Improving P3HT:PCBM absorber layers by blending TiO2/CdS nanocomposites for application in photovoltaic solar cells

In this work we propose the use of the semiconducting TiO 2 /CdS nanocomposite (NC) to improve the optical and electrical properties of the P3HT:PCBM polymeric system employed as the absorber layer in organic photovoltaic solar cells. Therefore, we report a methodology for obtaining the TiO 2 /CdS-N...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 32; no. 1; pp. 102 - 112
Main Authors Oviedo-Mendoza, M., Zapata-Torres, M., Meléndez-Lira, M., Mis-Fernández, R., Peña, J. L., Hernández-Rodríguez, E.
Format Journal Article
LanguageEnglish
Published New York Springer US 2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work we propose the use of the semiconducting TiO 2 /CdS nanocomposite (NC) to improve the optical and electrical properties of the P3HT:PCBM polymeric system employed as the absorber layer in organic photovoltaic solar cells. Therefore, we report a methodology for obtaining the TiO 2 /CdS-NC, its incorporation into precursor solutions containing P3HT and PCBM polymers, and the fabrication of hybrid P3HT:PCBM:TiO 2 /CdS-NC absorber layers. The effect of the mass ratio between the TiO 2 /CdS-NC and the polymeric system was studied. XRD measurements conducted on the TiO 2 /CdS-NC showed that the TiO 2 component has a tetragonal crystalline structure (anatase phase) with a nanocrystalline size of 15.8 nm, while the CdS component has the hexagonal close-packed crystalline structure with a nanocrystalline size of 14.9 nm. XPS analysis confirmed the formation of stoichiometric TiO 2 and CdS compounds. The formation of any other compound comprising the elements Ti, O, Cd and S was not found, however, elements Cl, Br, N and C were observed at trace levels, which come from the capping agent that was used to obtain the nanocomposite. Measurements on the hybrid P3HT:PCBM:TiO 2 /CdS-NC absorber layers through UV-vis spectroscopy showed a shift on the absorption edge and an improved light absorption for wavelengths below 550 nm. The four-point probe measurements showed a decrease of the electrical resistivity from 8.5 × 10 8 Ω-cm in pristine P3HT:PCBM to a minimum of 4 × 10 5 Ω-cm in the hybrid absorber layers. Both the light absorption and the electrical resistivity are modulated by the mass ratio between the TiO 2 /CdS-NC and the P3HT:PCBM polymeric system.
AbstractList In this work we propose the use of the semiconducting TiO2/CdS nanocomposite (NC) to improve the optical and electrical properties of the P3HT:PCBM polymeric system employed as the absorber layer in organic photovoltaic solar cells. Therefore, we report a methodology for obtaining the TiO2/CdS-NC, its incorporation into precursor solutions containing P3HT and PCBM polymers, and the fabrication of hybrid P3HT:PCBM:TiO2/CdS-NC absorber layers. The effect of the mass ratio between the TiO2/CdS-NC and the polymeric system was studied. XRD measurements conducted on the TiO2/CdS-NC showed that the TiO2 component has a tetragonal crystalline structure (anatase phase) with a nanocrystalline size of 15.8 nm, while the CdS component has the hexagonal close-packed crystalline structure with a nanocrystalline size of 14.9 nm. XPS analysis confirmed the formation of stoichiometric TiO2 and CdS compounds. The formation of any other compound comprising the elements Ti, O, Cd and S was not found, however, elements Cl, Br, N and C were observed at trace levels, which come from the capping agent that was used to obtain the nanocomposite. Measurements on the hybrid P3HT:PCBM:TiO2/CdS-NC absorber layers through UV-vis spectroscopy showed a shift on the absorption edge and an improved light absorption for wavelengths below 550 nm. The four-point probe measurements showed a decrease of the electrical resistivity from 8.5 × 108 Ω-cm in pristine P3HT:PCBM to a minimum of 4 × 105 Ω-cm in the hybrid absorber layers. Both the light absorption and the electrical resistivity are modulated by the mass ratio between the TiO2/CdS-NC and the P3HT:PCBM polymeric system.
In this work we propose the use of the semiconducting TiO 2 /CdS nanocomposite (NC) to improve the optical and electrical properties of the P3HT:PCBM polymeric system employed as the absorber layer in organic photovoltaic solar cells. Therefore, we report a methodology for obtaining the TiO 2 /CdS-NC, its incorporation into precursor solutions containing P3HT and PCBM polymers, and the fabrication of hybrid P3HT:PCBM:TiO 2 /CdS-NC absorber layers. The effect of the mass ratio between the TiO 2 /CdS-NC and the polymeric system was studied. XRD measurements conducted on the TiO 2 /CdS-NC showed that the TiO 2 component has a tetragonal crystalline structure (anatase phase) with a nanocrystalline size of 15.8 nm, while the CdS component has the hexagonal close-packed crystalline structure with a nanocrystalline size of 14.9 nm. XPS analysis confirmed the formation of stoichiometric TiO 2 and CdS compounds. The formation of any other compound comprising the elements Ti, O, Cd and S was not found, however, elements Cl, Br, N and C were observed at trace levels, which come from the capping agent that was used to obtain the nanocomposite. Measurements on the hybrid P3HT:PCBM:TiO 2 /CdS-NC absorber layers through UV-vis spectroscopy showed a shift on the absorption edge and an improved light absorption for wavelengths below 550 nm. The four-point probe measurements showed a decrease of the electrical resistivity from 8.5 × 10 8 Ω-cm in pristine P3HT:PCBM to a minimum of 4 × 10 5 Ω-cm in the hybrid absorber layers. Both the light absorption and the electrical resistivity are modulated by the mass ratio between the TiO 2 /CdS-NC and the P3HT:PCBM polymeric system.
Author Peña, J. L.
Hernández-Rodríguez, E.
Zapata-Torres, M.
Meléndez-Lira, M.
Oviedo-Mendoza, M.
Mis-Fernández, R.
Author_xml – sequence: 1
  givenname: M.
  surname: Oviedo-Mendoza
  fullname: Oviedo-Mendoza, M.
  organization: Mechanical Engineering Department, Universidad de Guanajuato
– sequence: 2
  givenname: M.
  surname: Zapata-Torres
  fullname: Zapata-Torres, M.
  organization: Instituto Politécnico Nacional, CICATA-Legaria
– sequence: 3
  givenname: M.
  surname: Meléndez-Lira
  fullname: Meléndez-Lira, M.
  organization: Physics Department, Instituto Politécnico Nacional, CINVESTAV-Zacatenco
– sequence: 4
  givenname: R.
  surname: Mis-Fernández
  fullname: Mis-Fernández, R.
  organization: Applied Physics Department, Instituto Politécnico Nacional, CINVESTAV-Mérida
– sequence: 5
  givenname: J. L.
  surname: Peña
  fullname: Peña, J. L.
  organization: Applied Physics Department, Instituto Politécnico Nacional, CINVESTAV-Mérida
– sequence: 6
  givenname: E.
  orcidid: 0000-0001-5130-3851
  surname: Hernández-Rodríguez
  fullname: Hernández-Rodríguez, E.
  email: noe.hernandez@ugto.mx
  organization: Mechanical Engineering Department, Universidad de Guanajuato
BookMark eNp9kEFLwzAYhoNMcJv-AU8Bz3VJmjaJNy3qBsoGTvAW0jSdGV1Sk26wf29nBW-evsvzvi_fMwEj550B4BqjW4wQm0WMeEYTRFCCKENZIs7AGGcsTSgnHyMwRiJjCc0IuQCTGLcIoZymfAziYtcGf7BuA1fpfH23Kh5eoSqjD6UJsFFHEyIsj7BsjKtO1Nouyayo3qBTzmu_a320nYmw9gGqtm2sVp31DloH20_f-YNvOmU1jL5RAWrTNPESnNeqiebq907B-9PjupgnL8vnRXH_kugUiy4xZZbTutLC1DkyKcekylnJCKlNxTE1uc6rimDFuRZM1SbDuqRMp5RrInBJ0ym4GXr7D7_2JnZy6_fB9ZOSUC4E4oxmPUUGSgcfYzC1bIPdqXCUGMmTXDnIlb1c-SNXij6UDqHYw25jwl_1P6lvGkJ_2Q
CitedBy_id crossref_primary_10_1016_j_memsci_2021_119715
crossref_primary_10_1002_cnma_202400053
crossref_primary_10_1016_j_surfin_2024_104701
crossref_primary_10_1016_j_heliyon_2024_e26257
Cites_doi 10.1016/j.mee.2020.111394
10.1063/1.5032952
10.1186/2251-7235-6-6
10.1155/2016/6581691
10.1016/j.matchemphys.2020.123448
10.1007/978-1-4615-8705-7
10.1016/j.physb.2019.411844
10.1088/0957-4484/18/49/495608
10.1007/s42341-020-00185-0
10.1016/j.orgel.2020.105676
10.3390/polym11111818
10.1109/NAP.2017.8190379
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PQEST
PQQKQ
PQUKI
PRINS
S0W
DOI 10.1007/s10854-020-04705-9
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
EndPage 112
ExternalDocumentID 10_1007_s10854_020_04705_9
GrantInformation_xml – fundername: Consejo Nacional de Ciencia y Tecnología
  grantid: PDCP2015/28
  funderid: http://dx.doi.org/10.13039/501100003141
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGCJ
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
G8K
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AGJZZ
AGQEE
AGRTI
AIGIU
CITATION
H13
7SP
7SR
8BQ
8FD
DWQXO
F28
FR3
JG9
L7M
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-eb564fdc9ef60e3812d67b722fed814e6c6dd21a88c97afe51cb47c348c291b43
IEDL.DBID U2A
ISSN 0957-4522
IngestDate Fri Sep 13 07:41:18 EDT 2024
Thu Sep 12 18:36:26 EDT 2024
Sat Dec 16 12:09:49 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-eb564fdc9ef60e3812d67b722fed814e6c6dd21a88c97afe51cb47c348c291b43
ORCID 0000-0001-5130-3851
PQID 2489908745
PQPubID 326250
PageCount 11
ParticipantIDs proquest_journals_2489908745
crossref_primary_10_1007_s10854_020_04705_9
springer_journals_10_1007_s10854_020_04705_9
PublicationCentury 2000
PublicationDate 1-2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 1-2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BessekhouadYChaouiNTrzpitMGhazzalNRobertDWeberJVUV–vis versus visible degradation of acid orange II in a coupled CdS/TiO2 semiconductors suspensionJ. Photochem. Photobiol. A Chem.2006183218224
A.K. Zeinidenov, N.K. Ibrayev, A.K. Nurmakhanova, in Influence of plasmon effect silver nanoparticles on photovoltaic and electrophysical properties of organic solar cells. Proceedings 2017 IEEE 7th International Conference on Nanomaterials Application & Properties (NAP) (Institute of Electrical and Electronics Engineers Inc., 2017). 10.1109/NAP.2017.8190379
JiaALiuHSorkhishamsNMassoumiBSarvariRAgbolaghiSAdvanced poly(ethylene glycol)/polythiophene globular nanostructures in P3HT:PCBM photovoltaicsOrg Electron2020811056761:CAS:528:DC%2BB3cXktlCltLY%3D10.1016/j.orgel.2020.105676
P. Wulandari, Y.S. Handayani, R. Hidayat, P. Wang, S. Ryuzaki, K. Okamoto, K. Tamada, Surface plasmon resonance effect of silver nanoparticles on the enhanced efficiency of inverted hybrid organic-inorganic solar cell. J. Nonlinear Opt. Phys. Mater. 27 (2018). 10.1142/S0218863518500170
BrabecCJOrganic photovoltaics: Technology and marketSol Energy Mater. Sol. Cells.200483273292
SahPTChangWCChenJHWangHHChanLHBimetallic Ag-Au-Ag nanorods used to enhance efficiency of polymer solar cellsElectrochim Acta.2018259293302
ThaverYOseniSOKaviyarasuKDwivediRPMolaGTMetal nano-composite assisted photons harvesting in thin film organic photovoltaicPhys B Condens. Matter.20205824118441:CAS:528:DC%2BC1MXitFakur%2FM10.1016/j.physb.2019.411844
AmolloTAMolaGTNyamoriVOImproved short-circuit current density in bulk heterojunction solar cells with reduced graphene oxide-germanium dioxide nanocomposite in the photoactive layerMater Chem. Phys.20202541234481:CAS:528:DC%2BB3cXhtlWnu77N10.1016/j.matchemphys.2020.123448
TamaiYOhkitaHBentenHItoSExciton diffusion in conjugated polymers: From fundamental understanding to improvement in photovoltaic conversion efficiencyJ. Phys. Chem. Lett.201563417342
AbdulrazzaqOASainiVBourdoSDervishiEBirisASOrganic solar cells: A review of materials, limitations, and possibilities for improvementPart Sci. Technol.201331427442
J. Tauc (ed.), Amorphous and Liquid Semiconductors (Springer US, Boston, 1974). 10.1007/978-1-4615-8705-7
Y. Yin, Z. Jin, F. Hou, Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays. Nanotechnology 18, 495608 (2007)
YaoJChenHJiangFJiaoZJinMTitanium dioxide and cadmium sulfide co-sensitized graphitic carbon nitride nanosheets composite photocatalysts with superior performance in phenol degradation under visible-light irradiationJ. Colloid Interface Sci.2017490154162
S. Anandan, Y. Ikuma, K. Niwa, An overview of semi-conductor photocatalysis: modification of TiO2 nanomaterials. Solid State Phenom. 162, 239–260 (2010)
P.R. Berger, M. Kim, Polymer solar cells: P3HT: PCBM and beyond. J. Renew. Sustain. Energy. 10 (2018). 10.1063/1.5012992
SalimEBobbaraSROrabyANunziJMCopper oxide nanoparticle doped bulk-heterojunction photovoltaic devicesSynth Met.20192522128
Hernández-RodríguezERejónVMis-FernándezRPeñaJLApplication of sputtered TiO2 thin films as HRT buffer layer for high efficiency CdS/CdTe solar cellsSol Energy.20161326472
MoteVPurushothamYDoleBWilliamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particlesJ. Theor. Appl. Phys.201261810.1186/2251-7235-6-6
Y. Huang, J. Chen, Z. Yin, Y. Xiong, Roll-to-roll processing of flexible heterogeneous electronics with low interfacial residual stress. IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1368–1377 (2011).
S. Koul, N. ud din Hakim, Investigation of non-ideality factors for a P3HT: PCBM based bulk heterojunction organic solar cell in presence of silver nanoparticles. Trans. Electr. Electron. Mater. 21, 293–304 (2020)
SinghADeyAIyerPKImpact of specifically shaped plasmonic gold nanoparticles and a double cathode interfacial layer on the performance of conducting polymer-based photovoltaicsACS Appl Nano Mater.2018156465654
WongratEWongkrajangSChuejettonABhoomaneeCChoopunSRapid synthesis of Au, Ag and Cu nanoparticles by DC arc-discharge for efficiency enhancement in polymer solar cellsMater Res. Innov.2019236672
KadirganFMaoDSongWOhnoTMccandlessBProperties of electrodeposited cadmium sulfide films for photovoltaic devices with comparison to CdSTurkish J. Chem.2000242133
AdedejiMAHamedMSGMolaGTLight trapping using copper decorated nano-composite in the hole transport layer of organic solar cellSol Energy.20202038390
CaoFWangHXiaZDaiXCongSDongCSunBLouYSunYZhaoJZouGAn alternative route towards monodisperse CdS quantum dots for hybrid solar cellsMater Chem. Phys.2015149–150124128
H.L. Pushpalatha, R. Ganesha, Deposition of cadmium sulphide thin films by photochemical deposition and characterization. J. Nano- Electron. Phys. 77, 1001–1008. https://essuir.sumdu.edu.ua/bitstream/123456789/39051/1/Pushpalatha.pdf. Accessed 20 Sept 2017.
M. Ahmadi, M. Shafiey Dehaj, S. Ghazanfarpour, S. Ghazanfarpour, Bulk heterojunction polymer solar cell, using ZnO nanorods with various mass ratios of P3HT: PCBM blend as the active layer. Appl. Phys. A Mater. Sci. Process. 125, 1–6 (2019)
O.S. Kim, J.B. Kwon, S.W. Kim, B. Xu, K.H. Seo, C.E. Park, W.J. Do, J.H. Bae, S.W. Kang, Effect of PVP-capped ZnO nanoparticles with enhanced charge transport on the performance of P3HT/PCBM polymer solar cells. Polymers (Basel) 11, 1818 (2019)
SoWWKimKJMoonSJPhoto-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4Int J. Hydrogen Energy.200429229234
Hernández-RodríguezELoeza-PootMRiechIRejónVPeñaJLA comparative study of CdS: F and CdS: O thin films deposited by reactive RF-sputtering technique for window layer application in solar cellsJ. Phys. D. Appl. Phys.20154816
Ç. Kırbıyık, T. Yılmaz Alıç, M. Kuş, Influence of alkyl chain length of boronic acid self-assembled monolayers on indium tin oxide and their organic solar cell performance. Microelectron. Eng. 231, 111394 (2020)
PhetsangSPhengdaamALertvachirapaiboonCIshikawaRShinboKKatoKMungkornasawakulPOunnunkadKBabaAInvestigation of a gold quantum dot/plasmonic gold nanoparticle system for improvement of organic solar cellsNanoscale Adv.20191792798
HamedMSGOseniSOKumarASharmaGMolaGTNickel sulphide nano-composite assisted hole transport in thin film polymer solar cellsSol Energy.2020195310317
HuTLiLXiaoSYuanKYangHChenLChenYIn situ implanting carbon nanotube-gold nanoparticles into ZnO as efficient nanohybrid cathode buffer layer for polymer solar cellsOrg Electron.201638350356
MônDHigginsAMGutfreundPJamesDMixing in PCBM/P3HT bilayers, using in situ and ex situ neutron reflectivityJ. Mater. Res.20173219461956
MousaviSLJamali-SheiniFSabaeianMYousefiREnhanced solar cell performance of P3HT:PCBM by SnS nanoparticlesSol Energy.2020199872884
HamdiAFerreiraDPFerrariaAMConceiçãoDSVieira FerreiraLFCarapetoAPBoufiSBouattourSBotelho do RegoAMTiO2-CdS Nanocomposites: Effect of CdS oxidation on the photocatalytic activityJ. Nanomater.2016201611110.1155/2016/6581691
SinghADeyAIyerPKCollective effect of hybrid Au-Ag nanoparticles and organic-inorganic cathode interfacial layers for high performance polymer solar cellSol Energy.2018173429436
D.C. Tiwari, S.K. Dwivedi, P. Dipak, T. Chandel, in Enhancement in light harvesting ability of photoactive layer P3HT: PCBM using CuO nanoparticles. AIP Conference Proceedings (American Institute of Physics Inc., 2018), p. 100016. 10.1063/1.5032952
BarrecaDGasparottoAMaragnoCTondelloENanostructured cadmium sulfide thin films by XPSSurf Sci. Spectra.200294653
DlaminiMWHamedMSGMbuyiseXGMolaGTImproved energy harvesting using well-aligned ZnS nanoparticles in bulk-heterojunction organic solar cellJ. Mater. Sci. Mater. Electron.20203194159422
GaoHMengJSunJDengJEnhanced performance of polymer solar cells based on P3HT:PCBM via incorporating Au nanoparticles prepared by the micellar methodJ. Mater. Sci. Mater. Electron.2020311076010767
S. Paul, B. Rajbongshi, B. Bora, R.G. Nair, S.K. Samdarshi Organic photovoltaic cells using MWCNTs. Xinxing Tan Cailiao/New Carbon Mater. 32, 27–34 (2017)
4705_CR9
WW So (4705_CR32) 2004; 29
4705_CR7
A Hamdi (4705_CR31) 2016; 2016
F Kadirgan (4705_CR38) 2000; 24
MA Adedeji (4705_CR21) 2020; 203
S Phetsang (4705_CR19) 2019; 1
A Singh (4705_CR20) 2018; 1
E Wongrat (4705_CR22) 2019; 23
E Hernández-Rodríguez (4705_CR33) 2015; 48
Y Tamai (4705_CR14) 2015; 6
4705_CR17
J Yao (4705_CR41) 2017; 490
CJ Brabec (4705_CR2) 2004; 83
4705_CR36
4705_CR35
4705_CR16
D Môn (4705_CR6) 2017; 32
4705_CR15
4705_CR1
H Gao (4705_CR18) 2020; 31
TA Amollo (4705_CR8) 2020; 254
4705_CR5
Y Thaver (4705_CR12) 2020; 582
Y Bessekhouad (4705_CR39) 2006; 183
T Hu (4705_CR3) 2016; 38
MSG Hamed (4705_CR30) 2020; 195
A Singh (4705_CR23) 2018; 173
V Mote (4705_CR37) 2012; 6
E Salim (4705_CR26) 2019; 252
D Barreca (4705_CR40) 2002; 9
PT Sah (4705_CR4) 2018; 259
OA Abdulrazzaq (4705_CR13) 2013; 31
4705_CR25
E Hernández-Rodríguez (4705_CR34) 2016; 132
4705_CR24
F Cao (4705_CR28) 2015; 149–150
4705_CR27
4705_CR43
A Jia (4705_CR10) 2020; 81
SL Mousavi (4705_CR29) 2020; 199
4705_CR42
MW Dlamini (4705_CR11) 2020; 31
References_xml – ident: 4705_CR9
  doi: 10.1016/j.mee.2020.111394
– ident: 4705_CR27
  doi: 10.1063/1.5032952
– volume: 6
  start-page: 8
  issue: 1
  year: 2012
  ident: 4705_CR37
  publication-title: J. Theor. Appl. Phys.
  doi: 10.1186/2251-7235-6-6
  contributor:
    fullname: V Mote
– ident: 4705_CR5
– volume: 31
  start-page: 442
  issue: 427
  year: 2013
  ident: 4705_CR13
  publication-title: Part Sci. Technol.
  contributor:
    fullname: OA Abdulrazzaq
– volume: 149–150
  start-page: 128
  issue: 124
  year: 2015
  ident: 4705_CR28
  publication-title: Mater Chem. Phys.
  contributor:
    fullname: F Cao
– ident: 4705_CR7
– volume: 31
  start-page: 9422
  issue: 9415
  year: 2020
  ident: 4705_CR11
  publication-title: J. Mater. Sci. Mater. Electron.
  contributor:
    fullname: MW Dlamini
– volume: 2016
  start-page: 1
  year: 2016
  ident: 4705_CR31
  publication-title: J. Nanomater.
  doi: 10.1155/2016/6581691
  contributor:
    fullname: A Hamdi
– volume: 254
  start-page: 123448
  year: 2020
  ident: 4705_CR8
  publication-title: Mater Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.123448
  contributor:
    fullname: TA Amollo
– ident: 4705_CR42
  doi: 10.1007/978-1-4615-8705-7
– volume: 38
  start-page: 356
  issue: 350
  year: 2016
  ident: 4705_CR3
  publication-title: Org Electron.
  contributor:
    fullname: T Hu
– volume: 1
  start-page: 798
  issue: 792
  year: 2019
  ident: 4705_CR19
  publication-title: Nanoscale Adv.
  contributor:
    fullname: S Phetsang
– volume: 195
  start-page: 317
  issue: 310
  year: 2020
  ident: 4705_CR30
  publication-title: Sol Energy.
  contributor:
    fullname: MSG Hamed
– volume: 582
  start-page: 411844
  year: 2020
  ident: 4705_CR12
  publication-title: Phys B Condens. Matter.
  doi: 10.1016/j.physb.2019.411844
  contributor:
    fullname: Y Thaver
– ident: 4705_CR35
  doi: 10.1088/0957-4484/18/49/495608
– ident: 4705_CR16
– volume: 24
  start-page: 33
  issue: 21
  year: 2000
  ident: 4705_CR38
  publication-title: Turkish J. Chem.
  contributor:
    fullname: F Kadirgan
– volume: 9
  start-page: 53
  issue: 46
  year: 2002
  ident: 4705_CR40
  publication-title: Surf Sci. Spectra.
  contributor:
    fullname: D Barreca
– volume: 203
  start-page: 90
  issue: 83
  year: 2020
  ident: 4705_CR21
  publication-title: Sol Energy.
  contributor:
    fullname: MA Adedeji
– volume: 1
  start-page: 5654
  issue: 5646
  year: 2018
  ident: 4705_CR20
  publication-title: ACS Appl Nano Mater.
  contributor:
    fullname: A Singh
– volume: 23
  start-page: 72
  issue: 66
  year: 2019
  ident: 4705_CR22
  publication-title: Mater Res. Innov.
  contributor:
    fullname: E Wongrat
– volume: 259
  start-page: 302
  issue: 293
  year: 2018
  ident: 4705_CR4
  publication-title: Electrochim Acta.
  contributor:
    fullname: PT Sah
– volume: 6
  start-page: 342
  issue: 3417
  year: 2015
  ident: 4705_CR14
  publication-title: J. Phys. Chem. Lett.
  contributor:
    fullname: Y Tamai
– volume: 48
  start-page: 6
  issue: 1
  year: 2015
  ident: 4705_CR33
  publication-title: J. Phys. D. Appl. Phys.
  contributor:
    fullname: E Hernández-Rodríguez
– volume: 173
  start-page: 436
  issue: 429
  year: 2018
  ident: 4705_CR23
  publication-title: Sol Energy.
  contributor:
    fullname: A Singh
– ident: 4705_CR15
  doi: 10.1007/s42341-020-00185-0
– ident: 4705_CR24
– volume: 81
  start-page: 105676
  year: 2020
  ident: 4705_CR10
  publication-title: Org Electron
  doi: 10.1016/j.orgel.2020.105676
  contributor:
    fullname: A Jia
– volume: 31
  start-page: 10767
  issue: 10760
  year: 2020
  ident: 4705_CR18
  publication-title: J. Mater. Sci. Mater. Electron.
  contributor:
    fullname: H Gao
– volume: 32
  start-page: 1956
  issue: 1946
  year: 2017
  ident: 4705_CR6
  publication-title: J. Mater. Res.
  contributor:
    fullname: D Môn
– volume: 83
  start-page: 292
  issue: 273
  year: 2004
  ident: 4705_CR2
  publication-title: Sol Energy Mater. Sol. Cells.
  contributor:
    fullname: CJ Brabec
– volume: 199
  start-page: 884
  issue: 872
  year: 2020
  ident: 4705_CR29
  publication-title: Sol Energy.
  contributor:
    fullname: SL Mousavi
– volume: 132
  start-page: 72
  issue: 64
  year: 2016
  ident: 4705_CR34
  publication-title: Sol Energy.
  contributor:
    fullname: E Hernández-Rodríguez
– ident: 4705_CR43
– ident: 4705_CR25
  doi: 10.3390/polym11111818
– volume: 490
  start-page: 162
  issue: 154
  year: 2017
  ident: 4705_CR41
  publication-title: J. Colloid Interface Sci.
  contributor:
    fullname: J Yao
– volume: 29
  start-page: 234
  issue: 229
  year: 2004
  ident: 4705_CR32
  publication-title: Int J. Hydrogen Energy.
  contributor:
    fullname: WW So
– volume: 252
  start-page: 28
  issue: 21
  year: 2019
  ident: 4705_CR26
  publication-title: Synth Met.
  contributor:
    fullname: E Salim
– volume: 183
  start-page: 224
  issue: 218
  year: 2006
  ident: 4705_CR39
  publication-title: J. Photochem. Photobiol. A Chem.
  contributor:
    fullname: Y Bessekhouad
– ident: 4705_CR1
– ident: 4705_CR17
  doi: 10.1109/NAP.2017.8190379
– ident: 4705_CR36
SSID ssj0006438
Score 2.3312206
Snippet In this work we propose the use of the semiconducting TiO 2 /CdS nanocomposite (NC) to improve the optical and electrical properties of the P3HT:PCBM polymeric...
In this work we propose the use of the semiconducting TiO2/CdS nanocomposite (NC) to improve the optical and electrical properties of the P3HT:PCBM polymeric...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 102
SubjectTerms Absorbers
Anatase
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystal structure
Crystallinity
Electrical properties
Electrical resistivity
Electromagnetic absorption
Materials Science
Nanocomposites
Nanocrystals
Optical and Electronic Materials
Optical properties
Photovoltaic cells
Solar cells
Titanium dioxide
X ray photoelectron spectroscopy
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF6qXvQgPrG-2IM3XZpsNpvEi2ixFqFasIXewj6xIElt4sF_706a2CroObAhM9l5fDPzDUIXNmRScGiriBJLmNGCSE8YouJIGw7cmBoA_cET74_Z4ySctFC_mYWBtsrGJlaGWucKMPIOZS4z8ICcvSMkoACq7NzM3gnsj4I6a71MYw1t-MCJBzPjvYdvmwxvXbDuAcs3pfX4TD1EF4eMQBrlscgLSfLTRS3jzl-l0soD9XbQdh064tuFrndRy2R7aGuFUHAfFd8YAR4G_dH1sHs3wO5D8rk0c_wmIL7G8hNL52vAaeHR9Jl2uvoFZyLLob0cerhMgV0oi1dq23ia4dlrXubOmJViqnABGTEG1L84QOPe_ajbJ_VaBaLcfSuJkSFnVqvEWO4Z57Gp5pGMKLVGxz4zXHGtqS_iWCWRsCb0lWSRClisaOJLFhyi9SzPzBHCmqvEaiu5DClTkPzIIFGRUMLjMg5sG102kkxnC_aMdMmTDHJPndzTSu5p0kanjbDT-iYV6VLvbXTVKGD5-O_Tjv8_7QRtUmhPqdCUU7Rezj_MmYsvSnle_TpfcrTN8w
  priority: 102
  providerName: ProQuest
Title Improving P3HT:PCBM absorber layers by blending TiO2/CdS nanocomposites for application in photovoltaic solar cells
URI https://link.springer.com/article/10.1007/s10854-020-04705-9
https://www.proquest.com/docview/2489908745/abstract/
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWBAPEV5VB7YICJ1HCdha6uWCgRU0EowRX6KSihBTRj49_jSlhYEA1MGR7Z0tu--e30GOLUhk4JjWUWUWI8ZLTzpC-OpONKGIzemxoD-7R3vj9j1U_i06OOuit3nGclKUS_1usUh89Db8Vnkh16yCmsIHvAoj2jrS_3iAlOCPST0pnTWKfP7HN-t0QJi_siKVsamtwWbM5RIWtNt3YYVk-3AxhJ34C4UX-EAMgj6w8tBp31LhCzyiTQT8ioQShP5QaQzK2ifyHB8Ty86-pFkIsuxkhzLtUxBHGolS2lsMs7I20te5k5vlWKsSIHOL8EAf7EHo1532Ol7sxcUPOWuVukZGXJmtUqM5b5xxplqHsmIUmt03GSGK641bYo4VkkkrAmbSrJIBSxWNGlKFuxDLcszcwBEc5VYbSWXIWUK_RwZJCoSSvhcxoGtw9lckunblCgjXVAio9xTJ_e0knua1OF4Lux0dmmKlDLn_PnIv1-H8_kGLIb_nu3wf78fwTrFypQqkHIMtXLybk4ctChlA1bj3lUD1lpXzzdd92137wYPjeqAfQLFL8qv
link.rule.ids 315,786,790,12792,21416,27957,27958,33408,33779,41116,41558,42185,42627,43635,43840,52146,52269,74392,74659
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF58HNSD-MRq1T1406XpZrNJvIgWa320FmzBW9gnFiSpTTz4791JU6uCngMbmNmdb57fIHRiAyYFh7aKMLaEGS2I9IQhKgq14cCNqSGh3-3xzpDdPQfPVcItr9oqZzaxNNQ6U5Ajb1DmIgMPyNkvxm8EtkZBdbVaobGIlpnvoBMmxds3X5YY_jXl2gNub0qroZlqdC4KGIHgyWOhF5D4JzDNvc1fBdISd9obaL1yGPHlVMObaMGkW2jtG43gNsq_MgO473cG5_3WVRcLmWcTaSb4VYBXjeUHlg5hAKrwYPRIGy39hFORZtBUDp1bJsfOgcXfKtp4lOLxS1ZkzoQVYqRwDnEwhlx_voOG7etBq0OqZQpEuVdWECMDzqxWsbHcMw6nqeahDCm1RkdNZrjiWtOmiCIVh8KaoKkkC5XPIkXjpmT-LlpKs9TsIay5iq22ksuAMgUhj_RjFQolPC4j39bQ6UySyXjKmZHM2ZFB7omTe1LKPYlrqD4TdlK9nzyZa7uGzmYKmH_--7T9_087RiudQfchebjt3R-gVQoNKmU-pY6Wism7OXQeRiGPymv0CRNbzSE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELaglVZwQLALoksBH_YGVlPHsRMuiJZW5dFS7bZSb5GfohJKuk048O_xpO5jV4JzJEeaGc_z8zcIXbmEKckBViEyR5g1kqhIWqJTYSwHbkwDDf3pjE-W7OsqWQX8UxVglXuf2DhqU2rokfco85VBBOTsPRdgEfPP44-bWwIbpGDSGtZpPERtwXjiLbw9GM3m1we_DH_eMe8B0zel4QlNeEiXJoxAKRUxESUkuxumjrnnvXFpE4XGT9GTkD7iTzt9P0MPbHGOHp-QCl6g6tAnwPN4svgwHw6mWKqq3Cq7xb8k5NhY_cHKxxsIXHix_kF7Q3ODC1mUADEHHJetsE9n8cl8G68LvPlZ1qV3aLVca1xBVYyh8189R8vxaDGckLBagWh_52piVcKZMzqzjkfWR21quFCCUmdN2meWa24M7cs01ZmQziZ9rZjQMUs1zfqKxS9QqygL-xJhw3XmjFNcJZRpKIBUnGkhtYy4SmPXQe_2ksw3OwaN_MiVDHLPvdzzRu551kHdvbDzcJuq_Kj7Dnq_V8Dx879Pu_z_aW_Rmbeh_PuX2bdX6BEFtErTXOmiVr39bV_7dKNWb4Id_QVJWtLE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+P3HT%3APCBM+absorber+layers+by+blending+TiO2%2FCdS+nanocomposites+for+application+in+photovoltaic+solar+cells&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Oviedo-Mendoza%2C+M.&rft.au=Zapata-Torres%2C+M.&rft.au=Mel%C3%A9ndez-Lira%2C+M.&rft.au=Mis-Fern%C3%A1ndez%2C+R.&rft.date=2021-01-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=32&rft.issue=1&rft.spage=102&rft.epage=112&rft_id=info:doi/10.1007%2Fs10854-020-04705-9&rft.externalDocID=10_1007_s10854_020_04705_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon