Controllable protein design with language models
The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artific...
Saved in:
Published in | Nature machine intelligence Vol. 4; no. 6; pp. 521 - 532 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surprising that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementation of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The combination of control tags such as cellular compartment or function will further enable the controllable design of novel protein functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our understanding of folding principles. Early initiatives show the enormous potential of generative language models to design functional sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, and we discuss its foreseeable impact on protein design.
Both proteins and natural language are essentially based on a sequential code, but feature complex interactions at multiple scales, which can be useful when transferring machine learning models from one domain to another. In this Review, Ferruz and Höcker summarize recent advances in language models, such as transformers, and their application to protein design. |
---|---|
AbstractList | The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surprising that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementation of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The combination of control tags such as cellular compartment or function will further enable the controllable design of novel protein functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our understanding of folding principles. Early initiatives show the enormous potential of generative language models to design functional sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, and we discuss its foreseeable impact on protein design.Both proteins and natural language are essentially based on a sequential code, but feature complex interactions at multiple scales, which can be useful when transferring machine learning models from one domain to another. In this Review, Ferruz and Höcker summarize recent advances in language models, such as transformers, and their application to protein design. The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surprising that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementation of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The combination of control tags such as cellular compartment or function will further enable the controllable design of novel protein functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our understanding of folding principles. Early initiatives show the enormous potential of generative language models to design functional sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, and we discuss its foreseeable impact on protein design. Both proteins and natural language are essentially based on a sequential code, but feature complex interactions at multiple scales, which can be useful when transferring machine learning models from one domain to another. In this Review, Ferruz and Höcker summarize recent advances in language models, such as transformers, and their application to protein design. |
Author | Ferruz, Noelia Höcker, Birte |
Author_xml | – sequence: 1 givenname: Noelia orcidid: 0000-0003-4172-8201 surname: Ferruz fullname: Ferruz, Noelia email: noelia.ferruz-capapey@uni-bayreuth.de organization: Department of Biochemistry, University of Bayreuth, Institute of Informatics and Applications, University of Girona – sequence: 2 givenname: Birte orcidid: 0000-0002-8250-9462 surname: Höcker fullname: Höcker, Birte organization: Department of Biochemistry, University of Bayreuth |
BookMark | eNp9kE1LAzEQhoNUsNb-AU8Lnldn87XJUYpfUPCi55Bm0zUlzdZkF7G_3tQVFA89zQy8z8w77zmahC5YhC4ruK6AiJtEMWa8BIxLACpluT9BU8zyyASRkz_9GZqntAEAXFHKgE4RLLrQx857vfK22MWuty4UjU2uDcWH698Kr0M76NYW266xPl2g07X2yc5_6gy93t-9LB7L5fPD0-J2WRpSyb5cY8F4k49YQhivNQPDiTWyIg2vBVBORWMMx7VeEcmN5obXjEhpcFU3NQUyQ1fj3uzpfbCpV5tuiCGfVFhIIvJPwLNKjCoTu5SiXSvjet27w1PaeVWBOkSkxohUjkh9R6T2GcX_0F10Wx0_j0NkhFIWh9bGX1dHqC_EuHnK |
CitedBy_id | crossref_primary_10_1021_acscatal_3c02743 crossref_primary_10_1016_j_jechem_2024_06_013 crossref_primary_10_1038_s41392_023_01680_5 crossref_primary_10_1038_s41587_023_01991_6 crossref_primary_10_1016_j_cels_2024_04_008 crossref_primary_10_1016_j_ijbiomac_2024_138272 crossref_primary_10_3390_educsci14080814 crossref_primary_10_3389_fbinf_2023_1304099 crossref_primary_10_1093_protein_gzad024 crossref_primary_10_1016_j_xcrp_2024_102359 crossref_primary_10_1021_acs_jcim_4c01907 crossref_primary_10_3390_sym16040464 crossref_primary_10_1016_j_compbiolchem_2024_108055 crossref_primary_10_3390_bioengineering11020185 crossref_primary_10_1089_genbio_2022_0017 crossref_primary_10_1038_s41467_022_32007_7 crossref_primary_10_1093_bioadv_vbad043 crossref_primary_10_1002_advs_202301011 crossref_primary_10_1038_s42256_024_00935_2 crossref_primary_10_1016_j_amc_2024_128630 crossref_primary_10_1021_acssensors_4c00149 crossref_primary_10_3724_abbs_2023033 crossref_primary_10_1021_acscentsci_3c01275 crossref_primary_10_1021_acs_jcim_3c01650 crossref_primary_10_1021_acs_jcim_3c01697 crossref_primary_10_3389_fpubh_2023_1140353 crossref_primary_10_3390_ijms252413444 crossref_primary_10_1093_nargab_lqae011 crossref_primary_10_3390_sym15020357 crossref_primary_10_1038_s42256_023_00637_1 crossref_primary_10_1016_j_compchemeng_2024_108585 crossref_primary_10_1016_j_ejmech_2024_116262 crossref_primary_10_1016_j_biotechadv_2024_108459 crossref_primary_10_1021_acsomega_3c05913 crossref_primary_10_1093_gbe_evae176 crossref_primary_10_1016_j_csbj_2022_11_014 crossref_primary_10_1002_qub2_69 crossref_primary_10_1016_j_xinn_2023_100520 crossref_primary_10_1016_j_cobme_2023_100473 crossref_primary_10_1038_s42256_024_00791_0 crossref_primary_10_1093_bioinformatics_btad122 crossref_primary_10_1002_mef2_43 crossref_primary_10_1016_j_mec_2024_e00248 crossref_primary_10_1093_nsr_nwad331 crossref_primary_10_1016_j_jpha_2024_101081 crossref_primary_10_1002_wcms_1646 crossref_primary_10_1016_j_molcel_2024_01_021 crossref_primary_10_1111_risa_14353 crossref_primary_10_1146_annurev_genom_010323_010230 crossref_primary_10_1038_s41586_023_06221_2 crossref_primary_10_3389_fmolb_2023_1178035 crossref_primary_10_4049_jimmunol_2300492 crossref_primary_10_1021_acs_chemrestox_2c00384 crossref_primary_10_1016_j_csbj_2024_12_029 crossref_primary_10_1038_s41589_024_01632_2 crossref_primary_10_1002_mef2_18 crossref_primary_10_1002_mef2_19 crossref_primary_10_1002_pro_5076 crossref_primary_10_1021_acs_langmuir_4c04140 crossref_primary_10_1093_glycob_cwad033 crossref_primary_10_1021_acs_jcim_4c01345 crossref_primary_10_1021_acs_chemrev_4c00126 crossref_primary_10_1038_s41467_024_46203_0 crossref_primary_10_1073_pnas_2314646121 crossref_primary_10_1021_acssynbio_3c00201 crossref_primary_10_1002_cbic_202400092 crossref_primary_10_1080_19420862_2025_2474521 crossref_primary_10_1186_s12859_024_05637_5 crossref_primary_10_1016_j_jsb_2023_108041 crossref_primary_10_1038_s42256_024_00806_w crossref_primary_10_1002_prot_26652 crossref_primary_10_1016_j_csbj_2023_04_027 crossref_primary_10_12688_f1000research_130443_1 crossref_primary_10_1039_D4SC06329E crossref_primary_10_3390_ijms24043827 |
Cites_doi | 10.1158/1078-0432.CCR-14-2821 10.1093/bioinformatics/btw255 10.1038/s41586-019-1923-7 10.1016/j.cbpa.2018.07.022 10.1038/s42256-020-0219-9 10.1073/pnas.1707171114 10.1016/j.sbi.2016.03.006 10.1038/s41580-019-0163-x 10.1038/s41592-019-0598-1 10.1073/pnas.1103547108 10.1038/s41592-019-0496-6 10.1002/prot.10369 10.1016/j.jmb.2020.04.013 10.1021/acs.jcim.5b00453 10.1038/s41586-021-03819-2 10.1038/nature01025 10.1093/bioinformatics/bty178 10.1073/pnas.2016239118 10.1109/MCI.2018.2840738 10.1093/bioinformatics/btx780 10.1073/pnas.1814684116 10.1371/journal.pcbi.1009446 10.1038/nchembio.1966 10.1039/C9SC05704H 10.1038/nature19946 10.1093/bioinformatics/bti125 10.1038/nature09014 10.1016/S0959-440X(97)80061-9 10.1093/nar/gkv1324 10.1145/1364782.1364802 10.1038/s42256-020-00236-4 10.1016/j.wpi.2020.101983 10.1038/s41586-021-04184-w 10.1038/s41598-020-79682-4 10.1038/nature11600 10.1186/1471-2105-10-202 10.1371/journal.pone.0141287 10.1038/s42256-020-00284-w 10.1039/C8SC02339E 10.3390/ijms160817315 10.1038/s41586-021-04383-5 10.3389/fpsyg.2016.00702 10.1002/prot.340180402 10.3115/1073083.1073163 10.1101/2021.03.28.437402 10.1101/2022.01.27.478087 10.1101/2021.07.18.452833 10.1038/s41587-021-01179-w 10.18653/v1/W19-2304 10.18653/v1/N16-1030 10.18653/v1/E17-1008 10.1109/ICDM.2005.52 10.21437/Interspeech.2010-343 10.1145/3394486.3406703 10.1101/2020.03.07.982272 10.1109/TPAMI.2021.3095381 10.1007/978-3-030-32381-3_16 10.1101/2022.03.09.483666 10.48550/arxiv.1609.07959 10.1145/1390156.1390177 10.1101/2021.12.22.473759 10.18653/v1/2020.acl-demos.22 10.1038/s41587-021-01196-9 10.18653/v1/P19-1285 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2022 Springer Nature Limited 2022. |
Copyright_xml | – notice: Springer Nature Limited 2022 – notice: Springer Nature Limited 2022. |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1038/s42256-022-00499-z |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2522-5839 |
EndPage | 532 |
ExternalDocumentID | 10_1038_s42256_022_00499_z |
GrantInformation_xml | – fundername: European Research Council (ERC Consolidator grant 647548 ‘Protein Lego’); Volkswagenstiftung (grant 94747). |
GroupedDBID | 0R~ 88I AAEEF AARCD AAYZH ABJNI ABUWG ACBWK ADBBV AFKRA AFSHS AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO EBS EJD FSGXE GNUQQ HCIFZ K7- M2P NNMJJ ODYON RNT SIXXV SNYQT SOJ TBHMF AAYXX AFANA ATHPR CITATION PHGZM PHGZT 3V. 7SC 7XB 8FD 8FE 8FG 8FK JQ2 L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-f2856d445e33567a50c63ec913d67804648dcc627ab396ca6c675399c217d7403 |
IEDL.DBID | BENPR |
ISSN | 2522-5839 |
IngestDate | Sat Aug 23 12:52:46 EDT 2025 Tue Jul 01 01:06:00 EDT 2025 Thu Apr 24 22:50:46 EDT 2025 Fri Feb 21 02:37:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-f2856d445e33567a50c63ec913d67804648dcc627ab396ca6c675399c217d7403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8250-9462 0000-0003-4172-8201 |
PQID | 2893825206 |
PQPubID | 5342773 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2893825206 crossref_citationtrail_10_1038_s42256_022_00499_z crossref_primary_10_1038_s42256_022_00499_z springer_journals_10_1038_s42256_022_00499_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Basingstoke |
PublicationTitle | Nature machine intelligence |
PublicationTitleAbbrev | Nat Mach Intell |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Raffel (CR97) 2020; 21 Senior (CR38) 2020; 577 Yang, Wu, Arnold (CR83) 2019; 16 Theobald (CR6) 2010; 465 Rembeza, Engqvist (CR65) 2021; 17 Anishchenko (CR55) 2021; 600 CR39 CR36 CR35 CR34 Freeman, Blumenfeld, Marian (CR10) 2016; 7 CR33 CR32 Schwaller (CR71) 2021; 3 Shaw (CR80) 2008; 51 Rao (CR51) 2019; 32 Baran (CR86) 2017; 114 Huang (CR9) 2016; 12 Buch, Giorgino, De Fabritiis (CR81) 2011; 108 Lample, Conneau (CR88) 2019; 32 CR48 CR47 Söding (CR20) 2005; 21 CR46 Chang (CR66) 2016; 44 CR45 CR44 CR43 CR42 CR41 CR40 Dhar (CR77) 2020; 2 Jiménez-Luna, Grisoni, Schneider (CR73) 2020; 2 Yu (CR49) 2019; 116 Huang (CR56) 2022; 602 CR59 CR58 CR57 CR54 CR53 Ferruz, Harvey, Mestres, De Fabritiis (CR82) 2015; 55 CR52 Hou, Adhikari, Cheng (CR31) 2018; 34 Arena (CR7) 2015; 21 Grechishnikova (CR70) 2021; 11 Young, Hazarika, Poria, Cambria (CR25) 2017; 13 CR67 CR64 CR63 CR62 CR61 Kuhlman, Bradley (CR3) 2019; 20 Schwaller (CR69) 2020; 11 Gainza, Nisonoff, Donald (CR2) 2016; 39 Göbel, Sander, Schneider, Valencia (CR11) 1994; 18 Yang, Wu, Bedbrook, Arnold (CR26) 2018; 34 Wang, Weng, Ma, Tang (CR29) 2015; 16 Nguyen Ba, Pogoutse, Provart, Moses (CR19) 2009; 10 CR79 CR78 CR76 CR75 CR74 Lechner, Ferruz, Höcker (CR1) 2018; 47 Fedus, Brain, Zoph, Shazeer (CR98) 2022; 23 Ferruz (CR4) 2020; 432 CR89 CR87 CR85 CR84 Asgari, Mofrad (CR27) 2015; 10 W (CR5) 2002; 418 Zeng, Edwards, Liu, Gifford (CR30) 2016; 32 CR18 Alley, Khimulya, Biswas, AlQuraishi, Church (CR37) 2019; 16 CR16 CR15 CR14 CR12 CR99 CR96 CR95 Jumper (CR13) 2021; 596 Karchin, Cline, Mandel-Gutfreund, Karplus (CR17) 2003; 51 CR94 Lindqvist, Schneider (CR8) 1997; 7 CR93 CR92 CR91 CR90 Huang, Boyken, Baker (CR100) 2016; 537 Schwaller, Gaudin, Lányi, Bekas, Laino (CR68) 2018; 9 Rives (CR50) 2021; 118 Bengio (CR21) 2003; 3 CR28 Lee, Hsiang (CR60) 2020; 62 CR24 CR23 CR22 Koga (CR72) 2012; 491 499_CR79 DL Theobald (499_CR6) 2010; 465 499_CR78 499_CR75 KK Yang (499_CR83) 2019; 16 499_CR76 499_CR74 P Dhar (499_CR77) 2020; 2 A Rives (499_CR50) 2021; 118 Y Lindqvist (499_CR8) 1997; 7 MR Freeman (499_CR10) 2016; 7 PS Huang (499_CR9) 2016; 12 YC Chang (499_CR66) 2016; 44 L Yu (499_CR49) 2019; 116 499_CR89 499_CR87 499_CR84 499_CR85 499_CR15 499_CR16 499_CR14 N Ferruz (499_CR82) 2015; 55 499_CR99 499_CR12 P Schwaller (499_CR71) 2021; 3 499_CR95 499_CR96 499_CR93 499_CR94 499_CR91 499_CR92 499_CR90 R Karchin (499_CR17) 2003; 51 499_CR24 499_CR22 499_CR23 E W (499_CR5) 2002; 418 S Arena (499_CR7) 2015; 21 T Young (499_CR25) 2017; 13 G Lample (499_CR88) 2019; 32 I Anishchenko (499_CR55) 2021; 600 S Wang (499_CR29) 2015; 16 DE Shaw (499_CR80) 2008; 51 499_CR18 499_CR35 499_CR36 499_CR33 499_CR34 499_CR32 W Fedus (499_CR98) 2022; 23 J Jiménez-Luna (499_CR73) 2020; 2 H Lechner (499_CR1) 2018; 47 D Grechishnikova (499_CR70) 2021; 11 499_CR28 I Buch (499_CR81) 2011; 108 J Söding (499_CR20) 2005; 21 499_CR48 499_CR46 B Huang (499_CR56) 2022; 602 E Rembeza (499_CR65) 2021; 17 499_CR47 N Ferruz (499_CR4) 2020; 432 499_CR44 499_CR45 499_CR42 499_CR43 499_CR40 499_CR41 N Koga (499_CR72) 2012; 491 KK Yang (499_CR26) 2018; 34 PS Huang (499_CR100) 2016; 537 E Asgari (499_CR27) 2015; 10 C Raffel (499_CR97) 2020; 21 H Zeng (499_CR30) 2016; 32 P Gainza (499_CR2) 2016; 39 499_CR39 P Schwaller (499_CR68) 2018; 9 J Jumper (499_CR13) 2021; 596 499_CR59 499_CR57 Y Bengio (499_CR21) 2003; 3 499_CR58 499_CR53 499_CR54 499_CR52 AN Nguyen Ba (499_CR19) 2009; 10 D Baran (499_CR86) 2017; 114 B Kuhlman (499_CR3) 2019; 20 R Rao (499_CR51) 2019; 32 U Göbel (499_CR11) 1994; 18 499_CR67 499_CR64 499_CR62 499_CR63 499_CR61 AW Senior (499_CR38) 2020; 577 EC Alley (499_CR37) 2019; 16 P Schwaller (499_CR69) 2020; 11 JS Lee (499_CR60) 2020; 62 J Hou (499_CR31) 2018; 34 |
References_xml | – ident: CR45 – volume: 21 start-page: 2157 year: 2015 end-page: 2166 ident: CR7 article-title: Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-2821 – ident: CR22 – volume: 32 start-page: i121 year: 2016 end-page: i127 ident: CR30 article-title: Convolutional neural network architectures for predicting DNA-protein binding publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw255 – ident: CR74 – volume: 577 start-page: 706 year: 2020 end-page: 710 ident: CR38 article-title: Improved protein structure prediction using potentials from deep learning publication-title: Nature doi: 10.1038/s41586-019-1923-7 – ident: CR39 – ident: CR16 – volume: 47 start-page: 67 year: 2018 end-page: 76 ident: CR1 article-title: Strategies for designing non-natural enzymes and binders publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2018.07.022 – volume: 2 start-page: 423 year: 2020 end-page: 425 ident: CR77 article-title: The carbon impact of artificial intelligence publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0219-9 – volume: 114 start-page: 10900 year: 2017 end-page: 10905 ident: CR86 article-title: Principles for computational design of binding antibodies publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1707171114 – ident: CR54 – volume: 39 start-page: 16 year: 2016 end-page: 26 ident: CR2 article-title: Algorithms for protein design publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2016.03.006 – ident: CR42 – volume: 20 start-page: 681 year: 2019 end-page: 697 ident: CR3 article-title: Advances in protein structure prediction and design publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0163-x – ident: CR92 – ident: CR57 – ident: CR36 – ident: CR85 – volume: 16 start-page: 1315 year: 2019 end-page: 1322 ident: CR37 article-title: Unified rational protein engineering with sequence-based deep representation learning publication-title: Nat. Methods doi: 10.1038/s41592-019-0598-1 – volume: 108 start-page: 10184 year: 2011 end-page: 10189 ident: CR81 article-title: Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1103547108 – volume: 16 start-page: 687 year: 2019 end-page: 694 ident: CR83 article-title: Machine-learning-guided directed evolution for protein engineering publication-title: Nat. Methods doi: 10.1038/s41592-019-0496-6 – volume: 51 start-page: 504 year: 2003 end-page: 514 ident: CR17 article-title: Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry publication-title: Proteins Struct. Funct. Genet. doi: 10.1002/prot.10369 – ident: CR18 – ident: CR91 – ident: CR47 – ident: CR89 – volume: 432 start-page: 3898 year: 2020 end-page: 3914 ident: CR4 article-title: Identification and analysis of natural building blocks for evolution-guided fragment-based protein design publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2020.04.013 – ident: CR33 – volume: 55 start-page: 2200 year: 2015 end-page: 2205 ident: CR82 article-title: Insights from fragment hit binding assays by molecular simulations publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.5b00453 – volume: 596 start-page: 583 year: 2021 end-page: 589 ident: CR13 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – ident: CR63 – volume: 32 start-page: 9689 year: 2019 end-page: 9701 ident: CR51 article-title: Evaluating protein transfer learning with TAPE publication-title: Adv. Neural Inf. Process. Syst – ident: CR94 – ident: CR44 – volume: 418 start-page: 869 year: 2002 end-page: 872 ident: CR5 article-title: Molecular evolution of FOXP2, a gene involved in speech and language publication-title: Nature doi: 10.1038/nature01025 – ident: CR52 – volume: 32 start-page: 7057 year: 2019 end-page: 7067 ident: CR88 article-title: Cross-lingual language model pretraining publication-title: Adv. Neural Inf. Process. Syst. – volume: 34 start-page: 2642 year: 2018 end-page: 2648 ident: CR26 article-title: Learned protein embeddings for machine learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty178 – volume: 118 start-page: e2016239118 year: 2021 ident: CR50 article-title: Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2016239118 – ident: CR41 – ident: CR24 – volume: 13 start-page: 55 year: 2017 end-page: 75 ident: CR25 article-title: Recent trends in deep learning based natural language processing publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2018.2840738 – volume: 34 start-page: 1295 year: 2018 end-page: 1303 ident: CR31 article-title: DeepSF: deep convolutional neural network for mapping protein sequences to folds publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx780 – volume: 116 start-page: 3636 year: 2019 end-page: 3645 ident: CR49 article-title: Grammar of protein domain architectures publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1814684116 – volume: 17 start-page: e1009446 year: 2021 ident: CR65 article-title: Experimental and computational investigation of enzyme functional annotations uncovers misannotation in the EC 1.1.3.15 enzyme class publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009446 – ident: CR93 – volume: 12 start-page: 29 year: 2016 end-page: 34 ident: CR9 article-title: De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1966 – ident: CR87 – volume: 11 start-page: 3316 year: 2020 end-page: 3325 ident: CR69 article-title: Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy publication-title: Chem. Sci. doi: 10.1039/C9SC05704H – ident: CR12 – volume: 537 start-page: 320 year: 2016 end-page: 327 ident: CR100 article-title: The coming of age of de novo protein design publication-title: Nature doi: 10.1038/nature19946 – ident: CR35 – ident: CR61 – ident: CR58 – ident: CR84 – volume: 21 start-page: 951 year: 2005 end-page: 960 ident: CR20 article-title: Protein homology detection by HMM-HMM comparison publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti125 – volume: 465 start-page: 219 year: 2010 end-page: 222 ident: CR6 article-title: A formal test of the theory of universal common ancestry publication-title: Nature doi: 10.1038/nature09014 – volume: 7 start-page: 422 year: 1997 end-page: 427 ident: CR8 article-title: Circular permutations of natural protein sequences: structural evidence publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(97)80061-9 – ident: CR46 – volume: 44 start-page: D330 year: 2016 end-page: D335 ident: CR66 article-title: COMBREX-DB: an experiment centered database of protein function: knowledge, predictions and knowledge gaps publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1324 – ident: CR96 – ident: CR67 – ident: CR75 – ident: CR15 – volume: 51 start-page: 91 year: 2008 end-page: 97 ident: CR80 article-title: Anton, a special-purpose machine for molecular dynamics simulation publication-title: Commun. ACM doi: 10.1145/1364782.1364802 – volume: 2 start-page: 573 year: 2020 end-page: 584 ident: CR73 article-title: Drug discovery with explainable artificial intelligence publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00236-4 – volume: 62 start-page: 101983 year: 2020 ident: CR60 article-title: Patent claim generation by fine-tuning OpenAI GPT-2 publication-title: World Pat. Inf. doi: 10.1016/j.wpi.2020.101983 – volume: 23 start-page: 1 year: 2022 end-page: 39 ident: CR98 article-title: Switch transformers: scaling to trillion parameter models with simple and efficient sparsity publication-title: J. Mach. Learn. Res. – ident: CR32 – ident: CR78 – ident: CR64 – ident: CR99 – volume: 600 start-page: 547 year: 2021 end-page: 552 ident: CR55 article-title: De novo protein design by deep network hallucination publication-title: Nature doi: 10.1038/s41586-021-04184-w – ident: CR95 – volume: 11 start-page: 321 year: 2021 ident: CR70 article-title: Transformer neural network for protein-specific de novo drug generation as a machine translation problem publication-title: Sci. Rep. doi: 10.1038/s41598-020-79682-4 – ident: CR43 – volume: 491 start-page: 222 year: 2012 end-page: 227 ident: CR72 article-title: Principles for designing ideal protein structures publication-title: Nature doi: 10.1038/nature11600 – ident: CR14 – volume: 10 start-page: 202 year: 2009 ident: CR19 article-title: NLStradamus: a simple hidden Markov model for nuclear localization signal prediction publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-202 – ident: CR53 – volume: 10 start-page: e0141287 year: 2015 ident: CR27 article-title: Continuous distributed representation of biological sequences for deep proteomics and genomics publication-title: PLoS ONE doi: 10.1371/journal.pone.0141287 – volume: 3 start-page: 144 year: 2021 end-page: 152 ident: CR71 article-title: Mapping the space of chemical reactions using attention-based neural networks publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00284-w – volume: 9 start-page: 6091 year: 2018 end-page: 6098 ident: CR68 article-title: ‘Found in Translation’: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models publication-title: Chem. Sci. doi: 10.1039/C8SC02339E – ident: CR79 – ident: CR40 – ident: CR23 – volume: 16 start-page: 17315 year: 2015 end-page: 17330 ident: CR29 article-title: DeepCNF-D: predicting protein order/disorder regions by weighted deep convolutional neural fields publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms160817315 – volume: 602 start-page: 523 year: 2022 end-page: 528 ident: CR56 article-title: A backbone-centred energy function of neural networks for protein design publication-title: Nature doi: 10.1038/s41586-021-04383-5 – ident: CR48 – ident: CR90 – volume: 21 start-page: 1 year: 2020 end-page: 67 ident: CR97 article-title: Exploring the limits of transfer learning with a unified text-to-text transformer publication-title: J. Mach. Learn. Res. – volume: 3 start-page: 1137 year: 2003 end-page: 1155 ident: CR21 article-title: A neural probabilistic language model publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 702 year: 2016 ident: CR10 article-title: Phonotactic constraints are activated across languages in bilinguals publication-title: Front. Psychol. doi: 10.3389/fpsyg.2016.00702 – ident: CR34 – ident: CR59 – ident: CR76 – volume: 18 start-page: 309 year: 1994 end-page: 317 ident: CR11 article-title: Correlated mutations and residue contacts in proteins publication-title: Proteins Struct. Funct. Bioinformatics doi: 10.1002/prot.340180402 – ident: CR28 – ident: CR62 – ident: 499_CR16 doi: 10.3115/1073083.1073163 – ident: 499_CR78 – volume: 51 start-page: 504 year: 2003 ident: 499_CR17 publication-title: Proteins Struct. Funct. Genet. doi: 10.1002/prot.10369 – volume: 20 start-page: 681 year: 2019 ident: 499_CR3 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0163-x – volume: 600 start-page: 547 year: 2021 ident: 499_CR55 publication-title: Nature doi: 10.1038/s41586-021-04184-w – volume: 10 start-page: 202 year: 2009 ident: 499_CR19 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-202 – ident: 499_CR41 – ident: 499_CR15 doi: 10.1109/MCI.2018.2840738 – ident: 499_CR93 – volume: 23 start-page: 1 year: 2022 ident: 499_CR98 publication-title: J. Mach. Learn. Res. – ident: 499_CR96 – ident: 499_CR85 doi: 10.1101/2021.03.28.437402 – ident: 499_CR12 – ident: 499_CR58 doi: 10.1101/2022.01.27.478087 – volume: 602 start-page: 523 year: 2022 ident: 499_CR56 publication-title: Nature doi: 10.1038/s41586-021-04383-5 – ident: 499_CR44 – volume: 16 start-page: 687 year: 2019 ident: 499_CR83 publication-title: Nat. Methods doi: 10.1038/s41592-019-0496-6 – ident: 499_CR64 doi: 10.1101/2021.07.18.452833 – ident: 499_CR23 – volume: 51 start-page: 91 year: 2008 ident: 499_CR80 publication-title: Commun. ACM doi: 10.1145/1364782.1364802 – volume: 34 start-page: 2642 year: 2018 ident: 499_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty178 – ident: 499_CR76 – volume: 16 start-page: 17315 year: 2015 ident: 499_CR29 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms160817315 – volume: 3 start-page: 1137 year: 2003 ident: 499_CR21 publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 55 year: 2017 ident: 499_CR25 publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2018.2840738 – ident: 499_CR34 – volume: 116 start-page: 3636 year: 2019 ident: 499_CR49 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1814684116 – volume: 7 start-page: 702 year: 2016 ident: 499_CR10 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2016.00702 – volume: 7 start-page: 422 year: 1997 ident: 499_CR8 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(97)80061-9 – ident: 499_CR89 – ident: 499_CR62 – ident: 499_CR67 doi: 10.1038/s41587-021-01179-w – ident: 499_CR45 doi: 10.18653/v1/W19-2304 – volume: 62 start-page: 101983 year: 2020 ident: 499_CR60 publication-title: World Pat. Inf. doi: 10.1016/j.wpi.2020.101983 – ident: 499_CR47 – ident: 499_CR33 doi: 10.18653/v1/N16-1030 – volume: 21 start-page: 951 year: 2005 ident: 499_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti125 – volume: 114 start-page: 10900 year: 2017 ident: 499_CR86 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1707171114 – ident: 499_CR14 doi: 10.18653/v1/E17-1008 – ident: 499_CR18 doi: 10.1109/ICDM.2005.52 – ident: 499_CR39 – ident: 499_CR90 – ident: 499_CR84 – ident: 499_CR42 – ident: 499_CR32 doi: 10.21437/Interspeech.2010-343 – volume: 44 start-page: D330 year: 2016 ident: 499_CR66 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1324 – volume: 11 start-page: 321 year: 2021 ident: 499_CR70 publication-title: Sci. Rep. doi: 10.1038/s41598-020-79682-4 – volume: 3 start-page: 144 year: 2021 ident: 499_CR71 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00284-w – ident: 499_CR74 – volume: 55 start-page: 2200 year: 2015 ident: 499_CR82 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.5b00453 – ident: 499_CR95 doi: 10.1145/3394486.3406703 – volume: 32 start-page: 7057 year: 2019 ident: 499_CR88 publication-title: Adv. Neural Inf. Process. Syst. – volume: 2 start-page: 423 year: 2020 ident: 499_CR77 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0219-9 – volume: 10 start-page: e0141287 year: 2015 ident: 499_CR27 publication-title: PLoS ONE doi: 10.1371/journal.pone.0141287 – volume: 17 start-page: e1009446 year: 2021 ident: 499_CR65 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009446 – volume: 108 start-page: 10184 year: 2011 ident: 499_CR81 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1103547108 – ident: 499_CR22 – ident: 499_CR54 – ident: 499_CR79 – ident: 499_CR48 – volume: 537 start-page: 320 year: 2016 ident: 499_CR100 publication-title: Nature doi: 10.1038/nature19946 – ident: 499_CR63 doi: 10.1101/2020.03.07.982272 – volume: 32 start-page: 9689 year: 2019 ident: 499_CR51 publication-title: Adv. Neural Inf. Process. Syst – ident: 499_CR40 – volume: 465 start-page: 219 year: 2010 ident: 499_CR6 publication-title: Nature doi: 10.1038/nature09014 – ident: 499_CR52 doi: 10.1109/TPAMI.2021.3095381 – ident: 499_CR92 – ident: 499_CR46 doi: 10.1007/978-3-030-32381-3_16 – volume: 118 start-page: e2016239118 year: 2021 ident: 499_CR50 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2016239118 – ident: 499_CR59 doi: 10.1101/2022.03.09.483666 – ident: 499_CR99 – volume: 47 start-page: 67 year: 2018 ident: 499_CR1 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2018.07.022 – volume: 418 start-page: 869 year: 2002 ident: 499_CR5 publication-title: Nature doi: 10.1038/nature01025 – ident: 499_CR36 doi: 10.48550/arxiv.1609.07959 – ident: 499_CR57 – volume: 12 start-page: 29 year: 2016 ident: 499_CR9 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1966 – volume: 18 start-page: 309 year: 1994 ident: 499_CR11 publication-title: Proteins Struct. Funct. Bioinformatics doi: 10.1002/prot.340180402 – volume: 21 start-page: 2157 year: 2015 ident: 499_CR7 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-2821 – ident: 499_CR28 doi: 10.1145/1390156.1390177 – ident: 499_CR61 doi: 10.1101/2021.12.22.473759 – ident: 499_CR75 doi: 10.18653/v1/2020.acl-demos.22 – volume: 432 start-page: 3898 year: 2020 ident: 499_CR4 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2020.04.013 – volume: 32 start-page: i121 year: 2016 ident: 499_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw255 – ident: 499_CR91 – volume: 16 start-page: 1315 year: 2019 ident: 499_CR37 publication-title: Nat. Methods doi: 10.1038/s41592-019-0598-1 – ident: 499_CR43 – ident: 499_CR24 – volume: 577 start-page: 706 year: 2020 ident: 499_CR38 publication-title: Nature doi: 10.1038/s41586-019-1923-7 – volume: 39 start-page: 16 year: 2016 ident: 499_CR2 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2016.03.006 – volume: 21 start-page: 1 year: 2020 ident: 499_CR97 publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 6091 year: 2018 ident: 499_CR68 publication-title: Chem. Sci. doi: 10.1039/C8SC02339E – volume: 491 start-page: 222 year: 2012 ident: 499_CR72 publication-title: Nature doi: 10.1038/nature11600 – ident: 499_CR35 – volume: 11 start-page: 3316 year: 2020 ident: 499_CR69 publication-title: Chem. Sci. doi: 10.1039/C9SC05704H – volume: 596 start-page: 583 year: 2021 ident: 499_CR13 publication-title: Nature doi: 10.1038/s41586-021-03819-2 – ident: 499_CR53 doi: 10.1038/s41587-021-01196-9 – volume: 34 start-page: 1295 year: 2018 ident: 499_CR31 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx780 – ident: 499_CR94 – ident: 499_CR87 doi: 10.18653/v1/P19-1285 – volume: 2 start-page: 573 year: 2020 ident: 499_CR73 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00236-4 |
SSID | ssj0002144504 |
Score | 2.552623 |
SecondaryResourceType | review_article |
Snippet | The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 521 |
SubjectTerms | 631/114/1305 639/705/1042 Algorithms Amino acids Artificial intelligence Controllability Custom design Energy Engineering Language Machine learning Natural language processing Peptides Proteins Review Article Transformers |
Title | Controllable protein design with language models |
URI | https://link.springer.com/article/10.1038/s42256-022-00499-z https://www.proquest.com/docview/2893825206 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA5ue_FFFBWnc_TBNw1Lmx9tn0TH5hAcIg72FtokBWF0086X_fVe0nRDwT23Deldcvnuu8sdQjcsSUNDeIYVDxVmNCtwlucxjnXBNcANQ1xvwJepmMzY85zPPeFW-bTKxiY6Q62XynLkA3AMKHgzERH3q09su0bZ6KpvodFCHTDBCThfncfR9PVty7LYgmCcMH9bhtBkUDFYwTbvNsIO7uPN7xNpBzP_REbdgTM-RkceKQYPtWpP0IEpTxEZ1qnlC3vjKXBFFj7KQLs0jMByqkFDQAaux011hmbj0ftwgn3TA6xgN6xxESVcaJi1oZSLOONECWpUGlItbLEgwRKtlIjiLKepUJlQAPkBZSjwLXTMCD1H7XJZmgsUZKHRVAme5-DGCW3yHGwZVyoqUgO4gXVR2Py4VL4iuG1MsZAuMk0TWQtLgrCkE5bcdNHt9ptVXQ9j79u9Rp7S741K7jTZRXeNjHeP_x_tcv9oV-gwcmq1FEkPtddf3-YaEMM676NWMn7q-8XxA50Vvmc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCQIAYDOgBThCtbR5tDwghYGxscAJpt9AmmYQ0bYMOIfaj-I04absJJLhxTmspjmN_dvwAOGJxEhifp0TxQBFG0z5Jsywike5zjXDD-G424N29aD2y2x7vLcBnVQtj0yornegUtR4pGyNvoGNA0ZsJfXE-fiF2apR9Xa1GaBRi0TEf7-iy5WftKzzf4zBsXj9ctkg5VYAoFLcJ6YcxF5oxbijlIkq5rwQ1KgmoFrYbj2CxVkqEUZrRRKhUKMTUaMYVgncdMZ8i3UVYZhRXbWV682YW07Htx7jPytocn8aNnOF9sVm-IXHOBZl-t39zUPvjHdaZt-Y6rJW41LsoBGkDFsxwE_zLIpF9YOurPNfS4XnoaZf04dkIrleFOz03USffgsd_YcY2LA1HQ7MDXhoYTZXgWYZOo9Amy1BzcqXCfmIQpbAaBNXGpSr7j9sxGAPp3sFpLAtmSWSWdMyS0xqczP4ZF903_vy6XvFTljcxl3O5qcFpxeP58u_Udv-mdggrrYe7ruy27zt7sBq6I7bBmTosTV7fzD5ilUl24ATEg6f_lsgv53b2uQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50BfEiiorrswc9adi0ebR7EPGxi89FxAVvsU1SEJb1sSuiP81f5yRtd1HQ294KbQY6-TL5ZjKZAdjhSTO0VKREi1ATztKcpFkWk9jkwiDdsNT3BrzuyLMuv7gX91PwVd2FcWmVlU30hto8aRcjb6BjwNCbiahs5GVaxM1p-_D5hbgOUu6ktWqnUUDk0n68o_s2ODg_xbnejaJ26-7kjJQdBohG6A1JHiVCGs6FZUzIOBVUS2Z1M2RGuso8kidGaxnFacaaUqdSI7_GLV0jkTcxpwzlTsMMPsW0BjPHrc7N7SjC44qRCcrLmzqUJY0Bx9Xjcn4j4l0N8vlzNxxT3F-nsn6zay_AfMlSg6MCVoswZftLQE-KtPaeu20V-AIPj_3A-BSQwMVzgyr4Gfj-OoNl6E5EHStQ6z_17SoEaWgN01JkGbqQ0tgsQzsqtI7ypkXOwusQVj-udFmN3DXF6Cl_Ks4SVShLobKUV5b6rMPeaMxzUYvj3683Kn2qcl0O1BhFddivdDx-_be0tf-lbcMsolFdnXcu12Eu8jPsIjUbUBu-vtlNJC7DbKtESAAPkwblN6SK_Es |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+protein+design+with+language+models&rft.jtitle=Nature+machine+intelligence&rft.au=Ferruz%2C+Noelia&rft.au=H%C3%B6cker%2C+Birte&rft.date=2022-06-01&rft.issn=2522-5839&rft.eissn=2522-5839&rft.volume=4&rft.issue=6&rft.spage=521&rft.epage=532&rft_id=info:doi/10.1038%2Fs42256-022-00499-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s42256_022_00499_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-5839&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-5839&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-5839&client=summon |