Controllable protein design with language models

The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artific...

Full description

Saved in:
Bibliographic Details
Published inNature machine intelligence Vol. 4; no. 6; pp. 521 - 532
Main Authors Ferruz, Noelia, Höcker, Birte
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surprising that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementation of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The combination of control tags such as cellular compartment or function will further enable the controllable design of novel protein functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our understanding of folding principles. Early initiatives show the enormous potential of generative language models to design functional sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, and we discuss its foreseeable impact on protein design. Both proteins and natural language are essentially based on a sequential code, but feature complex interactions at multiple scales, which can be useful when transferring machine learning models from one domain to another. In this Review, Ferruz and Höcker summarize recent advances in language models, such as transformers, and their application to protein design.
AbstractList The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surprising that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementation of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The combination of control tags such as cellular compartment or function will further enable the controllable design of novel protein functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our understanding of folding principles. Early initiatives show the enormous potential of generative language models to design functional sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, and we discuss its foreseeable impact on protein design.Both proteins and natural language are essentially based on a sequential code, but feature complex interactions at multiple scales, which can be useful when transferring machine learning models from one domain to another. In this Review, Ferruz and Höcker summarize recent advances in language models, such as transformers, and their application to protein design.
The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for specific purposes would potentially transform our ability to respond to these issues in a timely manner. Recent advances in the field of artificial intelligence are now setting the stage to make this goal achievable. Protein sequences are inherently similar to natural languages: amino acids arrange in a multitude of combinations to form structures that carry function, the same way as letters form words and sentences carry meaning. Accordingly, it is not surprising that, throughout the history of natural language processing (NLP), many of its techniques have been applied to protein research problems. In the past few years we have witnessed revolutionary breakthroughs in the field of NLP. The implementation of transformer pre-trained models has enabled text generation with human-like capabilities, including texts with specific properties such as style or subject. Motivated by its considerable success in NLP tasks, we expect dedicated transformers to dominate custom protein sequence generation in the near future. Fine-tuning pre-trained models on protein families will enable the extension of their repertoires with novel sequences that could be highly divergent but still potentially functional. The combination of control tags such as cellular compartment or function will further enable the controllable design of novel protein functions. Moreover, recent model interpretability methods will allow us to open the ‘black box’ and thus enhance our understanding of folding principles. Early initiatives show the enormous potential of generative language models to design functional sequences. We believe that using generative text models to create novel proteins is a promising and largely unexplored field, and we discuss its foreseeable impact on protein design. Both proteins and natural language are essentially based on a sequential code, but feature complex interactions at multiple scales, which can be useful when transferring machine learning models from one domain to another. In this Review, Ferruz and Höcker summarize recent advances in language models, such as transformers, and their application to protein design.
Author Ferruz, Noelia
Höcker, Birte
Author_xml – sequence: 1
  givenname: Noelia
  orcidid: 0000-0003-4172-8201
  surname: Ferruz
  fullname: Ferruz, Noelia
  email: noelia.ferruz-capapey@uni-bayreuth.de
  organization: Department of Biochemistry, University of Bayreuth, Institute of Informatics and Applications, University of Girona
– sequence: 2
  givenname: Birte
  orcidid: 0000-0002-8250-9462
  surname: Höcker
  fullname: Höcker, Birte
  organization: Department of Biochemistry, University of Bayreuth
BookMark eNp9kE1LAzEQhoNUsNb-AU8Lnldn87XJUYpfUPCi55Bm0zUlzdZkF7G_3tQVFA89zQy8z8w77zmahC5YhC4ruK6AiJtEMWa8BIxLACpluT9BU8zyyASRkz_9GZqntAEAXFHKgE4RLLrQx857vfK22MWuty4UjU2uDcWH698Kr0M76NYW266xPl2g07X2yc5_6gy93t-9LB7L5fPD0-J2WRpSyb5cY8F4k49YQhivNQPDiTWyIg2vBVBORWMMx7VeEcmN5obXjEhpcFU3NQUyQ1fj3uzpfbCpV5tuiCGfVFhIIvJPwLNKjCoTu5SiXSvjet27w1PaeVWBOkSkxohUjkh9R6T2GcX_0F10Wx0_j0NkhFIWh9bGX1dHqC_EuHnK
CitedBy_id crossref_primary_10_1021_acscatal_3c02743
crossref_primary_10_1016_j_jechem_2024_06_013
crossref_primary_10_1038_s41392_023_01680_5
crossref_primary_10_1038_s41587_023_01991_6
crossref_primary_10_1016_j_cels_2024_04_008
crossref_primary_10_1016_j_ijbiomac_2024_138272
crossref_primary_10_3390_educsci14080814
crossref_primary_10_3389_fbinf_2023_1304099
crossref_primary_10_1093_protein_gzad024
crossref_primary_10_1016_j_xcrp_2024_102359
crossref_primary_10_1021_acs_jcim_4c01907
crossref_primary_10_3390_sym16040464
crossref_primary_10_1016_j_compbiolchem_2024_108055
crossref_primary_10_3390_bioengineering11020185
crossref_primary_10_1089_genbio_2022_0017
crossref_primary_10_1038_s41467_022_32007_7
crossref_primary_10_1093_bioadv_vbad043
crossref_primary_10_1002_advs_202301011
crossref_primary_10_1038_s42256_024_00935_2
crossref_primary_10_1016_j_amc_2024_128630
crossref_primary_10_1021_acssensors_4c00149
crossref_primary_10_3724_abbs_2023033
crossref_primary_10_1021_acscentsci_3c01275
crossref_primary_10_1021_acs_jcim_3c01650
crossref_primary_10_1021_acs_jcim_3c01697
crossref_primary_10_3389_fpubh_2023_1140353
crossref_primary_10_3390_ijms252413444
crossref_primary_10_1093_nargab_lqae011
crossref_primary_10_3390_sym15020357
crossref_primary_10_1038_s42256_023_00637_1
crossref_primary_10_1016_j_compchemeng_2024_108585
crossref_primary_10_1016_j_ejmech_2024_116262
crossref_primary_10_1016_j_biotechadv_2024_108459
crossref_primary_10_1021_acsomega_3c05913
crossref_primary_10_1093_gbe_evae176
crossref_primary_10_1016_j_csbj_2022_11_014
crossref_primary_10_1002_qub2_69
crossref_primary_10_1016_j_xinn_2023_100520
crossref_primary_10_1016_j_cobme_2023_100473
crossref_primary_10_1038_s42256_024_00791_0
crossref_primary_10_1093_bioinformatics_btad122
crossref_primary_10_1002_mef2_43
crossref_primary_10_1016_j_mec_2024_e00248
crossref_primary_10_1093_nsr_nwad331
crossref_primary_10_1016_j_jpha_2024_101081
crossref_primary_10_1002_wcms_1646
crossref_primary_10_1016_j_molcel_2024_01_021
crossref_primary_10_1111_risa_14353
crossref_primary_10_1146_annurev_genom_010323_010230
crossref_primary_10_1038_s41586_023_06221_2
crossref_primary_10_3389_fmolb_2023_1178035
crossref_primary_10_4049_jimmunol_2300492
crossref_primary_10_1021_acs_chemrestox_2c00384
crossref_primary_10_1016_j_csbj_2024_12_029
crossref_primary_10_1038_s41589_024_01632_2
crossref_primary_10_1002_mef2_18
crossref_primary_10_1002_mef2_19
crossref_primary_10_1002_pro_5076
crossref_primary_10_1021_acs_langmuir_4c04140
crossref_primary_10_1093_glycob_cwad033
crossref_primary_10_1021_acs_jcim_4c01345
crossref_primary_10_1021_acs_chemrev_4c00126
crossref_primary_10_1038_s41467_024_46203_0
crossref_primary_10_1073_pnas_2314646121
crossref_primary_10_1021_acssynbio_3c00201
crossref_primary_10_1002_cbic_202400092
crossref_primary_10_1080_19420862_2025_2474521
crossref_primary_10_1186_s12859_024_05637_5
crossref_primary_10_1016_j_jsb_2023_108041
crossref_primary_10_1038_s42256_024_00806_w
crossref_primary_10_1002_prot_26652
crossref_primary_10_1016_j_csbj_2023_04_027
crossref_primary_10_12688_f1000research_130443_1
crossref_primary_10_1039_D4SC06329E
crossref_primary_10_3390_ijms24043827
Cites_doi 10.1158/1078-0432.CCR-14-2821
10.1093/bioinformatics/btw255
10.1038/s41586-019-1923-7
10.1016/j.cbpa.2018.07.022
10.1038/s42256-020-0219-9
10.1073/pnas.1707171114
10.1016/j.sbi.2016.03.006
10.1038/s41580-019-0163-x
10.1038/s41592-019-0598-1
10.1073/pnas.1103547108
10.1038/s41592-019-0496-6
10.1002/prot.10369
10.1016/j.jmb.2020.04.013
10.1021/acs.jcim.5b00453
10.1038/s41586-021-03819-2
10.1038/nature01025
10.1093/bioinformatics/bty178
10.1073/pnas.2016239118
10.1109/MCI.2018.2840738
10.1093/bioinformatics/btx780
10.1073/pnas.1814684116
10.1371/journal.pcbi.1009446
10.1038/nchembio.1966
10.1039/C9SC05704H
10.1038/nature19946
10.1093/bioinformatics/bti125
10.1038/nature09014
10.1016/S0959-440X(97)80061-9
10.1093/nar/gkv1324
10.1145/1364782.1364802
10.1038/s42256-020-00236-4
10.1016/j.wpi.2020.101983
10.1038/s41586-021-04184-w
10.1038/s41598-020-79682-4
10.1038/nature11600
10.1186/1471-2105-10-202
10.1371/journal.pone.0141287
10.1038/s42256-020-00284-w
10.1039/C8SC02339E
10.3390/ijms160817315
10.1038/s41586-021-04383-5
10.3389/fpsyg.2016.00702
10.1002/prot.340180402
10.3115/1073083.1073163
10.1101/2021.03.28.437402
10.1101/2022.01.27.478087
10.1101/2021.07.18.452833
10.1038/s41587-021-01179-w
10.18653/v1/W19-2304
10.18653/v1/N16-1030
10.18653/v1/E17-1008
10.1109/ICDM.2005.52
10.21437/Interspeech.2010-343
10.1145/3394486.3406703
10.1101/2020.03.07.982272
10.1109/TPAMI.2021.3095381
10.1007/978-3-030-32381-3_16
10.1101/2022.03.09.483666
10.48550/arxiv.1609.07959
10.1145/1390156.1390177
10.1101/2021.12.22.473759
10.18653/v1/2020.acl-demos.22
10.1038/s41587-021-01196-9
10.18653/v1/P19-1285
ContentType Journal Article
Copyright Springer Nature Limited 2022
Springer Nature Limited 2022.
Copyright_xml – notice: Springer Nature Limited 2022
– notice: Springer Nature Limited 2022.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/s42256-022-00499-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2522-5839
EndPage 532
ExternalDocumentID 10_1038_s42256_022_00499_z
GrantInformation_xml – fundername: European Research Council (ERC Consolidator grant 647548 ‘Protein Lego’); Volkswagenstiftung (grant 94747).
GroupedDBID 0R~
88I
AAEEF
AARCD
AAYZH
ABJNI
ABUWG
ACBWK
ADBBV
AFKRA
AFSHS
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
EBS
EJD
FSGXE
GNUQQ
HCIFZ
K7-
M2P
NNMJJ
ODYON
RNT
SIXXV
SNYQT
SOJ
TBHMF
AAYXX
AFANA
ATHPR
CITATION
PHGZM
PHGZT
3V.
7SC
7XB
8FD
8FE
8FG
8FK
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-f2856d445e33567a50c63ec913d67804648dcc627ab396ca6c675399c217d7403
IEDL.DBID BENPR
ISSN 2522-5839
IngestDate Sat Aug 23 12:52:46 EDT 2025
Tue Jul 01 01:06:00 EDT 2025
Thu Apr 24 22:50:46 EDT 2025
Fri Feb 21 02:37:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f2856d445e33567a50c63ec913d67804648dcc627ab396ca6c675399c217d7403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8250-9462
0000-0003-4172-8201
PQID 2893825206
PQPubID 5342773
PageCount 12
ParticipantIDs proquest_journals_2893825206
crossref_citationtrail_10_1038_s42256_022_00499_z
crossref_primary_10_1038_s42256_022_00499_z
springer_journals_10_1038_s42256_022_00499_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Basingstoke
PublicationTitle Nature machine intelligence
PublicationTitleAbbrev Nat Mach Intell
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Raffel (CR97) 2020; 21
Senior (CR38) 2020; 577
Yang, Wu, Arnold (CR83) 2019; 16
Theobald (CR6) 2010; 465
Rembeza, Engqvist (CR65) 2021; 17
Anishchenko (CR55) 2021; 600
CR39
CR36
CR35
CR34
Freeman, Blumenfeld, Marian (CR10) 2016; 7
CR33
CR32
Schwaller (CR71) 2021; 3
Shaw (CR80) 2008; 51
Rao (CR51) 2019; 32
Baran (CR86) 2017; 114
Huang (CR9) 2016; 12
Buch, Giorgino, De Fabritiis (CR81) 2011; 108
Lample, Conneau (CR88) 2019; 32
CR48
CR47
Söding (CR20) 2005; 21
CR46
Chang (CR66) 2016; 44
CR45
CR44
CR43
CR42
CR41
CR40
Dhar (CR77) 2020; 2
Jiménez-Luna, Grisoni, Schneider (CR73) 2020; 2
Yu (CR49) 2019; 116
Huang (CR56) 2022; 602
CR59
CR58
CR57
CR54
CR53
Ferruz, Harvey, Mestres, De Fabritiis (CR82) 2015; 55
CR52
Hou, Adhikari, Cheng (CR31) 2018; 34
Arena (CR7) 2015; 21
Grechishnikova (CR70) 2021; 11
Young, Hazarika, Poria, Cambria (CR25) 2017; 13
CR67
CR64
CR63
CR62
CR61
Kuhlman, Bradley (CR3) 2019; 20
Schwaller (CR69) 2020; 11
Gainza, Nisonoff, Donald (CR2) 2016; 39
Göbel, Sander, Schneider, Valencia (CR11) 1994; 18
Yang, Wu, Bedbrook, Arnold (CR26) 2018; 34
Wang, Weng, Ma, Tang (CR29) 2015; 16
Nguyen Ba, Pogoutse, Provart, Moses (CR19) 2009; 10
CR79
CR78
CR76
CR75
CR74
Lechner, Ferruz, Höcker (CR1) 2018; 47
Fedus, Brain, Zoph, Shazeer (CR98) 2022; 23
Ferruz (CR4) 2020; 432
CR89
CR87
CR85
CR84
Asgari, Mofrad (CR27) 2015; 10
W (CR5) 2002; 418
Zeng, Edwards, Liu, Gifford (CR30) 2016; 32
CR18
Alley, Khimulya, Biswas, AlQuraishi, Church (CR37) 2019; 16
CR16
CR15
CR14
CR12
CR99
CR96
CR95
Jumper (CR13) 2021; 596
Karchin, Cline, Mandel-Gutfreund, Karplus (CR17) 2003; 51
CR94
Lindqvist, Schneider (CR8) 1997; 7
CR93
CR92
CR91
CR90
Huang, Boyken, Baker (CR100) 2016; 537
Schwaller, Gaudin, Lányi, Bekas, Laino (CR68) 2018; 9
Rives (CR50) 2021; 118
Bengio (CR21) 2003; 3
CR28
Lee, Hsiang (CR60) 2020; 62
CR24
CR23
CR22
Koga (CR72) 2012; 491
499_CR79
DL Theobald (499_CR6) 2010; 465
499_CR78
499_CR75
KK Yang (499_CR83) 2019; 16
499_CR76
499_CR74
P Dhar (499_CR77) 2020; 2
A Rives (499_CR50) 2021; 118
Y Lindqvist (499_CR8) 1997; 7
MR Freeman (499_CR10) 2016; 7
PS Huang (499_CR9) 2016; 12
YC Chang (499_CR66) 2016; 44
L Yu (499_CR49) 2019; 116
499_CR89
499_CR87
499_CR84
499_CR85
499_CR15
499_CR16
499_CR14
N Ferruz (499_CR82) 2015; 55
499_CR99
499_CR12
P Schwaller (499_CR71) 2021; 3
499_CR95
499_CR96
499_CR93
499_CR94
499_CR91
499_CR92
499_CR90
R Karchin (499_CR17) 2003; 51
499_CR24
499_CR22
499_CR23
E W (499_CR5) 2002; 418
S Arena (499_CR7) 2015; 21
T Young (499_CR25) 2017; 13
G Lample (499_CR88) 2019; 32
I Anishchenko (499_CR55) 2021; 600
S Wang (499_CR29) 2015; 16
DE Shaw (499_CR80) 2008; 51
499_CR18
499_CR35
499_CR36
499_CR33
499_CR34
499_CR32
W Fedus (499_CR98) 2022; 23
J Jiménez-Luna (499_CR73) 2020; 2
H Lechner (499_CR1) 2018; 47
D Grechishnikova (499_CR70) 2021; 11
499_CR28
I Buch (499_CR81) 2011; 108
J Söding (499_CR20) 2005; 21
499_CR48
499_CR46
B Huang (499_CR56) 2022; 602
E Rembeza (499_CR65) 2021; 17
499_CR47
N Ferruz (499_CR4) 2020; 432
499_CR44
499_CR45
499_CR42
499_CR43
499_CR40
499_CR41
N Koga (499_CR72) 2012; 491
KK Yang (499_CR26) 2018; 34
PS Huang (499_CR100) 2016; 537
E Asgari (499_CR27) 2015; 10
C Raffel (499_CR97) 2020; 21
H Zeng (499_CR30) 2016; 32
P Gainza (499_CR2) 2016; 39
499_CR39
P Schwaller (499_CR68) 2018; 9
J Jumper (499_CR13) 2021; 596
499_CR59
499_CR57
Y Bengio (499_CR21) 2003; 3
499_CR58
499_CR53
499_CR54
499_CR52
AN Nguyen Ba (499_CR19) 2009; 10
D Baran (499_CR86) 2017; 114
B Kuhlman (499_CR3) 2019; 20
R Rao (499_CR51) 2019; 32
U Göbel (499_CR11) 1994; 18
499_CR67
499_CR64
499_CR62
499_CR63
499_CR61
AW Senior (499_CR38) 2020; 577
EC Alley (499_CR37) 2019; 16
P Schwaller (499_CR69) 2020; 11
JS Lee (499_CR60) 2020; 62
J Hou (499_CR31) 2018; 34
References_xml – ident: CR45
– volume: 21
  start-page: 2157
  year: 2015
  end-page: 2166
  ident: CR7
  article-title: Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-2821
– ident: CR22
– volume: 32
  start-page: i121
  year: 2016
  end-page: i127
  ident: CR30
  article-title: Convolutional neural network architectures for predicting DNA-protein binding
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw255
– ident: CR74
– volume: 577
  start-page: 706
  year: 2020
  end-page: 710
  ident: CR38
  article-title: Improved protein structure prediction using potentials from deep learning
  publication-title: Nature
  doi: 10.1038/s41586-019-1923-7
– ident: CR39
– ident: CR16
– volume: 47
  start-page: 67
  year: 2018
  end-page: 76
  ident: CR1
  article-title: Strategies for designing non-natural enzymes and binders
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2018.07.022
– volume: 2
  start-page: 423
  year: 2020
  end-page: 425
  ident: CR77
  article-title: The carbon impact of artificial intelligence
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0219-9
– volume: 114
  start-page: 10900
  year: 2017
  end-page: 10905
  ident: CR86
  article-title: Principles for computational design of binding antibodies
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1707171114
– ident: CR54
– volume: 39
  start-page: 16
  year: 2016
  end-page: 26
  ident: CR2
  article-title: Algorithms for protein design
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2016.03.006
– ident: CR42
– volume: 20
  start-page: 681
  year: 2019
  end-page: 697
  ident: CR3
  article-title: Advances in protein structure prediction and design
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0163-x
– ident: CR92
– ident: CR57
– ident: CR36
– ident: CR85
– volume: 16
  start-page: 1315
  year: 2019
  end-page: 1322
  ident: CR37
  article-title: Unified rational protein engineering with sequence-based deep representation learning
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0598-1
– volume: 108
  start-page: 10184
  year: 2011
  end-page: 10189
  ident: CR81
  article-title: Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1103547108
– volume: 16
  start-page: 687
  year: 2019
  end-page: 694
  ident: CR83
  article-title: Machine-learning-guided directed evolution for protein engineering
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0496-6
– volume: 51
  start-page: 504
  year: 2003
  end-page: 514
  ident: CR17
  article-title: Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry
  publication-title: Proteins Struct. Funct. Genet.
  doi: 10.1002/prot.10369
– ident: CR18
– ident: CR91
– ident: CR47
– ident: CR89
– volume: 432
  start-page: 3898
  year: 2020
  end-page: 3914
  ident: CR4
  article-title: Identification and analysis of natural building blocks for evolution-guided fragment-based protein design
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2020.04.013
– ident: CR33
– volume: 55
  start-page: 2200
  year: 2015
  end-page: 2205
  ident: CR82
  article-title: Insights from fragment hit binding assays by molecular simulations
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.5b00453
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: CR13
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– ident: CR63
– volume: 32
  start-page: 9689
  year: 2019
  end-page: 9701
  ident: CR51
  article-title: Evaluating protein transfer learning with TAPE
  publication-title: Adv. Neural Inf. Process. Syst
– ident: CR94
– ident: CR44
– volume: 418
  start-page: 869
  year: 2002
  end-page: 872
  ident: CR5
  article-title: Molecular evolution of FOXP2, a gene involved in speech and language
  publication-title: Nature
  doi: 10.1038/nature01025
– ident: CR52
– volume: 32
  start-page: 7057
  year: 2019
  end-page: 7067
  ident: CR88
  article-title: Cross-lingual language model pretraining
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 34
  start-page: 2642
  year: 2018
  end-page: 2648
  ident: CR26
  article-title: Learned protein embeddings for machine learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty178
– volume: 118
  start-page: e2016239118
  year: 2021
  ident: CR50
  article-title: Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2016239118
– ident: CR41
– ident: CR24
– volume: 13
  start-page: 55
  year: 2017
  end-page: 75
  ident: CR25
  article-title: Recent trends in deep learning based natural language processing
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2018.2840738
– volume: 34
  start-page: 1295
  year: 2018
  end-page: 1303
  ident: CR31
  article-title: DeepSF: deep convolutional neural network for mapping protein sequences to folds
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx780
– volume: 116
  start-page: 3636
  year: 2019
  end-page: 3645
  ident: CR49
  article-title: Grammar of protein domain architectures
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1814684116
– volume: 17
  start-page: e1009446
  year: 2021
  ident: CR65
  article-title: Experimental and computational investigation of enzyme functional annotations uncovers misannotation in the EC 1.1.3.15 enzyme class
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1009446
– ident: CR93
– volume: 12
  start-page: 29
  year: 2016
  end-page: 34
  ident: CR9
  article-title: De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1966
– ident: CR87
– volume: 11
  start-page: 3316
  year: 2020
  end-page: 3325
  ident: CR69
  article-title: Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC05704H
– ident: CR12
– volume: 537
  start-page: 320
  year: 2016
  end-page: 327
  ident: CR100
  article-title: The coming of age of de novo protein design
  publication-title: Nature
  doi: 10.1038/nature19946
– ident: CR35
– ident: CR61
– ident: CR58
– ident: CR84
– volume: 21
  start-page: 951
  year: 2005
  end-page: 960
  ident: CR20
  article-title: Protein homology detection by HMM-HMM comparison
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti125
– volume: 465
  start-page: 219
  year: 2010
  end-page: 222
  ident: CR6
  article-title: A formal test of the theory of universal common ancestry
  publication-title: Nature
  doi: 10.1038/nature09014
– volume: 7
  start-page: 422
  year: 1997
  end-page: 427
  ident: CR8
  article-title: Circular permutations of natural protein sequences: structural evidence
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(97)80061-9
– ident: CR46
– volume: 44
  start-page: D330
  year: 2016
  end-page: D335
  ident: CR66
  article-title: COMBREX-DB: an experiment centered database of protein function: knowledge, predictions and knowledge gaps
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1324
– ident: CR96
– ident: CR67
– ident: CR75
– ident: CR15
– volume: 51
  start-page: 91
  year: 2008
  end-page: 97
  ident: CR80
  article-title: Anton, a special-purpose machine for molecular dynamics simulation
  publication-title: Commun. ACM
  doi: 10.1145/1364782.1364802
– volume: 2
  start-page: 573
  year: 2020
  end-page: 584
  ident: CR73
  article-title: Drug discovery with explainable artificial intelligence
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00236-4
– volume: 62
  start-page: 101983
  year: 2020
  ident: CR60
  article-title: Patent claim generation by fine-tuning OpenAI GPT-2
  publication-title: World Pat. Inf.
  doi: 10.1016/j.wpi.2020.101983
– volume: 23
  start-page: 1
  year: 2022
  end-page: 39
  ident: CR98
  article-title: Switch transformers: scaling to trillion parameter models with simple and efficient sparsity
  publication-title: J. Mach. Learn. Res.
– ident: CR32
– ident: CR78
– ident: CR64
– ident: CR99
– volume: 600
  start-page: 547
  year: 2021
  end-page: 552
  ident: CR55
  article-title: De novo protein design by deep network hallucination
  publication-title: Nature
  doi: 10.1038/s41586-021-04184-w
– ident: CR95
– volume: 11
  start-page: 321
  year: 2021
  ident: CR70
  article-title: Transformer neural network for protein-specific de novo drug generation as a machine translation problem
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79682-4
– ident: CR43
– volume: 491
  start-page: 222
  year: 2012
  end-page: 227
  ident: CR72
  article-title: Principles for designing ideal protein structures
  publication-title: Nature
  doi: 10.1038/nature11600
– ident: CR14
– volume: 10
  start-page: 202
  year: 2009
  ident: CR19
  article-title: NLStradamus: a simple hidden Markov model for nuclear localization signal prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-202
– ident: CR53
– volume: 10
  start-page: e0141287
  year: 2015
  ident: CR27
  article-title: Continuous distributed representation of biological sequences for deep proteomics and genomics
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0141287
– volume: 3
  start-page: 144
  year: 2021
  end-page: 152
  ident: CR71
  article-title: Mapping the space of chemical reactions using attention-based neural networks
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00284-w
– volume: 9
  start-page: 6091
  year: 2018
  end-page: 6098
  ident: CR68
  article-title: ‘Found in Translation’: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02339E
– ident: CR79
– ident: CR40
– ident: CR23
– volume: 16
  start-page: 17315
  year: 2015
  end-page: 17330
  ident: CR29
  article-title: DeepCNF-D: predicting protein order/disorder regions by weighted deep convolutional neural fields
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms160817315
– volume: 602
  start-page: 523
  year: 2022
  end-page: 528
  ident: CR56
  article-title: A backbone-centred energy function of neural networks for protein design
  publication-title: Nature
  doi: 10.1038/s41586-021-04383-5
– ident: CR48
– ident: CR90
– volume: 21
  start-page: 1
  year: 2020
  end-page: 67
  ident: CR97
  article-title: Exploring the limits of transfer learning with a unified text-to-text transformer
  publication-title: J. Mach. Learn. Res.
– volume: 3
  start-page: 1137
  year: 2003
  end-page: 1155
  ident: CR21
  article-title: A neural probabilistic language model
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 702
  year: 2016
  ident: CR10
  article-title: Phonotactic constraints are activated across languages in bilinguals
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2016.00702
– ident: CR34
– ident: CR59
– ident: CR76
– volume: 18
  start-page: 309
  year: 1994
  end-page: 317
  ident: CR11
  article-title: Correlated mutations and residue contacts in proteins
  publication-title: Proteins Struct. Funct. Bioinformatics
  doi: 10.1002/prot.340180402
– ident: CR28
– ident: CR62
– ident: 499_CR16
  doi: 10.3115/1073083.1073163
– ident: 499_CR78
– volume: 51
  start-page: 504
  year: 2003
  ident: 499_CR17
  publication-title: Proteins Struct. Funct. Genet.
  doi: 10.1002/prot.10369
– volume: 20
  start-page: 681
  year: 2019
  ident: 499_CR3
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0163-x
– volume: 600
  start-page: 547
  year: 2021
  ident: 499_CR55
  publication-title: Nature
  doi: 10.1038/s41586-021-04184-w
– volume: 10
  start-page: 202
  year: 2009
  ident: 499_CR19
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-202
– ident: 499_CR41
– ident: 499_CR15
  doi: 10.1109/MCI.2018.2840738
– ident: 499_CR93
– volume: 23
  start-page: 1
  year: 2022
  ident: 499_CR98
  publication-title: J. Mach. Learn. Res.
– ident: 499_CR96
– ident: 499_CR85
  doi: 10.1101/2021.03.28.437402
– ident: 499_CR12
– ident: 499_CR58
  doi: 10.1101/2022.01.27.478087
– volume: 602
  start-page: 523
  year: 2022
  ident: 499_CR56
  publication-title: Nature
  doi: 10.1038/s41586-021-04383-5
– ident: 499_CR44
– volume: 16
  start-page: 687
  year: 2019
  ident: 499_CR83
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0496-6
– ident: 499_CR64
  doi: 10.1101/2021.07.18.452833
– ident: 499_CR23
– volume: 51
  start-page: 91
  year: 2008
  ident: 499_CR80
  publication-title: Commun. ACM
  doi: 10.1145/1364782.1364802
– volume: 34
  start-page: 2642
  year: 2018
  ident: 499_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty178
– ident: 499_CR76
– volume: 16
  start-page: 17315
  year: 2015
  ident: 499_CR29
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms160817315
– volume: 3
  start-page: 1137
  year: 2003
  ident: 499_CR21
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 55
  year: 2017
  ident: 499_CR25
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2018.2840738
– ident: 499_CR34
– volume: 116
  start-page: 3636
  year: 2019
  ident: 499_CR49
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1814684116
– volume: 7
  start-page: 702
  year: 2016
  ident: 499_CR10
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2016.00702
– volume: 7
  start-page: 422
  year: 1997
  ident: 499_CR8
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(97)80061-9
– ident: 499_CR89
– ident: 499_CR62
– ident: 499_CR67
  doi: 10.1038/s41587-021-01179-w
– ident: 499_CR45
  doi: 10.18653/v1/W19-2304
– volume: 62
  start-page: 101983
  year: 2020
  ident: 499_CR60
  publication-title: World Pat. Inf.
  doi: 10.1016/j.wpi.2020.101983
– ident: 499_CR47
– ident: 499_CR33
  doi: 10.18653/v1/N16-1030
– volume: 21
  start-page: 951
  year: 2005
  ident: 499_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti125
– volume: 114
  start-page: 10900
  year: 2017
  ident: 499_CR86
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1707171114
– ident: 499_CR14
  doi: 10.18653/v1/E17-1008
– ident: 499_CR18
  doi: 10.1109/ICDM.2005.52
– ident: 499_CR39
– ident: 499_CR90
– ident: 499_CR84
– ident: 499_CR42
– ident: 499_CR32
  doi: 10.21437/Interspeech.2010-343
– volume: 44
  start-page: D330
  year: 2016
  ident: 499_CR66
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1324
– volume: 11
  start-page: 321
  year: 2021
  ident: 499_CR70
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79682-4
– volume: 3
  start-page: 144
  year: 2021
  ident: 499_CR71
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00284-w
– ident: 499_CR74
– volume: 55
  start-page: 2200
  year: 2015
  ident: 499_CR82
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.5b00453
– ident: 499_CR95
  doi: 10.1145/3394486.3406703
– volume: 32
  start-page: 7057
  year: 2019
  ident: 499_CR88
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2
  start-page: 423
  year: 2020
  ident: 499_CR77
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0219-9
– volume: 10
  start-page: e0141287
  year: 2015
  ident: 499_CR27
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0141287
– volume: 17
  start-page: e1009446
  year: 2021
  ident: 499_CR65
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1009446
– volume: 108
  start-page: 10184
  year: 2011
  ident: 499_CR81
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1103547108
– ident: 499_CR22
– ident: 499_CR54
– ident: 499_CR79
– ident: 499_CR48
– volume: 537
  start-page: 320
  year: 2016
  ident: 499_CR100
  publication-title: Nature
  doi: 10.1038/nature19946
– ident: 499_CR63
  doi: 10.1101/2020.03.07.982272
– volume: 32
  start-page: 9689
  year: 2019
  ident: 499_CR51
  publication-title: Adv. Neural Inf. Process. Syst
– ident: 499_CR40
– volume: 465
  start-page: 219
  year: 2010
  ident: 499_CR6
  publication-title: Nature
  doi: 10.1038/nature09014
– ident: 499_CR52
  doi: 10.1109/TPAMI.2021.3095381
– ident: 499_CR92
– ident: 499_CR46
  doi: 10.1007/978-3-030-32381-3_16
– volume: 118
  start-page: e2016239118
  year: 2021
  ident: 499_CR50
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2016239118
– ident: 499_CR59
  doi: 10.1101/2022.03.09.483666
– ident: 499_CR99
– volume: 47
  start-page: 67
  year: 2018
  ident: 499_CR1
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2018.07.022
– volume: 418
  start-page: 869
  year: 2002
  ident: 499_CR5
  publication-title: Nature
  doi: 10.1038/nature01025
– ident: 499_CR36
  doi: 10.48550/arxiv.1609.07959
– ident: 499_CR57
– volume: 12
  start-page: 29
  year: 2016
  ident: 499_CR9
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1966
– volume: 18
  start-page: 309
  year: 1994
  ident: 499_CR11
  publication-title: Proteins Struct. Funct. Bioinformatics
  doi: 10.1002/prot.340180402
– volume: 21
  start-page: 2157
  year: 2015
  ident: 499_CR7
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-2821
– ident: 499_CR28
  doi: 10.1145/1390156.1390177
– ident: 499_CR61
  doi: 10.1101/2021.12.22.473759
– ident: 499_CR75
  doi: 10.18653/v1/2020.acl-demos.22
– volume: 432
  start-page: 3898
  year: 2020
  ident: 499_CR4
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2020.04.013
– volume: 32
  start-page: i121
  year: 2016
  ident: 499_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw255
– ident: 499_CR91
– volume: 16
  start-page: 1315
  year: 2019
  ident: 499_CR37
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0598-1
– ident: 499_CR43
– ident: 499_CR24
– volume: 577
  start-page: 706
  year: 2020
  ident: 499_CR38
  publication-title: Nature
  doi: 10.1038/s41586-019-1923-7
– volume: 39
  start-page: 16
  year: 2016
  ident: 499_CR2
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2016.03.006
– volume: 21
  start-page: 1
  year: 2020
  ident: 499_CR97
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 6091
  year: 2018
  ident: 499_CR68
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02339E
– volume: 491
  start-page: 222
  year: 2012
  ident: 499_CR72
  publication-title: Nature
  doi: 10.1038/nature11600
– ident: 499_CR35
– volume: 11
  start-page: 3316
  year: 2020
  ident: 499_CR69
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC05704H
– volume: 596
  start-page: 583
  year: 2021
  ident: 499_CR13
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– ident: 499_CR53
  doi: 10.1038/s41587-021-01196-9
– volume: 34
  start-page: 1295
  year: 2018
  ident: 499_CR31
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx780
– ident: 499_CR94
– ident: 499_CR87
  doi: 10.18653/v1/P19-1285
– volume: 2
  start-page: 573
  year: 2020
  ident: 499_CR73
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00236-4
SSID ssj0002144504
Score 2.552623
SecondaryResourceType review_article
Snippet The twenty-first century is presenting humankind with unprecedented environmental and medical challenges. The ability to design novel proteins tailored for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 521
SubjectTerms 631/114/1305
639/705/1042
Algorithms
Amino acids
Artificial intelligence
Controllability
Custom design
Energy
Engineering
Language
Machine learning
Natural language processing
Peptides
Proteins
Review Article
Transformers
Title Controllable protein design with language models
URI https://link.springer.com/article/10.1038/s42256-022-00499-z
https://www.proquest.com/docview/2893825206
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA5ue_FFFBWnc_TBNw1Lmx9tn0TH5hAcIg72FtokBWF0086X_fVe0nRDwT23Deldcvnuu8sdQjcsSUNDeIYVDxVmNCtwlucxjnXBNcANQ1xvwJepmMzY85zPPeFW-bTKxiY6Q62XynLkA3AMKHgzERH3q09su0bZ6KpvodFCHTDBCThfncfR9PVty7LYgmCcMH9bhtBkUDFYwTbvNsIO7uPN7xNpBzP_REbdgTM-RkceKQYPtWpP0IEpTxEZ1qnlC3vjKXBFFj7KQLs0jMByqkFDQAaux011hmbj0ftwgn3TA6xgN6xxESVcaJi1oZSLOONECWpUGlItbLEgwRKtlIjiLKepUJlQAPkBZSjwLXTMCD1H7XJZmgsUZKHRVAme5-DGCW3yHGwZVyoqUgO4gXVR2Py4VL4iuG1MsZAuMk0TWQtLgrCkE5bcdNHt9ptVXQ9j79u9Rp7S741K7jTZRXeNjHeP_x_tcv9oV-gwcmq1FEkPtddf3-YaEMM676NWMn7q-8XxA50Vvmc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCQIAYDOgBThCtbR5tDwghYGxscAJpt9AmmYQ0bYMOIfaj-I04absJJLhxTmspjmN_dvwAOGJxEhifp0TxQBFG0z5Jsywike5zjXDD-G424N29aD2y2x7vLcBnVQtj0yornegUtR4pGyNvoGNA0ZsJfXE-fiF2apR9Xa1GaBRi0TEf7-iy5WftKzzf4zBsXj9ctkg5VYAoFLcJ6YcxF5oxbijlIkq5rwQ1KgmoFrYbj2CxVkqEUZrRRKhUKMTUaMYVgncdMZ8i3UVYZhRXbWV682YW07Htx7jPytocn8aNnOF9sVm-IXHOBZl-t39zUPvjHdaZt-Y6rJW41LsoBGkDFsxwE_zLIpF9YOurPNfS4XnoaZf04dkIrleFOz03USffgsd_YcY2LA1HQ7MDXhoYTZXgWYZOo9Amy1BzcqXCfmIQpbAaBNXGpSr7j9sxGAPp3sFpLAtmSWSWdMyS0xqczP4ZF903_vy6XvFTljcxl3O5qcFpxeP58u_Udv-mdggrrYe7ruy27zt7sBq6I7bBmTosTV7fzD5ilUl24ATEg6f_lsgv53b2uQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50BfEiiorrswc9adi0ebR7EPGxi89FxAVvsU1SEJb1sSuiP81f5yRtd1HQ294KbQY6-TL5ZjKZAdjhSTO0VKREi1ATztKcpFkWk9jkwiDdsNT3BrzuyLMuv7gX91PwVd2FcWmVlU30hto8aRcjb6BjwNCbiahs5GVaxM1p-_D5hbgOUu6ktWqnUUDk0n68o_s2ODg_xbnejaJ26-7kjJQdBohG6A1JHiVCGs6FZUzIOBVUS2Z1M2RGuso8kidGaxnFacaaUqdSI7_GLV0jkTcxpwzlTsMMPsW0BjPHrc7N7SjC44qRCcrLmzqUJY0Bx9Xjcn4j4l0N8vlzNxxT3F-nsn6zay_AfMlSg6MCVoswZftLQE-KtPaeu20V-AIPj_3A-BSQwMVzgyr4Gfj-OoNl6E5EHStQ6z_17SoEaWgN01JkGbqQ0tgsQzsqtI7ypkXOwusQVj-udFmN3DXF6Cl_Ks4SVShLobKUV5b6rMPeaMxzUYvj3683Kn2qcl0O1BhFddivdDx-_be0tf-lbcMsolFdnXcu12Eu8jPsIjUbUBu-vtlNJC7DbKtESAAPkwblN6SK_Es
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+protein+design+with+language+models&rft.jtitle=Nature+machine+intelligence&rft.au=Ferruz%2C+Noelia&rft.au=H%C3%B6cker%2C+Birte&rft.date=2022-06-01&rft.issn=2522-5839&rft.eissn=2522-5839&rft.volume=4&rft.issue=6&rft.spage=521&rft.epage=532&rft_id=info:doi/10.1038%2Fs42256-022-00499-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s42256_022_00499_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-5839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-5839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-5839&client=summon