Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite
This research investigated the role of adding bio toughener and reinforcements in the process of making biocomposite for sustainable engineering applications. The primary aim of this study was to develop a biocomposite material using agricultural waste and validate the performance of the composite p...
Saved in:
Published in | Biomass conversion and biorefinery Vol. 14; no. 5; pp. 6609 - 6620 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This research investigated the role of adding bio toughener and reinforcements in the process of making biocomposite for sustainable engineering applications. The primary aim of this study was to develop a biocomposite material using agricultural waste and validate the performance of the composite prepared. The areca fiber was procured from a fiber firm, while the rice husk ash (RHA) biochar and cardanol oil (CO) were prepared by low-temperature pyrolysis and Soxhlet extraction respectively. The areca fiber was surface-treated by alkali-silane through hydrolysis process. The biocomposites were prepared using hand the layup method, followed by curing at elevated temperature. The composites underwent testing as per the American Society for Testing and Materials (ASTM) standards. According to the mechanical properties, the addition of cardinal oil to the resin improved the toughening effect along with areca fiber and biochar. Highest tensile strength of 208 MPa, flexural strength of 236 MPa, and Izod impact toughness of 7.2 J were noted for composite designation NC
3
. The wear properties of cardanol oil-toughened epoxy resin composites showed a downtrend; however, further addition of biochar particle of 1 vol.% improved the coefficient of friction (COF) and sp. wear rate. Similarly, the fatigue behavior of composite designation NC
3
showed the highest life counts of 50,622 for 50% of ultimate tensile stress (UTS) at 3 Hz. The scanning electron microscope (SEM) fractograph images revealed improved adhesion for fiber to resin and the trace for toughness improvement. These high toughness epoxy biocomposites made using agricultural waste-derived reinforcements could be sustainable, cost-effective, and environment-friendly and used as an alternate material in structural, defense, automotive, and drone applications. |
---|---|
AbstractList | This research investigated the role of adding bio toughener and reinforcements in the process of making biocomposite for sustainable engineering applications. The primary aim of this study was to develop a biocomposite material using agricultural waste and validate the performance of the composite prepared. The areca fiber was procured from a fiber firm, while the rice husk ash (RHA) biochar and cardanol oil (CO) were prepared by low-temperature pyrolysis and Soxhlet extraction respectively. The areca fiber was surface-treated by alkali-silane through hydrolysis process. The biocomposites were prepared using hand the layup method, followed by curing at elevated temperature. The composites underwent testing as per the American Society for Testing and Materials (ASTM) standards. According to the mechanical properties, the addition of cardinal oil to the resin improved the toughening effect along with areca fiber and biochar. Highest tensile strength of 208 MPa, flexural strength of 236 MPa, and Izod impact toughness of 7.2 J were noted for composite designation NC3. The wear properties of cardanol oil-toughened epoxy resin composites showed a downtrend; however, further addition of biochar particle of 1 vol.% improved the coefficient of friction (COF) and sp. wear rate. Similarly, the fatigue behavior of composite designation NC3 showed the highest life counts of 50,622 for 50% of ultimate tensile stress (UTS) at 3 Hz. The scanning electron microscope (SEM) fractograph images revealed improved adhesion for fiber to resin and the trace for toughness improvement. These high toughness epoxy biocomposites made using agricultural waste-derived reinforcements could be sustainable, cost-effective, and environment-friendly and used as an alternate material in structural, defense, automotive, and drone applications. This research investigated the role of adding bio toughener and reinforcements in the process of making biocomposite for sustainable engineering applications. The primary aim of this study was to develop a biocomposite material using agricultural waste and validate the performance of the composite prepared. The areca fiber was procured from a fiber firm, while the rice husk ash (RHA) biochar and cardanol oil (CO) were prepared by low-temperature pyrolysis and Soxhlet extraction respectively. The areca fiber was surface-treated by alkali-silane through hydrolysis process. The biocomposites were prepared using hand the layup method, followed by curing at elevated temperature. The composites underwent testing as per the American Society for Testing and Materials (ASTM) standards. According to the mechanical properties, the addition of cardinal oil to the resin improved the toughening effect along with areca fiber and biochar. Highest tensile strength of 208 MPa, flexural strength of 236 MPa, and Izod impact toughness of 7.2 J were noted for composite designation NC 3 . The wear properties of cardanol oil-toughened epoxy resin composites showed a downtrend; however, further addition of biochar particle of 1 vol.% improved the coefficient of friction (COF) and sp. wear rate. Similarly, the fatigue behavior of composite designation NC 3 showed the highest life counts of 50,622 for 50% of ultimate tensile stress (UTS) at 3 Hz. The scanning electron microscope (SEM) fractograph images revealed improved adhesion for fiber to resin and the trace for toughness improvement. These high toughness epoxy biocomposites made using agricultural waste-derived reinforcements could be sustainable, cost-effective, and environment-friendly and used as an alternate material in structural, defense, automotive, and drone applications. |
Author | VR, Arun Prakash Alshahrani, Hassan |
Author_xml | – sequence: 1 givenname: Hassan surname: Alshahrani fullname: Alshahrani, Hassan organization: Department of Mechanical Engineering, College of Engineering, Najran University – sequence: 2 givenname: Arun Prakash orcidid: 0000-0002-6134-6289 surname: VR fullname: VR, Arun Prakash email: vinprakash101@gmail.com organization: Department of Mechanical Engineering, J.N.N Institute of Engineering |
BookMark | eNp9kM1qGzEURkVxoUnqF-hKkK3V6GfGM1oa09SBlEBo1-KO5o6tdCK5kpzUT9DXjmKHFLLIQlwtvvPdyzklEx88EvJF8K-C8-YiCaW0ZlzK8uZasP0HciKF5mzeSjV5_Yv6E5mmdMc5l6pRreIn5N8PtBvwzsI4o48IcUbB93SA7NY7pB1u4MGFSMNAYfwNo2PJjeCR5YiQsacQ0QIdXIcFvV0taOdCaXzpsRB78GGkwY0sh916g75AuA1_94dkuN-G5DJ-Jh8HGBNOX-YZ-XX57edyxa5vvl8tF9fMKqEzGwToQdrKgrYgYK5qOQDaSjfzvmlbYSXWTVV3oLTQfWuxE9r2IJqqEVVfoToj58febQx_dpiyuQu76MtKI7VSNddVI0uqPaZsDClFHIx1uSgJPkdwoxHcPJs3R_OmmDcH82ZfUPkG3UZ3D3H_PqSOUCphv8b4_6p3qCfhtJpj |
CitedBy_id | crossref_primary_10_1002_pc_26802 crossref_primary_10_1007_s13399_024_06338_y crossref_primary_10_1088_1402_4896_ad804e crossref_primary_10_1007_s13399_024_06298_3 crossref_primary_10_1007_s13399_024_06171_3 crossref_primary_10_1002_pc_26805 crossref_primary_10_1515_ipp_2023_4410 crossref_primary_10_1007_s13399_023_04905_3 crossref_primary_10_1007_s13399_024_05335_5 crossref_primary_10_1007_s42452_025_06583_4 crossref_primary_10_1063_5_0215621 crossref_primary_10_1002_pc_27010 crossref_primary_10_1007_s41779_025_01153_8 crossref_primary_10_1007_s13399_022_03679_4 crossref_primary_10_1007_s12633_024_03185_4 crossref_primary_10_1007_s13399_024_06306_6 crossref_primary_10_1007_s12633_022_02281_7 crossref_primary_10_1007_s13399_023_04831_4 crossref_primary_10_1007_s13399_024_06245_2 crossref_primary_10_1007_s00289_024_05418_3 crossref_primary_10_1007_s13399_023_04187_9 crossref_primary_10_1007_s13399_022_03030_x crossref_primary_10_1007_s13399_024_06012_3 crossref_primary_10_1007_s00289_024_05268_z crossref_primary_10_1007_s13399_022_03409_w crossref_primary_10_1007_s13399_024_05614_1 crossref_primary_10_1007_s13399_022_03661_0 crossref_primary_10_1007_s13399_022_03549_z crossref_primary_10_1007_s13399_022_02787_5 crossref_primary_10_1007_s00289_024_05427_2 crossref_primary_10_1007_s13399_022_03413_0 crossref_primary_10_1007_s12633_024_03054_0 crossref_primary_10_1080_15440478_2024_2357236 crossref_primary_10_1007_s13399_022_03128_2 crossref_primary_10_1007_s13399_024_06029_8 crossref_primary_10_1007_s13399_022_03529_3 crossref_primary_10_1007_s13399_022_02801_w crossref_primary_10_1051_metal_2022065 crossref_primary_10_1007_s13399_024_05349_z crossref_primary_10_1007_s13399_024_05894_7 crossref_primary_10_1007_s13399_022_02867_6 crossref_primary_10_1007_s13399_023_05082_z crossref_primary_10_1007_s13399_023_04172_2 crossref_primary_10_1007_s12633_022_02227_z crossref_primary_10_1177_15280837221137382 crossref_primary_10_1007_s00289_024_05589_z crossref_primary_10_1007_s13399_023_04416_1 crossref_primary_10_1007_s13399_022_03559_x crossref_primary_10_1016_j_jmrt_2024_06_058 crossref_primary_10_1007_s12633_022_02135_2 crossref_primary_10_1007_s13399_023_05199_1 crossref_primary_10_1088_2053_1591_acb1f6 crossref_primary_10_1007_s13399_023_04104_0 crossref_primary_10_1007_s13399_024_06013_2 crossref_primary_10_1007_s00289_024_05459_8 crossref_primary_10_1002_pc_26938 crossref_primary_10_1007_s13399_023_03867_w crossref_primary_10_1007_s13399_022_03469_y crossref_primary_10_1007_s13399_024_06050_x crossref_primary_10_1007_s13399_023_04736_2 crossref_primary_10_1007_s13399_024_06102_2 crossref_primary_10_1007_s13399_023_04349_9 crossref_primary_10_1007_s12633_023_02715_w crossref_primary_10_1007_s13399_023_05176_8 crossref_primary_10_1177_14644207241267123 crossref_primary_10_1007_s12633_024_03152_z crossref_primary_10_1007_s12633_023_02370_1 crossref_primary_10_1002_pc_26810 crossref_primary_10_1016_j_porgcoat_2022_107080 crossref_primary_10_1002_pc_26930 |
Cites_doi | 10.1016/j.porgcoat.2015.07.012 10.1016/j.matlet.2021.129678 10.1007/s42341-020-00179-y 10.1007/s12633-019-00297-0 10.1080/15440478.2016.1212757 10.1016/j.dt.2016.11.004 10.1007/s12633-020-00566-3 10.1016/j.conbuildmat.2021.124816 10.1016/j.chemosphere.2020.126539 10.1002/pc.26393 10.1007/s10965-021-02818-1 10.1016/j.compositesb.2021.109566 10.1007/s42247-021-00266-7 10.1007/s12633-020-00387-4 10.1007/s10570-021-04029-9 10.1007/s12633-020-00612-0 10.1016/j.wear.2019.203044 10.1007/s12633-020-00569-0 10.1016/j.apsusc.2016.04.185 10.1016/j.compositesb.2020.108157 10.1002/app.51511 10.1007/s10570-021-03755-4 10.1021/acs.iecr.7b04495 10.1088/2053-1591/ab1694 10.1007/s12633-020-00567-2 10.1016/j.compositesa.2019.01.008 10.1016/j.scitotenv.2020.144204 10.1007/s12633-021-01502-9 10.1007/s12633-021-01549-8 10.1201/9781003137535-1 10.1007/s13399-021-01941-9 10.1080/00218464.2021.1896362 10.1007/s13399-020-00831-w 10.1007/s12633-021-01060-0 10.1080/15440478.2021.1875380 10.1201/9781003137535-7 10.1007/s12633-020-00828-0 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13399-022-02691-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2190-6823 |
EndPage | 6620 |
ExternalDocumentID | 10_1007_s13399_022_02691_y |
GrantInformation_xml | – fundername: Najran University grantid: NU/RC/SERC/11/4 funderid: http://dx.doi.org/10.13039/501100005911 |
GroupedDBID | -EM 0R~ 0VY 203 29~ 2VQ 30V 4.4 406 408 409 96X AAAVM AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ8 HF~ HG6 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J PT4 RLLFE ROL RSV S1Z S27 SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z5O Z7V Z81 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-f1a9f2c4ca9ca1a6352faec4976d7881c2e5745ba3919d8ceb19cda174714d4e3 |
IEDL.DBID | U2A |
ISSN | 2190-6815 |
IngestDate | Fri Jul 25 10:55:26 EDT 2025 Thu Apr 24 23:00:14 EDT 2025 Tue Jul 01 02:29:57 EDT 2025 Fri Feb 21 02:41:49 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | Mechanical properties Composite Oil toughener Biochar Wear Fiber |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-f1a9f2c4ca9ca1a6352faec4976d7881c2e5745ba3919d8ceb19cda174714d4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6134-6289 |
PQID | 2933509472 |
PQPubID | 2043954 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2933509472 crossref_citationtrail_10_1007_s13399_022_02691_y crossref_primary_10_1007_s13399_022_02691_y springer_journals_10_1007_s13399_022_02691_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Processing of Biogenic Material for Energy and Chemistry |
PublicationTitle | Biomass conversion and biorefinery |
PublicationTitleAbbrev | Biomass Conv. Bioref |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Dinesh, Kadirvel, Hariharan (CR8) 2020; 12 Ben Samuel, JulyesJaisingh, Sivakumar, Mayakannan, Arunprakash (CR9) 2021; 13 Murugan, Arul, Jayaseelan, Jayabalakrishnan, Maridurai, Kumar, Ramesh, Prakash (CR4) 2020; 12 Kumar, Krishnan, Samal, Mohanty, Nayak (CR6) 2018; 57 Sahoo, Mohanty, Nayak (CR5) 2017; 14 CR17 CR39 Gheisari, Polycarpou (CR30) 2019; 436 CR38 CR37 CR36 CR13 Yahia, Owda, Abou-Zeid, Abdelhai, Gad, Saleh, El-Gamil (CR19) 2022; 139 Prakash, Rajadurai, Jayaseelan, Jerome Das, Murali, JulyesJaisingh (CR22) 2019; 6 Rajadurai (CR11) 2017; 13 Mohammed, Jeelani, Rangari (CR18) 2021; 292 CR33 Varghese, Ronald (CR24) 2021; 13 Hasan, Horváth, Kóczán, Bak, Alpár (CR25) 2021; 305 Zhang, Huiyu, Feng, Hao, Guoxin, Bin, Jianbin, Bo, ZhaoPu (CR31) 2022; 232 Jayabalakrishnan, Prabhu, Iqbal, Mugendiran, Ravi, Prakash (CR12) 2022; 43 Xiang, Zhang, Chen, Zou, He, Xin, Tsang, Ok, Gao (CR14) 2020; 252 Hasan, Horváth, Bak (CR29) 2021; 28 Gong, Song, Li, Xie, Luo (CR32) 2020; 197 Merizgui, Hadjadj, MecheriKious, Prakash (CR21) 2020; 21 Prakash, Viswanthan (CR2) 2019; 118 Sahoo, Mohanty, Nayak (CR7) 2015; 88 Hasan, Horváth, Kóczán, Le, Bak, Bejó, Alpár (CR27) 2021; 28 CR3 Leng, Xiong, Yang, Li, Zhou, Zhang, Jiang, Li, Huang (CR15) 2021; 763 Dharmavarapu, Reddy (CR35) 2021; 4 Jayabalakrishnan, Saravanan, Ravi, Prabhu, Maridurai, Prakash (CR23) 2021; 13 CR28 CR26 Dharmavarapu, Reddy (CR34) 2021; 13 CR20 CR40 Rajadurai (CR10) 2016; 384 Hasan, Horváth, Alpár (CR1) 2021; 28 Minugu, Gujjala, Shakuntala, Panchal Manoj, Chowdary (CR16) 2021; 235 Wei Xiang (2691_CR14) 2020; 252 2691_CR17 2691_CR39 Tahar Merizgui (2691_CR21) 2020; 21 A Rajadurai (2691_CR11) 2017; 13 M Murugan (2691_CR4) 2020; 12 2691_CR33 VR Arun Prakash (2691_CR2) 2019; 118 2691_CR13 2691_CR36 2691_CR37 2691_CR38 A Johhny Varghese (2691_CR24) 2021; 13 Pratibha Dharmavarapu (2691_CR34) 2021; 13 Om Prakash Minugu (2691_CR16) 2021; 235 SK Sahoo (2691_CR5) 2017; 14 SK Sahoo (2691_CR7) 2015; 88 R Yahia (2691_CR19) 2022; 139 KM Hasan (2691_CR27) 2021; 28 Reza Gheisari (2691_CR30) 2019; 436 2691_CR28 J Ben Samuel (2691_CR9) 2021; 13 VR Arun Prakash (2691_CR22) 2019; 6 KMF Hasan (2691_CR29) 2021; 28 Zaheeruddin Mohammed (2691_CR18) 2021; 292 2691_CR20 KM Hasan (2691_CR1) 2021; 28 S Kumar (2691_CR6) 2018; 57 Lijian Leng (2691_CR15) 2021; 763 Hanjun Gong (2691_CR32) 2020; 197 2691_CR26 2691_CR3 T Dinesh (2691_CR8) 2020; 12 Pratibha Dharmavarapu (2691_CR35) 2021; 4 KM Faridul Hasan (2691_CR25) 2021; 305 D Jayabalakrishnan (2691_CR12) 2022; 43 2691_CR40 A Rajadurai (2691_CR10) 2016; 384 D Jayabalakrishnan (2691_CR23) 2021; 13 Lin Zhang (2691_CR31) 2022; 232 |
References_xml | – volume: 88 start-page: 263 year: 2015 end-page: 271 ident: CR7 article-title: Study of thermal stability and thermo-mechanical behavior of functionalized soybean oil modified toughened epoxy/organo clay nanocomposite publication-title: Prog Org Coat doi: 10.1016/j.porgcoat.2015.07.012 – volume: 292 start-page: 129678 year: 2021 ident: CR18 article-title: Low temperature plasma treatment of rice husk derived hybrid silica/carbon biochar using different gas sources publication-title: Mater Lett doi: 10.1016/j.matlet.2021.129678 – volume: 21 start-page: 366 issue: 4 year: 2020 end-page: 376 ident: CR21 article-title: Effect of temperature and frequency on microwave shielding behaviour of functionalized kenaf fibre-reinforced MWCNTs/iron (III) oxide modified epoxy hybrid composite publication-title: Trans Electr Electron Mater doi: 10.1007/s42341-020-00179-y – volume: 12 start-page: 1847 issue: 8 year: 2020 end-page: 1856 ident: CR4 article-title: Low velocity impact and mechanical behaviour of shot blasted SiC wire-mesh and silane-treated aloevera/hemp/flax-reinforced SiC whisker modified epoxy resin composites publication-title: Silicon doi: 10.1007/s12633-019-00297-0 – volume: 14 start-page: 357 issue: 3 year: 2017 end-page: 367 ident: CR5 article-title: Mechanical, thermal, and interfacial characterization of randomly oriented short sisal fibers reinforced epoxy composite modified with epoxidized soybean oil publication-title: J Natural Fibers doi: 10.1080/15440478.2016.1212757 – volume: 13 start-page: 40 issue: 1 year: 2017 end-page: 46 ident: CR11 article-title: Inter laminar shear strength behavior of acid, base and silane treated E-glass fibre epoxy resin composites on drilling process publication-title: Defence Technology doi: 10.1016/j.dt.2016.11.004 – volume: 13 start-page: 1655 issue: 5 year: 2021 end-page: 1661 ident: CR24 article-title: Low velocity impact, fatigue and Visco-elastic behaviour of carbon/E-glass intra-ply fibre-reinforced Nano-silica toughened epoxy composite publication-title: Silicon doi: 10.1007/s12633-020-00566-3 – ident: CR39 – volume: 305 start-page: 124816 year: 2021 ident: CR25 article-title: Semi-dry technology-mediated coir fiber and Scots pine particle-reinforced sustainable cementitious composite panels publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2021.124816 – ident: CR37 – volume: 252 start-page: 126539 year: 2020 ident: CR14 article-title: Biochar technology in wastewater treatment: a critical review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126539 – volume: 43 start-page: 493 issue: 1 year: 2022 end-page: 502 ident: CR12 article-title: Mechanical, dielectric, and hydrophobicity behavior of coconut shell biochar toughened Caryota urens natural fiber reinforced epoxy composite publication-title: POLYMER COMPOSITES doi: 10.1002/pc.26393 – volume: 28 start-page: 1 issue: 12 year: 2021 end-page: 16 ident: CR27 article-title: Novel insulation panels development from multilayered coir short and long fiber reinforced phenol formaldehyde polymeric biocomposites publication-title: J Polym Res doi: 10.1007/s10965-021-02818-1 – ident: CR33 – volume: 232 start-page: 109566 year: 2022 ident: CR31 article-title: Wear in situ self healing polymer composites incorporated with bifunctional microcapsules publication-title: Compos B: Eng doi: 10.1016/j.compositesb.2021.109566 – ident: CR40 – volume: 4 start-page: 1377 issue: 5 year: 2021 end-page: 1386 ident: CR35 article-title: Performance analysis of silane grafted nanosilica and aramid fibre-reinforced epoxy composite in dynamic loading and energy application publication-title: Emergent Mater doi: 10.1007/s42247-021-00266-7 – volume: 12 start-page: 2911 issue: 12 year: 2020 end-page: 2920 ident: CR8 article-title: Thermo-mechanical and wear behaviour of surface-treated pineapple woven fibre and nano-silica dispersed mahua oil toughened epoxy composite publication-title: SILICON doi: 10.1007/s12633-020-00387-4 – volume: 28 start-page: 7859 year: 2021 end-page: 7875 ident: CR29 article-title: Rice straw and energy reed fibers reinforced phenol formaldehyde resin polymeric biocomposites publication-title: Cellulose doi: 10.1007/s10570-021-04029-9 – volume: 13 start-page: 2509 issue: 8 year: 2021 end-page: 2517 ident: CR23 article-title: Fabrication and characterization of acrylonitrile butadiene rubber and stitched E-glass fibre tailored Nano-silica epoxy resin composite publication-title: SILICON doi: 10.1007/s12633-020-00612-0 – volume: 436 start-page: 203044 year: 2019 ident: CR30 article-title: Tribological performance of graphite-filled polyimide and PTFE composites in oil-lubricated three-body abrasive conditions publication-title: Wear doi: 10.1016/j.wear.2019.203044 – volume: 13 start-page: 1703 issue: 6 year: 2021 end-page: 1712 ident: CR9 article-title: Visco-elastic, thermal, antimicrobial and dielectric behaviour of areca fibre-reinforced nano-silica and neem oil-toughened epoxy resin bio composite publication-title: Silicon doi: 10.1007/s12633-020-00569-0 – ident: CR3 – volume: 384 start-page: 99 year: 2016 end-page: 106 ident: CR10 article-title: Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.04.185 – ident: CR38 – ident: CR17 – volume: 197 start-page: 108157 year: 2020 ident: CR32 article-title: A highly tough and ultralow friction resin nanocomposite with crosslinkable polymer-encapsulated nanoparticles publication-title: Compos B: Eng doi: 10.1016/j.compositesb.2020.108157 – ident: CR13 – volume: 139 start-page: 51511 issue: 3 year: 2022 ident: CR19 article-title: Synthesis and characterization of thermoplastic starch/PVA/cardanol oil composites loaded with in-situ silver nanoparticles publication-title: J Appl Polym Sci doi: 10.1002/app.51511 – volume: 28 start-page: 3631 issue: 6 year: 2021 end-page: 3645 ident: CR1 article-title: Development of lignocellulosic fiber reinforced cement composite panels using semi-dry technology publication-title: Cellulose doi: 10.1007/s10570-021-03755-4 – ident: CR36 – volume: 57 start-page: 2711 issue: 8 year: 2018 end-page: 2726 ident: CR6 article-title: Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance applications: a review publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.7b04495 – volume: 235 start-page: 5626 issue: 21 year: 2021 end-page: 5638 ident: CR16 article-title: Effect of biomass derived biochar materials on mechanical properties of biochar epoxy composites publication-title: Proc IME C: J Mech Eng Sci – ident: CR28 – volume: 6 start-page: 076113 issue: 7 year: 2019 ident: CR22 article-title: Role of silanized magnetic Fe2O3 particle in heat dissipation and microwave shielding behavior of E-glass fibre-reinforced epoxy resin composite publication-title: Mater Res Express doi: 10.1088/2053-1591/ab1694 – ident: CR26 – volume: 13 start-page: 1741 issue: 6 year: 2021 end-page: 1750 ident: CR34 article-title: Mechanical, low velocity impact, fatigue and tribology behaviour of Silane grafted aramid fibre and Nano-silica toughened epoxy composite publication-title: Silicon doi: 10.1007/s12633-020-00567-2 – volume: 118 start-page: 317 year: 2019 end-page: 326 ident: CR2 article-title: Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite publication-title: Composites Part A: Appl Sci Manufacturing doi: 10.1016/j.compositesa.2019.01.008 – ident: CR20 – volume: 763 start-page: 144204 year: 2021 ident: CR15 article-title: An overview on engineering the surface area and porosity of biochar publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.144204 – volume: 292 start-page: 129678 year: 2021 ident: 2691_CR18 publication-title: Mater Lett doi: 10.1016/j.matlet.2021.129678 – volume: 197 start-page: 108157 year: 2020 ident: 2691_CR32 publication-title: Compos B: Eng doi: 10.1016/j.compositesb.2020.108157 – volume: 13 start-page: 40 issue: 1 year: 2017 ident: 2691_CR11 publication-title: Defence Technology doi: 10.1016/j.dt.2016.11.004 – volume: 88 start-page: 263 year: 2015 ident: 2691_CR7 publication-title: Prog Org Coat doi: 10.1016/j.porgcoat.2015.07.012 – volume: 13 start-page: 1655 issue: 5 year: 2021 ident: 2691_CR24 publication-title: Silicon doi: 10.1007/s12633-020-00566-3 – volume: 232 start-page: 109566 year: 2022 ident: 2691_CR31 publication-title: Compos B: Eng doi: 10.1016/j.compositesb.2021.109566 – ident: 2691_CR36 doi: 10.1007/s12633-021-01502-9 – volume: 57 start-page: 2711 issue: 8 year: 2018 ident: 2691_CR6 publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.7b04495 – volume: 235 start-page: 5626 issue: 21 year: 2021 ident: 2691_CR16 publication-title: Proc IME C: J Mech Eng Sci – volume: 436 start-page: 203044 year: 2019 ident: 2691_CR30 publication-title: Wear doi: 10.1016/j.wear.2019.203044 – volume: 28 start-page: 1 issue: 12 year: 2021 ident: 2691_CR27 publication-title: J Polym Res doi: 10.1007/s10965-021-02818-1 – ident: 2691_CR38 doi: 10.1007/s12633-021-01549-8 – ident: 2691_CR40 doi: 10.1201/9781003137535-1 – volume: 763 start-page: 144204 year: 2021 ident: 2691_CR15 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.144204 – ident: 2691_CR17 doi: 10.1007/s13399-021-01941-9 – volume: 21 start-page: 366 issue: 4 year: 2020 ident: 2691_CR21 publication-title: Trans Electr Electron Mater doi: 10.1007/s42341-020-00179-y – volume: 12 start-page: 1847 issue: 8 year: 2020 ident: 2691_CR4 publication-title: Silicon doi: 10.1007/s12633-019-00297-0 – volume: 14 start-page: 357 issue: 3 year: 2017 ident: 2691_CR5 publication-title: J Natural Fibers doi: 10.1080/15440478.2016.1212757 – volume: 28 start-page: 7859 year: 2021 ident: 2691_CR29 publication-title: Cellulose doi: 10.1007/s10570-021-04029-9 – volume: 13 start-page: 1741 issue: 6 year: 2021 ident: 2691_CR34 publication-title: Silicon doi: 10.1007/s12633-020-00567-2 – ident: 2691_CR37 doi: 10.1080/00218464.2021.1896362 – ident: 2691_CR26 doi: 10.1007/s13399-020-00831-w – volume: 13 start-page: 1703 issue: 6 year: 2021 ident: 2691_CR9 publication-title: Silicon doi: 10.1007/s12633-020-00569-0 – volume: 13 start-page: 2509 issue: 8 year: 2021 ident: 2691_CR23 publication-title: SILICON doi: 10.1007/s12633-020-00612-0 – volume: 139 start-page: 51511 issue: 3 year: 2022 ident: 2691_CR19 publication-title: J Appl Polym Sci doi: 10.1002/app.51511 – ident: 2691_CR13 doi: 10.1007/s12633-021-01060-0 – volume: 28 start-page: 3631 issue: 6 year: 2021 ident: 2691_CR1 publication-title: Cellulose doi: 10.1007/s10570-021-03755-4 – ident: 2691_CR33 – ident: 2691_CR3 doi: 10.1080/15440478.2021.1875380 – volume: 252 start-page: 126539 year: 2020 ident: 2691_CR14 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126539 – volume: 305 start-page: 124816 year: 2021 ident: 2691_CR25 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2021.124816 – volume: 118 start-page: 317 year: 2019 ident: 2691_CR2 publication-title: Composites Part A: Appl Sci Manufacturing doi: 10.1016/j.compositesa.2019.01.008 – volume: 6 start-page: 076113 issue: 7 year: 2019 ident: 2691_CR22 publication-title: Mater Res Express doi: 10.1088/2053-1591/ab1694 – ident: 2691_CR39 doi: 10.1201/9781003137535-7 – volume: 43 start-page: 493 issue: 1 year: 2022 ident: 2691_CR12 publication-title: POLYMER COMPOSITES doi: 10.1002/pc.26393 – ident: 2691_CR20 – volume: 384 start-page: 99 year: 2016 ident: 2691_CR10 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.04.185 – volume: 4 start-page: 1377 issue: 5 year: 2021 ident: 2691_CR35 publication-title: Emergent Mater doi: 10.1007/s42247-021-00266-7 – volume: 12 start-page: 2911 issue: 12 year: 2020 ident: 2691_CR8 publication-title: SILICON doi: 10.1007/s12633-020-00387-4 – ident: 2691_CR28 doi: 10.1007/s12633-020-00828-0 |
SSID | ssj0002373830 |
Score | 2.5582025 |
Snippet | This research investigated the role of adding bio toughener and reinforcements in the process of making biocomposite for sustainable engineering applications.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6609 |
SubjectTerms | Agricultural wastes Biomedical materials Biotechnology Coefficient of friction Composite materials Energy Epoxy resins Flexural strength High temperature Impact strength Low temperature Materials fatigue Mechanical properties Original Article Pyrolysis Renewable and Green Energy Silanes Tensile strength Tensile stress Toughness Wear rate |
Title | Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite |
URI | https://link.springer.com/article/10.1007/s13399-022-02691-y https://www.proquest.com/docview/2933509472 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ULnowPiOKpAdv0oTukz0SAxINHowkeNrM9mGIZNcIRPkF_m1nll1QoyaetzuHftPp13a-GcbO26Gjw1bLCHC1Fl4AuOasdIUHNgHlKOTkdKE_uA36Q-965I8KUdi0zHYvnyTzSL0Wu7kuKebx8ITnhkiKxSar-nR2Ry8eOp3VzYpDxXryJiMO6aSDtvQLtczPZr7uSGua-e1lNN9wertsp2CKvLOEdo9tmHSfbX-qH3jA3geGhLs0z03-ij7b5JBqbnG2H-eGlxJ8nlkOkydk3GI6puRWkaeXG80B4x1wS1kjTX7X7_BknJEOa2lHofdAmk14Np6IGbXzwcCoOVL2t0U-EmMJ5XyZQzbsde8v-6LorCAULrmZsBIii0AoiBRIQNLhWDAITBhoqi-vHOOHnp-AG8lItxUG9EhpkHSC9bRn3CNWSbPUHDOeQIjWqA6edT0daAgSPwLVkippG9yAa0yWsxurouw4db-YxOuCyYRIjIjEOSLxosYuVv88L4tu_Dm6XoIWFwtwGiOLcak2YOjUWLMEcv35d2sn_xt-yrbQBb1lVlqdVWYvc3OGNGWWNFi1c_Vw023k3vkBb9HiMA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDsABsYqy-sCNWqqd_VghUFnKAVGJWzTxgiqqBNFW0C_gt5lJEwoIkDjHmYOfPX625z0zdhxHykStlhXgGSP8EHDOOekJH1wGWmnk5HSg370JOz3_8j64r0Rhw7ravb6SLDP1TOzmeaSYx80T7hsSKSbzbBHJQEyFXD3V_jhZUWTWUz4yokgnHcYyqNQyP4f5uiLNaOa3m9FywTlfY6sVU-TtKbTrbM7mG2zlk3_gJnvrWhLuUj83-QuO2SaH3HCHvf0wtryW4PPCcRg8IuMWwz4Vt4qyvNwaDpjvgDuqGmny206bZ_2CdFjTOBpHD-TFgBf9gRjRcz6YGA1Hyv46KVtiLqGaL7vFeudnd6cdUb2sIDROuZFwEhKHQGhINEhA0qEcWAQmCg35y2tlg8gPMvASmZhYY0JPtAFJO1jf-NbbZgt5kdsdxjOIMBr54DnPN6GBMAsS0C2ps9jiAtxgsu7dVFe24_T6xSCdGSYTIikikpaIpJMGO_n452lquvFn6_0atLSagMMUWYxH3oCRarBmDeTs8-_Rdv_X_Igtde661-n1xc3VHltWSHmmFWr7bGH0PLYHSFlG2WE5Qt8BJOPjjw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKKlVwQFCKSAngQ2-Nldj7yh4jIEoLiaqqkXJbzfqBIla7FdmI5hfwt5nZRxIQIHFe7xxm7PFne75vGLsYRcpEw6EV4Bkj_BBwzTnpCR9cClppxOR0oT-bh9OFf70Mlgcs_qravX2SrDkNpNKUl4N74wZ74pvnEXseD1J4hoil2D5ix5iOJc3rhRrvblkUCfdUDUcUcabDkQwa5syfzfy6O-0h52-vpNXmM3nGnjaokY_rMD9nRzY_ZU8OtARfsB8zSyRe8nmff8f52-eQG-7Q8182lrd0fF44DtlXRN9ivaJCV1GVmlvDAXMfcEcVJH1-Ox3zdFUQJ6u2o3EmQV5kvFhloqTWPpgkDUf4_rCtRmJeofove8YWk49376ei6bIgNPqrFE5C7DAoGmINEhCAKAcWgxSFhrTmtbJB5AcpeLGMzUhjco-1AUmnWd_41nvJOnmR21eMpxChNdLEc55vQgNhGsSgh1KnI4ubcZfJ1ruJbiTIqRNGluzFkykiCUYkqSKSbLvscvfPfS3A8c_RvTZoSbMY1wkiGo90AiPVZf02kPvPf7d2_n_D37GTmw-T5PPV_NNr9lgh-qmL1XqsU37b2DeIXsr0bTVBfwI38ufL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical%2C+wear%2C+and+fatigue+behavior+of+alkali-silane-treated+areca+fiber%2C+RHA+biochar%2C+and+cardanol+oil-toughened+epoxy+biocomposite&rft.jtitle=Biomass+conversion+and+biorefinery&rft.au=Alshahrani%2C+Hassan&rft.au=VR%2C+Arun+Prakash&rft.date=2024-03-01&rft.issn=2190-6815&rft.eissn=2190-6823&rft.volume=14&rft.issue=5&rft.spage=6609&rft.epage=6620&rft_id=info:doi/10.1007%2Fs13399-022-02691-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13399_022_02691_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-6815&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-6815&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-6815&client=summon |