Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite

This research investigated the role of adding bio toughener and reinforcements in the process of making biocomposite for sustainable engineering applications. The primary aim of this study was to develop a biocomposite material using agricultural waste and validate the performance of the composite p...

Full description

Saved in:
Bibliographic Details
Published inBiomass conversion and biorefinery Vol. 14; no. 5; pp. 6609 - 6620
Main Authors Alshahrani, Hassan, VR, Arun Prakash
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This research investigated the role of adding bio toughener and reinforcements in the process of making biocomposite for sustainable engineering applications. The primary aim of this study was to develop a biocomposite material using agricultural waste and validate the performance of the composite prepared. The areca fiber was procured from a fiber firm, while the rice husk ash (RHA) biochar and cardanol oil (CO) were prepared by low-temperature pyrolysis and Soxhlet extraction respectively. The areca fiber was surface-treated by alkali-silane through hydrolysis process. The biocomposites were prepared using hand the layup method, followed by curing at elevated temperature. The composites underwent testing as per the American Society for Testing and Materials (ASTM) standards. According to the mechanical properties, the addition of cardinal oil to the resin improved the toughening effect along with areca fiber and biochar. Highest tensile strength of 208 MPa, flexural strength of 236 MPa, and Izod impact toughness of 7.2 J were noted for composite designation NC 3 . The wear properties of cardanol oil-toughened epoxy resin composites showed a downtrend; however, further addition of biochar particle of 1 vol.% improved the coefficient of friction (COF) and sp. wear rate. Similarly, the fatigue behavior of composite designation NC 3 showed the highest life counts of 50,622 for 50% of ultimate tensile stress (UTS) at 3 Hz. The scanning electron microscope (SEM) fractograph images revealed improved adhesion for fiber to resin and the trace for toughness improvement. These high toughness epoxy biocomposites made using agricultural waste-derived reinforcements could be sustainable, cost-effective, and environment-friendly and used as an alternate material in structural, defense, automotive, and drone applications.
AbstractList This research investigated the role of adding bio toughener and reinforcements in the process of making biocomposite for sustainable engineering applications. The primary aim of this study was to develop a biocomposite material using agricultural waste and validate the performance of the composite prepared. The areca fiber was procured from a fiber firm, while the rice husk ash (RHA) biochar and cardanol oil (CO) were prepared by low-temperature pyrolysis and Soxhlet extraction respectively. The areca fiber was surface-treated by alkali-silane through hydrolysis process. The biocomposites were prepared using hand the layup method, followed by curing at elevated temperature. The composites underwent testing as per the American Society for Testing and Materials (ASTM) standards. According to the mechanical properties, the addition of cardinal oil to the resin improved the toughening effect along with areca fiber and biochar. Highest tensile strength of 208 MPa, flexural strength of 236 MPa, and Izod impact toughness of 7.2 J were noted for composite designation NC3. The wear properties of cardanol oil-toughened epoxy resin composites showed a downtrend; however, further addition of biochar particle of 1 vol.% improved the coefficient of friction (COF) and sp. wear rate. Similarly, the fatigue behavior of composite designation NC3 showed the highest life counts of 50,622 for 50% of ultimate tensile stress (UTS) at 3 Hz. The scanning electron microscope (SEM) fractograph images revealed improved adhesion for fiber to resin and the trace for toughness improvement. These high toughness epoxy biocomposites made using agricultural waste-derived reinforcements could be sustainable, cost-effective, and environment-friendly and used as an alternate material in structural, defense, automotive, and drone applications.
This research investigated the role of adding bio toughener and reinforcements in the process of making biocomposite for sustainable engineering applications. The primary aim of this study was to develop a biocomposite material using agricultural waste and validate the performance of the composite prepared. The areca fiber was procured from a fiber firm, while the rice husk ash (RHA) biochar and cardanol oil (CO) were prepared by low-temperature pyrolysis and Soxhlet extraction respectively. The areca fiber was surface-treated by alkali-silane through hydrolysis process. The biocomposites were prepared using hand the layup method, followed by curing at elevated temperature. The composites underwent testing as per the American Society for Testing and Materials (ASTM) standards. According to the mechanical properties, the addition of cardinal oil to the resin improved the toughening effect along with areca fiber and biochar. Highest tensile strength of 208 MPa, flexural strength of 236 MPa, and Izod impact toughness of 7.2 J were noted for composite designation NC 3 . The wear properties of cardanol oil-toughened epoxy resin composites showed a downtrend; however, further addition of biochar particle of 1 vol.% improved the coefficient of friction (COF) and sp. wear rate. Similarly, the fatigue behavior of composite designation NC 3 showed the highest life counts of 50,622 for 50% of ultimate tensile stress (UTS) at 3 Hz. The scanning electron microscope (SEM) fractograph images revealed improved adhesion for fiber to resin and the trace for toughness improvement. These high toughness epoxy biocomposites made using agricultural waste-derived reinforcements could be sustainable, cost-effective, and environment-friendly and used as an alternate material in structural, defense, automotive, and drone applications.
Author VR, Arun Prakash
Alshahrani, Hassan
Author_xml – sequence: 1
  givenname: Hassan
  surname: Alshahrani
  fullname: Alshahrani, Hassan
  organization: Department of Mechanical Engineering, College of Engineering, Najran University
– sequence: 2
  givenname: Arun Prakash
  orcidid: 0000-0002-6134-6289
  surname: VR
  fullname: VR, Arun Prakash
  email: vinprakash101@gmail.com
  organization: Department of Mechanical Engineering, J.N.N Institute of Engineering
BookMark eNp9kM1qGzEURkVxoUnqF-hKkK3V6GfGM1oa09SBlEBo1-KO5o6tdCK5kpzUT9DXjmKHFLLIQlwtvvPdyzklEx88EvJF8K-C8-YiCaW0ZlzK8uZasP0HciKF5mzeSjV5_Yv6E5mmdMc5l6pRreIn5N8PtBvwzsI4o48IcUbB93SA7NY7pB1u4MGFSMNAYfwNo2PJjeCR5YiQsacQ0QIdXIcFvV0taOdCaXzpsRB78GGkwY0sh916g75AuA1_94dkuN-G5DJ-Jh8HGBNOX-YZ-XX57edyxa5vvl8tF9fMKqEzGwToQdrKgrYgYK5qOQDaSjfzvmlbYSXWTVV3oLTQfWuxE9r2IJqqEVVfoToj58febQx_dpiyuQu76MtKI7VSNddVI0uqPaZsDClFHIx1uSgJPkdwoxHcPJs3R_OmmDcH82ZfUPkG3UZ3D3H_PqSOUCphv8b4_6p3qCfhtJpj
CitedBy_id crossref_primary_10_1002_pc_26802
crossref_primary_10_1007_s13399_024_06338_y
crossref_primary_10_1088_1402_4896_ad804e
crossref_primary_10_1007_s13399_024_06298_3
crossref_primary_10_1007_s13399_024_06171_3
crossref_primary_10_1002_pc_26805
crossref_primary_10_1515_ipp_2023_4410
crossref_primary_10_1007_s13399_023_04905_3
crossref_primary_10_1007_s13399_024_05335_5
crossref_primary_10_1007_s42452_025_06583_4
crossref_primary_10_1063_5_0215621
crossref_primary_10_1002_pc_27010
crossref_primary_10_1007_s41779_025_01153_8
crossref_primary_10_1007_s13399_022_03679_4
crossref_primary_10_1007_s12633_024_03185_4
crossref_primary_10_1007_s13399_024_06306_6
crossref_primary_10_1007_s12633_022_02281_7
crossref_primary_10_1007_s13399_023_04831_4
crossref_primary_10_1007_s13399_024_06245_2
crossref_primary_10_1007_s00289_024_05418_3
crossref_primary_10_1007_s13399_023_04187_9
crossref_primary_10_1007_s13399_022_03030_x
crossref_primary_10_1007_s13399_024_06012_3
crossref_primary_10_1007_s00289_024_05268_z
crossref_primary_10_1007_s13399_022_03409_w
crossref_primary_10_1007_s13399_024_05614_1
crossref_primary_10_1007_s13399_022_03661_0
crossref_primary_10_1007_s13399_022_03549_z
crossref_primary_10_1007_s13399_022_02787_5
crossref_primary_10_1007_s00289_024_05427_2
crossref_primary_10_1007_s13399_022_03413_0
crossref_primary_10_1007_s12633_024_03054_0
crossref_primary_10_1080_15440478_2024_2357236
crossref_primary_10_1007_s13399_022_03128_2
crossref_primary_10_1007_s13399_024_06029_8
crossref_primary_10_1007_s13399_022_03529_3
crossref_primary_10_1007_s13399_022_02801_w
crossref_primary_10_1051_metal_2022065
crossref_primary_10_1007_s13399_024_05349_z
crossref_primary_10_1007_s13399_024_05894_7
crossref_primary_10_1007_s13399_022_02867_6
crossref_primary_10_1007_s13399_023_05082_z
crossref_primary_10_1007_s13399_023_04172_2
crossref_primary_10_1007_s12633_022_02227_z
crossref_primary_10_1177_15280837221137382
crossref_primary_10_1007_s00289_024_05589_z
crossref_primary_10_1007_s13399_023_04416_1
crossref_primary_10_1007_s13399_022_03559_x
crossref_primary_10_1016_j_jmrt_2024_06_058
crossref_primary_10_1007_s12633_022_02135_2
crossref_primary_10_1007_s13399_023_05199_1
crossref_primary_10_1088_2053_1591_acb1f6
crossref_primary_10_1007_s13399_023_04104_0
crossref_primary_10_1007_s13399_024_06013_2
crossref_primary_10_1007_s00289_024_05459_8
crossref_primary_10_1002_pc_26938
crossref_primary_10_1007_s13399_023_03867_w
crossref_primary_10_1007_s13399_022_03469_y
crossref_primary_10_1007_s13399_024_06050_x
crossref_primary_10_1007_s13399_023_04736_2
crossref_primary_10_1007_s13399_024_06102_2
crossref_primary_10_1007_s13399_023_04349_9
crossref_primary_10_1007_s12633_023_02715_w
crossref_primary_10_1007_s13399_023_05176_8
crossref_primary_10_1177_14644207241267123
crossref_primary_10_1007_s12633_024_03152_z
crossref_primary_10_1007_s12633_023_02370_1
crossref_primary_10_1002_pc_26810
crossref_primary_10_1016_j_porgcoat_2022_107080
crossref_primary_10_1002_pc_26930
Cites_doi 10.1016/j.porgcoat.2015.07.012
10.1016/j.matlet.2021.129678
10.1007/s42341-020-00179-y
10.1007/s12633-019-00297-0
10.1080/15440478.2016.1212757
10.1016/j.dt.2016.11.004
10.1007/s12633-020-00566-3
10.1016/j.conbuildmat.2021.124816
10.1016/j.chemosphere.2020.126539
10.1002/pc.26393
10.1007/s10965-021-02818-1
10.1016/j.compositesb.2021.109566
10.1007/s42247-021-00266-7
10.1007/s12633-020-00387-4
10.1007/s10570-021-04029-9
10.1007/s12633-020-00612-0
10.1016/j.wear.2019.203044
10.1007/s12633-020-00569-0
10.1016/j.apsusc.2016.04.185
10.1016/j.compositesb.2020.108157
10.1002/app.51511
10.1007/s10570-021-03755-4
10.1021/acs.iecr.7b04495
10.1088/2053-1591/ab1694
10.1007/s12633-020-00567-2
10.1016/j.compositesa.2019.01.008
10.1016/j.scitotenv.2020.144204
10.1007/s12633-021-01502-9
10.1007/s12633-021-01549-8
10.1201/9781003137535-1
10.1007/s13399-021-01941-9
10.1080/00218464.2021.1896362
10.1007/s13399-020-00831-w
10.1007/s12633-021-01060-0
10.1080/15440478.2021.1875380
10.1201/9781003137535-7
10.1007/s12633-020-00828-0
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s13399-022-02691-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2190-6823
EndPage 6620
ExternalDocumentID 10_1007_s13399_022_02691_y
GrantInformation_xml – fundername: Najran University
  grantid: NU/RC/SERC/11/4
  funderid: http://dx.doi.org/10.13039/501100005911
GroupedDBID -EM
0R~
0VY
203
29~
2VQ
30V
4.4
406
408
409
96X
AAAVM
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ8
HF~
HG6
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PT4
RLLFE
ROL
RSV
S1Z
S27
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z5O
Z7V
Z81
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-f1a9f2c4ca9ca1a6352faec4976d7881c2e5745ba3919d8ceb19cda174714d4e3
IEDL.DBID U2A
ISSN 2190-6815
IngestDate Fri Jul 25 10:55:26 EDT 2025
Thu Apr 24 23:00:14 EDT 2025
Tue Jul 01 02:29:57 EDT 2025
Fri Feb 21 02:41:49 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Mechanical properties
Composite
Oil toughener
Biochar
Wear
Fiber
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-f1a9f2c4ca9ca1a6352faec4976d7881c2e5745ba3919d8ceb19cda174714d4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6134-6289
PQID 2933509472
PQPubID 2043954
PageCount 12
ParticipantIDs proquest_journals_2933509472
crossref_citationtrail_10_1007_s13399_022_02691_y
crossref_primary_10_1007_s13399_022_02691_y
springer_journals_10_1007_s13399_022_02691_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Processing of Biogenic Material for Energy and Chemistry
PublicationTitle Biomass conversion and biorefinery
PublicationTitleAbbrev Biomass Conv. Bioref
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Dinesh, Kadirvel, Hariharan (CR8) 2020; 12
Ben Samuel, JulyesJaisingh, Sivakumar, Mayakannan, Arunprakash (CR9) 2021; 13
Murugan, Arul, Jayaseelan, Jayabalakrishnan, Maridurai, Kumar, Ramesh, Prakash (CR4) 2020; 12
Kumar, Krishnan, Samal, Mohanty, Nayak (CR6) 2018; 57
Sahoo, Mohanty, Nayak (CR5) 2017; 14
CR17
CR39
Gheisari, Polycarpou (CR30) 2019; 436
CR38
CR37
CR36
CR13
Yahia, Owda, Abou-Zeid, Abdelhai, Gad, Saleh, El-Gamil (CR19) 2022; 139
Prakash, Rajadurai, Jayaseelan, Jerome Das, Murali, JulyesJaisingh (CR22) 2019; 6
Rajadurai (CR11) 2017; 13
Mohammed, Jeelani, Rangari (CR18) 2021; 292
CR33
Varghese, Ronald (CR24) 2021; 13
Hasan, Horváth, Kóczán, Bak, Alpár (CR25) 2021; 305
Zhang, Huiyu, Feng, Hao, Guoxin, Bin, Jianbin, Bo, ZhaoPu (CR31) 2022; 232
Jayabalakrishnan, Prabhu, Iqbal, Mugendiran, Ravi, Prakash (CR12) 2022; 43
Xiang, Zhang, Chen, Zou, He, Xin, Tsang, Ok, Gao (CR14) 2020; 252
Hasan, Horváth, Bak (CR29) 2021; 28
Gong, Song, Li, Xie, Luo (CR32) 2020; 197
Merizgui, Hadjadj, MecheriKious, Prakash (CR21) 2020; 21
Prakash, Viswanthan (CR2) 2019; 118
Sahoo, Mohanty, Nayak (CR7) 2015; 88
Hasan, Horváth, Kóczán, Le, Bak, Bejó, Alpár (CR27) 2021; 28
CR3
Leng, Xiong, Yang, Li, Zhou, Zhang, Jiang, Li, Huang (CR15) 2021; 763
Dharmavarapu, Reddy (CR35) 2021; 4
Jayabalakrishnan, Saravanan, Ravi, Prabhu, Maridurai, Prakash (CR23) 2021; 13
CR28
CR26
Dharmavarapu, Reddy (CR34) 2021; 13
CR20
CR40
Rajadurai (CR10) 2016; 384
Hasan, Horváth, Alpár (CR1) 2021; 28
Minugu, Gujjala, Shakuntala, Panchal Manoj, Chowdary (CR16) 2021; 235
Wei Xiang (2691_CR14) 2020; 252
2691_CR17
2691_CR39
Tahar Merizgui (2691_CR21) 2020; 21
A Rajadurai (2691_CR11) 2017; 13
M Murugan (2691_CR4) 2020; 12
2691_CR33
VR Arun Prakash (2691_CR2) 2019; 118
2691_CR13
2691_CR36
2691_CR37
2691_CR38
A Johhny Varghese (2691_CR24) 2021; 13
Pratibha Dharmavarapu (2691_CR34) 2021; 13
Om Prakash Minugu (2691_CR16) 2021; 235
SK Sahoo (2691_CR5) 2017; 14
SK Sahoo (2691_CR7) 2015; 88
R Yahia (2691_CR19) 2022; 139
KM Hasan (2691_CR27) 2021; 28
Reza Gheisari (2691_CR30) 2019; 436
2691_CR28
J Ben Samuel (2691_CR9) 2021; 13
VR Arun Prakash (2691_CR22) 2019; 6
KMF Hasan (2691_CR29) 2021; 28
Zaheeruddin Mohammed (2691_CR18) 2021; 292
2691_CR20
KM Hasan (2691_CR1) 2021; 28
S Kumar (2691_CR6) 2018; 57
Lijian Leng (2691_CR15) 2021; 763
Hanjun Gong (2691_CR32) 2020; 197
2691_CR26
2691_CR3
T Dinesh (2691_CR8) 2020; 12
Pratibha Dharmavarapu (2691_CR35) 2021; 4
KM Faridul Hasan (2691_CR25) 2021; 305
D Jayabalakrishnan (2691_CR12) 2022; 43
2691_CR40
A Rajadurai (2691_CR10) 2016; 384
D Jayabalakrishnan (2691_CR23) 2021; 13
Lin Zhang (2691_CR31) 2022; 232
References_xml – volume: 88
  start-page: 263
  year: 2015
  end-page: 271
  ident: CR7
  article-title: Study of thermal stability and thermo-mechanical behavior of functionalized soybean oil modified toughened epoxy/organo clay nanocomposite
  publication-title: Prog Org Coat
  doi: 10.1016/j.porgcoat.2015.07.012
– volume: 292
  start-page: 129678
  year: 2021
  ident: CR18
  article-title: Low temperature plasma treatment of rice husk derived hybrid silica/carbon biochar using different gas sources
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2021.129678
– volume: 21
  start-page: 366
  issue: 4
  year: 2020
  end-page: 376
  ident: CR21
  article-title: Effect of temperature and frequency on microwave shielding behaviour of functionalized kenaf fibre-reinforced MWCNTs/iron (III) oxide modified epoxy hybrid composite
  publication-title: Trans Electr Electron Mater
  doi: 10.1007/s42341-020-00179-y
– volume: 12
  start-page: 1847
  issue: 8
  year: 2020
  end-page: 1856
  ident: CR4
  article-title: Low velocity impact and mechanical behaviour of shot blasted SiC wire-mesh and silane-treated aloevera/hemp/flax-reinforced SiC whisker modified epoxy resin composites
  publication-title: Silicon
  doi: 10.1007/s12633-019-00297-0
– volume: 14
  start-page: 357
  issue: 3
  year: 2017
  end-page: 367
  ident: CR5
  article-title: Mechanical, thermal, and interfacial characterization of randomly oriented short sisal fibers reinforced epoxy composite modified with epoxidized soybean oil
  publication-title: J Natural Fibers
  doi: 10.1080/15440478.2016.1212757
– volume: 13
  start-page: 40
  issue: 1
  year: 2017
  end-page: 46
  ident: CR11
  article-title: Inter laminar shear strength behavior of acid, base and silane treated E-glass fibre epoxy resin composites on drilling process
  publication-title: Defence Technology
  doi: 10.1016/j.dt.2016.11.004
– volume: 13
  start-page: 1655
  issue: 5
  year: 2021
  end-page: 1661
  ident: CR24
  article-title: Low velocity impact, fatigue and Visco-elastic behaviour of carbon/E-glass intra-ply fibre-reinforced Nano-silica toughened epoxy composite
  publication-title: Silicon
  doi: 10.1007/s12633-020-00566-3
– ident: CR39
– volume: 305
  start-page: 124816
  year: 2021
  ident: CR25
  article-title: Semi-dry technology-mediated coir fiber and Scots pine particle-reinforced sustainable cementitious composite panels
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2021.124816
– ident: CR37
– volume: 252
  start-page: 126539
  year: 2020
  ident: CR14
  article-title: Biochar technology in wastewater treatment: a critical review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126539
– volume: 43
  start-page: 493
  issue: 1
  year: 2022
  end-page: 502
  ident: CR12
  article-title: Mechanical, dielectric, and hydrophobicity behavior of coconut shell biochar toughened Caryota urens natural fiber reinforced epoxy composite
  publication-title: POLYMER COMPOSITES
  doi: 10.1002/pc.26393
– volume: 28
  start-page: 1
  issue: 12
  year: 2021
  end-page: 16
  ident: CR27
  article-title: Novel insulation panels development from multilayered coir short and long fiber reinforced phenol formaldehyde polymeric biocomposites
  publication-title: J Polym Res
  doi: 10.1007/s10965-021-02818-1
– ident: CR33
– volume: 232
  start-page: 109566
  year: 2022
  ident: CR31
  article-title: Wear in situ self healing polymer composites incorporated with bifunctional microcapsules
  publication-title: Compos B: Eng
  doi: 10.1016/j.compositesb.2021.109566
– ident: CR40
– volume: 4
  start-page: 1377
  issue: 5
  year: 2021
  end-page: 1386
  ident: CR35
  article-title: Performance analysis of silane grafted nanosilica and aramid fibre-reinforced epoxy composite in dynamic loading and energy application
  publication-title: Emergent Mater
  doi: 10.1007/s42247-021-00266-7
– volume: 12
  start-page: 2911
  issue: 12
  year: 2020
  end-page: 2920
  ident: CR8
  article-title: Thermo-mechanical and wear behaviour of surface-treated pineapple woven fibre and nano-silica dispersed mahua oil toughened epoxy composite
  publication-title: SILICON
  doi: 10.1007/s12633-020-00387-4
– volume: 28
  start-page: 7859
  year: 2021
  end-page: 7875
  ident: CR29
  article-title: Rice straw and energy reed fibers reinforced phenol formaldehyde resin polymeric biocomposites
  publication-title: Cellulose
  doi: 10.1007/s10570-021-04029-9
– volume: 13
  start-page: 2509
  issue: 8
  year: 2021
  end-page: 2517
  ident: CR23
  article-title: Fabrication and characterization of acrylonitrile butadiene rubber and stitched E-glass fibre tailored Nano-silica epoxy resin composite
  publication-title: SILICON
  doi: 10.1007/s12633-020-00612-0
– volume: 436
  start-page: 203044
  year: 2019
  ident: CR30
  article-title: Tribological performance of graphite-filled polyimide and PTFE composites in oil-lubricated three-body abrasive conditions
  publication-title: Wear
  doi: 10.1016/j.wear.2019.203044
– volume: 13
  start-page: 1703
  issue: 6
  year: 2021
  end-page: 1712
  ident: CR9
  article-title: Visco-elastic, thermal, antimicrobial and dielectric behaviour of areca fibre-reinforced nano-silica and neem oil-toughened epoxy resin bio composite
  publication-title: Silicon
  doi: 10.1007/s12633-020-00569-0
– ident: CR3
– volume: 384
  start-page: 99
  year: 2016
  end-page: 106
  ident: CR10
  article-title: Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2016.04.185
– ident: CR38
– ident: CR17
– volume: 197
  start-page: 108157
  year: 2020
  ident: CR32
  article-title: A highly tough and ultralow friction resin nanocomposite with crosslinkable polymer-encapsulated nanoparticles
  publication-title: Compos B: Eng
  doi: 10.1016/j.compositesb.2020.108157
– ident: CR13
– volume: 139
  start-page: 51511
  issue: 3
  year: 2022
  ident: CR19
  article-title: Synthesis and characterization of thermoplastic starch/PVA/cardanol oil composites loaded with in-situ silver nanoparticles
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.51511
– volume: 28
  start-page: 3631
  issue: 6
  year: 2021
  end-page: 3645
  ident: CR1
  article-title: Development of lignocellulosic fiber reinforced cement composite panels using semi-dry technology
  publication-title: Cellulose
  doi: 10.1007/s10570-021-03755-4
– ident: CR36
– volume: 57
  start-page: 2711
  issue: 8
  year: 2018
  end-page: 2726
  ident: CR6
  article-title: Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance applications: a review
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.7b04495
– volume: 235
  start-page: 5626
  issue: 21
  year: 2021
  end-page: 5638
  ident: CR16
  article-title: Effect of biomass derived biochar materials on mechanical properties of biochar epoxy composites
  publication-title: Proc IME C: J Mech Eng Sci
– ident: CR28
– volume: 6
  start-page: 076113
  issue: 7
  year: 2019
  ident: CR22
  article-title: Role of silanized magnetic Fe2O3 particle in heat dissipation and microwave shielding behavior of E-glass fibre-reinforced epoxy resin composite
  publication-title: Mater Res Express
  doi: 10.1088/2053-1591/ab1694
– ident: CR26
– volume: 13
  start-page: 1741
  issue: 6
  year: 2021
  end-page: 1750
  ident: CR34
  article-title: Mechanical, low velocity impact, fatigue and tribology behaviour of Silane grafted aramid fibre and Nano-silica toughened epoxy composite
  publication-title: Silicon
  doi: 10.1007/s12633-020-00567-2
– volume: 118
  start-page: 317
  year: 2019
  end-page: 326
  ident: CR2
  article-title: Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite
  publication-title: Composites Part A: Appl Sci Manufacturing
  doi: 10.1016/j.compositesa.2019.01.008
– ident: CR20
– volume: 763
  start-page: 144204
  year: 2021
  ident: CR15
  article-title: An overview on engineering the surface area and porosity of biochar
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.144204
– volume: 292
  start-page: 129678
  year: 2021
  ident: 2691_CR18
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2021.129678
– volume: 197
  start-page: 108157
  year: 2020
  ident: 2691_CR32
  publication-title: Compos B: Eng
  doi: 10.1016/j.compositesb.2020.108157
– volume: 13
  start-page: 40
  issue: 1
  year: 2017
  ident: 2691_CR11
  publication-title: Defence Technology
  doi: 10.1016/j.dt.2016.11.004
– volume: 88
  start-page: 263
  year: 2015
  ident: 2691_CR7
  publication-title: Prog Org Coat
  doi: 10.1016/j.porgcoat.2015.07.012
– volume: 13
  start-page: 1655
  issue: 5
  year: 2021
  ident: 2691_CR24
  publication-title: Silicon
  doi: 10.1007/s12633-020-00566-3
– volume: 232
  start-page: 109566
  year: 2022
  ident: 2691_CR31
  publication-title: Compos B: Eng
  doi: 10.1016/j.compositesb.2021.109566
– ident: 2691_CR36
  doi: 10.1007/s12633-021-01502-9
– volume: 57
  start-page: 2711
  issue: 8
  year: 2018
  ident: 2691_CR6
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.7b04495
– volume: 235
  start-page: 5626
  issue: 21
  year: 2021
  ident: 2691_CR16
  publication-title: Proc IME C: J Mech Eng Sci
– volume: 436
  start-page: 203044
  year: 2019
  ident: 2691_CR30
  publication-title: Wear
  doi: 10.1016/j.wear.2019.203044
– volume: 28
  start-page: 1
  issue: 12
  year: 2021
  ident: 2691_CR27
  publication-title: J Polym Res
  doi: 10.1007/s10965-021-02818-1
– ident: 2691_CR38
  doi: 10.1007/s12633-021-01549-8
– ident: 2691_CR40
  doi: 10.1201/9781003137535-1
– volume: 763
  start-page: 144204
  year: 2021
  ident: 2691_CR15
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.144204
– ident: 2691_CR17
  doi: 10.1007/s13399-021-01941-9
– volume: 21
  start-page: 366
  issue: 4
  year: 2020
  ident: 2691_CR21
  publication-title: Trans Electr Electron Mater
  doi: 10.1007/s42341-020-00179-y
– volume: 12
  start-page: 1847
  issue: 8
  year: 2020
  ident: 2691_CR4
  publication-title: Silicon
  doi: 10.1007/s12633-019-00297-0
– volume: 14
  start-page: 357
  issue: 3
  year: 2017
  ident: 2691_CR5
  publication-title: J Natural Fibers
  doi: 10.1080/15440478.2016.1212757
– volume: 28
  start-page: 7859
  year: 2021
  ident: 2691_CR29
  publication-title: Cellulose
  doi: 10.1007/s10570-021-04029-9
– volume: 13
  start-page: 1741
  issue: 6
  year: 2021
  ident: 2691_CR34
  publication-title: Silicon
  doi: 10.1007/s12633-020-00567-2
– ident: 2691_CR37
  doi: 10.1080/00218464.2021.1896362
– ident: 2691_CR26
  doi: 10.1007/s13399-020-00831-w
– volume: 13
  start-page: 1703
  issue: 6
  year: 2021
  ident: 2691_CR9
  publication-title: Silicon
  doi: 10.1007/s12633-020-00569-0
– volume: 13
  start-page: 2509
  issue: 8
  year: 2021
  ident: 2691_CR23
  publication-title: SILICON
  doi: 10.1007/s12633-020-00612-0
– volume: 139
  start-page: 51511
  issue: 3
  year: 2022
  ident: 2691_CR19
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.51511
– ident: 2691_CR13
  doi: 10.1007/s12633-021-01060-0
– volume: 28
  start-page: 3631
  issue: 6
  year: 2021
  ident: 2691_CR1
  publication-title: Cellulose
  doi: 10.1007/s10570-021-03755-4
– ident: 2691_CR33
– ident: 2691_CR3
  doi: 10.1080/15440478.2021.1875380
– volume: 252
  start-page: 126539
  year: 2020
  ident: 2691_CR14
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126539
– volume: 305
  start-page: 124816
  year: 2021
  ident: 2691_CR25
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2021.124816
– volume: 118
  start-page: 317
  year: 2019
  ident: 2691_CR2
  publication-title: Composites Part A: Appl Sci Manufacturing
  doi: 10.1016/j.compositesa.2019.01.008
– volume: 6
  start-page: 076113
  issue: 7
  year: 2019
  ident: 2691_CR22
  publication-title: Mater Res Express
  doi: 10.1088/2053-1591/ab1694
– ident: 2691_CR39
  doi: 10.1201/9781003137535-7
– volume: 43
  start-page: 493
  issue: 1
  year: 2022
  ident: 2691_CR12
  publication-title: POLYMER COMPOSITES
  doi: 10.1002/pc.26393
– ident: 2691_CR20
– volume: 384
  start-page: 99
  year: 2016
  ident: 2691_CR10
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2016.04.185
– volume: 4
  start-page: 1377
  issue: 5
  year: 2021
  ident: 2691_CR35
  publication-title: Emergent Mater
  doi: 10.1007/s42247-021-00266-7
– volume: 12
  start-page: 2911
  issue: 12
  year: 2020
  ident: 2691_CR8
  publication-title: SILICON
  doi: 10.1007/s12633-020-00387-4
– ident: 2691_CR28
  doi: 10.1007/s12633-020-00828-0
SSID ssj0002373830
Score 2.5582025
Snippet This research investigated the role of adding bio toughener and reinforcements in the process of making biocomposite for sustainable engineering applications....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6609
SubjectTerms Agricultural wastes
Biomedical materials
Biotechnology
Coefficient of friction
Composite materials
Energy
Epoxy resins
Flexural strength
High temperature
Impact strength
Low temperature
Materials fatigue
Mechanical properties
Original Article
Pyrolysis
Renewable and Green Energy
Silanes
Tensile strength
Tensile stress
Toughness
Wear rate
Title Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite
URI https://link.springer.com/article/10.1007/s13399-022-02691-y
https://www.proquest.com/docview/2933509472
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ULnowPiOKpAdv0oTukz0SAxINHowkeNrM9mGIZNcIRPkF_m1nll1QoyaetzuHftPp13a-GcbO26Gjw1bLCHC1Fl4AuOasdIUHNgHlKOTkdKE_uA36Q-965I8KUdi0zHYvnyTzSL0Wu7kuKebx8ITnhkiKxSar-nR2Ry8eOp3VzYpDxXryJiMO6aSDtvQLtczPZr7uSGua-e1lNN9wertsp2CKvLOEdo9tmHSfbX-qH3jA3geGhLs0z03-ij7b5JBqbnG2H-eGlxJ8nlkOkydk3GI6puRWkaeXG80B4x1wS1kjTX7X7_BknJEOa2lHofdAmk14Np6IGbXzwcCoOVL2t0U-EmMJ5XyZQzbsde8v-6LorCAULrmZsBIii0AoiBRIQNLhWDAITBhoqi-vHOOHnp-AG8lItxUG9EhpkHSC9bRn3CNWSbPUHDOeQIjWqA6edT0daAgSPwLVkippG9yAa0yWsxurouw4db-YxOuCyYRIjIjEOSLxosYuVv88L4tu_Dm6XoIWFwtwGiOLcak2YOjUWLMEcv35d2sn_xt-yrbQBb1lVlqdVWYvc3OGNGWWNFi1c_Vw023k3vkBb9HiMA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDsABsYqy-sCNWqqd_VghUFnKAVGJWzTxgiqqBNFW0C_gt5lJEwoIkDjHmYOfPX625z0zdhxHykStlhXgGSP8EHDOOekJH1wGWmnk5HSg370JOz3_8j64r0Rhw7ravb6SLDP1TOzmeaSYx80T7hsSKSbzbBHJQEyFXD3V_jhZUWTWUz4yokgnHcYyqNQyP4f5uiLNaOa3m9FywTlfY6sVU-TtKbTrbM7mG2zlk3_gJnvrWhLuUj83-QuO2SaH3HCHvf0wtryW4PPCcRg8IuMWwz4Vt4qyvNwaDpjvgDuqGmny206bZ_2CdFjTOBpHD-TFgBf9gRjRcz6YGA1Hyv46KVtiLqGaL7vFeudnd6cdUb2sIDROuZFwEhKHQGhINEhA0qEcWAQmCg35y2tlg8gPMvASmZhYY0JPtAFJO1jf-NbbZgt5kdsdxjOIMBr54DnPN6GBMAsS0C2ps9jiAtxgsu7dVFe24_T6xSCdGSYTIikikpaIpJMGO_n452lquvFn6_0atLSagMMUWYxH3oCRarBmDeTs8-_Rdv_X_Igtde661-n1xc3VHltWSHmmFWr7bGH0PLYHSFlG2WE5Qt8BJOPjjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKKlVwQFCKSAngQ2-Nldj7yh4jIEoLiaqqkXJbzfqBIla7FdmI5hfwt5nZRxIQIHFe7xxm7PFne75vGLsYRcpEw6EV4Bkj_BBwzTnpCR9cClppxOR0oT-bh9OFf70Mlgcs_qravX2SrDkNpNKUl4N74wZ74pvnEXseD1J4hoil2D5ix5iOJc3rhRrvblkUCfdUDUcUcabDkQwa5syfzfy6O-0h52-vpNXmM3nGnjaokY_rMD9nRzY_ZU8OtARfsB8zSyRe8nmff8f52-eQG-7Q8182lrd0fF44DtlXRN9ivaJCV1GVmlvDAXMfcEcVJH1-Ox3zdFUQJ6u2o3EmQV5kvFhloqTWPpgkDUf4_rCtRmJeofove8YWk49376ei6bIgNPqrFE5C7DAoGmINEhCAKAcWgxSFhrTmtbJB5AcpeLGMzUhjco-1AUmnWd_41nvJOnmR21eMpxChNdLEc55vQgNhGsSgh1KnI4ubcZfJ1ruJbiTIqRNGluzFkykiCUYkqSKSbLvscvfPfS3A8c_RvTZoSbMY1wkiGo90AiPVZf02kPvPf7d2_n_D37GTmw-T5PPV_NNr9lgh-qmL1XqsU37b2DeIXsr0bTVBfwI38ufL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical%2C+wear%2C+and+fatigue+behavior+of+alkali-silane-treated+areca+fiber%2C+RHA+biochar%2C+and+cardanol+oil-toughened+epoxy+biocomposite&rft.jtitle=Biomass+conversion+and+biorefinery&rft.au=Alshahrani%2C+Hassan&rft.au=VR%2C+Arun+Prakash&rft.date=2024-03-01&rft.issn=2190-6815&rft.eissn=2190-6823&rft.volume=14&rft.issue=5&rft.spage=6609&rft.epage=6620&rft_id=info:doi/10.1007%2Fs13399-022-02691-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13399_022_02691_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-6815&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-6815&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-6815&client=summon