DECA: a novel multi-scale efficient channel attention module for object detection in real-life fire images

Channel attention mechanisms have attracted more and more researchers because of their generality and effectiveness in deep convolutional neural networks(DCNNs). However, the signal encoding methods of the current popular channel attention mechanisms are limited. For example, SENet uses the full-con...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 52; no. 2; pp. 1362 - 1375
Main Authors Wang, Junjie, Yu, Jiong, He, Zhu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Channel attention mechanisms have attracted more and more researchers because of their generality and effectiveness in deep convolutional neural networks(DCNNs). However, the signal encoding methods of the current popular channel attention mechanisms are limited. For example, SENet uses the full-connection method to encode channel relevance, which is parameters-costly; ECANet uses 1D-Convolution to encode channel relevance, which is parameter fewer but can only encode per k adjacent channels in a fixed scale. This paper proposes a novel dilated efficient channel attention module(DECA), which consists of a novel multi-scale channel encoding method and a novel channel relevance feature fusion method. We empirically show that different scale channel relevance also contributes to performance, and fusing various scale channel relevance features can obtain more powerful channel feature representation. Besides, we widely use the weight-sharing method in the DECA module to make it more efficient. Specifically, we have applied our module to the real-life fire image detection task to evaluate its effectiveness. Extensive experiments on different backbone depths, detectors, and fire datasets have shown that the average performance boost of DECA module is more than 4.5 % compare to the baselines. Meanwhile, DECA outperforms other state-of-art attention modules while keeping lower or comparable parameters in the experiments. The experimental results on different datasets also shown that the DECA module holds great generalization ability.
AbstractList Channel attention mechanisms have attracted more and more researchers because of their generality and effectiveness in deep convolutional neural networks(DCNNs). However, the signal encoding methods of the current popular channel attention mechanisms are limited. For example, SENet uses the full-connection method to encode channel relevance, which is parameters-costly; ECANet uses 1D-Convolution to encode channel relevance, which is parameter fewer but can only encode per k adjacent channels in a fixed scale. This paper proposes a novel dilated efficient channel attention module(DECA), which consists of a novel multi-scale channel encoding method and a novel channel relevance feature fusion method. We empirically show that different scale channel relevance also contributes to performance, and fusing various scale channel relevance features can obtain more powerful channel feature representation. Besides, we widely use the weight-sharing method in the DECA module to make it more efficient. Specifically, we have applied our module to the real-life fire image detection task to evaluate its effectiveness. Extensive experiments on different backbone depths, detectors, and fire datasets have shown that the average performance boost of DECA module is more than 4.5 % compare to the baselines. Meanwhile, DECA outperforms other state-of-art attention modules while keeping lower or comparable parameters in the experiments. The experimental results on different datasets also shown that the DECA module holds great generalization ability.
Channel attention mechanisms have attracted more and more researchers because of their generality and effectiveness in deep convolutional neural networks(DCNNs). However, the signal encoding methods of the current popular channel attention mechanisms are limited. For example, SENet uses the full-connection method to encode channel relevance, which is parameters-costly; ECANet uses 1D-Convolution to encode channel relevance, which is parameter fewer but can only encode per k adjacent channels in a fixed scale. This paper proposes a novel dilated efficient channel attention module(DECA), which consists of a novel multi-scale channel encoding method and a novel channel relevance feature fusion method. We empirically show that different scale channel relevance also contributes to performance, and fusing various scale channel relevance features can obtain more powerful channel feature representation. Besides, we widely use the weight-sharing method in the DECA module to make it more efficient. Specifically, we have applied our module to the real-life fire image detection task to evaluate its effectiveness. Extensive experiments on different backbone depths, detectors, and fire datasets have shown that the average performance boost of DECA module is more than 4.5% compare to the baselines. Meanwhile, DECA outperforms other state-of-art attention modules while keeping lower or comparable parameters in the experiments. The experimental results on different datasets also shown that the DECA module holds great generalization ability.
Author He, Zhu
Yu, Jiong
Wang, Junjie
Author_xml – sequence: 1
  givenname: Junjie
  surname: Wang
  fullname: Wang, Junjie
  organization: Software Institute, Xinjiang University
– sequence: 2
  givenname: Jiong
  surname: Yu
  fullname: Yu, Jiong
  email: yujiong@xju.edu.cn
  organization: Software Institute, Xinjiang University
– sequence: 3
  givenname: Zhu
  surname: He
  fullname: He, Zhu
  organization: Software Institute, Xinjiang University
BookMark eNp9kEtLQzEQhYMoWKt_wFXAdTSv-4i7Up8guFFwF9LcuZpym9QkV-i_N7WC4KKLMIT5zsycc4IOffCA0Dmjl4zS5ioxKltFKGflSVWTzQGasKoRpJGqOUQTqrgkda3ejtFJSktKqRCUTdDy5nY-u8YG-_AFA16NQ3YkWTMAhr531oHP2H4Y70vX5Fy-Lni8Ct1YkD5EHBZLsBl3kEvZ9pzHEcxABtcXwkXAbmXeIZ2io94MCc5-6xS93t2-zB_I0_P943z2RKxgKhMAULZ46mRxspBtZRXQCoTiXImGStlQYeiiZ23V2pp1suFNV9Wy7zpprBRiii52c9cxfI6Qsl6GMfqyUvOac6pq2cpCtTvKxpBShF5bl83WQI7GDZpRvU1W75LVJVn9k6zeFCn_J13HYjFu9ovETpQK7N8h_l21R_UNQzaN9w
CitedBy_id crossref_primary_10_1007_s10489_023_04544_1
crossref_primary_10_1155_2022_5736407
crossref_primary_10_1109_TIP_2022_3207006
crossref_primary_10_1016_j_jvcir_2023_103781
crossref_primary_10_2139_ssrn_4191360
crossref_primary_10_1007_s00138_023_01439_6
crossref_primary_10_3390_electronics12224566
crossref_primary_10_3390_fire6120446
crossref_primary_10_1109_ACCESS_2022_3199368
crossref_primary_10_1155_2021_5554316
crossref_primary_10_1088_1361_6560_ad2014
crossref_primary_10_3233_JIFS_231167
crossref_primary_10_3390_rs16183382
crossref_primary_10_1109_ACCESS_2023_3339560
crossref_primary_10_1109_ACCESS_2024_3412796
crossref_primary_10_3390_s22103891
crossref_primary_10_1007_s10489_022_03747_2
crossref_primary_10_1016_j_ins_2023_119281
crossref_primary_10_1007_s10489_022_03774_z
crossref_primary_10_1109_TIM_2022_3216399
Cites_doi 10.1016/j.knosys.2020.105590
10.1109/TPAMI.2017.2699184
10.1109/CVPR42600.2020.01155
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2016.91
10.1109/CVPR46437.2021.01008
10.1007/978-3-319-46448-0_2
10.1145/3065386
10.1109/ACCESS.2020.2982994
10.1109/CVPR.2019.00060
10.1109/TIP.2020.3016431
10.1109/CVPR42600.2020.00978
10.1109/ISCID.2018.00070
10.1109/CVPR.2019.00314
10.1109/ICIVC.2018.8492823
10.1109/ICCV.2015.169
10.1109/CVPR.2009.5206848
10.1109/CVPR.2015.7298594
10.1109/CVPR.2016.90
10.1109/ICCV.2017.324
10.1109/CVPR.2017.106
10.1109/ICCV.2019.00615
10.1016/j.ins.2019.12.084
10.1109/CVPR.2018.00813
10.1007/978-3-030-58555-6_16
10.1016/j.knosys.2019.105448
10.1007/978-3-030-01240-3_21
10.1109/ICFSFPE48751.2019.9055795
10.1109/ICCV.2019.00338
10.1007/s11263-009-0275-4
10.1109/CVPR.2017.243
10.1109/CVPR.2018.00745
10.1007/978-3-030-01234-2_1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-021-02496-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 1375
ExternalDocumentID 10_1007_s10489_021_02496_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61862060
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-eee9c007d4024b485c9e05e3922937044703a0bf1858c61d4727d564fdd4ac433
IEDL.DBID U2A
ISSN 0924-669X
IngestDate Fri Jul 25 12:15:30 EDT 2025
Tue Jul 01 03:31:45 EDT 2025
Thu Apr 24 23:08:17 EDT 2025
Fri Feb 21 02:46:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Attention mechanism
Neural network
Fire detection
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-eee9c007d4024b485c9e05e3922937044703a0bf1858c61d4727d564fdd4ac433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2622096484
PQPubID 326365
PageCount 14
ParticipantIDs proquest_journals_2622096484
crossref_citationtrail_10_1007_s10489_021_02496_y
crossref_primary_10_1007_s10489_021_02496_y
springer_journals_10_1007_s10489_021_02496_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, Tulloch A, Jia Y, He K (2017) Accurate, large minibatch sgd: training imagenet in 1 hour. arXiv:1706.02677
EveringhamMGoolLVWilliamsCKIWinnJZissermanAThe pascal visual object classes (voc) challengeInternational Journal of Computer Vision201088230333810.1007/s11263-009-0275-4
Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988
Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, vol 40, pp 834–848
Zhaa X, Ji H, Zhang D, Bao H (2018) Fire smoke detection based on contextual object detection. In: 2018 IEEE 3rd international conference on image, vision and computing (ICIVC). IEEE, pp 473–476
KrizhevskyASutskeverIHintonGEImagenet classification with deep convolutional neural networksCommun ACM2017606849010.1145/3065386
Chen K, Cheng Y, Bai H, Mou C, Zhang Y (2019) Research on image fire detection based on support vector machine. In: 2019 9th international conference on fire science and fire protection engineering (ICFSFPE). IEEE, pp 1–7
Zhang H, Chang H, Ma B, Wang N, Chen X (2020) Dynamic r-cnn: towards high quality object detection via dynamic training. arXiv:2004.06002
Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7794–7803
Li X, Wang W, Hu X, Yang J (2019) Selective kernel networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 510–519
GengYan L (2021) Fire detect dataset. https://github.com/gengyanlei/fire-detect-yolov4
Zhang S, Chi C, Yao Y, Lei Z, Li SZ (2020) Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9759–9768
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
GaoPZhangQWangFXiaoLFujitaHZhangYLearning reinforced attentional representation for end-to-end visual trackingInf Sci2020517526710.1016/j.ins.2019.12.084
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) Ssd: single shot multibox detector. In: European conference on computer vision, pp 21–37. Springer
Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: European conference on computer vision, pp 740–755. Springer
ChaoxiaCShangWZhangFInformation-guided flame detection based on faster r-cnnIEEE Access20208589235893210.1109/ACCESS.2020.2982994
Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255. IEEE
Li Z, Peng C, Yu G, Zhang X, Deng Y, Sun J (2018) Detnet: a backbone network for object detection. arXiv:1804.06215
Shixiao W u, Zhang L (2018) Using popular object detection methods for real time forest fire detection. In: 2018 11th international symposium on computational intelligence and design (ISCID), vol 1. IEEE, pp 280–284
Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, pp 91–99
Huang G, Liu Z, Maaten LVD, Weinberger KQ (2017) Densely connected convolutional networks. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
Chen K, Wang J, Pang J, Cao Y, Xiong Y, Li X, Sun S, Feng W, Liu Z, Xu J, et al. (2019) Mmdetection: open mmlab detection toolbox and benchmark. arXiv:1906.07155
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788
Bello I, Zoph B, Vaswani A, Shlens J, Le QV (2019) Attention augmented convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 3286–3295
Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117–2125
Li Y, Chen Y, Wang N, Zhang Z (2019) Scale-aware trident networks for object detection. In: Proceedings of the IEEE international conference on computer vision, pp 6054–6063
Liu S, Huang D, Wang Y (2019) Learning spatial fusion for single-shot object detection. arXiv:1911.09516
Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q (2020) Eca-net: efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 11534–11542
GaoPYuanRWangFXiaoLFujitaHZhangYSiamese attentional keypoint network for high performance visual trackingKnowledge-Based Systems202019310544810.1016/j.knosys.2019.105448
Hu J, Li S, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141
Gaia (2021) D-fire: an image dataset of fire and smoke occurrences designed for machine learning and object recognition algorithms with more than 10000 images. https://github.com/gaiasd/DFireDataset
Woo S, Park J, Lee Joon-Young, In SK (2018) Cbam: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19
LiSYanQLiuPAn efficient fire detection method based on multiscale feature extraction, implicit deep supervision and channel attention mechanismIEEE Trans Image Process2020298467847510.1109/TIP.2020.3016431
Gao Z, Xie J, Wang Q, Li P (2019) Global second-order pooling convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3024–3033
Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 1440–1448
Pérez-HernándezFTabikSLamasAOlmosRFujitaHHerreraFObject detection binary classifiers methodology based on deep learning to identify small objects handled similarly: application in video surveillanceKnowl-Based Syst202019410559010.1016/j.knosys.2020.105590
Chen L-C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587
Qiao S, Chen L-C, Yuille A (2020) Detectors: detecting objects with recursive feature pyramid and switchable atrous convolution. arXiv:2006.02334
2496_CR29
P Gao (2496_CR31) 2020; 517
2496_CR27
2496_CR28
F Pérez-Hernández (2496_CR34) 2020; 194
2496_CR23
2496_CR24
2496_CR21
2496_CR22
2496_CR41
2496_CR20
2496_CR40
C Chaoxia (2496_CR25) 2020; 8
S Li (2496_CR26) 2020; 29
2496_CR7
2496_CR8
2496_CR9
2496_CR18
A Krizhevsky (2496_CR3) 2017; 60
2496_CR19
2496_CR1
2496_CR16
2496_CR38
2496_CR17
2496_CR39
2496_CR14
2496_CR36
2496_CR4
2496_CR15
2496_CR37
2496_CR5
2496_CR12
P Gao (2496_CR32) 2020; 193
2496_CR6
2496_CR13
2496_CR35
2496_CR10
2496_CR11
2496_CR33
2496_CR30
M Everingham (2496_CR2) 2010; 88
References_xml – reference: LiSYanQLiuPAn efficient fire detection method based on multiscale feature extraction, implicit deep supervision and channel attention mechanismIEEE Trans Image Process2020298467847510.1109/TIP.2020.3016431
– reference: Pérez-HernándezFTabikSLamasAOlmosRFujitaHHerreraFObject detection binary classifiers methodology based on deep learning to identify small objects handled similarly: application in video surveillanceKnowl-Based Syst202019410559010.1016/j.knosys.2020.105590
– reference: ChaoxiaCShangWZhangFInformation-guided flame detection based on faster r-cnnIEEE Access20208589235893210.1109/ACCESS.2020.2982994
– reference: Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7794–7803
– reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556
– reference: Woo S, Park J, Lee Joon-Young, In SK (2018) Cbam: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19
– reference: Huang G, Liu Z, Maaten LVD, Weinberger KQ (2017) Densely connected convolutional networks. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
– reference: Zhang S, Chi C, Yao Y, Lei Z, Li SZ (2020) Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9759–9768
– reference: GaoPZhangQWangFXiaoLFujitaHZhangYLearning reinforced attentional representation for end-to-end visual trackingInf Sci2020517526710.1016/j.ins.2019.12.084
– reference: Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117–2125
– reference: Chen K, Wang J, Pang J, Cao Y, Xiong Y, Li X, Sun S, Feng W, Liu Z, Xu J, et al. (2019) Mmdetection: open mmlab detection toolbox and benchmark. arXiv:1906.07155
– reference: Qiao S, Chen L-C, Yuille A (2020) Detectors: detecting objects with recursive feature pyramid and switchable atrous convolution. arXiv:2006.02334
– reference: Liu S, Huang D, Wang Y (2019) Learning spatial fusion for single-shot object detection. arXiv:1911.09516
– reference: Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788
– reference: Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q (2020) Eca-net: efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 11534–11542
– reference: Gao Z, Xie J, Wang Q, Li P (2019) Global second-order pooling convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3024–3033
– reference: Hu J, Li S, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
– reference: Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, Tulloch A, Jia Y, He K (2017) Accurate, large minibatch sgd: training imagenet in 1 hour. arXiv:1706.02677
– reference: Li X, Wang W, Hu X, Yang J (2019) Selective kernel networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 510–519
– reference: EveringhamMGoolLVWilliamsCKIWinnJZissermanAThe pascal visual object classes (voc) challengeInternational Journal of Computer Vision201088230333810.1007/s11263-009-0275-4
– reference: Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 1440–1448
– reference: Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255. IEEE
– reference: Shixiao W u, Zhang L (2018) Using popular object detection methods for real time forest fire detection. In: 2018 11th international symposium on computational intelligence and design (ISCID), vol 1. IEEE, pp 280–284
– reference: Bello I, Zoph B, Vaswani A, Shlens J, Le QV (2019) Attention augmented convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 3286–3295
– reference: Li Y, Chen Y, Wang N, Zhang Z (2019) Scale-aware trident networks for object detection. In: Proceedings of the IEEE international conference on computer vision, pp 6054–6063
– reference: Chen L-C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587
– reference: Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, vol 40, pp 834–848
– reference: GengYan L (2021) Fire detect dataset. https://github.com/gengyanlei/fire-detect-yolov4
– reference: Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: European conference on computer vision, pp 740–755. Springer
– reference: GaoPYuanRWangFXiaoLFujitaHZhangYSiamese attentional keypoint network for high performance visual trackingKnowledge-Based Systems202019310544810.1016/j.knosys.2019.105448
– reference: Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988
– reference: Zhaa X, Ji H, Zhang D, Bao H (2018) Fire smoke detection based on contextual object detection. In: 2018 IEEE 3rd international conference on image, vision and computing (ICIVC). IEEE, pp 473–476
– reference: KrizhevskyASutskeverIHintonGEImagenet classification with deep convolutional neural networksCommun ACM2017606849010.1145/3065386
– reference: Chen K, Cheng Y, Bai H, Mou C, Zhang Y (2019) Research on image fire detection based on support vector machine. In: 2019 9th international conference on fire science and fire protection engineering (ICFSFPE). IEEE, pp 1–7
– reference: Li Z, Peng C, Yu G, Zhang X, Deng Y, Sun J (2018) Detnet: a backbone network for object detection. arXiv:1804.06215
– reference: Gaia (2021) D-fire: an image dataset of fire and smoke occurrences designed for machine learning and object recognition algorithms with more than 10000 images. https://github.com/gaiasd/DFireDataset
– reference: Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, pp 91–99
– reference: Zhang H, Chang H, Ma B, Wang N, Chen X (2020) Dynamic r-cnn: towards high quality object detection via dynamic training. arXiv:2004.06002
– reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
– reference: Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) Ssd: single shot multibox detector. In: European conference on computer vision, pp 21–37. Springer
– volume: 194
  start-page: 105590
  year: 2020
  ident: 2496_CR34
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.105590
– ident: 2496_CR35
  doi: 10.1109/TPAMI.2017.2699184
– ident: 2496_CR24
  doi: 10.1109/CVPR42600.2020.01155
– ident: 2496_CR1
  doi: 10.1007/978-3-319-10602-1_48
– ident: 2496_CR22
– ident: 2496_CR20
  doi: 10.1109/CVPR.2016.91
– ident: 2496_CR17
  doi: 10.1109/CVPR46437.2021.01008
– ident: 2496_CR19
  doi: 10.1007/978-3-319-46448-0_2
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 2496_CR3
  publication-title: Commun ACM
  doi: 10.1145/3065386
– volume: 8
  start-page: 58923
  year: 2020
  ident: 2496_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982994
– ident: 2496_CR28
  doi: 10.1109/CVPR.2019.00060
– volume: 29
  start-page: 8467
  year: 2020
  ident: 2496_CR26
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.3016431
– ident: 2496_CR21
  doi: 10.1109/CVPR42600.2020.00978
– ident: 2496_CR9
  doi: 10.1109/ISCID.2018.00070
– ident: 2496_CR30
  doi: 10.1109/CVPR.2019.00314
– ident: 2496_CR36
– ident: 2496_CR10
  doi: 10.1109/ICIVC.2018.8492823
– ident: 2496_CR13
  doi: 10.1109/ICCV.2015.169
– ident: 2496_CR39
  doi: 10.1109/CVPR.2009.5206848
– ident: 2496_CR5
  doi: 10.1109/CVPR.2015.7298594
– ident: 2496_CR38
– ident: 2496_CR6
  doi: 10.1109/CVPR.2016.90
– ident: 2496_CR18
  doi: 10.1109/ICCV.2017.324
– ident: 2496_CR33
  doi: 10.1109/CVPR.2017.106
– ident: 2496_CR16
  doi: 10.1109/ICCV.2019.00615
– volume: 517
  start-page: 52
  year: 2020
  ident: 2496_CR31
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.12.084
– ident: 2496_CR41
  doi: 10.1109/CVPR.2018.00813
– ident: 2496_CR15
  doi: 10.1007/978-3-030-58555-6_16
– ident: 2496_CR40
– volume: 193
  start-page: 105448
  year: 2020
  ident: 2496_CR32
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105448
– ident: 2496_CR8
  doi: 10.1007/978-3-030-01240-3_21
– ident: 2496_CR4
– ident: 2496_CR11
  doi: 10.1109/ICFSFPE48751.2019.9055795
– ident: 2496_CR29
  doi: 10.1109/ICCV.2019.00338
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 2496_CR2
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-009-0275-4
– ident: 2496_CR7
  doi: 10.1109/CVPR.2017.243
– ident: 2496_CR12
– ident: 2496_CR23
  doi: 10.1109/CVPR.2018.00745
– ident: 2496_CR27
  doi: 10.1007/978-3-030-01234-2_1
– ident: 2496_CR14
– ident: 2496_CR37
SSID ssj0003301
Score 2.4193099
Snippet Channel attention mechanisms have attracted more and more researchers because of their generality and effectiveness in deep convolutional neural...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1362
SubjectTerms Artificial Intelligence
Artificial neural networks
Computer Science
Datasets
Deep learning
Efficiency
Experiments
Image detection
Machines
Manufacturing
Mechanical Engineering
Methods
Modules
Neural networks
Object recognition
Parameters
Processes
Sensors
Signal encoding
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfjitzidkgffNLi1aZb6IlM3huAQcbC30nwMJl07bSfsv_eSpSsK7qUvSQu9y9397nIfCF1xETOmOjEJlUcJlUqBzImQcCbabUF9wKimGvllyAYj-jwOxi7glru0ylInWkWtMmli5Lce8zyA25TT-_knMVOjzO2qG6GxjeqggjmvofpDb_j6ttbF4K3bmXngZRDGwrErm3HFc9SkC3ngToMPwsjyt2mq8OafK1Jrefr7aNdBRtxd8fgAben0EO2V4xiwk84j9PHUe-ze4Rin2bdOsE0VJDnwQGNtG0WAfcGm0DeFVdNW0yY64lmmFrAFwCvOhInKYKULm6CV4mmKAVQmJJlOYAdoRzydgQLKj9Go33t_HBA3SoFIkLGCaK1DCX-twF2kgvJAhroVaABHYO47LUpB8OOWmID15pK1FQVYowJGJ0rRWFLfP0G1NEv1KcLcVNuCDpUTJmgn9GJAhIEPT67A9ZB-A7VLKkbS9Rk34y6SqOqQbCgfAeUjS_lo2UDX63fmqy4bG3c3S-ZETuLyqDofDXRTMqxa_v9rZ5u_do52PFPxYKMuTVQrvhb6AnBIIS7dYfsBgcfX7Q
  priority: 102
  providerName: ProQuest
Title DECA: a novel multi-scale efficient channel attention module for object detection in real-life fire images
URI https://link.springer.com/article/10.1007/s10489-021-02496-y
https://www.proquest.com/docview/2622096484
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IXLz4NqJI9uBNN4F2u7TeAClEIzFGEjw13QcJBoqxYMK_d3ZpQY2aeOkeOt20s52Zb3bnAXDhi5hz1YhpoBxGmVQKZU4E1OeiXhfMRYxqspHv-7w3YLdDb5glhaV5tHt-JGk19adkN2bCexx0f9Fn4HRZgJKHvrsJ5Bo4zbX-RQ_d9slDz4JyHgyzVJmf5_hqjjYY89uxqLU24R7sZDCRNFfrug9bOjmA3bwFA8kk8hBebjrt5jWJSTJ71xNiwwNpinzXRNviEGhTiEnuTfCuKaVpgxvJdKYWSIKAlcyE2YkhSs9tUFZCxglBIDmhk_EIKVAjkvEUlU56BIOw89Tu0ax9ApUoV3OqtQ4kfrVCF5EJ5nsy0DVPIyBCE9-oMYbCHtfECC22L3ldMYQyyuNspBSLJXPdYygms0SfAPFNhi3qTTnigjUCJ0YU6Ll49RW6G9ItQz3nYiSz2uKmxcUk2lRFNpyPkPOR5Xy0LMPl-pnXVWWNP6kr-eJEmZSlkcMdfC_OfFaGq3zBNrd_n-30f-RnsO2YrAe781KB4vxtoc8Ri8xFFQp-2K1CqRm2Wn0zdp_vOji2Ov2Hx6r9MT8AiLLZlA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4heiiX0hZQU6DdA5xgRbJeb-xKCCEghOcJpNyM9xEpVbCBhFb5U_2NfLuxiYoENy6WJa_3MDM7883sPIg2Ep0rZds5T62QXBprceZ0yhOlWy0tI2BUX418cam61_K0F_fm6F9dC-PTKmudGBS1LY2Pke8IJQTgtkzk3t0991Oj_O1qPUJjKhZnbvIXLtto9-QQ_N0UonN0ddDl1VQBbiBuY-6cSw0so4XnJLVMYpO6ZuyAE2D52k0pcQbypu7DkCVGtayEhbexkn1rZW6kD4BC5X_AS-qdvaRz_Kz5oyiMW27Cp-FKpb2qSKcq1ZM-OUnAeYfHo_jkf0M4Q7cvLmSDnet8pk8VQGX7U4n6QnOu-EqL9fAHVumCJfp9eHSw_4vlrCj_uCELiYl8BI475kJbClgz5suKC3z1TTxDWiW7Le0jlgAqs1L7GBCzbhzSwQo2KBgg7JAPB32sgC5mg1uou9EyXb8LiVdovigL941Y4mt7obFNX2nZTkUO_BlHeCYWjo6JGtSqqZiZqqu5H64xzGb9mD3lM1A-C5TPJg3aev7nbtrT483VazVzsup8j7KZNDZou2bY7PPru31_e7ef9LF7dXGenZ9cnq3SgvC1FiHes0bz44dHtw4ENNY_gtgxunlvOX8CeKYRwg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqYS48EYECvgAJ7CaeL3OLhJCpUnUUogqRKXclvVjpaB0t21SUP4av47PjrcRSPTWy17s9WFmPPPNeB5ErzJdKmUHJc-tkFwaa3HndM4zpft9LRNgVF-N_GWiDk7kp2k63aLfbS2MT6tsdWJQ1LYxPka-K5QQgNsyk7tVTIs4Ho4_nJ1zP0HKv7S24zTWInLkVr_gvi3eHw7B69dCjEff9g94nDDADURvyZ1zuYGVtPCipJZZanLXSx0wA6zgoCcl7kPZ0xWMWmZU30pYe5sqWVkrSyN9MBTqf3vgvaIObX8cTY6_XtmBJAnDl3vwcLhS-TSW7MTCPelTlQRcefg_iq_-NosbrPvP82yweuN7dCfCVba3lq_7tOXqB3S3HQXBomZ4SD-Go_29d6xkdfPTzVlIU-QL8N8xF5pUwLYxX2RcY9W39AxJluy0sZfYAuDMGu0jQsy6ZUgOq9msZgC0cz6fVdgBzcxmp1B-i0d0ciNEfkyduqndE2KZr_SF_jaV0nKQixJoNE3wzSzcHpN0qd9SsTCxx7kftTEvNt2ZPeULUL4IlC9WXXpz9c_ZusPHtbt3WuYU8bYvio1sdulty7DN8v9Pe3r9aS_pFmS8-Hw4OXpGt4UvvAjBnx3qLC8u3XPAoaV-EeWO0febFvU_ENIXVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DECA%3A+a+novel+multi-scale+efficient+channel+attention+module+for+object+detection+in+real-life+fire+images&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Wang%2C+Junjie&rft.au=Yu%2C+Jiong&rft.au=He%2C+Zhu&rft.date=2022-01-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=2&rft.spage=1362&rft.epage=1375&rft_id=info:doi/10.1007%2Fs10489-021-02496-y&rft.externalDocID=10_1007_s10489_021_02496_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon