m6V__xf4r0UEuzW4H-u-sf6AhYEh2k
CitedBy_id crossref_primary_10_1016_j_imu_2024_101515
crossref_primary_10_7717_peerj_cs_2426
crossref_primary_10_7717_peerj_cs_2655
crossref_primary_10_1016_j_simpa_2024_100701
crossref_primary_10_2174_0129503779301717240607070206
crossref_primary_10_1007_s41870_024_02271_5
crossref_primary_10_1016_j_dib_2024_110216
crossref_primary_10_1007_s11042_024_20336_2
Cites_doi 10.1016/j.matpr.2021.07.281
10.1109/ACCESS.2023.3274601
10.1109/ICCES48766.2020.9137986
10.1016/j.ecoinf.2023.101998
10.3390/agriculture11080707
10.3390/agriengineering3030032
10.1007/978-981-15-9712-1_51
10.1155/2022/9153699
10.1007/s40747-021-00536-1
10.1007/s41870-021-00817-5
10.3390/s21144749
10.1016/j.jphotobiol.2021.112278
10.1038/s41598-022-15163-0
10.1155/2022/9502475
10.1155/2022/4189781
10.1109/ACCESS.2022.3187203
10.20895/infotel.v14i1.735
10.1007/s42979-023-01988-7
10.1016/j.compeleceng.2022.108492
10.1007/s00500-021-06401-0
10.1016/j.ecoinf.2021.101289
10.1016/j.cma.2021.114194
10.1007/978-3-030-59338-4_4
10.13052/jmm1550-4646.1829
10.1007/s11042-023-14851-x
10.1007/s11042-021-11375-0
10.1016/j.compbiomed.2021.104778
10.1109/ICICT50816.2021.9358763
10.1109/SCEECS57921.2023.10063036
10.1109/ACCESS.2021.3069646
10.1016/j.chemolab.2022.104516
10.1007/s11042-023-14969-y
10.1038/s41598-022-14225-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-16882-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 38240
ExternalDocumentID 10_1007_s11042_023_16882_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-f44baa33a5980e1622432c92607b6592e095a7d7ce95dd8cf5ecde0d26cc1f5e3
IEDL.DBID BENPR
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 21:09:01 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Tue Jul 01 04:13:27 EDT 2025
Fri Feb 21 02:41:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Plant leaf disease
Gaussian filtering
Gray level co-occurrence matrix
Artificial driving optimization
Disease classification
UNet-based segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f44baa33a5980e1622432c92607b6592e095a7d7ce95dd8cf5ecde0d26cc1f5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3031431747
PQPubID 54626
PageCount 32
ParticipantIDs proquest_journals_3031431747
crossref_citationtrail_10_1007_s11042_023_16882_w
crossref_primary_10_1007_s11042_023_16882_w
springer_journals_10_1007_s11042_023_16882_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240400
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References WójtowiczAPiekarczykJCzerneckiBRatajkiewiczHA random forest model for the classification of wheat and rye leaf rust symptoms based on pure spectra at leaf scaleJ Photochem Photobiol, B202122310.1016/j.jphotobiol.2021.112278
Tanwar S, Singh J (2023) ResNext50 based convolution neural network-long short term memory model for plant disease classification. Multimed Tools Appl 1–19
Agarwal M, Kotecha A, Deolalikar A, Kalia R, Yadav RK and Thomas A (2023) Deep learning approaches for plant disease detection: A comparative review. In 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), 1–6
KhotimahBKPerformance of the K-nearest neighbors method on identification of maize plant nutrientsJURNAL INFOTEL202214181410.20895/infotel.v14i1.735
AhmedSHasanMBAhmedTSonyMRKabirMHLess is more: lighter and faster deep neural architecture for tomato leaf disease classificationIEEE Access202210688686888410.1109/ACCESS.2022.3187203
LiLZhangSWangBPlant disease detection and classification by deep learning—a reviewIEEE Access20219566835669810.1109/ACCESS.2021.3069646
PanchalAVPatelSCBagyalakshmiKKumarPKhanIRSoniMImage-based plant diseases detection using deep learningMater Today Proc2023803500350610.1016/j.matpr.2021.07.281
Upadhyay SK, Kumar A (2021) A novel approach for rice plant diseases classification with deep convolutional neural network. Int J Inf Technol 1–5
ZhaoWWangLMirjaliliSArtificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applicationsComput Methods Appl Mech Eng2022388433775310.1016/j.cma.2021.114194
Akbar S, Mohamed HG, Ali H, Saeed A, Ahmed A, Gul S, Ahmad A, Ali F, Ghadi YY and Assam M (2023) Identifying Neuropeptides via Evolutionary and Sequential based Multi-perspective Descriptors by Incorporation with Ensemble Classification Strategy. IEEE Access
AhmedAAReddyGHA mobile-based system for detecting plant leaf diseases using deep learningAgriEngineering20213347849310.3390/agriengineering3030032
Kaur P, Gautam V (2021) Plant biotic disease identification and classification based on leaf image: A review. InProceedings of 3rd International Conference on Computing Informatics and Networks: ICCIN 2020 597–610. Springer Singapore
AlsayedAAlsabeiAArifMClassification of apple tree leaves diseases using deep learning methodsInt J Comput Sci Netw Secur2021217324330
Narayanan KL, Krishnan RS, Robinson YH, Julie EG, Vimal S, Saravanan V, Kaliappan M (2022) Banana plant disease classification using hybrid convolutional neural network. Comput Intell Neurosci
Kumar VV, Raghunath KK, Rajesh N, Venkatesan M, Joseph RB, Thillaiarasu N (2022) Paddy plant disease recognition, risk analysis, and classification using deep convolution neuro-fuzzy network. J Mob Multimed:325–348
Vishnoi VK, Kumar K, Kumar B (2022) A comprehensive study of feature extraction techniques for plant leaf disease detection. Multimed Tools Appl 1–53
Rajpoot V, Tiwari A, Jalal AS (2023) Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods. Multimed Tools Appl 1–27
DehghaniMTrojovskáETrojovskýPA new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training processSci Rep2022121992410.1038/s41598-022-14225-7
Yin XX, Sun L, Fu Y, Lu R, Zhang Y (2022) U-Net-based medical image segmentation. J Healthc Eng
Ansari AS, Jawarneh M, Ritonga M, Jamwal P, Mohammadi MS, Veluri RK, Kumar V, Shah MA (2022) Improved support vector machine and image processing enabled methodology for detection and classification of grape leaf disease. J Food Qual
LuJTanLJiangHReview on convolutional neural network (CNN) applied to plant leaf disease classificationAgriculture202111870710.3390/agriculture11080707
ChauhanMDDetection of maize disease using random forest classification algorithmTurk J Comput Math Educ (TURCOMAT)2021129715720
IslamMAShuvoMNRShamsojjamanMHasanSHossainMSKhatunTAn automated convolutional neural network based approach for paddy leaf disease detectionInt J Adv Comput Sci Appl2021121280288
Albattah W, Nawaz M, Javed A, Masood M, Albahli S (2022) A novel deep learning method for detection and classification of plant diseases. Complex Intell Syst, pp 1–8
Khalifa NE, Taha MH, Abou El-Maged LM, Hassanien AE (2021) Artificial intelligence in potato leaf disease classification: a deep learning approach. In: Machine learning and big data analytics paradigms: analysis, applications and challenges 63–79
GeethaGSamundeswariSSaranyaGMeenakshiKNithyaMPlant leaf disease classification and detection system using machine learningJ Phys: Conf Ser202017121012012IOP Publishing
Akanksha E, Sharma N, Gulati K (2021) OPNN: optimized probabilistic neural network based automatic detection of maize plant disease detection. In2021 6th international conference on inventive computation technologies (ICICT) 1322–1328. IEEE
KurmiYGangwarSA leaf image localization based algorithm for different crops disease classificationInf Process Agric202293456474
KayaYGÜrsoyEA novel multi-head CNN design to identify plant diseases using the fusion of RGB imagesEcol Inform20237510199810.1016/j.ecoinf.2023.101998
AhmadAAkbarSTahirMHayatMAliFiAFPs-EnC-GA: identifying antifungal peptides using sequential and evolutionary descriptors based multi-information fusion and ensemble learning approachChemom Intell Lab Syst202222210.1016/j.chemolab.2022.104516
Anamisa DR, Rachmad A, Yusuf M, Jauhari A, Erdiansa RD, Hariyawan MY (2021) Classification of diseases for rice plant based on Naive Bayes classifier with a combination of PROMETHEE. Commun Math Biol Neurosci
TiwariVJoshiRCDuttaMKDense convolutional neural networks based multiclass plant disease detection and classification using leaf imagesEco Inform20216310.1016/j.ecoinf.2021.101289
AkbarSAhmadAHayatMUr RehmanAKhanSAliFiAtbP-hyb-EnC: prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning modelComput Biol Med202113710.1016/j.compbiomed.2021.104778
NarueiIKeyniaFMolahosseiniASHunter–prey optimization: algorithm and applicationsSoft Comput20222631279131410.1007/s00500-021-06401-0
LuaibiARSalmanTMMiryAHDetection of citrus leaf diseases using a deep learning techniqueInt J Electr Comput Eng20211121719
DhakshayaniJSurendiranBGF-CNN: an enhanced deep learning model with gabor filters for maize disease classificationSN Comput Sci20234553810.1007/s42979-023-01988-7
Ashok S, Kishore G, Rajesh V, Suchitra S, Sophia SG, Pavithra B (2020) Tomato leaf disease detection using deep learning techniques. In2020 5th International Conference on Communication and Electronics Systems (ICCES) 979–983. IEEE
AshwinkumarSRajagopalSManimaranVJegajothiBAutomated plant leaf disease detection and classification using optimal MobileNet based convolutional neural networksMater Today: Proc202251480487
BorhaniYKhoramdelJNajafiEA deep learning based approach for automated plant disease classification using vision transformerSci Rep20221211155410.1038/s41598-022-15163-0
DhakaVSMeenaSVRaniGSinwarDIjazMFWoźniakMA survey of deep convolutional neural networks applied for prediction of plant leaf diseasesSensors20212114474910.3390/s21144749
ReddySRGVarmaGPSDavuluriRLResnet-based modified red deer optimization with DLCNN classifier for plant disease identification and classificationComput Electr Eng202310510.1016/j.compeleceng.2022.108492
AA Ahmed (16882_CR5) 2021; 3
AV Panchal (16882_CR12) 2023; 80
S Ashwinkumar (16882_CR24) 2022; 51
A Ahmad (16882_CR40) 2022; 222
W Zhao (16882_CR37) 2022; 388
J Lu (16882_CR11) 2021; 11
MA Islam (16882_CR10) 2021; 12
Y Kaya (16882_CR30) 2023; 75
M Dehghani (16882_CR38) 2022; 12
16882_CR23
16882_CR26
16882_CR25
16882_CR28
SRG Reddy (16882_CR31) 2023; 105
16882_CR27
Y Kurmi (16882_CR13) 2022; 9
MD Chauhan (16882_CR15) 2021; 12
V Tiwari (16882_CR22) 2021; 63
S Akbar (16882_CR39) 2021; 137
J Dhakshayani (16882_CR29) 2023; 4
A Alsayed (16882_CR16) 2021; 21
16882_CR19
I Naruei (16882_CR35) 2022; 26
16882_CR1
16882_CR18
16882_CR6
16882_CR33
AR Luaibi (16882_CR7) 2021; 11
16882_CR9
16882_CR34
16882_CR14
16882_CR36
16882_CR17
Y Borhani (16882_CR4) 2022; 12
BK Khotimah (16882_CR21) 2022; 14
L Li (16882_CR8) 2021; 9
G Geetha (16882_CR32) 2020; 1712
16882_CR41
VS Dhaka (16882_CR2) 2021; 21
S Ahmed (16882_CR3) 2022; 10
A Wójtowicz (16882_CR20) 2021; 223
References_xml – reference: Akanksha E, Sharma N, Gulati K (2021) OPNN: optimized probabilistic neural network based automatic detection of maize plant disease detection. In2021 6th international conference on inventive computation technologies (ICICT) 1322–1328. IEEE
– reference: KayaYGÜrsoyEA novel multi-head CNN design to identify plant diseases using the fusion of RGB imagesEcol Inform20237510199810.1016/j.ecoinf.2023.101998
– reference: Kumar VV, Raghunath KK, Rajesh N, Venkatesan M, Joseph RB, Thillaiarasu N (2022) Paddy plant disease recognition, risk analysis, and classification using deep convolution neuro-fuzzy network. J Mob Multimed:325–348
– reference: PanchalAVPatelSCBagyalakshmiKKumarPKhanIRSoniMImage-based plant diseases detection using deep learningMater Today Proc2023803500350610.1016/j.matpr.2021.07.281
– reference: Ashok S, Kishore G, Rajesh V, Suchitra S, Sophia SG, Pavithra B (2020) Tomato leaf disease detection using deep learning techniques. In2020 5th International Conference on Communication and Electronics Systems (ICCES) 979–983. IEEE
– reference: Kaur P, Gautam V (2021) Plant biotic disease identification and classification based on leaf image: A review. InProceedings of 3rd International Conference on Computing Informatics and Networks: ICCIN 2020 597–610. Springer Singapore
– reference: TiwariVJoshiRCDuttaMKDense convolutional neural networks based multiclass plant disease detection and classification using leaf imagesEco Inform20216310.1016/j.ecoinf.2021.101289
– reference: WójtowiczAPiekarczykJCzerneckiBRatajkiewiczHA random forest model for the classification of wheat and rye leaf rust symptoms based on pure spectra at leaf scaleJ Photochem Photobiol, B202122310.1016/j.jphotobiol.2021.112278
– reference: Rajpoot V, Tiwari A, Jalal AS (2023) Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods. Multimed Tools Appl 1–27
– reference: GeethaGSamundeswariSSaranyaGMeenakshiKNithyaMPlant leaf disease classification and detection system using machine learningJ Phys: Conf Ser202017121012012IOP Publishing
– reference: Yin XX, Sun L, Fu Y, Lu R, Zhang Y (2022) U-Net-based medical image segmentation. J Healthc Eng
– reference: Agarwal M, Kotecha A, Deolalikar A, Kalia R, Yadav RK and Thomas A (2023) Deep learning approaches for plant disease detection: A comparative review. In 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), 1–6
– reference: AhmedSHasanMBAhmedTSonyMRKabirMHLess is more: lighter and faster deep neural architecture for tomato leaf disease classificationIEEE Access202210688686888410.1109/ACCESS.2022.3187203
– reference: IslamMAShuvoMNRShamsojjamanMHasanSHossainMSKhatunTAn automated convolutional neural network based approach for paddy leaf disease detectionInt J Adv Comput Sci Appl2021121280288
– reference: NarueiIKeyniaFMolahosseiniASHunter–prey optimization: algorithm and applicationsSoft Comput20222631279131410.1007/s00500-021-06401-0
– reference: DehghaniMTrojovskáETrojovskýPA new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training processSci Rep2022121992410.1038/s41598-022-14225-7
– reference: AhmedAAReddyGHA mobile-based system for detecting plant leaf diseases using deep learningAgriEngineering20213347849310.3390/agriengineering3030032
– reference: KhotimahBKPerformance of the K-nearest neighbors method on identification of maize plant nutrientsJURNAL INFOTEL202214181410.20895/infotel.v14i1.735
– reference: AshwinkumarSRajagopalSManimaranVJegajothiBAutomated plant leaf disease detection and classification using optimal MobileNet based convolutional neural networksMater Today: Proc202251480487
– reference: AkbarSAhmadAHayatMUr RehmanAKhanSAliFiAtbP-hyb-EnC: prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning modelComput Biol Med202113710.1016/j.compbiomed.2021.104778
– reference: Khalifa NE, Taha MH, Abou El-Maged LM, Hassanien AE (2021) Artificial intelligence in potato leaf disease classification: a deep learning approach. In: Machine learning and big data analytics paradigms: analysis, applications and challenges 63–79
– reference: AhmadAAkbarSTahirMHayatMAliFiAFPs-EnC-GA: identifying antifungal peptides using sequential and evolutionary descriptors based multi-information fusion and ensemble learning approachChemom Intell Lab Syst202222210.1016/j.chemolab.2022.104516
– reference: AlsayedAAlsabeiAArifMClassification of apple tree leaves diseases using deep learning methodsInt J Comput Sci Netw Secur2021217324330
– reference: Upadhyay SK, Kumar A (2021) A novel approach for rice plant diseases classification with deep convolutional neural network. Int J Inf Technol 1–5
– reference: Narayanan KL, Krishnan RS, Robinson YH, Julie EG, Vimal S, Saravanan V, Kaliappan M (2022) Banana plant disease classification using hybrid convolutional neural network. Comput Intell Neurosci
– reference: ChauhanMDDetection of maize disease using random forest classification algorithmTurk J Comput Math Educ (TURCOMAT)2021129715720
– reference: LuaibiARSalmanTMMiryAHDetection of citrus leaf diseases using a deep learning techniqueInt J Electr Comput Eng20211121719
– reference: Akbar S, Mohamed HG, Ali H, Saeed A, Ahmed A, Gul S, Ahmad A, Ali F, Ghadi YY and Assam M (2023) Identifying Neuropeptides via Evolutionary and Sequential based Multi-perspective Descriptors by Incorporation with Ensemble Classification Strategy. IEEE Access
– reference: LuJTanLJiangHReview on convolutional neural network (CNN) applied to plant leaf disease classificationAgriculture202111870710.3390/agriculture11080707
– reference: Albattah W, Nawaz M, Javed A, Masood M, Albahli S (2022) A novel deep learning method for detection and classification of plant diseases. Complex Intell Syst, pp 1–8
– reference: DhakshayaniJSurendiranBGF-CNN: an enhanced deep learning model with gabor filters for maize disease classificationSN Comput Sci20234553810.1007/s42979-023-01988-7
– reference: LiLZhangSWangBPlant disease detection and classification by deep learning—a reviewIEEE Access20219566835669810.1109/ACCESS.2021.3069646
– reference: Ansari AS, Jawarneh M, Ritonga M, Jamwal P, Mohammadi MS, Veluri RK, Kumar V, Shah MA (2022) Improved support vector machine and image processing enabled methodology for detection and classification of grape leaf disease. J Food Qual
– reference: Tanwar S, Singh J (2023) ResNext50 based convolution neural network-long short term memory model for plant disease classification. Multimed Tools Appl 1–19
– reference: Vishnoi VK, Kumar K, Kumar B (2022) A comprehensive study of feature extraction techniques for plant leaf disease detection. Multimed Tools Appl 1–53
– reference: DhakaVSMeenaSVRaniGSinwarDIjazMFWoźniakMA survey of deep convolutional neural networks applied for prediction of plant leaf diseasesSensors20212114474910.3390/s21144749
– reference: Anamisa DR, Rachmad A, Yusuf M, Jauhari A, Erdiansa RD, Hariyawan MY (2021) Classification of diseases for rice plant based on Naive Bayes classifier with a combination of PROMETHEE. Commun Math Biol Neurosci
– reference: KurmiYGangwarSA leaf image localization based algorithm for different crops disease classificationInf Process Agric202293456474
– reference: BorhaniYKhoramdelJNajafiEA deep learning based approach for automated plant disease classification using vision transformerSci Rep20221211155410.1038/s41598-022-15163-0
– reference: ReddySRGVarmaGPSDavuluriRLResnet-based modified red deer optimization with DLCNN classifier for plant disease identification and classificationComput Electr Eng202310510.1016/j.compeleceng.2022.108492
– reference: ZhaoWWangLMirjaliliSArtificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applicationsComput Methods Appl Mech Eng2022388433775310.1016/j.cma.2021.114194
– volume: 80
  start-page: 3500
  year: 2023
  ident: 16882_CR12
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2021.07.281
– volume: 11
  start-page: 1719
  issue: 2
  year: 2021
  ident: 16882_CR7
  publication-title: Int J Electr Comput Eng
– ident: 16882_CR41
  doi: 10.1109/ACCESS.2023.3274601
– ident: 16882_CR33
  doi: 10.1109/ICCES48766.2020.9137986
– volume: 9
  start-page: 456
  issue: 3
  year: 2022
  ident: 16882_CR13
  publication-title: Inf Process Agric
– volume: 75
  start-page: 101998
  year: 2023
  ident: 16882_CR30
  publication-title: Ecol Inform
  doi: 10.1016/j.ecoinf.2023.101998
– volume: 11
  start-page: 707
  issue: 8
  year: 2021
  ident: 16882_CR11
  publication-title: Agriculture
  doi: 10.3390/agriculture11080707
– volume: 3
  start-page: 478
  issue: 3
  year: 2021
  ident: 16882_CR5
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering3030032
– ident: 16882_CR9
  doi: 10.1007/978-981-15-9712-1_51
– ident: 16882_CR17
  doi: 10.1155/2022/9153699
– ident: 16882_CR23
  doi: 10.1007/s40747-021-00536-1
– ident: 16882_CR26
  doi: 10.1007/s41870-021-00817-5
– volume: 21
  start-page: 4749
  issue: 14
  year: 2021
  ident: 16882_CR2
  publication-title: Sensors
  doi: 10.3390/s21144749
– volume: 12
  start-page: 715
  issue: 9
  year: 2021
  ident: 16882_CR15
  publication-title: Turk J Comput Math Educ (TURCOMAT)
– ident: 16882_CR19
– volume: 223
  year: 2021
  ident: 16882_CR20
  publication-title: J Photochem Photobiol, B
  doi: 10.1016/j.jphotobiol.2021.112278
– volume: 12
  start-page: 11554
  issue: 1
  year: 2022
  ident: 16882_CR4
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-15163-0
– ident: 16882_CR18
  doi: 10.1155/2022/9502475
– ident: 16882_CR34
  doi: 10.1155/2022/4189781
– volume: 21
  start-page: 324
  issue: 7
  year: 2021
  ident: 16882_CR16
  publication-title: Int J Comput Sci Netw Secur
– volume: 10
  start-page: 68868
  year: 2022
  ident: 16882_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3187203
– volume: 12
  start-page: 280
  issue: 1
  year: 2021
  ident: 16882_CR10
  publication-title: Int J Adv Comput Sci Appl
– volume: 51
  start-page: 480
  year: 2022
  ident: 16882_CR24
  publication-title: Mater Today: Proc
– volume: 14
  start-page: 8
  issue: 1
  year: 2022
  ident: 16882_CR21
  publication-title: JURNAL INFOTEL
  doi: 10.20895/infotel.v14i1.735
– volume: 4
  start-page: 538
  issue: 5
  year: 2023
  ident: 16882_CR29
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-023-01988-7
– volume: 105
  year: 2023
  ident: 16882_CR31
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.108492
– volume: 26
  start-page: 1279
  issue: 3
  year: 2022
  ident: 16882_CR35
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-06401-0
– volume: 63
  year: 2021
  ident: 16882_CR22
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2021.101289
– volume: 388
  year: 2022
  ident: 16882_CR37
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114194
– ident: 16882_CR25
  doi: 10.1007/978-3-030-59338-4_4
– ident: 16882_CR14
  doi: 10.13052/jmm1550-4646.1829
– ident: 16882_CR27
  doi: 10.1007/s11042-023-14851-x
– ident: 16882_CR36
  doi: 10.1007/s11042-021-11375-0
– volume: 137
  year: 2021
  ident: 16882_CR39
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104778
– ident: 16882_CR6
  doi: 10.1109/ICICT50816.2021.9358763
– ident: 16882_CR1
  doi: 10.1109/SCEECS57921.2023.10063036
– volume: 9
  start-page: 56683
  year: 2021
  ident: 16882_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3069646
– volume: 222
  year: 2022
  ident: 16882_CR40
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2022.104516
– ident: 16882_CR28
  doi: 10.1007/s11042-023-14969-y
– volume: 12
  start-page: 9924
  issue: 1
  year: 2022
  ident: 16882_CR38
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-14225-7
– volume: 1712
  start-page: 012012
  issue: 1
  year: 2020
  ident: 16882_CR32
  publication-title: J Phys: Conf Ser
SSID ssj0016524
Score 2.6326423
Snippet Plant disease (PD) detection is a substantial problem that needs to be tackled to develop the economy and improve agricultural production. Using conventional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 38209
SubjectTerms Agricultural production
Algorithms
Classification
Classifiers
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Feature extraction
Gabor filters
Image filters
Machine learning
Multimedia Information Systems
Plant diseases
Production methods
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAY4AYDJQDN6jUtEkfx4ltmhDsRKXdqiZNJCS0oa3T_j5Omq6AAIljlcfBTuzPdfwZ4DZFTC-ESjyNp9djMSvQDvrS89OCl1QlWlBT4Pw8jSYZe5zxmSsKWzWv3ZuUpLXUbbEbNaUk6GM8GhlcuNmFPY6xu3nIlQWDbe4g4gFz5TE_r_vqglpc-S0Vaj3M-BgOHTQkg1qXJ7Cj5l04atouEHcLu3DwiUPwFDIzv6aBIMPlq_k_QIxrKsnIskOgU5mqiiA2JYN1tbAMrcS0KqrIkyo0GdYZGmK7Y5qNrKrOIBuPXh4mnuuV4Em8RJWnGRNFEYYFTxNf0Qg9cxjIFKOVWJjMqUIoVcRlLFXKyzKRmitZKr8MIikpfoTn0Jkv5uoCiKBoeRC5CB0IpqjEiAjVrIWMudYiVT2gjfhy6YjETT-Lt7ylQDYiz1HkuRV5vunB3XbNe02j8efsfqOV3F2pVR4aon1EOyzuwX2jqXb4990u_zf9CvbxULnXOX3oVMu1ukbgUYkbe84-ALY40bY
  priority: 102
  providerName: Springer Nature
Title Artificial Driving based EfficientNet for Automatic Plant Leaf Disease Classification
URI https://link.springer.com/article/10.1007/s11042-023-16882-w
https://www.proquest.com/docview/3031431747
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB1Be4EDO6JQKh-4gUWcPSeUQhexVAhRCU5R7NgSEmpLm6q_zzhxWkCipyiK44PHnnn2eN4DuIgQ03MuQ6pw9lI3cFP0g5agVpR6GZOh4kwXOD8N_P7QvX_z3syB28xcq6x8YuGos7HQZ-TXjuZZx2DnBjeTL6pVo3R21UhobEIdXXAY1qDe7gyeX5Z5BN8zsrahRTE2MlM2UxbPMV2agjGLMl_jzMXv0LTCm39SpEXk6e7BjoGMJC5tvA8bcnQAu5UcAzGr8wC2f3ALHsJQty_pIcjd9EOfGxAdsjLSKVgjMNgMZE4Qs5J4no8L5laiJYxy8ihTRe7KzA0pVDN1R4UJj2DY7bze9qnRUKACF1dOlevyNHWc1ItCSzIfI7Zjiwh3MQHXGVWJECsNskDIyMuyUChPikxame0LwfDFOYbaaDySJ0A4Q4-EiIYrm7uSCdwpofkVF4GnFI9kA1g1fIkwBONa5-IzWVEj6yFPcMiTYsiTRQMul_9MSnqNta2blVUSs9RmyWpiNOCqstTq8_-9na7v7Qy2bAQw5S2dJtTy6VyeIwDJeQs2w26vBfW4224P9LP3_tBpmbmHX4d2_A1bndxT
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO6KsPsAJLOLsOSCEaEsLpScqcQuxY0tIqC1tUMVP8Y3MZKGABDeOURwfxi_znj2eGYCjCDW9lDrkBtHL3cBN0A9ailtR4qVCh0YKSnC-6_qtnnvz4D3MwHuVC0PXKiufmDvqdKDojPzMoTrrSHZucDF84dQ1iqKrVQuNAha3-m2CW7bxebuO63ts283G_VWLl10FuEK4Zdy4rkwSx0m8KLS08JHDHFtFqOsDSTFGjaIjCdJA6chL01AZT6tUW6ntKyXwwcF5Z2HedZDJKTO9ef0ZtfC9soluaHFkYlEm6RSpeoISYZAhufBJ1U6-E-FU3f4IyOY811yF5VKgsssCUWswo_vrsFI1f2ClL1iHpS-VDDegR-OLYhSsPnqiUwpGBJmyRl6jAqmtqzOGCpldvmaDvE4so4ZJGevoxLB6ESdieY9OmigHzCb0_sW2WzDXH_T1NjAp0P-hfpLGlq4WCvdlCDYjVeAZIyNdA1GZL1ZlOXPqqvEcTwsxk8ljNHmcmzye1ODk85thUczjz9F71arE5Y89jqcwrMFptVLT17_PtvP3bIew0Lq_68Sddvd2FxZtlE7F_aA9mMtGr3ofpU8mD3K8MXj8b4B_AN8oE5M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB21iVS1BwqliECAPcCprOL1tw9V1ZJECQlRhYjUm-td70pIKGkTRxF_jV_HjL1OWiR6y9Hyeg-zzzNvd3bmAXxMkNNLqWNuEL3cj_wM_aCjuJNkQS50bKSgAudvk3Aw9b_eBDd78KeuhaFrlbVPLB11Pld0Rt7xqM86Bjs_6hh7LeK627-4u-ekIEWZ1lpOo4LISP9e4_ZteT7s4lp_ct1-78eXAbcKA1wh9ApufF9mmedlQRI7WoQYzzxXJcjxI0n5Ro0EJIvySOkkyPNYmUCrXDu5Gyol8MHDefehGdGuqAHNq97k-vsmhxEGVlI3djjGZWFLdqrCPUFlMRgvuQiJ464fh8Ut1_0nPVtGvf5zeGbpKrus8PUC9vTsBI5rKQhmPcMJHD3oa_gSpjS-ak3BuoufdGbBKFzmrFd2rMBAN9EFQ77MLlfFvOway0g-qWBjnRnWrbJGrFTspIlK-JzCdCfWfQWN2XymXwOTAr0hsilpXOlroXCXhtAzUkWBMTLRLRC1-VJlm5uTxsavdNuWmUyeosnT0uTpugVnm2_uqtYeT45u16uS2t98mW5B2YLP9UptX_9_tjdPz_YBDhDc6Xg4Gb2FQxd5VHVZqA2NYrHS75AHFfK9BRyD211j_C9U9Rkl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Driving+based+EfficientNet+for+Automatic+Plant+Leaf+Disease+Classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Kotwal%2C+Jameer+Gulab&rft.au=Kashyap%2C+Ramgopal&rft.au=Shafi%2C+Pathan+Mohd&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=13&rft.spage=38209&rft.epage=38240&rft_id=info:doi/10.1007%2Fs11042-023-16882-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon