Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy

Two sample cells designed specifically for sum-frequency-generation (SFG) measurements at the solid/liquid interface were developed: one thin-layer analysis cell allowing measurement of films on reflective metallic surfaces through a micrometer layer of solution and one spectroelectrochemical cell a...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 81; no. 6; p. 063111
Main Authors Verreault, Dominique, Kurz, Volker, Howell, Caitlin, Koelsch, Patrick
Format Journal Article
LanguageEnglish
Published United States 01.06.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two sample cells designed specifically for sum-frequency-generation (SFG) measurements at the solid/liquid interface were developed: one thin-layer analysis cell allowing measurement of films on reflective metallic surfaces through a micrometer layer of solution and one spectroelectrochemical cell allowing investigation of processes at the indium tin oxide/solution interface. Both sample cells are described in detail and data illustrating the capabilities of each are shown. To further improve measurements at solid/liquid interfaces, the broadband SFG system was modified to include a reference beam which can be measured simultaneously with the sample signal, permitting background correction of SFG spectra in real time. Sensitivity tests of this system yielded a signal-to-noise ratio of 100 at a surface coverage of 0.2 molecules/nm2. Details on data analysis routines, pulse shaping methods of the visible beam, as well as the design of a purging chamber and sample stage setup are presented. These descriptions will be useful to those planning to set up a SFG spectrometer or seeking to optimize their own SFG systems for measurements of solid/liquid interfaces.
AbstractList Two sample cells designed specifically for sum-frequency-generation (SFG) measurements at the solid/liquid interface were developed: one thin-layer analysis cell allowing measurement of films on reflective metallic surfaces through a micrometer layer of solution and one spectroelectrochemical cell allowing investigation of processes at the indium tin oxide/solution interface. Both sample cells are described in detail and data illustrating the capabilities of each are shown. To further improve measurements at solid/liquid interfaces, the broadband SFG system was modified to include a reference beam which can be measured simultaneously with the sample signal, permitting background correction of SFG spectra in real time. Sensitivity tests of this system yielded a signal-to-noise ratio of 100 at a surface coverage of 0.2 molecules/nm2. Details on data analysis routines, pulse shaping methods of the visible beam, as well as the design of a purging chamber and sample stage setup are presented. These descriptions will be useful to those planning to set up a SFG spectrometer or seeking to optimize their own SFG systems for measurements of solid/liquid interfaces.
Two sample cells designed specifically for sum-frequency-generation (SFG) measurements at the solid/liquid interface were developed: one thin-layer analysis cell allowing measurement of films on reflective metallic surfaces through a micrometer layer of solution and one spectroelectrochemical cell allowing investigation of processes at the indium tin oxide/solution interface. Both sample cells are described in detail and data illustrating the capabilities of each are shown. To further improve measurements at solid/liquid interfaces, the broadband SFG system was modified to include a reference beam which can be measured simultaneously with the sample signal, permitting background correction of SFG spectra in real time. Sensitivity tests of this system yielded a signal-to-noise ratio of 100 at a surface coverage of 0.2 molecules/nm(2). Details on data analysis routines, pulse shaping methods of the visible beam, as well as the design of a purging chamber and sample stage setup are presented. These descriptions will be useful to those planning to set up a SFG spectrometer or seeking to optimize their own SFG systems for measurements of solid/liquid interfaces.Two sample cells designed specifically for sum-frequency-generation (SFG) measurements at the solid/liquid interface were developed: one thin-layer analysis cell allowing measurement of films on reflective metallic surfaces through a micrometer layer of solution and one spectroelectrochemical cell allowing investigation of processes at the indium tin oxide/solution interface. Both sample cells are described in detail and data illustrating the capabilities of each are shown. To further improve measurements at solid/liquid interfaces, the broadband SFG system was modified to include a reference beam which can be measured simultaneously with the sample signal, permitting background correction of SFG spectra in real time. Sensitivity tests of this system yielded a signal-to-noise ratio of 100 at a surface coverage of 0.2 molecules/nm(2). Details on data analysis routines, pulse shaping methods of the visible beam, as well as the design of a purging chamber and sample stage setup are presented. These descriptions will be useful to those planning to set up a SFG spectrometer or seeking to optimize their own SFG systems for measurements of solid/liquid interfaces.
Two sample cells designed specifically for sum-frequency-generation (SFG) measurements at the solid/liquid interface were developed: one thin-layer analysis cell allowing measurement of films on reflective metallic surfaces through a micrometer layer of solution and one spectroelectrochemical cell allowing investigation of processes at the indium tin oxide/solution interface. Both sample cells are described in detail and data illustrating the capabilities of each are shown. To further improve measurements at solid/liquid interfaces, the broadband SFG system was modified to include a reference beam which can be measured simultaneously with the sample signal, permitting background correction of SFG spectra in real time. Sensitivity tests of this system yielded a signal-to-noise ratio of 100 at a surface coverage of 0.2 molecules/nm(2). Details on data analysis routines, pulse shaping methods of the visible beam, as well as the design of a purging chamber and sample stage setup are presented. These descriptions will be useful to those planning to set up a SFG spectrometer or seeking to optimize their own SFG systems for measurements of solid/liquid interfaces.
Author Verreault, Dominique
Howell, Caitlin
Koelsch, Patrick
Kurz, Volker
Author_xml – sequence: 1
  givenname: Dominique
  surname: Verreault
  fullname: Verreault, Dominique
– sequence: 2
  givenname: Volker
  surname: Kurz
  fullname: Kurz, Volker
– sequence: 3
  givenname: Caitlin
  surname: Howell
  fullname: Howell, Caitlin
– sequence: 4
  givenname: Patrick
  surname: Koelsch
  fullname: Koelsch, Patrick
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20590229$$D View this record in MEDLINE/PubMed
BookMark eNptkL1O7DAQhS0Egl2guC-A3F1RhPVk8rMuEeJPQqIA6sh2xuCrxA52oqt9ewIsFIhppvnOaM63ZLs-eGLsD4gzEBWu4AyLAoWsdtgCxFpmdZXjLlsIgUVW1cX6gC1T-ifmKQH22UEuSinyXC4YPah-6Igb6rrEbYh8iEE7_8xT6Fy76tzr5Fru_EjRKkOJ_3fjC9cxqFYr3_I09ZmN9DqRN5vsmTxFNbrgeRrIjDEkE4bNEduzqkt0vN2H7Onq8vHiJru7v769OL_LDIIcM1ug1iQAUSio1qXWljTZXEiDZa2lzW0OtipRloAAKNuiRSk0gKltVeR4yP5-3p1LzB-lseldeq-mPIUpNTViWdUS1zN5siUn3VPbDNH1Km6aLzMzcPoJmLlDimS_ERDNu_UGmq31mV39YI0bPyyMUbnul8QbVL2D2Q
CitedBy_id crossref_primary_10_1002_sia_4876
crossref_primary_10_1364_JOSAB_30_000219
crossref_primary_10_3390_sym16121699
crossref_primary_10_1116_1_3651142
crossref_primary_10_1039_c1cp20374f
crossref_primary_10_1021_acs_jpcb_5b10290
crossref_primary_10_1116_6_0002697
crossref_primary_10_1016_j_cattod_2015_08_015
crossref_primary_10_1016_j_electacta_2012_11_116
crossref_primary_10_1021_acs_jpcc_8b03680
crossref_primary_10_1021_jz100742j
crossref_primary_10_1016_j_jcis_2020_02_056
crossref_primary_10_1007_s00216_012_5839_4
crossref_primary_10_3952_physics_v56i1_3273
crossref_primary_10_1177_0003702819857139
crossref_primary_10_3390_ijms12129404
crossref_primary_10_1021_jp408123u
crossref_primary_10_1021_acs_jpcc_5b07688
crossref_primary_10_1016_j_ensm_2024_103289
crossref_primary_10_1021_la301241s
crossref_primary_10_1116_1_3548075
crossref_primary_10_1063_1_4932180
crossref_primary_10_1039_C9CP02225B
crossref_primary_10_1063_1_4846298
crossref_primary_10_1364_OL_42_000939
crossref_primary_10_1021_jp306273d
crossref_primary_10_1021_acs_jpclett_0c02517
crossref_primary_10_1021_acs_jpca_0c04268
crossref_primary_10_1021_acs_langmuir_9b02927
crossref_primary_10_1366_11_06583
crossref_primary_10_1002_admi_201400026
crossref_primary_10_1021_acs_chemrev_9b00410
Cites_doi 10.1016/S0039-6028(01)01809-X
10.1016/j.cossms.2005.01.002
10.1021/jp908821b
10.1364/OL.23.001594
10.1016/j.jelechem.2004.08.003
10.1002/cphc.200900978
10.1039/b803640c
10.1016/j.cplett.2004.01.047
10.1016/0009-2614(95)01221-8
10.1088/0034-4885/68/5/R03
10.1021/la050417o
10.1021/ac000051e
10.1021/cr0006876
10.2116/analsci.19.887
10.1002/anie.200801858
10.1021/jp991649x
10.1016/0968-5677(96)85635-5
10.1016/S0039-6028(01)01587-4
10.1116/1.3317116
10.1016/0039-6028(88)90572-9
10.1016/B978-044451870-5/50010-5
10.1021/ja056031h
10.1021/jp0009148
10.1039/b901209e
10.1116/1.3064107
10.1021/jp810891v
10.1021/la061578a
10.1021/ja0263036
10.1146/annurev.physchem.59.032607.093651
10.1021/cr040361n
10.1021/jp076976g
10.1063/1.1628220
10.1016/j.cossms.2006.04.001
10.1007/s00340-002-0924-6
10.1016/0924-2031(93)87021-K
10.1016/j.cplett.2009.01.016
10.1021/la052677b
10.1021/jp906607s
10.1021/la000128u
10.1021/j100148a034
10.1016/j.susc.2006.02.049
10.1016/S0009-2614(90)87124-A
10.1021/la00002a022
10.1002/cphc.200900138
10.1021/jp9015867
10.1016/S0040-6090(00)00649-0
10.1039/b415753m
10.1016/0013-4686(91)85055-C
10.1016/j.susc.2004.04.059
10.1021/la011133g
10.1016/j.electacta.2008.02.094
10.1146/annurev.physchem.53.091801.115126
10.1021/jp808629r
10.1016/j.elspec.2009.02.005
10.1021/ja076708w
10.1021/cr040377d
10.1016/S0009-2614(02)01171-5
10.1039/ft9959101281
10.1021/jp075286+
10.1016/j.biomaterials.2008.12.026
10.1021/ma061785h
10.1016/S0039-6028(01)01997-5
10.1016/S0013-4686(98)00197-2
10.1021/ja0543393
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1063/1.3443096
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID 20590229
10_1063_1_3443096
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
123
1UP
2-P
29P
4.4
53G
5RE
5VS
6TJ
85S
A9.
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYJJ
AAYXX
ABFTF
ABJGX
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADIYS
ADMLS
ADXHL
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
L7B
M43
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
ROL
RQS
TAE
TN5
WH7
XSW
YNT
YZZ
ZCG
~02
.GJ
0ZJ
186
3O-
41~
9M8
ACKIV
ADRHT
AETEA
AFFNX
AHPGS
CGR
CUY
CVF
ECM
EIF
MVM
NEJ
NEUPN
NHB
NPM
OHT
QZG
RDFOP
UAO
UHB
XJT
XOL
ZXP
7X8
ID FETCH-LOGICAL-c319t-f43bbe01330a1685bbfebef209c357b9f2f21f65395131139d4d390b11c7f6423
ISSN 0034-6748
1089-7623
IngestDate Thu Jul 10 18:12:05 EDT 2025
Thu Apr 03 06:57:01 EDT 2025
Sun Jul 06 05:08:49 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-f43bbe01330a1685bbfebef209c357b9f2f21f65395131139d4d390b11c7f6423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aip.scitation.org/doi/pdf/10.1063/1.3443096
PMID 20590229
PQID 733567938
PQPubID 23479
ParticipantIDs proquest_miscellaneous_733567938
pubmed_primary_20590229
crossref_primary_10_1063_1_3443096
crossref_citationtrail_10_1063_1_3443096
PublicationCentury 2000
PublicationDate 2010-06-01
2010-Jun
20100601
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Review of scientific instruments
PublicationTitleAlternate Rev Sci Instrum
PublicationYear 2010
References (2023070323365793400_c12) 2002; 102
(2023070323365793400_c11) 2006; 106
(2023070323365793400_c5) 2006; 106
(2023070323365793400_c18) 2006; 128
(2023070323365793400_c16) 2004; 386
(2023070323365793400_c54) 1995; 2
(2023070323365793400_c64) 2006; 22
(2023070323365793400_c31) 2000; 104
(2023070323365793400_c44) 2010; 114
(2023070323365793400_c61) 2008; 3
(2023070323365793400_c28) 1990; 172
(2023070323365793400_c39) 2004; 573
(2023070323365793400_c49) 2010; 5
(2023070323365793400_c20) 2002; 363
(2023070323365793400_c40) 2005; 127
(2023070323365793400_c45) 1988; 197
(2023070323365793400_c62) 2010; 1
(2023070323365793400_c65) 2006; 22
(2023070323365793400_c26) 1993; 6
(2023070323365793400_c37) 2002; 502–503
(2023070323365793400_c7) 2009; 10
(2023070323365793400_c60) 2010; 11
(2023070323365793400_c17) 2006; 39
(2023070323365793400_c29) 1995; 247
(2023070323365793400_c46) 2008; 53
(2023070323365793400_c30) 1999; 103
(2023070323365793400_c24) 2009; 113
(2023070323365793400_c14) 2005; 9
(2023070323365793400_c57) 2008; 47
(2023070323365793400_c34) 1998; 44
(2023070323365793400_c6) 2002; 53
(2023070323365793400_c1) 2002; 500
(2023070323365793400_c55) 2009; 172
(2023070323365793400_c22) 2001; 17
(2023070323365793400_c15) 2002; 124
(2023070323365793400_c23) 2008; 112
(2023070323365793400_c53) 2002; 74
(2023070323365793400_c2) 2002; 500
(2023070323365793400_c50) 1998; 23
(2023070323365793400_c9) 2009; 11
(2023070323365793400_c25) 2003; 19
(2023070323365793400_c10) 2009; 470
(2023070323365793400_c35) 2004; 574
(2023070323365793400_c41) 2009; 140
Ratner (2023070323365793400_c3) 1997
(2023070323365793400_c38) 2003; 119
(2023070323365793400_c47) 2009; 113
(2023070323365793400_c4) 2009; 60
(2023070323365793400_c48) 2005; 68
(2023070323365793400_c56) 2000; 365
(2023070323365793400_c63) 2000; 16
(2023070323365793400_c66) 2000; 72
(2023070323365793400_c27) 2007
(2023070323365793400_c51) 2008; 130
(2023070323365793400_c13) 2005; 129
(2023070323365793400_c52) 1995; 91
(2023070323365793400_c33) 1993; 97
(2023070323365793400_c32) 1991; 36
(2023070323365793400_c8) 2004; 8
(2023070323365793400_c43) 2007; 111
(2023070323365793400_c21) 2009; 113
(2023070323365793400_c59) 2009; 30
(2023070323365793400_c19) 2009; 113
(2023070323365793400_c36) 2006; 600
(2023070323365793400_c58) 2005; 21
(2023070323365793400_c42) 1995; 11
References_xml – volume: 500
  start-page: 656
  year: 2002
  ident: 2023070323365793400_c1
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(01)01809-X
– volume: 8
  start-page: 343
  year: 2004
  ident: 2023070323365793400_c8
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2005.01.002
– volume: 114
  start-page: 497
  year: 2010
  ident: 2023070323365793400_c44
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp908821b
– volume: 23
  start-page: 1594
  year: 1998
  ident: 2023070323365793400_c50
  publication-title: Opt. Lett.
  doi: 10.1364/OL.23.001594
– volume: 574
  start-page: 85
  year: 2004
  ident: 2023070323365793400_c35
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2004.08.003
– volume: 11
  start-page: 1425
  year: 2010
  ident: 2023070323365793400_c60
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200900978
– volume: 140
  start-page: 125
  year: 2009
  ident: 2023070323365793400_c41
  publication-title: Faraday Discuss.
  doi: 10.1039/b803640c
– volume: 386
  start-page: 144
  year: 2004
  ident: 2023070323365793400_c16
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.01.047
– volume: 247
  start-page: 243
  year: 1995
  ident: 2023070323365793400_c29
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(95)01221-8
– volume: 68
  start-page: 1095
  year: 2005
  ident: 2023070323365793400_c48
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/5/R03
– volume: 21
  start-page: 7833
  year: 2005
  ident: 2023070323365793400_c58
  publication-title: Langmuir
  doi: 10.1021/la050417o
– volume: 72
  start-page: 3764
  year: 2000
  ident: 2023070323365793400_c66
  publication-title: Anal. Chem.
  doi: 10.1021/ac000051e
– volume: 102
  start-page: 2693
  year: 2002
  ident: 2023070323365793400_c12
  publication-title: Chem. Rev. (Washington, D.C.)
  doi: 10.1021/cr0006876
– volume: 19
  start-page: 887
  year: 2003
  ident: 2023070323365793400_c25
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.19.887
– volume: 47
  start-page: 6786
  year: 2008
  ident: 2023070323365793400_c57
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200801858
– volume: 103
  start-page: 8920
  year: 1999
  ident: 2023070323365793400_c30
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp991649x
– volume: 2
  start-page: 9
  year: 1995
  ident: 2023070323365793400_c54
  publication-title: Supramol. Sci.
  doi: 10.1016/0968-5677(96)85635-5
– volume: 500
  start-page: 28
  year: 2002
  ident: 2023070323365793400_c2
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(01)01587-4
– volume: 5
  start-page: 9
  year: 2010
  ident: 2023070323365793400_c49
  publication-title: Biointerphases
  doi: 10.1116/1.3317116
– volume: 197
  start-page: 44
  year: 1988
  ident: 2023070323365793400_c45
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(88)90572-9
– start-page: 273
  volume-title: In-Situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis
  year: 2007
  ident: 2023070323365793400_c27
  doi: 10.1016/B978-044451870-5/50010-5
– volume: 128
  start-page: 3598
  year: 2006
  ident: 2023070323365793400_c18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056031h
– volume: 104
  start-page: 6626
  year: 2000
  ident: 2023070323365793400_c31
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0009148
– volume: 11
  start-page: 5538
  year: 2009
  ident: 2023070323365793400_c9
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b901209e
– volume: 3
  start-page: FC47
  year: 2008
  ident: 2023070323365793400_c61
  publication-title: Biointerphases
  doi: 10.1116/1.3064107
– volume: 113
  start-page: 4269
  year: 2009
  ident: 2023070323365793400_c19
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp810891v
– volume: 22
  start-page: 11113
  year: 2006
  ident: 2023070323365793400_c65
  publication-title: Langmuir
  doi: 10.1021/la061578a
– volume: 124
  start-page: 8751
  year: 2002
  ident: 2023070323365793400_c15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0263036
– volume: 60
  start-page: 61
  year: 2009
  ident: 2023070323365793400_c4
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.59.032607.093651
– volume: 106
  start-page: 1155
  year: 2006
  ident: 2023070323365793400_c11
  publication-title: Chem. Rev.
  doi: 10.1021/cr040361n
– volume: 112
  start-page: 660
  year: 2008
  ident: 2023070323365793400_c23
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp076976g
– volume: 119
  start-page: 13096
  year: 2003
  ident: 2023070323365793400_c38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1628220
– volume: 9
  start-page: 19
  year: 2005
  ident: 2023070323365793400_c14
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2006.04.001
– volume: 74
  start-page: 621
  year: 2002
  ident: 2023070323365793400_c53
  publication-title: Appl. Phys. B: Lasers Opt.
  doi: 10.1007/s00340-002-0924-6
– volume: 6
  start-page: 43
  year: 1993
  ident: 2023070323365793400_c26
  publication-title: Vib. Spectrosc.
  doi: 10.1016/0924-2031(93)87021-K
– volume: 470
  start-page: 1
  year: 2009
  ident: 2023070323365793400_c10
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2009.01.016
– volume: 22
  start-page: 3118
  year: 2006
  ident: 2023070323365793400_c64
  publication-title: Langmuir
  doi: 10.1021/la052677b
– volume: 113
  start-page: 21155
  year: 2009
  ident: 2023070323365793400_c47
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp906607s
– volume: 16
  start-page: 6208
  year: 2000
  ident: 2023070323365793400_c63
  publication-title: Langmuir
  doi: 10.1021/la000128u
– volume: 97
  start-page: 12047
  year: 1993
  ident: 2023070323365793400_c33
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100148a034
– volume: 600
  start-page: 2138
  year: 2006
  ident: 2023070323365793400_c36
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2006.02.049
– volume: 172
  start-page: 341
  year: 1990
  ident: 2023070323365793400_c28
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(90)87124-A
– volume: 11
  start-page: 493
  year: 1995
  ident: 2023070323365793400_c42
  publication-title: Langmuir
  doi: 10.1021/la00002a022
– volume: 10
  start-page: 1380
  year: 2009
  ident: 2023070323365793400_c7
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200900138
– volume: 113
  start-page: 11550
  year: 2009
  ident: 2023070323365793400_c24
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9015867
– volume: 365
  start-page: 116
  year: 2000
  ident: 2023070323365793400_c56
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(00)00649-0
– volume: 129
  start-page: 1
  year: 2005
  ident: 2023070323365793400_c13
  publication-title: Faraday Discuss.
  doi: 10.1039/b415753m
– volume: 36
  start-page: 1849
  year: 1991
  ident: 2023070323365793400_c32
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(91)85055-C
– volume: 573
  start-page: 11
  year: 2004
  ident: 2023070323365793400_c39
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2004.04.059
– volume: 17
  start-page: 7721
  year: 2001
  ident: 2023070323365793400_c22
  publication-title: Langmuir
  doi: 10.1021/la011133g
– volume: 53
  start-page: 6841
  year: 2008
  ident: 2023070323365793400_c46
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.02.094
– volume-title: Biomaterials Science: An Introduction to Materials in Medicine
  year: 1997
  ident: 2023070323365793400_c3
– volume: 53
  start-page: 437
  year: 2002
  ident: 2023070323365793400_c6
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.53.091801.115126
– volume: 113
  start-page: 2768
  year: 2009
  ident: 2023070323365793400_c21
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp808629r
– volume: 172
  start-page: 21
  year: 2009
  ident: 2023070323365793400_c55
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2009.02.005
– volume: 130
  start-page: 2271
  year: 2008
  ident: 2023070323365793400_c51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076708w
– volume: 106
  start-page: 1140
  year: 2006
  ident: 2023070323365793400_c5
  publication-title: Chem. Rev. (Washington, D.C.)
  doi: 10.1021/cr040377d
– volume: 363
  start-page: 161
  year: 2002
  ident: 2023070323365793400_c20
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)01171-5
– volume: 1
  start-page: 9
  year: 2010
  ident: 2023070323365793400_c62
  publication-title: J. Phys. Chem.
– volume: 91
  start-page: 1281
  year: 1995
  ident: 2023070323365793400_c52
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/ft9959101281
– volume: 111
  start-page: 17587
  year: 2007
  ident: 2023070323365793400_c43
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp075286+
– volume: 30
  start-page: 1827
  year: 2009
  ident: 2023070323365793400_c59
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.12.026
– volume: 39
  start-page: 9396
  year: 2006
  ident: 2023070323365793400_c17
  publication-title: Macromolecules
  doi: 10.1021/ma061785h
– volume: 502–503
  start-page: 490
  year: 2002
  ident: 2023070323365793400_c37
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(01)01997-5
– volume: 44
  start-page: 943
  year: 1998
  ident: 2023070323365793400_c34
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(98)00197-2
– volume: 127
  start-page: 15916
  year: 2005
  ident: 2023070323365793400_c40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0543393
SSID ssj0000511
Score 2.1311514
Snippet Two sample cells designed specifically for sum-frequency-generation (SFG) measurements at the solid/liquid interface were developed: one thin-layer analysis...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 063111
SubjectTerms Acrylic Resins - chemistry
Algorithms
Equipment Design
Gold - chemistry
Metals - chemistry
Nonlinear Dynamics
Polymers - chemistry
Signal Processing, Computer-Assisted
Solutions - chemistry
Spectrum Analysis - instrumentation
Spectrum Analysis - methods
Temperature
Time Factors
Tin Compounds - chemistry
Water - chemistry
Title Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy
URI https://www.ncbi.nlm.nih.gov/pubmed/20590229
https://www.proquest.com/docview/733567938
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvXBBlOfykoU4FCG3Tuy8jlVptULbItFdtLcoTuxqRdiUbfYAv57x2Em2Yisel2jlZKPI83k8M_78mZC3ukirSEWcaWkgQUnCiqVZGLAEhhKEpzAJ4XFvZ-fxeCY_zqP5UMzB3SWtOih_bt1X8j9WhTawq90l-w-W7V8KDfAb7AtXsDBc_8rGF4XV9n1vi-8oq2DZVgoLBE2NH1Mvvq8XFWpCrAySr7DuqlZNUSksma-_MbNydOof7BI1qBERuAPTKl02VzcWfj_3W13cVkrLNLKE9taKMHhZKDzAS68gHF3XrYvSrYKJo3d3C0dYuP7S1F8HevC46Sjax_Y4n8VAEGhgBi89k7Hthfx9scKus3ekKu9feZox8L_Op-ktbd4pp8EG-DY9LIRU3j3_5vzhlq1DHAgpBc-2CGyff8pPZ5NJPj2ZT--S3RAyC3CNu0cfziYXw_Qd4aHN_Vd1clSxOOxffTOIuSUzwQhl-oDc96kFPXI42SN39PIh2fPO-5rue4Xxd4-IdsChCBwKwKEeOBSBc-hgQwfYUAsb2sOG3gYbugmbx2R2ejI9HjN_3gYrwRG3zEihlIacQPAiiNNIKQND3IQ8K0WUqMyEJgyM1TKOrEiTyCpZiYyrICgTA3mseEJ2ls1SPyNUZpJXJjZxqowMCpVyUaa6lNKSPuKKj8h-14F56cXo7ZkodY6kiFjkQe77ekTe9I9eOQWWbQ_Rzgo5-EfbfcVSN-vrPBEiimESSkfkqbNO_5YQtYvC7Pmf__yC3Bvg_JLswKDSryAabdVrj59ftV6QIA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample+cells+for+probing+solid%2Fliquid+interfaces+with+broadband+sum-frequency-generation+spectroscopy&rft.jtitle=Review+of+scientific+instruments&rft.au=Verreault%2C+Dominique&rft.au=Kurz%2C+Volker&rft.au=Howell%2C+Caitlin&rft.au=Koelsch%2C+Patrick&rft.date=2010-06-01&rft.issn=1089-7623&rft.eissn=1089-7623&rft.volume=81&rft.issue=6&rft.spage=063111&rft_id=info:doi/10.1063%2F1.3443096&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon