Emotion recognition using facial expressions in an immersive virtual reality application
Facial expression recognition (FER) is an important method to study and distinguish human emotions. In the virtual reality (VR) context, people’s emotions are instantly and naturally triggered and mobilized due to the high immersion and realism of VR. However, when people are wearing head mounted di...
Saved in:
Published in | Virtual reality : the journal of the Virtual Reality Society Vol. 27; no. 3; pp. 1717 - 1732 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Facial expression recognition (FER) is an important method to study and distinguish human emotions. In the virtual reality (VR) context, people’s emotions are instantly and naturally triggered and mobilized due to the high immersion and realism of VR. However, when people are wearing head mounted display (HMD) VR equipment, the eye regions will be covered. The FER accuracy will be reduced if the eye region information is discarded. Therefore, it is necessary to obtain the information of eye regions using other methods. The main difficulty in FER in an immersive VR context is that the conventional FER methods depend on public databases. The image facial information in the public databases is complete, so these methods are difficult to directly apply to the VR context. To solve this problem, this paper designs and implements a solution for FER in the VR context as follows. A real facial expression database collection scheme in the VR context is implemented by adding an infrared camera and infrared light source to the HMD. A virtual database construction method is presented for FER in the VR context, which can improve the generalization of models. A deep network named the multi-region facial expression recognition model is designed for FER in the VR context. |
---|---|
AbstractList | Facial expression recognition (FER) is an important method to study and distinguish human emotions. In the virtual reality (VR) context, people’s emotions are instantly and naturally triggered and mobilized due to the high immersion and realism of VR. However, when people are wearing head mounted display (HMD) VR equipment, the eye regions will be covered. The FER accuracy will be reduced if the eye region information is discarded. Therefore, it is necessary to obtain the information of eye regions using other methods. The main difficulty in FER in an immersive VR context is that the conventional FER methods depend on public databases. The image facial information in the public databases is complete, so these methods are difficult to directly apply to the VR context. To solve this problem, this paper designs and implements a solution for FER in the VR context as follows. A real facial expression database collection scheme in the VR context is implemented by adding an infrared camera and infrared light source to the HMD. A virtual database construction method is presented for FER in the VR context, which can improve the generalization of models. A deep network named the multi-region facial expression recognition model is designed for FER in the VR context. |
Author | Chen, Hengxin Chen, Xinrun |
Author_xml | – sequence: 1 givenname: Xinrun surname: Chen fullname: Chen, Xinrun organization: College of Computer Science, Chongqing University – sequence: 2 givenname: Hengxin orcidid: 0000-0002-1948-1831 surname: Chen fullname: Chen, Hengxin email: chenhengxin@cqu.edu.cn organization: College of Computer Science, Chongqing University |
BookMark | eNp9kEtLAzEUhYNUsK3-AVcB19E8ZyZLKfUBghsFdyFmkpIykxmTmWL_vWlHEFx0k9wbznfuzVmAWeiCBeCa4FuCcXmX8ikEwpSi3FKM5BmYE844klKUs1wzIRFnrLoAi5S2GDPKKz4HH-u2G3wXYLSm2wR_rMfkwwY6bbxuoP3uo00pvyfoA9QB-ra1MfmdhTsfhzFrotWNH_ZQ933jjT6YXIJzp5tkr37vJXh_WL-tntDL6-Pz6v4FGUbkgKxlumb6k2Ony6KoaktJjSWn1hhR4KKuC14SbYRzhaioo64wXArmuJGkLDlbgpvJt4_d12jToLbdGEMeqWglOCGlFEVW0UllYpdStE710bc67hXB6pCgmhJUOUF1TFDJDFX_IOOH4-eGqH1zGmUTmvKcsLHxb6sT1A9p7YjX |
CitedBy_id | crossref_primary_10_1016_j_procir_2024_03_035 crossref_primary_10_53759_5181_JEBI202404023 crossref_primary_10_3389_fpsyg_2024_1436918 crossref_primary_10_1007_s10055_024_00955_8 crossref_primary_10_1016_j_caeai_2024_100276 crossref_primary_10_1002_adfm_202418463 |
Cites_doi | 10.4236/jbise.2010.34054 10.1016/j.patrec.2020.01.016 10.1016/0031-3203(95)00067-4 10.1007/s00371-018-1477-y 10.1109/TCDS.2020.3003674 10.3390/s19081863 10.3390/s21165554 10.1109/TCYB.2014.2354351 10.1109/TAFFC.2014.2386334 10.1016/j.asoc.2019.105540 10.1109/TVCG.2018.2865945 10.1109/ACCESS.2021.3054332 10.1016/j.jpdc.2019.04.017 10.1080/02564602.2015.1117403 10.1109/ACCESS.2020.3024568 10.1109/TCDS.2019.2917711 10.3390/rs12030587 10.3389/fpsyg.2021.627561 10.1016/j.neubiorev.2020.05.018 10.1007/s00521-019-04138-4 10.1162/neco.1997.9.8.1735 10.1109/ICCV48922.2021.01073 10.1109/IVS.2019.8813809 10.1109/CVPR42600.2020.00277 10.1109/CVPR.2019.00906 10.1109/ICRA.2019.8794220 10.1109/CVPR.2012.6248074 10.1109/ICCV.1999.790410 10.1007/978-3-319-10602-1_48 10.1109/VR.2017.7892369 10.1109/WACV.2019.00178 10.1007/978-3-319-46484-8_29 10.1109/CVPR.2016.308 10.1109/IV47402.2020.9304695 10.1109/VR.2017.7892245 10.1109/CVPRW53098.2021.00471 10.1145/3522714 10.1109/VR.2019.8797705 10.1109/CVPR46437.2021.00715 10.1006/cviu.1995.1004 10.1109/CVPRW.2010.5543262 10.1109/WACV56688.2023.00614 10.1109/CVPR.2019.00194 10.1007/978-981-15-0199-9_12 10.1007/978-3-031-19806-9_19 10.1109/CVPRW.2017.282 10.24963/ijcai.2022/204 10.1109/AFGR.1998.670990 10.1109/FG.2017.140 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Sep 2023 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Sep 2023 |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L7M L~C L~D M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10055-022-00720-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1434-9957 |
EndPage | 1732 |
ExternalDocumentID | 10_1007_s10055_022_00720_9 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29Q 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_DOAJ GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAS LLZTM M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PQQKQ PROAC PT5 Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c319t-ee3ad3ab40fa7668de21d0942ecc5606dd6471ac5ff6582f2f6c4953f4c917743 |
IEDL.DBID | BENPR |
ISSN | 1359-4338 |
IngestDate | Sat Aug 23 14:17:59 EDT 2025 Thu Apr 24 23:02:57 EDT 2025 Tue Jul 01 00:21:48 EDT 2025 Fri Feb 21 02:43:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Emotion recognition Data synthesis Virtual reality Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-ee3ad3ab40fa7668de21d0942ecc5606dd6471ac5ff6582f2f6c4953f4c917743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1948-1831 |
PQID | 2854117956 |
PQPubID | 26864 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2854117956 crossref_primary_10_1007_s10055_022_00720_9 crossref_citationtrail_10_1007_s10055_022_00720_9 springer_journals_10_1007_s10055_022_00720_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230900 2023-09-00 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Godalming, Surrey |
PublicationTitle | Virtual reality : the journal of the Virtual Reality Society |
PublicationTitleAbbrev | Virtual Reality |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | CR39 CR38 Naqvi, Arsalan, Rehman, Rehman, Loh, Paul (CR26) 2020; 12 CR37 Zhong, Liu, Yang, Huang, Metaxas (CR52) 2014; 45 Olagoke, Ibrahim, Teoh (CR30) 2020; 8 CR36 CR34 CR33 CR32 Yu, Zheng, Peng, Dong, Du (CR47) 2020; 131 Zhao, Mao, Zhang (CR51) 2018; 34 Liu, Hirota, Ma, Jia, Dai (CR19) 2021; 9 Wu, Zhang, Wu, Wang, Yuan, Qin, Zhu, Du, Wang, Huang (CR43) 2020; 13 CR4 CR6 CR5 CR7 CR9 CR49 CR48 Chen, Lv, Xu, Xu (CR3) 2019; 131 CR45 Samadiani, Huang, Cai, Luo, Chi, Xiang, He (CR35) 2019; 19 CR44 CR42 Hochreiter, Schmidhuber (CR12) 1997; 9 CR41 CR40 CR17 Jiang, O’Neal, Rahimian, Yon, Plumert, Kearney (CR15) 2018; 25 CR14 CR13 Küntzler, Höfling, Alpers (CR16) 2021; 12 CR11 CR10 CR53 Pal, Mukhopadhyay, Suryadevara (CR31) 2021; 21 Ansado, Chasen, Bouchard, Northoff (CR1) 2021; 120 Ashir, Eleyan, Akdemir (CR2) 2020; 32 Ojala, Pietikäinen, Harwood (CR29) 1996; 29 CR28 CR27 Murugappan, Ramachandran, Sazali (CR25) 2010; 3 Liu, Zhang, Lin, Wang (CR18) 2019; 12 CR24 Happy, Routray (CR8) 2014; 6 CR23 CR22 CR21 CR20 Zhao, Zhang (CR50) 2016; 33 Yi, Chen, Cai, Sima, Zhou, Wu (CR46) 2019; 82 720_CR13 720_CR4 720_CR11 720_CR10 720_CR6 720_CR17 720_CR5 720_CR7 720_CR14 Y Liu (720_CR18) 2019; 12 720_CR53 T Ojala (720_CR29) 1996; 29 M Murugappan (720_CR25) 2010; 3 J Ansado (720_CR1) 2021; 120 720_CR24 L Zhong (720_CR52) 2014; 45 720_CR23 720_CR22 720_CR21 720_CR28 720_CR27 S Happy (720_CR8) 2014; 6 720_CR20 Y Wu (720_CR43) 2020; 13 J Yi (720_CR46) 2019; 82 720_CR9 Y Jiang (720_CR15) 2018; 25 M Yu (720_CR47) 2020; 131 720_CR34 720_CR33 N Samadiani (720_CR35) 2019; 19 J Chen (720_CR3) 2019; 131 720_CR32 720_CR39 720_CR38 720_CR37 720_CR36 C Liu (720_CR19) 2021; 9 X Zhao (720_CR50) 2016; 33 J Zhao (720_CR51) 2018; 34 RA Naqvi (720_CR26) 2020; 12 S Pal (720_CR31) 2021; 21 T Küntzler (720_CR16) 2021; 12 720_CR45 720_CR44 720_CR49 720_CR48 AM Ashir (720_CR2) 2020; 32 720_CR42 720_CR41 720_CR40 S Hochreiter (720_CR12) 1997; 9 AS Olagoke (720_CR30) 2020; 8 |
References_xml | – ident: CR45 – ident: CR22 – ident: CR49 – volume: 3 start-page: 390 issue: 04 year: 2010 ident: CR25 article-title: Classification of human emotion from EEG using discrete wavelet transform publication-title: J Biomed Sci Eng doi: 10.4236/jbise.2010.34054 – ident: CR4 – ident: CR39 – volume: 131 start-page: 166 year: 2020 end-page: 171 ident: CR47 article-title: Facial expression recognition based on a multi-task global-local network publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2020.01.016 – volume: 29 start-page: 51 issue: 1 year: 1996 end-page: 59 ident: CR29 article-title: A comparative study of texture measures with classification based on featured distributions publication-title: Pattern Recogn doi: 10.1016/0031-3203(95)00067-4 – volume: 34 start-page: 1461 issue: 10 year: 2018 end-page: 1475 ident: CR51 article-title: Learning deep facial expression features from image and optical flow sequences using 3d CNN publication-title: Vis Comput doi: 10.1007/s00371-018-1477-y – ident: CR42 – volume: 13 start-page: 865 issue: 4 year: 2020 end-page: 874 ident: CR43 article-title: Person reidentification by multiscale feature representation learning with random batch feature mask publication-title: IEEE Trans Cognit Develop Syst doi: 10.1109/TCDS.2020.3003674 – volume: 19 start-page: 1863 issue: 8 year: 2019 ident: CR35 article-title: A review on automatic facial expression recognition systems assisted by multimodal sensor data publication-title: Sensors doi: 10.3390/s19081863 – ident: CR21 – volume: 21 start-page: 5554 issue: 16 year: 2021 ident: CR31 article-title: Development and progress in sensors and technologies for human emotion recognition publication-title: Sensors doi: 10.3390/s21165554 – volume: 45 start-page: 1499 issue: 8 year: 2014 end-page: 1510 ident: CR52 article-title: Learning multiscale active facial patches for expression analysis publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2354351 – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR36 – ident: CR5 – volume: 6 start-page: 1 issue: 1 year: 2014 end-page: 12 ident: CR8 article-title: Automatic facial expression recognition using features of salient facial patches publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2014.2386334 – volume: 82 start-page: 105540 year: 2019 ident: CR46 article-title: Facial expression recognition of intercepted video sequences based on feature point movement trend and feature block texture variation publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105540 – volume: 25 start-page: 2886 issue: 10 year: 2018 end-page: 2895 ident: CR15 article-title: Joint action in a virtual environment: Crossing roads with risky vs. safe human and agent partners publication-title: IEEE Trans Visual Comput Graphics doi: 10.1109/TVCG.2018.2865945 – volume: 9 start-page: 18876 year: 2021 end-page: 18889 ident: CR19 article-title: Facial expression recognition using hybrid features of pixel and geometry publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3054332 – ident: CR14 – ident: CR53 – ident: CR37 – ident: CR10 – ident: CR33 – ident: CR6 – volume: 131 start-page: 97 year: 2019 end-page: 102 ident: CR3 article-title: Automatic social signal analysis: Facial expression recognition using difference convolution neural network publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2019.04.017 – ident: CR40 – ident: CR27 – ident: CR23 – volume: 33 start-page: 505 issue: 5 year: 2016 end-page: 517 ident: CR50 article-title: A review on facial expression recognition: feature extraction and classification publication-title: IETE Tech Rev doi: 10.1080/02564602.2015.1117403 – volume: 8 start-page: 172892 year: 2020 end-page: 172922 ident: CR30 article-title: Literature survey on multi-camera system and its application publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3024568 – ident: CR44 – ident: CR48 – volume: 12 start-page: 311 issue: 2 year: 2019 end-page: 322 ident: CR18 article-title: Facial expression recognition via deep action units graph network based on psychological mechanism publication-title: IEEE Trans Cognitive Develop Syst doi: 10.1109/TCDS.2019.2917711 – ident: CR38 – ident: CR17 – ident: CR13 – ident: CR34 – volume: 12 start-page: 587 issue: 3 year: 2020 ident: CR26 article-title: Deep learning-based drivers emotion classification system in time series data for remote applications publication-title: Remote Sensing doi: 10.3390/rs12030587 – ident: CR7 – volume: 12 start-page: 1086 year: 2021 ident: CR16 article-title: Automatic facial expression recognition in standardized and non-standardized emotional expressions publication-title: Front Psychol doi: 10.3389/fpsyg.2021.627561 – volume: 120 start-page: 583 year: 2021 end-page: 594 ident: CR1 article-title: How brain imaging provides predictive biomarkers for therapeutic success in the context of virtual reality cognitive training publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2020.05.018 – volume: 32 start-page: 6295 issue: 10 year: 2020 end-page: 6309 ident: CR2 article-title: Facial expression recognition with dynamic cascaded classifier publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04138-4 – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: CR12 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – ident: CR28 – ident: CR41 – ident: CR24 – ident: CR20 – ident: 720_CR34 doi: 10.1109/ICCV48922.2021.01073 – volume: 6 start-page: 1 issue: 1 year: 2014 ident: 720_CR8 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2014.2386334 – ident: 720_CR14 doi: 10.1109/IVS.2019.8813809 – ident: 720_CR48 doi: 10.1109/CVPR42600.2020.00277 – ident: 720_CR44 doi: 10.1109/CVPR.2019.00906 – ident: 720_CR33 – ident: 720_CR36 – volume: 3 start-page: 390 issue: 04 year: 2010 ident: 720_CR25 publication-title: J Biomed Sci Eng doi: 10.4236/jbise.2010.34054 – ident: 720_CR27 doi: 10.1109/ICRA.2019.8794220 – volume: 29 start-page: 51 issue: 1 year: 1996 ident: 720_CR29 publication-title: Pattern Recogn doi: 10.1016/0031-3203(95)00067-4 – volume: 34 start-page: 1461 issue: 10 year: 2018 ident: 720_CR51 publication-title: Vis Comput doi: 10.1007/s00371-018-1477-y – volume: 9 start-page: 18876 year: 2021 ident: 720_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3054332 – ident: 720_CR6 doi: 10.1109/CVPR.2012.6248074 – volume: 12 start-page: 1086 year: 2021 ident: 720_CR16 publication-title: Front Psychol doi: 10.3389/fpsyg.2021.627561 – ident: 720_CR21 doi: 10.1109/ICCV.1999.790410 – ident: 720_CR17 doi: 10.1007/978-3-319-10602-1_48 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 720_CR12 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 8 start-page: 172892 year: 2020 ident: 720_CR30 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3024568 – ident: 720_CR23 doi: 10.1109/VR.2017.7892369 – ident: 720_CR11 doi: 10.1109/WACV.2019.00178 – ident: 720_CR7 – ident: 720_CR28 doi: 10.1007/978-3-319-46484-8_29 – volume: 21 start-page: 5554 issue: 16 year: 2021 ident: 720_CR31 publication-title: Sensors doi: 10.3390/s21165554 – ident: 720_CR39 doi: 10.1109/CVPR.2016.308 – ident: 720_CR41 – volume: 131 start-page: 166 year: 2020 ident: 720_CR47 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2020.01.016 – ident: 720_CR13 doi: 10.1109/IV47402.2020.9304695 – ident: 720_CR38 doi: 10.1109/VR.2017.7892245 – ident: 720_CR37 doi: 10.1109/CVPRW53098.2021.00471 – ident: 720_CR20 doi: 10.1145/3522714 – ident: 720_CR32 doi: 10.1109/VR.2019.8797705 – volume: 13 start-page: 865 issue: 4 year: 2020 ident: 720_CR43 publication-title: IEEE Trans Cognit Develop Syst doi: 10.1109/TCDS.2020.3003674 – ident: 720_CR5 doi: 10.1109/CVPR46437.2021.00715 – ident: 720_CR53 doi: 10.1006/cviu.1995.1004 – volume: 33 start-page: 505 issue: 5 year: 2016 ident: 720_CR50 publication-title: IETE Tech Rev doi: 10.1080/02564602.2015.1117403 – volume: 12 start-page: 311 issue: 2 year: 2019 ident: 720_CR18 publication-title: IEEE Trans Cognitive Develop Syst doi: 10.1109/TCDS.2019.2917711 – ident: 720_CR22 doi: 10.1109/CVPRW.2010.5543262 – volume: 12 start-page: 587 issue: 3 year: 2020 ident: 720_CR26 publication-title: Remote Sensing doi: 10.3390/rs12030587 – volume: 19 start-page: 1863 issue: 8 year: 2019 ident: 720_CR35 publication-title: Sensors doi: 10.3390/s19081863 – volume: 82 start-page: 105540 year: 2019 ident: 720_CR46 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105540 – volume: 25 start-page: 2886 issue: 10 year: 2018 ident: 720_CR15 publication-title: IEEE Trans Visual Comput Graphics doi: 10.1109/TVCG.2018.2865945 – ident: 720_CR10 doi: 10.1109/WACV56688.2023.00614 – ident: 720_CR4 doi: 10.1109/CVPR.2019.00194 – ident: 720_CR40 doi: 10.1007/978-981-15-0199-9_12 – ident: 720_CR45 doi: 10.1007/978-3-031-19806-9_19 – ident: 720_CR9 doi: 10.1109/CVPRW.2017.282 – ident: 720_CR42 doi: 10.24963/ijcai.2022/204 – volume: 45 start-page: 1499 issue: 8 year: 2014 ident: 720_CR52 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2354351 – ident: 720_CR49 doi: 10.1109/AFGR.1998.670990 – volume: 32 start-page: 6295 issue: 10 year: 2020 ident: 720_CR2 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04138-4 – volume: 131 start-page: 97 year: 2019 ident: 720_CR3 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2019.04.017 – volume: 120 start-page: 583 year: 2021 ident: 720_CR1 publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2020.05.018 – ident: 720_CR24 doi: 10.1109/FG.2017.140 |
SSID | ssj0032484 |
Score | 2.3429596 |
Snippet | Facial expression recognition (FER) is an important method to study and distinguish human emotions. In the virtual reality (VR) context, people’s emotions are... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1717 |
SubjectTerms | Artificial Intelligence Computer Graphics Computer Science Context Emotion recognition Emotions Eye (anatomy) Face recognition Helmet mounted displays Image Processing and Computer Vision Immersive virtual reality Infrared cameras Light sources Original Article User Interfaces and Human Computer Interaction Virtual reality |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60Xrz4FqtVcvCmgd1tkt09FmkRQU8WegvZPKQgq7RV_PlOdpO2igreFjbJYSbJfJOZbwbg0gn0dVJTUuYsOiiVK2hRqIomlXGJy1npGrrY_YO4HbO7CZ8EUtg8ZrvHkGRzU6-R3RLu2cQZ9eWuE1puwhb3vjvu4nE2iPcvIoSibWXLS88HKgJV5uc1vpqjFcb8FhZtrM1oD3YCTCSDVq_7sGHrA9iNLRhIOJGHMBm2bXjIMhEIv30u-xNxyr-GE_sRUl3rOZnWRNVk2rxV4y1H3qczTx_ByQ0aJ2vR7CMYj4aPN7c0NEugGk_RglrbV6avKpY4lQtRGJulBn23DHWEqEYYI9AOKc2dQ9CRucwJ7XNLHdPosSGOOIZO_VLbEyB5X-foNXOTZgmzJSKoAuXmypxrZkVqu5BGmUkdKon7hhbPclUD2ctZopxlI2dZduFqOee1raPx5-heVIUMZ2ouPdfTF7DjogvXUT2r37-vdvq_4Wew7XvKt4lkPegsZm_2HJHHorpoNtonAfLOZQ priority: 102 providerName: Springer Nature |
Title | Emotion recognition using facial expressions in an immersive virtual reality application |
URI | https://link.springer.com/article/10.1007/s10055-022-00720-9 https://www.proquest.com/docview/2854117956 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEL4ovPjibyOKpA--aeM2tq57MqgDokKMSoJPy7a2hsQMBDT--V63DtREnrZkax_u2ut317v7AE4VQ1_HFgF1lUQHJVGcch4n1EqEspTvBiovF-v1WXfg3g69oQm4zUxaZWkTc0MtxqmOkV_oSj_dvsxjl5N3qlmj9O2qodBYhyqaYI7OV_Uq7D88lrYY0QIvaG29QNcGcVM2Y4rnLE9XJztUt8-2aPD7aFrizT9XpPnJ096GTQMZSavQ8Q6syWwXtko6BmJ25x4Mw4KShyySgvBd57W_EhXryDiRXybtNZuRUUbijIzyuDVaPPI5mupSEhycI3Py42Z7Hwbt8Pm6Sw1xAk1xR82plM1YNOPEtVTsM8aFdGyBfpyD-kKEw4RgeCbFqacUAhBHOYqlOs9UuSl6b4gpDqCSjTN5CMRvpj560J6wHcuVAaIpjnJTge-lrmS2rIFdyixKTVdxTW7xFi37IWs5RyjnKJdzFNTgbDFmUvTUWPl3vVRFZPbXLFquhhqcl-pZfv5_tqPVsx3DhuaTL5LI6lCZTz_kCaKOedKAdd7uNKDauundP-ln5-UubJgFh18HTusbKADX-w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOMCFHVEo4AOcwCKrkxwQQtDSAuVEpd5CEtuoEgpLy_ZTfCMzWQgg0VtvkRJbyng8iz1vHsCuFpjrmDLgjlaYoMTa574fxdyIpTa05wQ6g4t1r0W751z03X4NPkssDJVVljYxM9TyIaEz8kNC-lH7MlccPz5xYo2i29WSQiNXi0v18YYp2_Coc4bru2dZrebNaZsXrAI8QXUbcaXsSNpR7Bg68oTwpbJMiUmOhT-D7l9IKdBgR4mrNXpnS1taJFSEqZ0EUxt0uDjvFMw4th3QjvJb56Xlx9jEz0l03YCQSH4B0imgeoZLWGiLU7Nugwe_HWEV3f65kM38XGsR5osAlZ3kGrUENZUuw0JJ_sAKW7AC_WZOAMS-S5Dwmaro75iO6ByeqfeiyDYdskHKopQNslNytK_sdfBMwBUcnOUB7Mc9-ir0JiLQNZhOH1K1DsyzEw_zdVealuGoAGM3H-WmA89NHCVMVQezlFmYFD3MiUrjPqy6L5OcQ5RzmMk5DOqw_z3mMe_gMfbrRrkUYbGbh2Gle3U4KJenev3_bBvjZ9uB2fZN9yq86lxfbsIcMdnn5WsNmB49v6gtjHdG8XamZAxuJ63VX-gEDtU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gJMaLbyOKugc96Ya2tNv2YIwKBF-EGE241ba7a0hMQcDXX_PXOdtuQU30xo0Eugmz05n5duebD2BfMsQ6JvepLQUClEh61PPCiBoRl4Z0bV-mdLGbNmvd25ddp1uAz5wLo9oq85iYBmrej9UZeVUx_dT4ModVpW6L6NSbJ4NnqhSk1E1rLqeRuciV-HhD-DY6vqjjXh9YVrNxd96iWmGAxuh6YypELeS1MLINGbqMeVxYJkfAY-Efw1KAcc4weIexIyVmaktaksWqIVPaMcIcTL647hyUXERFRhFKZ4125zbPA1ipeJmkruMrXpKnKTuauGc4ihltUTW626D-z7Q4rXV_Xc-mWa-5DIu6XCWnmX-tQEEkq7CUS0EQHRnWoNvI5IDIpCEJP6ue-kciQ3UqT8S7brlNRqSXkDAhvfTMHKMtee0NFY0FH05RAfl2q74O9zMx6QYUk34iNoG4tdhF9O5w0zJs4WMl56HdpO86sS2YKcpg5jYLYj3RXAlrPAXTWczKzgHaOUjtHPhlOJw8M8jmefz760q-FYF-t0fB1BPLcJRvz_Trv1fb-n-1PZhHjw6uL9pX27CgZO2zXrYKFMfDF7GDxc842tVeRuBh1o79BSMMFGc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+recognition+using+facial+expressions+in+an+immersive+virtual+reality+application&rft.jtitle=Virtual+reality+%3A+the+journal+of+the+Virtual+Reality+Society&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1359-4338&rft.eissn=1434-9957&rft.volume=27&rft.issue=3&rft.spage=1717&rft.epage=1732&rft_id=info:doi/10.1007%2Fs10055-022-00720-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4338&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4338&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4338&client=summon |