Additive seam tracking technology based on laser vision
With the development of manufacturing industry and technology, traditional manual welding technology is gradually unable to meet the need for industrial mass production in the field of fusion welding and additive manufacturing. As a result, an automatic welding method using robots to replace manual...
Saved in:
Published in | International journal of advanced manufacturing technology Vol. 116; no. 1-2; pp. 197 - 211 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the development of manufacturing industry and technology, traditional manual welding technology is gradually unable to meet the need for industrial mass production in the field of fusion welding and additive manufacturing. As a result, an automatic welding method using robots to replace manual welding is needed. This paper studies the additive weld seam tracking technology based on laser vision and designs a welding seam tracking system. The images of linear structure light which reflect welding seam information are collected by vision sensor. The structure light extraction algorithm window is selected under the guidance of the over-exposure characteristics of all kinds of noises. The ERFNet network is applied for the structure light and its corresponding feature point extraction. The accurate center line of structure light is extracted from strong background noise and the feature point of weld seam is obtained through regression. It realizes the online path planning and deviation correction of the weld seam tracking in real-time. The proposed algorithm is demonstrated by the weld feature extraction experiment and welding seam tracking experiment based on groove additive task. It shows that the offset is within one pixel and the distance is within 0.25 mm between the welding feature points extracted by ERFNet and the manually marked welding points. The proposed algorithm has the performance of high robustness, strong adaptability and can meet the practical welding requirements. |
---|---|
AbstractList | With the development of manufacturing industry and technology, traditional manual welding technology is gradually unable to meet the need for industrial mass production in the field of fusion welding and additive manufacturing. As a result, an automatic welding method using robots to replace manual welding is needed. This paper studies the additive weld seam tracking technology based on laser vision and designs a welding seam tracking system. The images of linear structure light which reflect welding seam information are collected by vision sensor. The structure light extraction algorithm window is selected under the guidance of the over-exposure characteristics of all kinds of noises. The ERFNet network is applied for the structure light and its corresponding feature point extraction. The accurate center line of structure light is extracted from strong background noise and the feature point of weld seam is obtained through regression. It realizes the online path planning and deviation correction of the weld seam tracking in real-time. The proposed algorithm is demonstrated by the weld feature extraction experiment and welding seam tracking experiment based on groove additive task. It shows that the offset is within one pixel and the distance is within 0.25 mm between the welding feature points extracted by ERFNet and the manually marked welding points. The proposed algorithm has the performance of high robustness, strong adaptability and can meet the practical welding requirements. |
Author | Luo, Jun Han, Jing Wang, Yeyu Zhao, Zhuang Bai, Lianfa |
Author_xml | – sequence: 1 givenname: Zhuang surname: Zhao fullname: Zhao, Zhuang email: zhaozhuang@njust.edu.cn organization: Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing University of Science and Technology – sequence: 2 givenname: Jun surname: Luo fullname: Luo, Jun organization: Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing University of Science and Technology – sequence: 3 givenname: Yeyu surname: Wang fullname: Wang, Yeyu organization: Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing University of Science and Technology – sequence: 4 givenname: Lianfa surname: Bai fullname: Bai, Lianfa organization: Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing University of Science and Technology – sequence: 5 givenname: Jing surname: Han fullname: Han, Jing organization: Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing University of Science and Technology |
BookMark | eNp9kMtKAzEUhoNUsK2-gKsB16Mnk2QysyzFGxTc6DrkWlOnmZpMC317oyMILro6Z_F_5_LN0CT0wSJ0jeEWA_C7BIA5lFDhEjhpcneGppgSUhLAbIKmUNVNSXjdXKBZSpscr3HdTBFfGOMHf7BFsnJbDFHqDx_WxWD1e-i7fn0slEzWFH0outzE4uCT78MlOneyS_bqt87R28P96_KpXL08Pi8Xq1IT3A6lVbRVquatZVg1LQWumGPENFSZllZUSke1xtiQyjimwDDtjGoxGOlcXWkyRzfj3F3sP_c2DWLT72PIK0XFGCdAgdQ5VY0pHfuUonViF_1WxqPAIL4FiVGQyILEjyABGWr-QdoPcsjPZQu-O42SEU15T1jb-HfVCeoLTx98IA |
CitedBy_id | crossref_primary_10_1142_S021800142351014X crossref_primary_10_3390_met12081365 crossref_primary_10_1016_j_engappai_2022_105377 crossref_primary_10_1007_s00170_023_11456_4 crossref_primary_10_1016_j_measurement_2022_112424 crossref_primary_10_1109_TIM_2024_3485460 crossref_primary_10_1007_s00170_024_13245_z crossref_primary_10_1016_j_engappai_2025_110193 crossref_primary_10_1016_j_jmapro_2025_03_070 crossref_primary_10_1016_j_engappai_2023_107535 crossref_primary_10_3390_s22114130 crossref_primary_10_1016_j_rcim_2023_102702 crossref_primary_10_1016_j_memori_2022_100009 crossref_primary_10_1016_j_measurement_2021_110410 crossref_primary_10_1016_j_measurement_2024_116054 crossref_primary_10_3390_machines11010038 crossref_primary_10_1109_ACCESS_2023_3319076 crossref_primary_10_1016_j_measurement_2024_116219 crossref_primary_10_1364_AO_540056 crossref_primary_10_1007_s10845_023_02107_2 crossref_primary_10_3390_s22218546 crossref_primary_10_1109_TIE_2023_3243265 crossref_primary_10_1016_j_jmapro_2024_07_140 crossref_primary_10_2139_ssrn_4159894 crossref_primary_10_1007_s00170_024_14368_z crossref_primary_10_1109_JSEN_2025_3531794 crossref_primary_10_1007_s11760_022_02391_0 crossref_primary_10_1016_j_optlastec_2023_110250 |
Cites_doi | 10.1007/s00170-012-4494-4 10.1007/s00170-012-3902-0 10.1007/s00170-016-9481-8 10.1007/s00170-009-2421-0 10.1016/j.sna.2019.111533 10.1007/s00170-015-7560-x 10.1016/0005-1098(83)90049-3 10.1007/s10846-015-0226-y 10.1007/s00170-015-7331-8 10.1016/j.jmatprotec.2007.11.268 10.1109/JSEN.2018.2824660 10.1016/j.measurement.2018.06.020 10.1016/j.jmatprotec.2017.04.025 10.1007/s00170-015-7422-6 10.4028/www.scientific.net/AMR.590.28 10.3788/CJL201946.0302002 10.1364/JOSAA.35.001805 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00170-021-07380-0 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 211 |
ExternalDocumentID | 10_1007_s00170_021_07380_0 |
GrantInformation_xml | – fundername: Jiangsu Postdoctoral Research Foundation grantid: 2019K216 funderid: http://dx.doi.org/10.13039/501100010011 – fundername: National Natural Science Foundation of China grantid: 61727802 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-eb49bb679e51b89407b5f53d84bd9424aaf4cc11d32df5b0d5cfdb910daff62c3 |
IEDL.DBID | BENPR |
ISSN | 0268-3768 |
IngestDate | Fri Jul 25 11:09:32 EDT 2025 Tue Jul 01 02:01:06 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Fri Feb 21 02:48:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Weld tracking High robustness Additive welding Strong adaptability ERFNet |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-eb49bb679e51b89407b5f53d84bd9424aaf4cc11d32df5b0d5cfdb910daff62c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2557304036 |
PQPubID | 2044010 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2557304036 crossref_primary_10_1007_s00170_021_07380_0 crossref_citationtrail_10_1007_s00170_021_07380_0 springer_journals_10_1007_s00170_021_07380_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210900 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2021 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Moriyasu, Hiramoto, Ohmine (CR13) 1993; 24 Shi, Tian, Zhang (CR19) 2015; 81 Zou, Chen, Gong, Li (CR11) 2018; 127 Arizmendi, Garcia, Quintero (CR2) 2015; 628 He, Chen, Xu, Huang, Chen (CR20) 2016; 81 CR17 CR16 Fang, Xu, Tan (CR7) 2013; 49 Lv, Gu, Wang, Qu, Qin, Huang (CR12) 2018; 18 CR15 Aviles-Viñas, Rios-Cabrera, Lopez-Juarez (CR3) 2016; 83 CR24 CR22 Xu, Tang, Yao (CR14) 2008; 205 Xu, Lv, Fang, Du, Zhao, Ye, Chen (CR18) 2017; 248 Huang, Kovacevic (CR9) 2012; 63 Kawahara (CR5) 1983; 19 Zou, Zhou, Chen (CR21) 2017; 44 Muhammad, Altun, Abo-Serie (CR1) 2018; 94 Li, Xu, Shen, Tan (CR6) 2006; 19 Gao, Zhong, You, Katayama (CR10) 2012; 21 Gao, Mo, Xiao, Chen, Katayama (CR4) 2016; 83 Xiao, Xu, Hou, Chen, Chen (CR23) 2019; 297 Huang, Xiao, Wang, Li (CR8) 2013; 67 Y Zou (7380_CR21) 2017; 44 Y Huang (7380_CR8) 2013; 67 P Xu (7380_CR14) 2008; 205 Y Li (7380_CR6) 2006; 19 J Muhammad (7380_CR1) 2018; 94 Y Xu (7380_CR18) 2017; 248 L Shi (7380_CR19) 2015; 81 C Arizmendi (7380_CR2) 2015; 628 7380_CR17 R Xiao (7380_CR23) 2019; 297 7380_CR16 Y He (7380_CR20) 2016; 81 7380_CR15 M Kawahara (7380_CR5) 1983; 19 7380_CR24 X Gao (7380_CR4) 2016; 83 X Gao (7380_CR10) 2012; 21 7380_CR22 X Lv (7380_CR12) 2018; 18 Y Zou (7380_CR11) 2018; 127 W Huang (7380_CR9) 2012; 63 JF Aviles-Viñas (7380_CR3) 2016; 83 M Moriyasu (7380_CR13) 1993; 24 Z Fang (7380_CR7) 2013; 49 |
References_xml | – ident: CR22 – volume: 67 start-page: 415 issue: 1-4 year: 2013 end-page: 426 ident: CR8 article-title: A seam-tracking laser welding platform with 3D and 2D visual information fusion vision sensor system[J] publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-4494-4 – volume: 63 start-page: 235 issue: 1-4 year: 2012 end-page: 248 ident: CR9 article-title: Development of a real-time laser-based machine vision system to monitor and control welding processes[J] publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-3902-0 – volume: 94 start-page: 13 issue: 1-4 year: 2018 end-page: 29 ident: CR1 article-title: A robust butt welding seam finding technique for intelligent robotic welding system using active laser vision[J] publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9481-8 – volume: 24 start-page: 24 issue: 1 year: 1993 end-page: 29 ident: CR13 article-title: Development of a multi-pass welding program for arc welding robots and its application to heavy electrical section pieces[J] publication-title: Trans Jpn Weld Soc – volume: 49 start-page: 519 issue: 5-8 year: 2013 end-page: 526 ident: CR7 article-title: Visual seam tracking system for butt weld of thin plate[J] publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2421-0 – ident: CR15 – ident: CR16 – volume: 44 start-page: 95 issue: 4 year: 2017 end-page: 106 ident: CR21 article-title: Research of laser vision seam detection and tracking system based on depth hierarchical feature[J] publication-title: Chin J Lasers – volume: 21 start-page: 1916 issue: 5 year: 2012 end-page: 1923 ident: CR10 article-title: Kalman filtering compensated by radial basis function neural network for seam tracking of laser welding[J] publication-title: IEEE Trans Control Syst Technol – volume: 297 start-page: 111533 year: 2019 ident: CR23 article-title: An adaptive feature extraction algorithm for multiple typical seam tracking based on vision sensor in robotic arc welding[J] publication-title: Sensors Actuators A Phys doi: 10.1016/j.sna.2019.111533 – volume: 83 start-page: 21 issue: 1-4 year: 2016 end-page: 32 ident: CR4 article-title: Seam tracking based on Kalman filtering of micro-gap weld using magneto-optical image[J] publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7560-x – ident: CR17 – volume: 19 start-page: 357 issue: 4 year: 1983 end-page: 363 ident: CR5 article-title: Tracking control system using image sensor for arc welding[J] publication-title: Automatica doi: 10.1016/0005-1098(83)90049-3 – volume: 81 start-page: 395 issue: 3-4 year: 2016 end-page: 406 ident: CR20 article-title: Autonomous detection of weld seam profiles via a model of saliency-based visual attention for robotic arc welding[J] publication-title: J Intell Robot Syst doi: 10.1007/s10846-015-0226-y – volume: 81 start-page: 2099 issue: 9-12 year: 2015 end-page: 2107 ident: CR19 article-title: Automatic programming for industrial robot to weld intersecting pipes[J] publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7331-8 – volume: 205 start-page: 404 issue: 1-3 year: 2008 end-page: 410 ident: CR14 article-title: Application of circular laser vision sensor (CLVS) on welded seam tracking[J] publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.11.268 – volume: 628 start-page: 012082 issue: 1 year: 2015 ident: CR2 article-title: Automatic welding detection by an intelligent tool pipe inspection[C] Journal of Physics: Conference Series publication-title: IOP Publishing – volume: 19 start-page: 2676 issue: 6 year: 2006 end-page: 2681 ident: CR6 article-title: Multi-features selection and extraction of structured light images of vision sensor for seam tracking [J] publication-title: Chinese J Sens Actuators – volume: 18 start-page: 4715 issue: 11 year: 2018 end-page: 4724 ident: CR12 article-title: Feature extraction of welding seam image based on laser vision[J] publication-title: IEEE Sensors J doi: 10.1109/JSEN.2018.2824660 – ident: CR24 – volume: 127 start-page: 489 year: 2018 end-page: 500 ident: CR11 article-title: A seam tracking system based on a laser vision sensor[J] publication-title: Measurement doi: 10.1016/j.measurement.2018.06.020 – volume: 248 start-page: 18 year: 2017 end-page: 30 ident: CR18 article-title: Welding seam tracking in robotic gas metal arc welding[J] publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2017.04.025 – volume: 83 start-page: 217 issue: 1-4 year: 2016 end-page: 231 ident: CR3 article-title: On-line learning of welding bead geometry in industrial robots[J] publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7422-6 – volume: 83 start-page: 21 issue: 1-4 year: 2016 ident: 7380_CR4 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7560-x – volume: 94 start-page: 13 issue: 1-4 year: 2018 ident: 7380_CR1 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9481-8 – volume: 21 start-page: 1916 issue: 5 year: 2012 ident: 7380_CR10 publication-title: IEEE Trans Control Syst Technol – volume: 44 start-page: 95 issue: 4 year: 2017 ident: 7380_CR21 publication-title: Chin J Lasers – ident: 7380_CR16 doi: 10.4028/www.scientific.net/AMR.590.28 – ident: 7380_CR22 doi: 10.3788/CJL201946.0302002 – volume: 297 start-page: 111533 year: 2019 ident: 7380_CR23 publication-title: Sensors Actuators A Phys doi: 10.1016/j.sna.2019.111533 – volume: 205 start-page: 404 issue: 1-3 year: 2008 ident: 7380_CR14 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.11.268 – volume: 248 start-page: 18 year: 2017 ident: 7380_CR18 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2017.04.025 – ident: 7380_CR24 doi: 10.1364/JOSAA.35.001805 – volume: 63 start-page: 235 issue: 1-4 year: 2012 ident: 7380_CR9 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-3902-0 – volume: 18 start-page: 4715 issue: 11 year: 2018 ident: 7380_CR12 publication-title: IEEE Sensors J doi: 10.1109/JSEN.2018.2824660 – volume: 67 start-page: 415 issue: 1-4 year: 2013 ident: 7380_CR8 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-4494-4 – volume: 81 start-page: 2099 issue: 9-12 year: 2015 ident: 7380_CR19 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7331-8 – volume: 628 start-page: 012082 issue: 1 year: 2015 ident: 7380_CR2 publication-title: IOP Publishing – volume: 81 start-page: 395 issue: 3-4 year: 2016 ident: 7380_CR20 publication-title: J Intell Robot Syst doi: 10.1007/s10846-015-0226-y – volume: 19 start-page: 357 issue: 4 year: 1983 ident: 7380_CR5 publication-title: Automatica doi: 10.1016/0005-1098(83)90049-3 – ident: 7380_CR15 – volume: 19 start-page: 2676 issue: 6 year: 2006 ident: 7380_CR6 publication-title: Chinese J Sens Actuators – volume: 49 start-page: 519 issue: 5-8 year: 2013 ident: 7380_CR7 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2421-0 – ident: 7380_CR17 – volume: 24 start-page: 24 issue: 1 year: 1993 ident: 7380_CR13 publication-title: Trans Jpn Weld Soc – volume: 127 start-page: 489 year: 2018 ident: 7380_CR11 publication-title: Measurement doi: 10.1016/j.measurement.2018.06.020 – volume: 83 start-page: 217 issue: 1-4 year: 2016 ident: 7380_CR3 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7422-6 |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.4522862 |
Snippet | With the development of manufacturing industry and technology, traditional manual welding technology is gradually unable to meet the need for industrial mass... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 197 |
SubjectTerms | Algorithms Automatic welding Background noise CAE) and Design Computer-Aided Engineering (CAD Engineering Feature extraction Fusion welding Grooves Industrial and Production Engineering Industrial development Laser beam welding Mass production Mechanical Engineering Media Management Original Article Path planning Seam tracking Tracking systems Vision |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvQgPrG6Sg7etNCkSZocF3FZBD25sLfSvE7ald36_52kj1VRwVuhSQuTbzLvGYSugX24JyJLlQxhRlb5VFpXpIKbKpeCZbkPEd3HJzGbs4cFX3RFYes-270PScabeih2i61e0pBSALCU8LSNdniw3QHFczrpUURUESZhDiijKoyf36A4ZzxvY1tdrEGQWDAHxogM7Ca70pqf__lVfG100m9h1Cidpgdov1Mr8aTFwSHacvUR2vvUbPAYFRNrY6IQBnS_4mZVmeAmx83gXMdBpFm8rDGo1G6F27rzEzSf3j_fzdJubEJqgJ-a1GmmtBaFcpxoqcBi09zz3EqmrWKUVZVnxhBic2o915nlxlsNaoOtvBfU5KdoVC9rd4awNpmB8wtt-hzsFCo4DL0lnjpXUE0TRHpqlKbrKR5GW7yUQzfkSMESKFhGCpZZgm6GPW9tR40_V497Ipcdd61LMIPgYgIciQTd9oTfvP79a-f_W36Bdmk8-5BSNkajZvXuLkEHafRVhNwHfwrKeg priority: 102 providerName: Springer Nature |
Title | Additive seam tracking technology based on laser vision |
URI | https://link.springer.com/article/10.1007/s00170-021-07380-0 https://www.proquest.com/docview/2557304036 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8a7QUOE9tAdHSVD7tBROLYjnNC3dSCQEMIrRKcovjrBGnXZv8_z67TwqT1FiV5Pjz_3vPz-wT4juLDXSbSpJQ-zMhql0hji0RwXedSsDR3PqL7605cz9jNI3-MDrdVTKvsdGJQ1GauvY_8Ak1fBCPSisvFn8RPjfLR1ThCYw_6qIIlXr76PyZ39w8dorKy8FMxN4ijpR9Fv0V0zni-jnPFuIPIQvEcXkykFz0Zy2xCsV1oNZP4lAYUC4lP74-yrX36T0g1nFTTQ_gYTUwyXmPiE3ywzWc4eNN48AsUY2NC0hBBpL-Qdllr7zIn7cbRTvzxZsi8IWhe2yVZ16AfwWw6-f3zOokjFBKNstUmVrFSKVGUlmdKlnh7U9zx3EimTMkoq2vHtM4yk1PjuEoN184oNCFM7ZygOj-GXjNv7AkQpVONe-lb9lmkFKV3HjqTOWptQRUdQNZxo9Kxv7gfc_FcbTojBw5WyMEqcLBKB3C2oVmsu2vs_HvYMbmKkraqtrgYwHnH-O3n_6_2dfdqp7BPw177dLIh9NrlX_sN7Y9WjWBPTq9G0B9fPd1ORhFy-HZGx6_9utJq |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9RAEB6FUAAF4ikOAmwBFVjY-_JuEUURcFzIo0qkdMb7qsJduBhF-VP8RmbW9h0gkS6dJXu3-PzNzuw8Ad6g-KhU6bKwhsKMsk2FCbEutPKtMFqWIlFE9_BIz07k11N1ugG_xloYSqscz8R8UIeFJx_5BzR9kYy4Vu-c_yhoahRFV8cRGj0t9uPVJV7ZLrb3PuH_fcv59PPxx1kxTBUoPNKtK6KT1jld26gqZyxeaJxKSgQjXbCSy7ZN0vuqCoKHpFwZlE_BoVYNbUqae4H73oLbUghLEmWmX0b-VramGZwrfnNLg-_X8iOkEn1UbYhy6CqX6uE1yJCgm6GoJ5f25cY2BSVQoBAafPpbca6t4X8CuFkvTh_A_cGgZbs9Ax_CRpw_gnt_tDl8DPVuCDlFiSGA31m3bD056Fm3cuszUqaBLeYMjfm4ZH3F-xM4uRFon8LmfDGPz4A5X3pkDjUIjLhSW3JVplAlHmPNHZ9ANaLR-KGbOQ3VOGtWfZgzgg0i2GQEm3IC71ZrzvteHtd-vTWC3AxyfdGsWTiB9yPw69f_3-359bu9hjuz48OD5mDvaP8F3OX5v1Mi2xZsdsuf8SVaPp17lenG4NtN8_s3WtYMlg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCvjADSJix3aSYwVUZas4UKm3KN5OkFYl_D9jZ2lBgMQtUuxEen62x56ZNwidw_ThlogwSBPnZmS5DRJt4kBwlUeJYGFknUf3aSSGY3Y_4ZOlLH4f7d64JKucBqfSVJRXM22v2sQ3L_sSuPACoGgCT6toDZZj4ng9pv2GUSSNXVXMlnE0daXoF4yOGI8qP1ftdxDEJ8_BwSRxUy-p02x-_ufXrWxhn35zqfqdarCNtmoTE_crTuygFVPsos0l4cE9FPe19kFDGJj-hst5rtyVOS7bi3bstjeNpwUG89rMcZWDvo_Gg9uX62FQl1AIFIBRBkayVEoRp4YTmaRwepPc8kgnTOqUUZbnlilFiI6otlyGmiurJZgQOrdWUBUdoE4xLcwhwlKFCsbSSfYZ6ClSd3loNbHUmJhK2kWkQSNTtb64K3PxmrXKyB7BDBDMPIJZ2EUXbZ9Zpa7xZ-teA3JWz7T3DI5EsEgBp0QXXTbAL17__rWj_zU_Q-vPN4Ps8W70cIw2qKeBizTroU45_zAnYJqU8tSz7xO0IdGp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additive+seam+tracking+technology+based+on+laser+vision&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Zhuang%2C+Zhao&rft.au=Luo%2C+Jun&rft.au=Wang+Yeyu&rft.au=Bai+Lianfa&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=116&rft.issue=1-2&rft.spage=197&rft.epage=211&rft_id=info:doi/10.1007%2Fs00170-021-07380-0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |