Automatic detection of oil palm fruits from UAV images using an improved YOLO model

Manual harvesting of loose fruits in the oil palm plantation is both time consuming and physically laborious. Automatic harvesting system is an alternative solution for precision agriculture which requires accurate visual information of the targets. Current state-of-the-art one-stage object detectio...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 38; no. 7; pp. 2341 - 2355
Main Authors Junos, Mohamad Haniff, Mohd Khairuddin, Anis Salwa, Thannirmalai, Subbiah, Dahari, Mahidzal
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-2789
1432-2315
DOI10.1007/s00371-021-02116-3

Cover

Loading…
Abstract Manual harvesting of loose fruits in the oil palm plantation is both time consuming and physically laborious. Automatic harvesting system is an alternative solution for precision agriculture which requires accurate visual information of the targets. Current state-of-the-art one-stage object detection method provides excellent detection accuracy; however, it is computationally intensive and impractical for embedded system. This paper proposed an improved YOLO model to detect oil palm loose fruits from unmanned aerial vehicle images. In order to improve the robustness of the detection system, the images are augmented by brightness, rotation, and blurring to simulate the actual natural environment. The proposed improved YOLO model adopted several improvements; densely connected neural network for better feature reuse, swish activation function, multi-layer detection to enhance detection on small targets and prior box optimization to obtain accurate bounding box information. The experimental results show that the proposed model achieves outstanding average precision of 99.76% with detection time of 34.06 ms. In addition, the proposed model is also light in weight size and requires less training time which is significant in reducing the hardware costs. The results exhibit the superiority of the proposed improved YOLO model over several existing state-of-the-art detection models.
AbstractList Manual harvesting of loose fruits in the oil palm plantation is both time consuming and physically laborious. Automatic harvesting system is an alternative solution for precision agriculture which requires accurate visual information of the targets. Current state-of-the-art one-stage object detection method provides excellent detection accuracy; however, it is computationally intensive and impractical for embedded system. This paper proposed an improved YOLO model to detect oil palm loose fruits from unmanned aerial vehicle images. In order to improve the robustness of the detection system, the images are augmented by brightness, rotation, and blurring to simulate the actual natural environment. The proposed improved YOLO model adopted several improvements; densely connected neural network for better feature reuse, swish activation function, multi-layer detection to enhance detection on small targets and prior box optimization to obtain accurate bounding box information. The experimental results show that the proposed model achieves outstanding average precision of 99.76% with detection time of 34.06 ms. In addition, the proposed model is also light in weight size and requires less training time which is significant in reducing the hardware costs. The results exhibit the superiority of the proposed improved YOLO model over several existing state-of-the-art detection models.
Manual harvesting of loose fruits in the oil palm plantation is both time consuming and physically laborious. Automatic harvesting system is an alternative solution for precision agriculture which requires accurate visual information of the targets. Current state-of-the-art one-stage object detection method provides excellent detection accuracy; however, it is computationally intensive and impractical for embedded system. This paper proposed an improved YOLO model to detect oil palm loose fruits from unmanned aerial vehicle images. In order to improve the robustness of the detection system, the images are augmented by brightness, rotation, and blurring to simulate the actual natural environment. The proposed improved YOLO model adopted several improvements; densely connected neural network for better feature reuse, swish activation function, multi-layer detection to enhance detection on small targets and prior box optimization to obtain accurate bounding box information. The experimental results show that the proposed model achieves outstanding average precision of 99.76% with detection time of 34.06 ms. In addition, the proposed model is also light in weight size and requires less training time which is significant in reducing the hardware costs. The results exhibit the superiority of the proposed improved YOLO model over several existing state-of-the-art detection models.
Author Junos, Mohamad Haniff
Thannirmalai, Subbiah
Dahari, Mahidzal
Mohd Khairuddin, Anis Salwa
Author_xml – sequence: 1
  givenname: Mohamad Haniff
  surname: Junos
  fullname: Junos, Mohamad Haniff
  organization: Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya
– sequence: 2
  givenname: Anis Salwa
  surname: Mohd Khairuddin
  fullname: Mohd Khairuddin, Anis Salwa
  email: anissalwa@um.edu.my
  organization: Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya
– sequence: 3
  givenname: Subbiah
  surname: Thannirmalai
  fullname: Thannirmalai, Subbiah
  organization: Advanced Technologies and Robotics, Sime Darby Technology Centre Sdn Bhd
– sequence: 4
  givenname: Mahidzal
  surname: Dahari
  fullname: Dahari, Mahidzal
  organization: Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya
BookMark eNp9kEtLAzEUhYNUsFb_gKuA69E8ppPJshRfUOhCK7gKmTxKysykJhnBf2_aEQQXXVwuF85377nnEkx63xsAbjC6wwix-4gQZbhA5Fi4KugZmOKSkoJQPJ-AKcKsLgir-QW4jHGH8sxKPgWviyH5TianoDbJqOR8D72F3rVwL9sO2jC4FHPzHdws3qHr5NZEOETXb6Hs87wP_sto-LFerWHntWmvwLmVbTTXv30GNo8Pb8vnYrV-elkuVoWimKfC2LKihGhSNdbShihEa601t5jpRiFGFUdSKT63Zc05qlBVamoabImaN7Y2dAZux73ZwedgYhI7P4Q-nxSEY8brklGWVfWoUsHHGIwVyiV5-DMF6VqBkThEKMYIRY5PHCMUNKPkH7oP-f_wfRqiIxSzuN-a8OfqBPUDBPOFXQ
CitedBy_id crossref_primary_10_3390_s23063286
crossref_primary_10_5937_PoljTeh2201015A
crossref_primary_10_1109_ACCESS_2022_3192467
crossref_primary_10_3390_electronics14030498
crossref_primary_10_1007_s12541_023_00911_7
crossref_primary_10_1007_s40313_023_01023_3
crossref_primary_10_3389_fpubh_2022_907280
crossref_primary_10_3390_agriculture14010029
crossref_primary_10_1007_s13218_023_00826_5
crossref_primary_10_3390_su142315892
crossref_primary_10_1007_s11760_023_02710_z
crossref_primary_10_1007_s00371_023_02895_x
crossref_primary_10_1080_2150704X_2023_2299268
crossref_primary_10_1016_j_compag_2023_108219
crossref_primary_10_3390_drones7030190
crossref_primary_10_1007_s11694_024_03001_y
crossref_primary_10_1109_JSTARS_2024_3465554
crossref_primary_10_1007_s11760_023_02736_3
crossref_primary_10_3390_s22134704
crossref_primary_10_1109_TCE_2023_3330788
crossref_primary_10_3390_plants12173067
crossref_primary_10_1016_j_atech_2024_100625
crossref_primary_10_1007_s00371_022_02425_1
crossref_primary_10_1117_1_JEI_33_1_013023
crossref_primary_10_1007_s00371_022_02443_z
crossref_primary_10_1109_ACCESS_2024_3419835
crossref_primary_10_1007_s10044_024_01222_x
crossref_primary_10_3390_agronomy15010145
crossref_primary_10_1016_j_heliyon_2025_e42525
crossref_primary_10_3390_electronics12204293
crossref_primary_10_3389_fpls_2021_791256
crossref_primary_10_1109_ACCESS_2024_3516484
crossref_primary_10_3390_s22176611
crossref_primary_10_1016_j_engappai_2025_110401
crossref_primary_10_3390_jimaging10120309
crossref_primary_10_1007_s00371_023_02877_z
crossref_primary_10_1007_s00371_024_03342_1
crossref_primary_10_3390_rs14195063
crossref_primary_10_1007_s00371_023_03092_6
crossref_primary_10_1063_5_0222140
crossref_primary_10_1109_ACCESS_2023_3285537
crossref_primary_10_3390_rs15164017
crossref_primary_10_1007_s00371_022_02756_z
crossref_primary_10_1088_2631_8695_adb00f
crossref_primary_10_3390_agriculture13112144
crossref_primary_10_1016_j_image_2025_117284
crossref_primary_10_1109_ACCESS_2024_3446890
crossref_primary_10_1007_s00521_024_10300_4
crossref_primary_10_1142_S0218001423500027
Cites_doi 10.1049/iet-ipr.2018.6449
10.3389/fpls.2020.00001
10.1109/CVPR.2016.91
10.1007/s00371-019-01775-7
10.1016/j.imavis.2019.04.007
10.1109/CVPR.2017.690
10.3390/s20072145
10.1007/s11263-019-01247-4
10.1109/LRA.2017.2651944
10.1007/s11119-019-09642-0
10.3390/s20071861
10.1109/TPAMI.2018.2858826
10.1016/j.compbiomed.2020.103792
10.1016/j.conbuildmat.2020.119096
10.1007/s11119-016-9458-5
10.1007/978-3-319-10602-1_48
10.1016/j.compag.2016.07.023
10.1109/TNNLS.2018.2876865
10.1016/j.compag.2019.01.012
10.1109/CVPR.2017.243
10.1049/iet-ipr.2018.6524
10.1109/CVPR42600.2020.01079
10.1016/j.imavis.2019.04.003
10.1109/ICCVW.2019.00011
10.1504/IJCVR.2012.046419
10.3390/s16081222
10.3390/s140712191
10.1016/j.compag.2016.06.022
10.3390/app9183781
10.1007/978-3-319-46448-0_2
10.1016/j.compind.2018.03.010
10.1016/j.compag.2019.05.016
10.1109/CVPR.2014.81
10.1109/ACCESS.2019.2939201
10.1109/ICCV.2015.169
10.1007/s00371-018-01617-y
10.1109/ICCV.2017.322
10.3390/s16111915
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00371-021-02116-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 2355
ExternalDocumentID 10_1007_s00371_021_02116_3
GeographicLocations Malaysia
GeographicLocations_xml – name: Malaysia
GrantInformation_xml – fundername: faculty grant
  grantid: GPF042A-2019
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-ef46322d26bff3b2c038ddd9f17dbc073c90acc95f489906064d3eb1f2c5bf8e3
IEDL.DBID BENPR
ISSN 0178-2789
IngestDate Sun Jul 20 06:41:34 EDT 2025
Tue Jul 01 01:05:50 EDT 2025
Thu Apr 24 23:02:36 EDT 2025
Fri Feb 21 02:44:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Deep learning
Precision agriculture
Machine vision
Improved YOLO
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ef46322d26bff3b2c038ddd9f17dbc073c90acc95f489906064d3eb1f2c5bf8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2917984737
PQPubID 2043737
PageCount 15
ParticipantIDs proquest_journals_2917984737
crossref_citationtrail_10_1007_s00371_021_02116_3
crossref_primary_10_1007_s00371_021_02116_3
springer_journals_10_1007_s00371_021_02116_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References TianYYangGWangZWangHLiELiangZApple detection during different growth stages in orchards using the improved YOLO-V3 modelComput. Electron. Agric.201915741742610.1016/j.compag.2019.01.012
TianYYangGWangZLiELiangZDetection of apple lesions in orchards based on deep learning methods of CycleGAN and YOLOV3-DenseJ. Sensors.20192019113
HamzaRChtourouMDesign of fuzzy inference system for apple ripeness estimation using gradient methodIET Image Process.20201456156910.1049/iet-ipr.2018.6524
SaIGeZDayoubFUpcroftBPerezTMcCoolCDeepfruits: a fruit detection system using deep neural networksSensors201616812210.3390/s16081222
LiuLOuyangWWangXFieguthPChenJLiuXPietikäinenMDeep learning for generic object detection: A surveyInt. J. Comput. Vis.202012826131810.1007/s11263-019-01247-4
JiaoLZhangFLiuFYangSLiLFengZQuRA survey of deep learning-based object detectionIEEE Access.2019712883712886810.1109/ACCESS.2019.2939201
DiasPATabbAMedeirosHApple flower detection using deep convolutional networksComput. Ind.201899172810.1016/j.compind.2018.03.010
ZhaoYGongLHuangYLiuCA review of key techniques of vision-based control for harvesting robotComput. Electron. Agric.201612731132310.1016/j.compag.2016.06.022
QureshiWSPayneAWalshKBLinkerRCohenODaileyMNMachine vision for counting fruit on mango tree canopiesPrecis. Agric.20161822424410.1007/s11119-016-9458-5
Gené-MolaJVilaplanaVRosell-PoloJRMorrosJRRuiz-HidalgoJGregorioEMulti-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilitiesComput. Electron. Agric.201916268969810.1016/j.compag.2019.05.016
OzturkTTaloMYildirimEABalogluUBYildirimORajendra AcharyaUAutomated detection of COVID-19 cases using deep neural networks with X-ray imagesComput. Biol. Med.202012110379210.1016/j.compbiomed.2020.103792
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: YOLO9000: Better, faster, stronger. In: IEEE conference on Computer Vision and Pattern Recognition, pp. 6517–6525 (2017)
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Computer Vision—ECCV 2014. Lecture Notes in Computer Science, pp. 740–755 (2014)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., Berg, A.C.: SSD : single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37 (2016)
Girshick, R., Donahue, J., Darrell, T., Malik, J., Berkeley, U.C.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Zhang, P., Zhong, Y., Li, X.: SlimYOLOv3: narrower, faster and better for real-time UAV applications. In: 2019 International Conference on Computer Vision Workshop, pp. 37–45 (2019)
ParkSEEemSHJeonHConcrete crack detection and quantification using deep learning and structured lightConstr. Build. Mater.202025211909610.1016/j.conbuildmat.2020.119096
Redmon, J., Farhadi, A.: YOLOv3 : An incremental improvement. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal Loss for Dense Object Detection. In: IEEE transactions on pattern analysis and machine intelligence. pp. 318–327 (2020)
Zhu, P., Wen, L., Du, D., Bian, X., Hu, Q., Ling, H.: Vision meets drones: past, present and future. In: Computer Vision and Pattern Recognition, pp. 1–20 (2020). arXiv:2001.06303
RenSHeKGirshickRSunJFaster R-CNN : Towards real-time object detection with region proposal networksIEEE Trans. Pattern Anal. Mach. Intell.201736114
ChenSWShivakumarSSDcunhaSDasJOkonEQuCTaylorCJKumarVCounting apples and oranges with deep learning : A data driven approachIEEE Robot. Autom. Lett.2017278178810.1109/LRA.2017.2651944
Tan, M., Pang, R., Le, Q. V.: EfficientDet: Scalable and efficient object detection. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp. 10778–10787 (2020)
VillamizarMSanfeliuAMoreno-NoguerFOnline learning and detection of faces with low human supervisionVis. Comput.20193534937010.1007/s00371-018-01617-y
ZhaoHZhouYZhangLPengYHuXPengHCaiXMixed YOLOv3-LITE: a lightweight real-time object detection methodSensors2020207186110.3390/s20071861
YamamotoKGuoWYoshiokaYNinomiyaSOn plant detection of intact tomato fruits using image analysis and machine learning methodsSensors2014147121911220610.3390/s140712191
MadeleineSBargotiSUnderwoodJImage based mango fruit detection, localisation and yield estimation using multiple view geometrySensors20161611191510.3390/s16111915
Huang, G., Liu, Z., Maaten, L. van der, Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
MaironREdanYComputer vision for fruit harvesting robots—state of the art and challenges aheadInt. J. Comput. Vis. Robot.2012343410.1504/IJCVR.2012.046419
XiPGuanHShuCBorgeatLGoubranRAn integrated approach for medical abnormality detection using deep patch convolutional neural networksVis. Comput.2020361869188210.1007/s00371-019-01775-7
Idrees, A.: Malaysia Palm Oil Industry, http://www.mpoc.org.my/Malaysian_Palm_Oil_Industry.aspx, accessed 15 September 2020
MinWLiXWangQZengQLiaoYNew approach to vehicle license plate location based on new model YOLO-L and plate pre-identificationIET Image Process.2019131041104910.1049/iet-ipr.2018.6449
ChenYLeeWSGanHPeresNFraisseCZhangYHeYStrawberry yield prediction based on a deep neural network using high-resolution aerial orthoimagesRemote Sens201911121
KoiralaAWalshKBWangZMcCarthyCDeep learning for real-time fruit detection and orchard fruit load estimation: benchmarking of MangoYOLOPrecis. Agric.2019201107113510.1007/s11119-019-09642-0
LiuJWangXTomato diseases and pests detection based on improved Yolo V3 convolutional neural networkFront. Plant Sci.202011112
MPOC: Malaysian Palm Oil Council, http://www.mpoc.org.my, accessed 15 September 2020
MaldonadoWBarbosaJCAutomatic green fruit counting in orange trees using digital imagesComput. Electron. Agric.201612757258110.1016/j.compag.2016.07.023
LeeEKimDAccurate traffic light detection using deep neural network with focal regression lossImage Vis. Comput.201987243610.1016/j.imavis.2019.04.003
DyrmannMJørgensenRNMidtibyHSRoboWeedSupport - Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural networkAdv. Anim. Precis. Agric.20178842847
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988 (2017)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once : unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
HendryRCAutomatic license plate recognition via sliding-window darknet-YOLO deep learningImage Vis. Comput.201987475610.1016/j.imavis.2019.04.007
Ramachandran, P., Zoph, B., Le, Q. V.: Swish: a self-gated activation function, In: Neural and Evolutionary Computing. pp. 1–12 (2017). arXiv:1710.05941
ChenWHuangHPengSZhouCZhangCYOLO-face: a real-time face detectorVis. Comput.20203719
Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural networks. In: Advances in Neural Information in Processing Systems. pp. 1135–1143 (2015). arXiv:1506.02626v3
LiYHanZXuHLiuLLiXZhangKYOLOv3-lite: a lightweight crack detection network for aircraft structure based on depthwise separable convolutionsAppl. Sci.20199378110.3390/app9183781
ZhaoZQZhengPXuSTWuXObject detection with deep learning: a reviewIEEE Trans. Neural Netw. Learn. Syst.2019303212323210.1109/TNNLS.2018.2876865
LiuGNouazeJCMbouembePLTKimJHYOLO-tomato: a robust algorithm for tomato detection based on YOLOv3Sensors2020207214510.3390/s20072145
Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision Fast, pp. 1440–1448 (2015)
T Ozturk (2116_CR25) 2020; 121
2116_CR12
A Koirala (2116_CR38) 2019; 20
2116_CR13
2116_CR15
2116_CR16
W Min (2116_CR28) 2019; 13
SE Park (2116_CR23) 2020; 252
Y Tian (2116_CR41) 2019; 2019
WS Qureshi (2116_CR7) 2016; 18
2116_CR17
2116_CR18
2116_CR19
W Chen (2116_CR27) 2020; 37
Y Chen (2116_CR36) 2019; 11
2116_CR20
2116_CR21
S Madeleine (2116_CR35) 2016; 16
R Hamza (2116_CR8) 2020; 14
Y Tian (2116_CR40) 2019; 157
M Villamizar (2116_CR26) 2019; 35
G Liu (2116_CR42) 2020; 20
I Sa (2116_CR34) 2016; 16
SW Chen (2116_CR31) 2017; 2
J Gené-Mola (2116_CR37) 2019; 162
R Mairon (2116_CR4) 2012; 3
M Dyrmann (2116_CR32) 2017; 8
Y Zhao (2116_CR3) 2016; 127
S Ren (2116_CR14) 2017; 36
H Zhao (2116_CR48) 2020; 20
ZQ Zhao (2116_CR10) 2019; 30
2116_CR2
2116_CR1
PA Dias (2116_CR33) 2018; 99
L Jiao (2116_CR11) 2019; 7
Y Li (2116_CR22) 2019; 9
K Yamamoto (2116_CR5) 2014; 14
E Lee (2116_CR30) 2019; 87
2116_CR43
2116_CR44
2116_CR45
2116_CR46
2116_CR47
2116_CR49
J Liu (2116_CR39) 2020; 11
P Xi (2116_CR24) 2020; 36
RC Hendry (2116_CR29) 2019; 87
L Liu (2116_CR9) 2020; 128
W Maldonado (2116_CR6) 2016; 127
References_xml – reference: RenSHeKGirshickRSunJFaster R-CNN : Towards real-time object detection with region proposal networksIEEE Trans. Pattern Anal. Mach. Intell.201736114
– reference: ZhaoZQZhengPXuSTWuXObject detection with deep learning: a reviewIEEE Trans. Neural Netw. Learn. Syst.2019303212323210.1109/TNNLS.2018.2876865
– reference: Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural networks. In: Advances in Neural Information in Processing Systems. pp. 1135–1143 (2015). arXiv:1506.02626v3
– reference: MaldonadoWBarbosaJCAutomatic green fruit counting in orange trees using digital imagesComput. Electron. Agric.201612757258110.1016/j.compag.2016.07.023
– reference: HendryRCAutomatic license plate recognition via sliding-window darknet-YOLO deep learningImage Vis. Comput.201987475610.1016/j.imavis.2019.04.007
– reference: Zhu, P., Wen, L., Du, D., Bian, X., Hu, Q., Ling, H.: Vision meets drones: past, present and future. In: Computer Vision and Pattern Recognition, pp. 1–20 (2020). arXiv:2001.06303
– reference: HamzaRChtourouMDesign of fuzzy inference system for apple ripeness estimation using gradient methodIET Image Process.20201456156910.1049/iet-ipr.2018.6524
– reference: LiuJWangXTomato diseases and pests detection based on improved Yolo V3 convolutional neural networkFront. Plant Sci.202011112
– reference: DyrmannMJørgensenRNMidtibyHSRoboWeedSupport - Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural networkAdv. Anim. Precis. Agric.20178842847
– reference: LiuLOuyangWWangXFieguthPChenJLiuXPietikäinenMDeep learning for generic object detection: A surveyInt. J. Comput. Vis.202012826131810.1007/s11263-019-01247-4
– reference: He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988 (2017)
– reference: Ramachandran, P., Zoph, B., Le, Q. V.: Swish: a self-gated activation function, In: Neural and Evolutionary Computing. pp. 1–12 (2017). arXiv:1710.05941
– reference: Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Computer Vision—ECCV 2014. Lecture Notes in Computer Science, pp. 740–755 (2014)
– reference: Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once : unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
– reference: Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal Loss for Dense Object Detection. In: IEEE transactions on pattern analysis and machine intelligence. pp. 318–327 (2020)
– reference: Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., Berg, A.C.: SSD : single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37 (2016)
– reference: XiPGuanHShuCBorgeatLGoubranRAn integrated approach for medical abnormality detection using deep patch convolutional neural networksVis. Comput.2020361869188210.1007/s00371-019-01775-7
– reference: MPOC: Malaysian Palm Oil Council, http://www.mpoc.org.my, accessed 15 September 2020
– reference: MaironREdanYComputer vision for fruit harvesting robots—state of the art and challenges aheadInt. J. Comput. Vis. Robot.2012343410.1504/IJCVR.2012.046419
– reference: VillamizarMSanfeliuAMoreno-NoguerFOnline learning and detection of faces with low human supervisionVis. Comput.20193534937010.1007/s00371-018-01617-y
– reference: KoiralaAWalshKBWangZMcCarthyCDeep learning for real-time fruit detection and orchard fruit load estimation: benchmarking of MangoYOLOPrecis. Agric.2019201107113510.1007/s11119-019-09642-0
– reference: ChenYLeeWSGanHPeresNFraisseCZhangYHeYStrawberry yield prediction based on a deep neural network using high-resolution aerial orthoimagesRemote Sens201911121
– reference: Girshick, R., Donahue, J., Darrell, T., Malik, J., Berkeley, U.C.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
– reference: ZhaoHZhouYZhangLPengYHuXPengHCaiXMixed YOLOv3-LITE: a lightweight real-time object detection methodSensors2020207186110.3390/s20071861
– reference: SaIGeZDayoubFUpcroftBPerezTMcCoolCDeepfruits: a fruit detection system using deep neural networksSensors201616812210.3390/s16081222
– reference: LiuGNouazeJCMbouembePLTKimJHYOLO-tomato: a robust algorithm for tomato detection based on YOLOv3Sensors2020207214510.3390/s20072145
– reference: LeeEKimDAccurate traffic light detection using deep neural network with focal regression lossImage Vis. Comput.201987243610.1016/j.imavis.2019.04.003
– reference: ChenSWShivakumarSSDcunhaSDasJOkonEQuCTaylorCJKumarVCounting apples and oranges with deep learning : A data driven approachIEEE Robot. Autom. Lett.2017278178810.1109/LRA.2017.2651944
– reference: DiasPATabbAMedeirosHApple flower detection using deep convolutional networksComput. Ind.201899172810.1016/j.compind.2018.03.010
– reference: TianYYangGWangZLiELiangZDetection of apple lesions in orchards based on deep learning methods of CycleGAN and YOLOV3-DenseJ. Sensors.20192019113
– reference: Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision Fast, pp. 1440–1448 (2015)
– reference: Tan, M., Pang, R., Le, Q. V.: EfficientDet: Scalable and efficient object detection. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp. 10778–10787 (2020)
– reference: MinWLiXWangQZengQLiaoYNew approach to vehicle license plate location based on new model YOLO-L and plate pre-identificationIET Image Process.2019131041104910.1049/iet-ipr.2018.6449
– reference: Idrees, A.: Malaysia Palm Oil Industry, http://www.mpoc.org.my/Malaysian_Palm_Oil_Industry.aspx, accessed 15 September 2020
– reference: YamamotoKGuoWYoshiokaYNinomiyaSOn plant detection of intact tomato fruits using image analysis and machine learning methodsSensors2014147121911220610.3390/s140712191
– reference: Gené-MolaJVilaplanaVRosell-PoloJRMorrosJRRuiz-HidalgoJGregorioEMulti-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilitiesComput. Electron. Agric.201916268969810.1016/j.compag.2019.05.016
– reference: ChenWHuangHPengSZhouCZhangCYOLO-face: a real-time face detectorVis. Comput.20203719
– reference: ZhaoYGongLHuangYLiuCA review of key techniques of vision-based control for harvesting robotComput. Electron. Agric.201612731132310.1016/j.compag.2016.06.022
– reference: ParkSEEemSHJeonHConcrete crack detection and quantification using deep learning and structured lightConstr. Build. Mater.202025211909610.1016/j.conbuildmat.2020.119096
– reference: Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: YOLO9000: Better, faster, stronger. In: IEEE conference on Computer Vision and Pattern Recognition, pp. 6517–6525 (2017)
– reference: LiYHanZXuHLiuLLiXZhangKYOLOv3-lite: a lightweight crack detection network for aircraft structure based on depthwise separable convolutionsAppl. Sci.20199378110.3390/app9183781
– reference: JiaoLZhangFLiuFYangSLiLFengZQuRA survey of deep learning-based object detectionIEEE Access.2019712883712886810.1109/ACCESS.2019.2939201
– reference: Redmon, J., Farhadi, A.: YOLOv3 : An incremental improvement. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
– reference: OzturkTTaloMYildirimEABalogluUBYildirimORajendra AcharyaUAutomated detection of COVID-19 cases using deep neural networks with X-ray imagesComput. Biol. Med.202012110379210.1016/j.compbiomed.2020.103792
– reference: QureshiWSPayneAWalshKBLinkerRCohenODaileyMNMachine vision for counting fruit on mango tree canopiesPrecis. Agric.20161822424410.1007/s11119-016-9458-5
– reference: Huang, G., Liu, Z., Maaten, L. van der, Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
– reference: Zhang, P., Zhong, Y., Li, X.: SlimYOLOv3: narrower, faster and better for real-time UAV applications. In: 2019 International Conference on Computer Vision Workshop, pp. 37–45 (2019)
– reference: TianYYangGWangZWangHLiELiangZApple detection during different growth stages in orchards using the improved YOLO-V3 modelComput. Electron. Agric.201915741742610.1016/j.compag.2019.01.012
– reference: MadeleineSBargotiSUnderwoodJImage based mango fruit detection, localisation and yield estimation using multiple view geometrySensors20161611191510.3390/s16111915
– volume: 13
  start-page: 1041
  year: 2019
  ident: 2116_CR28
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2018.6449
– volume: 11
  start-page: 1
  year: 2020
  ident: 2116_CR39
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00001
– ident: 2116_CR17
  doi: 10.1109/CVPR.2016.91
– volume: 36
  start-page: 1869
  year: 2020
  ident: 2116_CR24
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01775-7
– volume: 87
  start-page: 47
  year: 2019
  ident: 2116_CR29
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2019.04.007
– ident: 2116_CR18
  doi: 10.1109/CVPR.2017.690
– volume: 20
  start-page: 2145
  issue: 7
  year: 2020
  ident: 2116_CR42
  publication-title: Sensors
  doi: 10.3390/s20072145
– volume: 128
  start-page: 261
  year: 2020
  ident: 2116_CR9
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01247-4
– volume: 2
  start-page: 781
  year: 2017
  ident: 2116_CR31
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2017.2651944
– volume: 20
  start-page: 1107
  year: 2019
  ident: 2116_CR38
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-019-09642-0
– volume: 11
  start-page: 1
  year: 2019
  ident: 2116_CR36
  publication-title: Remote Sens
– volume: 20
  start-page: 1861
  issue: 7
  year: 2020
  ident: 2116_CR48
  publication-title: Sensors
  doi: 10.3390/s20071861
– ident: 2116_CR20
  doi: 10.1109/TPAMI.2018.2858826
– volume: 121
  start-page: 103792
  year: 2020
  ident: 2116_CR25
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103792
– volume: 252
  start-page: 119096
  year: 2020
  ident: 2116_CR23
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119096
– ident: 2116_CR19
– volume: 18
  start-page: 224
  year: 2016
  ident: 2116_CR7
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-016-9458-5
– ident: 2116_CR45
  doi: 10.1007/978-3-319-10602-1_48
– volume: 127
  start-page: 572
  year: 2016
  ident: 2116_CR6
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.07.023
– ident: 2116_CR46
– volume: 36
  start-page: 1
  year: 2017
  ident: 2116_CR14
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 2116_CR1
– volume: 30
  start-page: 3212
  year: 2019
  ident: 2116_CR10
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– volume: 157
  start-page: 417
  year: 2019
  ident: 2116_CR40
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.012
– ident: 2116_CR43
  doi: 10.1109/CVPR.2017.243
– volume: 14
  start-page: 561
  year: 2020
  ident: 2116_CR8
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2018.6524
– ident: 2116_CR21
  doi: 10.1109/CVPR42600.2020.01079
– volume: 8
  start-page: 842
  year: 2017
  ident: 2116_CR32
  publication-title: Adv. Anim. Precis. Agric.
– volume: 87
  start-page: 24
  year: 2019
  ident: 2116_CR30
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2019.04.003
– ident: 2116_CR49
  doi: 10.1109/ICCVW.2019.00011
– volume: 3
  start-page: 4
  year: 2012
  ident: 2116_CR4
  publication-title: Int. J. Comput. Vis. Robot.
  doi: 10.1504/IJCVR.2012.046419
– volume: 16
  start-page: 122
  issue: 8
  year: 2016
  ident: 2116_CR34
  publication-title: Sensors
  doi: 10.3390/s16081222
– volume: 14
  start-page: 12191
  issue: 7
  year: 2014
  ident: 2116_CR5
  publication-title: Sensors
  doi: 10.3390/s140712191
– volume: 127
  start-page: 311
  year: 2016
  ident: 2116_CR3
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.06.022
– ident: 2116_CR47
– ident: 2116_CR2
– volume: 9
  start-page: 3781
  year: 2019
  ident: 2116_CR22
  publication-title: Appl. Sci.
  doi: 10.3390/app9183781
– ident: 2116_CR16
  doi: 10.1007/978-3-319-46448-0_2
– volume: 99
  start-page: 17
  year: 2018
  ident: 2116_CR33
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.03.010
– volume: 162
  start-page: 689
  year: 2019
  ident: 2116_CR37
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.05.016
– ident: 2116_CR12
  doi: 10.1109/CVPR.2014.81
– ident: 2116_CR44
– volume: 37
  start-page: 1
  year: 2020
  ident: 2116_CR27
  publication-title: Vis. Comput.
– volume: 7
  start-page: 128837
  year: 2019
  ident: 2116_CR11
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2939201
– ident: 2116_CR13
  doi: 10.1109/ICCV.2015.169
– volume: 35
  start-page: 349
  year: 2019
  ident: 2116_CR26
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-01617-y
– ident: 2116_CR15
  doi: 10.1109/ICCV.2017.322
– volume: 16
  start-page: 1915
  issue: 11
  year: 2016
  ident: 2116_CR35
  publication-title: Sensors
  doi: 10.3390/s16111915
– volume: 2019
  start-page: 1
  year: 2019
  ident: 2116_CR41
  publication-title: J. Sensors.
SSID ssj0017749
Score 2.5456383
Snippet Manual harvesting of loose fruits in the oil palm plantation is both time consuming and physically laborious. Automatic harvesting system is an alternative...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2341
SubjectTerms Accuracy
Artificial Intelligence
Blurring
Cameras
Classification
Computer Graphics
Computer Science
Datasets
Deep learning
Embedded systems
Fruits
Harvesting
Image Processing and Computer Vision
Methods
Multilayers
Neural networks
Object recognition
Original Article
Target detection
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwKCAKBXlgg0iJ7bzGCFEhBHSAoDJF8QtVapOqSf8_ZzdpAQESQ4Yotoez73yXu-87hC61S_1cqchROiQQoCjf4WHOwJHj0s2pq5lvAM6PT8Fdyu5H_qgBhVVttXubkrSWegV2s-xyjikpgMcLHLqJtnwTu8MpTkmyyh2AQ2OdXg_iI4PzbKAyP6_x9Tpa-5jf0qL2thnso93GTcTJcl8P0IYqumivbcGAG43sop1PfIKH6DlZ1KXlYMVS1bbIqsClxuV4gmf5ZIr1fDGuK2wwJThNXvF4Cuakwqb4_R3nBbybXwxK4rfhwxDbLjlHKB3cvtzcOU3XBEeAOtUgdBaAlkoScK0pJ8KlkZQy1l4ouQCNFrGbCxH7mkGs5UIAwyQFi62J8LmOFD1GnaIs1AnCkuSMEh2wIFLMi2BQbvr_6YiHUomQ9ZDXCi8TDaW46WwxyVZkyFbgGQg7swLPaA9drebMloQaf47ut3uSNcpVZSQ2LGsspGEPXbf7tP78-2qn_xt-hraJATvY4tw-6tTzhToHF6TmF_bEfQDpG9CO
  priority: 102
  providerName: Springer Nature
Title Automatic detection of oil palm fruits from UAV images using an improved YOLO model
URI https://link.springer.com/article/10.1007/s00371-021-02116-3
https://www.proquest.com/docview/2917984737
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB4t9AIHxLIgyqPygdtutIntPHpCKWpB-2hXu1vUnqLED1SpTUqb_n_GrtvuIsEhiiI7Pow943l-A3CjfRbmSiWe0jFFA0WFXhHnHBW5Qvo58zUPTYHzz370MOTfRuHIOdyWLq1yIxOtoJaVMD7yr7RtoLV4zOLb-bNnukaZ6KprobEHDRTBCRpfjU63_-v3No6Ayo1VgAO0lUzNpyubscVzFq3OMykK-ASRx_6_mnb65qsQqb15esdw5FRGkq73-CN8UOUJHP4DJPgJ_qSrurLgq0Sq2mZXlaTSpJpMyTyfzoherCb1kphiEjJMH8lkhnJkSUzW-xPJS_w2vgUlyXjwY0Bse5xTGPa6f-8ePNcuwRPIRzVSm0fInpJGhdasoMJniZSyrYNYFgJZWbT9XIh2qDkaWT5aLlwyFNWairDQiWJnsF9WpToHImnOGdURjxLFgwQn5abxn06KWCoR8yYEG0plwmGJm5YW02yLgmypmyFlM0vdjDXh8_af-RpJ493ZV5sNyBxXLbPdGWjCl82m7IbfXu3i_dUu4YCaqgabhXsF-_Vipa5R16iLFuwlvfsWNNJep9M37_vx927LHTMcHdL0BToY094
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6l4UA5VDyKmjbAHuAEVu3d9euAUASEhDx6oKnCybX3gSKldto4QvwpfiOzGzuBSuSWgw-Wd1fW7LezM7sz3wC81i7zU6UiR-mQooOifCcLU46GXCbdlLma-ybBeTQOehP-depPG_C7zoUxYZW1TrSKWhbCnJGf09hQa_GQhR8Wt46pGmVuV-sSGmtYDNSvn-iyLd_3P-H8vqG0-_nyY8-pqgo4AuFW4k_xAFEsaZBpzTIqXBZJKWPthTITiHgRu6kQsa85-iIuGvhcMtRomgo_05FiOO4BPOCMxWZFRd0vm1sLNKWsue2hZ2YyTKskHZuqZ7nxHBMQgY8XOOzfjXBr3d67kLX7XPcxHFUGKumsEfUEGip_Co_-oi18Bt86q7KwVK9EqtLGcuWk0KSYzckind8QfbealUtiUlfIpHNFZjeotZbExNj_IGmO7-YkQ0ny_WJ4QWwxnmOY7EWMz6GZF7k6ASJpyhnVAQ8ixb0IG6WmzKCOslAqEfIWeLWkElExl5sCGvNkw7lspZugZBMr3YS14O2mz2LN27GzdbuegKRaw8tki7gWvKsnZfv5_6Od7h7tFTzsXY6GybA_HpzBITX5FDb-tw3N8m6lXqCVU2YvLbQIXO8by38ABBsL4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SAgOvBGDATlwg4o2SR87TsDEYwwkGIJT1eaBJm3txLr_j5O1GyBA4tBD1SQHO07s2t9ngGPtMj9RKnKUDikGKMp30jDh6Mil0k2Yq7lvAM53neCqy29e_JdPKH5b7V6lJCeYBsPSlBVnQ6nPpsA3yzTnmPICfLzAYfOwiMexZ_Z1lzaneQR0bqwD7GGsZDCfJWzm5zW-Xk0zf_NbitTePK11WC1dRtKc6HgD5lS2CWtVOwZSWucmrHziFtyCx-a4yC0fK5GqsAVXGck1yXt9Mkz6A6Lfx71iRAy-hHSbz6Q3wKNlREwh_BtJMnw3vxuUJK_37XtiO-ZsQ7d1-XR-5ZQdFByBsihQATxAi5U0SLVmKRUui6SUDe2FMhVo3aLhJkI0fM0x7nIxmOGS4emtqfBTHSm2AwtZnqldIJImnFEd8CBS3ItwUGJ6AeooDaUSIa-BVwkvFiW9uOly0Y-nxMhW4DEKO7YCj1kNTqZzhhNyjT9H1yudxKWhjWLaMIxrPGRhDU4rPc0-_77a3v-GH8HSw0Urbl93bvdhmRoMhK3ZrcNC8T5WB-iZFOmh3XwfaUfXvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+of+oil+palm+fruits+from+UAV+images+using+an+improved+YOLO+model&rft.jtitle=The+Visual+computer&rft.au=Junos%2C+Mohamad+Haniff&rft.au=Mohd+Khairuddin%2C+Anis+Salwa&rft.au=Thannirmalai%2C+Subbiah&rft.au=Dahari%2C+Mahidzal&rft.date=2022-07-01&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=38&rft.issue=7&rft.spage=2341&rft.epage=2355&rft_id=info:doi/10.1007%2Fs00371-021-02116-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00371_021_02116_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon