Hot working behaviour of experimental Ti-4.5Al-1 V-3Fe alloy with initial lamellar microstructure
Isothermal compression testing was carried out on newly developed low-cost (α + β) Ti-4.5Al-1 V-3Fe alloy with lamellar initial microstructure using a Gleeble 3500 thermomechanical simulator. The tests were performed under different conditions of strain rate (0.001, 0.01, 0.1, 1 and 10 s −1 ), defor...
Saved in:
Published in | International journal of advanced manufacturing technology Vol. 106; no. 5-6; pp. 1901 - 1916 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.01.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Isothermal compression testing was carried out on newly developed low-cost (α + β) Ti-4.5Al-1 V-3Fe alloy with lamellar initial microstructure using a Gleeble 3500 thermomechanical simulator. The tests were performed under different conditions of strain rate (0.001, 0.01, 0.1, 1 and 10 s
−1
), deformation temperature (750, 800, 850, 900 and 950 °C) and a constant total strain of 0.6. Stress-strain analysis, constitutive constant calculations, processing maps and microstructural validation were used to understand the hot working behaviour of the alloys and the underlying softening mechanisms. The results show that the deformation behaviour was significantly influenced by the deformation parameters. Two main softening mechanisms, which have been reported in existing commercial alloys with a fully lamellar structure, also controlled the deformation behaviour of the Ti-4.5Al-1 V-3Fe alloy. Lath bending and rotation caused flow softening at low temperatures and high strain rates, while dynamic globularisation led to flow softening at the higher temperatures and low strain rates. The optimum condition for hot working of the alloy in the safe deformation region was found at ~890–905 °C and 0.003–0.01 s
−1
. The region of instability identified at ~875–930 °C/0.15–0.4 s
−1
should be avoided during hot working to prevent flow localisation, shear cracks, cavitation and other instabilities that may arise. |
---|---|
AbstractList | Isothermal compression testing was carried out on newly developed low-cost (α + β) Ti-4.5Al-1 V-3Fe alloy with lamellar initial microstructure using a Gleeble 3500 thermomechanical simulator. The tests were performed under different conditions of strain rate (0.001, 0.01, 0.1, 1 and 10 s
−1
), deformation temperature (750, 800, 850, 900 and 950 °C) and a constant total strain of 0.6. Stress-strain analysis, constitutive constant calculations, processing maps and microstructural validation were used to understand the hot working behaviour of the alloys and the underlying softening mechanisms. The results show that the deformation behaviour was significantly influenced by the deformation parameters. Two main softening mechanisms, which have been reported in existing commercial alloys with a fully lamellar structure, also controlled the deformation behaviour of the Ti-4.5Al-1 V-3Fe alloy. Lath bending and rotation caused flow softening at low temperatures and high strain rates, while dynamic globularisation led to flow softening at the higher temperatures and low strain rates. The optimum condition for hot working of the alloy in the safe deformation region was found at ~890–905 °C and 0.003–0.01 s
−1
. The region of instability identified at ~875–930 °C/0.15–0.4 s
−1
should be avoided during hot working to prevent flow localisation, shear cracks, cavitation and other instabilities that may arise. Isothermal compression testing was carried out on newly developed low-cost (α + β) Ti-4.5Al-1 V-3Fe alloy with lamellar initial microstructure using a Gleeble 3500 thermomechanical simulator. The tests were performed under different conditions of strain rate (0.001, 0.01, 0.1, 1 and 10 s −1), deformation temperature (750, 800, 850, 900 and 950 °C) and a constant total strain of 0.6. Stress-strain analysis, constitutive constant calculations, processing maps and microstructural validation were used to understand the hot working behaviour of the alloys and the underlying softening mechanisms. The results show that the deformation behaviour was significantly influenced by the deformation parameters. Two main softening mechanisms, which have been reported in existing commercial alloys with a fully lamellar structure, also controlled the deformation behaviour of the Ti-4.5Al-1 V-3Fe alloy. Lath bending and rotation caused flow softening at low temperatures and high strain rates, while dynamic globularisation led to flow softening at the higher temperatures and low strain rates. The optimum condition for hot working of the alloy in the safe deformation region was found at ~890–905 °C and 0.003–0.01 s −1. The region of instability identified at ~875–930 °C/0.15–0.4 s −1 should be avoided during hot working to prevent flow localisation, shear cracks, cavitation and other instabilities that may arise. |
Author | Chown, Lesley H. Bodunrin, Michael O. Alaneme, Kenneth K. van der Merwe, Josias W. |
Author_xml | – sequence: 1 givenname: Michael O. surname: Bodunrin fullname: Bodunrin, Michael O. email: mic.tosin@live.com, michael.bodunrin@wits.ac.za organization: School of Chemical and Metallurgical Engineering, DST-NRF Centre of Excellence in Strong Materials and African Materials Science and Engineering Network (AMSEN), University of the Witwatersrand, Materials Design and Structural Integrity Research Group, Department of Metallurgical and Materials Engineering, Federal University of Technology Akure, African Academy of Sciences – sequence: 2 givenname: Lesley H. surname: Chown fullname: Chown, Lesley H. organization: School of Chemical and Metallurgical Engineering, DST-NRF Centre of Excellence in Strong Materials and African Materials Science and Engineering Network (AMSEN), University of the Witwatersrand – sequence: 3 givenname: Josias W. surname: van der Merwe fullname: van der Merwe, Josias W. organization: School of Chemical and Metallurgical Engineering, DST-NRF Centre of Excellence in Strong Materials and African Materials Science and Engineering Network (AMSEN), University of the Witwatersrand – sequence: 4 givenname: Kenneth K. surname: Alaneme fullname: Alaneme, Kenneth K. organization: Materials Design and Structural Integrity Research Group, Department of Metallurgical and Materials Engineering, Federal University of Technology Akure |
BookMark | eNp9UE9LwzAUDzLBOf0CngKeoy9Nm6RHEaeC4EW9hqx91cysmWnm3Lc3c4LgYacHj9__YzLqQ4-EnHG44ADqcgDgChjwmkGpuGbqgIx5KQQTwKsRGUMhNRNK6iNyPAzzDJdc6jGxdyHRdYjvrn-lM3yzny6sIg0dxa8lRrfAPllPnxwrL6orzzh9YWKK1HofNnTt0ht1vUsuY7xdoPc20oVrYhhSXDVpFfGEHHbWD3j6eyfkeXrzdH3HHh5v76-vHlgjeJ0YzkBa1ami1brWgK3seAkSRTXrbNGBgsZKbdHyVudP086aUhcttDUiykaJCTnf6S5j-FjhkMw8N-mzpSlEVYDidVVnVLFDbSMOETuzzCVt3BgOZjul2U1p8pTmZ0qzldb_SI1LNrnQp2id308VO-qQffpXjH-p9rC-AR-ti2s |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2021_102296 crossref_primary_10_3390_app13074449 crossref_primary_10_1007_s00170_023_11265_9 crossref_primary_10_3390_app13042310 crossref_primary_10_3390_app13042686 crossref_primary_10_1016_j_jallcom_2023_169556 crossref_primary_10_3390_met11010160 crossref_primary_10_1002_maco_202213076 crossref_primary_10_1016_j_msea_2020_139622 crossref_primary_10_1016_j_msea_2024_147400 |
Cites_doi | 10.1007/BF02664902 10.1179/095066000771048782 10.1016/S0921-5093(98)01155-1 10.1088/0965-0393/10/5/303 10.1016/j.matdes.2015.04.005 10.1016/j.msea.2004.12.005 10.1361/105994903322692420 10.1016/j.msea.2008.11.001 10.1016/j.matdes.2014.04.019 10.1007/s11003-008-9081-3 10.1007/BF02914711 10.1016/j.actamat.2007.05.009 10.1063/1.5008194 10.1016/j.biomaterials.2004.09.007 10.1016/S1003-6326(15)63765-7 10.1016/S1875-5372(12)60035-6 10.1016/j.msea.2014.01.005 10.1016/j.msea.2011.03.030 10.1016/j.msea.2013.02.033 10.1016/j.jmatprotec.2006.10.002 10.1016/j.intermet.2011.08.027 10.1016/j.msea.2014.01.064 10.1016/j.msea.2010.11.004 10.1016/S0921-5093(00)00741-3 10.1098/rsta.1999.0386 10.1016/j.matdes.2011.11.057 10.1016/j.matdes.2016.08.010 10.1007/s12289-013-1150-y 10.1007/BF00554942 10.1007/s10853-015-9718-1 10.1016/j.dt.2014.01.003 10.1016/1359-6454(95)00257-X 10.1016/j.jmatprotec.2008.04.063 10.1007/s11837-007-0074-8 10.1016/S0921-5093(01)01531-3 10.1179/mst.1997.13.3.210 10.1007/s11837-016-2238-x 10.1016/S0921-5093(99)00173-2 10.1016/j.jmatprotec.2016.12.013 10.1016/j.matdes.2010.11.048 10.1016/j.msea.2016.11.063 10.1016/S0921-5093(97)00778-8 10.1007/s10853-010-4667-1 10.1016/S0921-5093(97)00776-4 10.1016/j.actamat.2011.07.008 10.1002/9780470686652.eae198 10.1007/s11661-997-0188-1 10.1016/j.jmbbm.2012.05.019 10.1002/adem.201801215 10.1016/j.jallcom.2004.03.096 10.1179/174329009X457063 10.1016/j.msea.2013.12.076 10.1016/j.matdes.2010.01.060 10.1002/maco.201709709 10.1016/S0921-5093(01)01117-0 10.1016/j.matdes.2013.03.009 10.1016/S1003-6326(07)60249-0 10.1016/j.jallcom.2014.01.157 10.1002/3527602119 10.1007/s11837-004-0144-0 10.1361/105994901770344593 10.1016/j.matdes.2013.02.044 10.1016/S0026-0657(09)70040-2 10.1063/1.1707363 10.1080/1478422X.2019.1654218 10.1179/026708300101508171 10.1179/mht.2006.005 10.1016/S1003-6326(11)60957-6 10.1016/S0921-5093(01)01448-4 10.1590/1980-5373-mr-2016-0448 10.1016/j.conbuildmat.2016.02.107 10.1016/j.msea.2010.01.034 10.31399/asm.tb.ttg2.9781627082693 10.1016/j.pnsc.2013.11.004 10.1016/j.stam.2003.09.002 10.1016/j.commatsci.2007.08.011 10.1179/mst.1996.12.7.579 10.1016/0001-6160(66)90207-0 10.1016/j.msea.2019.138047 10.1016/S0921-5093(97)00783-1 10.1007/s12289-018-1457-9 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00170-019-04718-7 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 1916 |
ExternalDocumentID | 10_1007_s00170_019_04718_7 |
GrantInformation_xml | – fundername: DST-NRF Centre Of Excellence in Strong Materials, University of the Witwatersrand, South Africa grantid: N/A – fundername: African Materials Science and Engineering Network (A Carnegie-IAS RISE network), University of the Witwatersrand, South Africa grantid: N/A – fundername: African Academy of Sciences, Nairobi, Kenya grantid: ARPDF-18-03 |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-eb06a7f72d88980ed6f1406e35bfa2f070ca68aea1d8bfacdbc482d0d9eee6c73 |
IEDL.DBID | U2A |
ISSN | 0268-3768 |
IngestDate | Fri Jul 25 11:01:05 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Tue Jul 01 00:40:22 EDT 2025 Fri Feb 21 02:33:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5-6 |
Keywords | Low-cost (α + β) titanium Dynamic globularisation Microstructural evolution Processing maps Constitutive analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-eb06a7f72d88980ed6f1406e35bfa2f070ca68aea1d8bfacdbc482d0d9eee6c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2352071959 |
PQPubID | 2044010 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2352071959 crossref_primary_10_1007_s00170_019_04718_7 crossref_citationtrail_10_1007_s00170_019_04718_7 springer_journals_10_1007_s00170_019_04718_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200100 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200100 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2020 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | LinC-WJuC-PChern LinJ-HA comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4 V and Ti-13Nb-13Zr alloysBiomaterials2005262899290710.1016/j.biomaterials.2004.09.007 PorntadawitJUthaisangsukVChoungthongPModeling of flow behavior of Ti–6Al–4 V alloy at elevated temperaturesMater Sci Eng A201459921222210.1016/j.msea.2014.01.064 Bloomberg One battery material sector is cheering for lower prices. In: Eng. News. https://www.engineeringnews.co.za/article/one-battery-material-sector-is-cheering-for-lower-prices-2019-09-19. Accessed 11 Nov 2019 NochovnayaNAIsaichevAVAntashevVGFoundations of the development of economically alloyed widely applicable titanium alloysMater Sci20084439639910.1007/s11003-008-9081-3 WuCYangHFanXSunZDynamic globularization kinetics during hot working of TA15 titanium alloy with colony microstructureTrans Nonferrous Met Soc China2011211963196910.1016/S1003-6326(11)60957-6 RoebuckBLordJDBrooksMMeasurement of flow stress in hot axisymmetric compression testsMater High Temp200623598310.1179/mht.2006.005 SeshacharyuluTMedeirosSCFrazierWGPrasadYVRKMicrostructural mechanisms during hot working of commercial grade Ti–6Al–4 V with lamellar starting structureMater Sci Eng A200232511212510.1016/S0921-5093(01)01448-4 WeissISemiatinS.LThermomechanical processing of alpha titanium alloys—an overviewMaterials Science and Engineering: A1999263224325610.1016/S0921-5093(98)01155-1 PrasadYVRKGegelHLDoraiveluSMModeling of dynamic material behavior in hot deformation: Forging of Ti-6242Metall Trans A1984151883189210.1007/BF02664902 LiHZhaoZGuoHEffect of initial alpha lamellar thickness on deformation behavior of a near-α high-temperature alloy during thermomechanical processingMater Sci Eng A201768234535310.1016/j.msea.2016.11.063 BettlesCJTomusDGibsonMAThe role of microstructure in the mechanical behaviour of Ti–1.6 wt.%Fe alloys containing O and NMater Sci Eng A20115284899490910.1016/j.msea.2011.03.030 BodunrinMOChownLHvan der MerweJWAlanemeKKCorrosion behaviour of Ti-Al-xV-yFe experimental alloys in 3.5 wt% NaCl and 3.5 M H2SO4Mater Corros20186977078010.1002/maco.201709709 BaiXFZhaoYQZengWDCharacterization of hot deformation behavior of a biomedical titanium alloy TLMMater Sci Eng A201459823624310.1016/j.msea.2014.01.005 XiaYLongSZhouYIdentification for the optimal working parameters of Ti-6Al-4 V-0.1Ru alloy in a wide deformation condition range by processing maps based on DMMMater Res2016191449146010.1590/1980-5373-mr-2016-0448 Fujii H, Fujisawa K, Ishil M, Yamashita Y (2002) Development of low-cost high-strength Ti-Fe-O-N alloy series. NIPPON STEEL BolzoniLHerraizERuiz-NavasEMGordoEStudy of the properties of low-cost powder metallurgy titanium alloys by 430 stainless steel additionMater Des20146062863610.1016/j.matdes.2014.04.019 SeshacharyuluTMedeirosSCFrazierWGPrasadYVRKHot working of commercial Ti–6Al–4 V with an equiaxed α–β microstructure: materials modeling considerationsMater Sci Eng A200028418419410.1016/S0921-5093(00)00741-3 Narayana MurtySVSNageswara RaoBKashyapBPInstability criteria for hot deformation of materialsInt Mater Rev200045152610.1179/095066000771048782 EstebanPGRuiz-NavasEMBolzoniLGordoELow-cost titanium alloys? Iron may hold the answersMet Powder Rep200863242710.1016/S0026-0657(09)70040-2 SongHZhangSChengMDynamic globularization prediction during cogging process of large size TC11 titanium alloy billet with lamellar structureDef Technol201410404610.1016/j.dt.2014.01.003 PengXGuoHShiZConstitutive equations for high temperature flow stress of TC4-DT alloy incorporating strain, strain rate and temperatureMater Des20135019820610.1016/j.matdes.2013.03.009 CabreraJMJonasJJPradoJMFlow behaviour of medium carbon microalloyed steel under hot working conditionsMater Sci Technol19961257958510.1179/mst.1996.12.7.579 LinYCChenX-MA critical review of experimental results and constitutive descriptions for metals and alloys in hot workingMater Des2011321733175910.1016/j.matdes.2010.11.048 ZongYYShanDBXuMLvYFlow softening and microstructural evolution of TC11 titanium alloy during hot deformationJ Mater Process Technol20092091988199410.1016/j.jmatprotec.2008.04.063 McQueenHJRyanNDConstitutive analysis in hot workingMater Sci Eng A2002322436310.1016/S0921-5093(01)01117-0 WeissISemiatinSLThermomechanical processing of beta titanium alloys—an overviewMater Sci Eng A1998243466510.1016/S0921-5093(97)00783-1 LiMPanHLinYLuoJHigh temperature deformation behavior of near alpha Ti–5.6Al–4.8Sn–2.0Zr alloyJ Mater Process Technol2007183717610.1016/j.jmatprotec.2006.10.002 SemiatinSLSeetharamanVWeissIHot workability of titanium and titanium aluminide alloys—an overviewMater Sci Eng A199824312410.1016/S0921-5093(97)00776-4 BalasundarIRaghuTKashyapBPModeling the hot working behavior of near-α titanium alloy IMI 834Prog Nat Sci Mater Int20132359860710.1016/j.pnsc.2013.11.004 SellarsCMTegartWJOn the mechanism of hot deformationActa Metall1966141136113810.1016/0001-6160(66)90207-0 GoetzRLSemiatinSLThe adiabatic correction factor for deformation heating during the uniaxial compression testJ Mater Eng Perform20011071071710.1361/105994901770344593 Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press MomeniAAbbasiSMEffect of hot working on flow behavior of Ti–6Al–4 V alloy in single phase and two phase regionsMater Des2010313599360410.1016/j.matdes.2010.01.060 PrasadYVRKProcessing maps: A status reportJ Mater Eng Perform20031263864510.1361/105994903322692420 XuXNashPMangabhaiDCharacterization and sintering of Armstrong process titanium powderJOM20176977077510.1007/s11837-016-2238-x BriottetLJonasJJMontheilletFA mechanical interpretation of the activation energy of high temperature deformation in two phase materialsActa Mater1996441665167210.1016/1359-6454(95)00257-X MurtySVSNRaoBNKashyapBPDevelopment and validation of a processing map for zirconium alloysModel Simul Mater Sci Eng20021050310.1088/0965-0393/10/5/303 BodunrinMOChownLHvan der MerweJWAlanemeKKHot working of Ti-6Al-4 V with a complex initial microstructureInt J Mater Form.20181285787410.1007/s12289-018-1457-9 Boyer RR (2010) Titanium and its alloys: metallurgy, heat treatment and alloy characteristics. In: Encyclopedia of Aerospace Engineering. American Cancer Society AkbariZMirzadehHCabreraJ-MA simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformationMater Des20157712613110.1016/j.matdes.2015.04.005 BolzoniLRuiz-NavasEMGordoEUnderstanding the properties of low-cost iron-containing powder metallurgy titanium alloysMater Des201611031732310.1016/j.matdes.2016.08.010 BalasundarIRaghuTKashyapBPProcessing map for a cast and homogenized near alpha titanium alloyInt J Mater Form20138859710.1007/s12289-013-1150-y ShiJSunWJiangJZhangYInfluence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solutionConstr Build Mater201611180581310.1016/j.conbuildmat.2016.02.107 FanJKKouHCLaiMJCharacterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333Mater Des20134994595210.1016/j.matdes.2013.02.044 ShiHMcLarenAJSellarsCMConstitutive equations for high temperature flow stress of aluminium alloysMater Sci Technol19971321021610.1179/mst.1997.13.3.210 SeshacharyuluTMedeirosSCMorganJTHot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti–6Al–4 VMater Sci Eng A200027928929910.1016/S0921-5093(99)00173-2 ZenerCHollomonJHEffect of strain rate upon plastic flow of steelJ Appl Phys194415223210.1063/1.1707363 WangKZengWZhaoYLaiYZhouYHot working of Ti-17 titanium alloy with lamellar starting structure using 3-D processing mapsJ Mater Sci2010455883589110.1007/s10853-010-4667-1 ProzeskyDJBodunrinMOChownLHHot-deformation behaviour of α + β Ti-Al-V-Fe experimental alloysAIP Conf Proc2017189616001910.1063/1.5008194 WanjaraPJahaziMMonajatiHHot working behavior of near-α alloy IMI834Mater Sci Eng A2005396506010.1016/j.msea.2004.12.005 CarmanAZhangLCIvasishinOMRole of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-β titanium alloyMater Sci Eng A20115281686169310.1016/j.msea.2010.11.004 LütjeringGWilliamsJCEngineering materials: titanium, Second2007Berlin Heidelberg NewyorkSpringer VeigaCDavimJPLoureiroAJRReview on machinability of titanium alloys: the process perspectiveRev Adv Mater Sci201334148164 BensonLLMellorIJacksonMDirect reduction of synthetic rutile using the FFC process to produce low-cost novel titanium alloysJ Mater Sci2016514250426110.1007/s10853-015-9718-1 samaterials (2014) Why titanium is so expensive. In: Stanf. Adv. Mater. https://samaterials.wordpress.com/2014/07/29/why-titanium-is-so-expensive/. Accessed 22 Oct 2016 LinYCChenM-SZhongJConstitutive modeling for elevated temperature flow behavior of 42CrMo steelComput Mater Sci20084247047710.1016/j.commatsci.2007.08.011 SemiatinSLSeetharamanVGhoshAKPlastic flow, microstructure evolution, and defect formation during primary hot working of titanium and titanium aluminide alloys with lamellar colony microstructuresPhilos Trans R Soc Lond Math Phys Eng Sci19993571487151210.1098/rsta.1999.0386 JunhuiCHeYZhichaoSFlow behavior and constitutive model using piecewise function of strain for TC11 alloyRare Met Mater Eng20124139740110.1016/S1875-5372(12)60035-6 Fujii H, Takahashi K (2002) Development of high performance Ti-Fe-Al alloy series. NIPPON STEEL SenITamirisakandalaSMiracleDBRamamurtyUMicrostructural effects on the mechanical behavior of B-modified Ti–6Al–4 V alloysActa Mater2007554983499310.1016/j.actamat.2007.05.009 FroesFH(S)FriedrichHKieseJBergointDTitanium in the family automobile: the cost challengeJOM200456404410.1007/s11837-004-0144-0 LiCZhangXLiZZhouK-CHot Deformation of Ti-5Al-5Mo-5 V-1Cr-1Fe Near β Titanium Alloys Containing Thin and Thick Lamellar α PhaseMater Sci Eng A2013573758310.1016/j.msea.2013.02.033 MaXZengWXuBCharacterization of RKC Nkhoma (4718_CR40) 2014; 595 A Carman (4718_CR17) 2011; 528 K Wang (4718_CR58) 2010; 45 H Mirzadeh (4718_CR66) 2011; 59 CJ Bettles (4718_CR29) 2011; 528 T Seshacharyulu (4718_CR49) 2002; 325 SL Semiatin (4718_CR63) 1998; 243 M Li (4718_CR83) 2007; 183 J Liu (4718_CR48) 2014; 597 I Weiss (4718_CR91) 1999; 263 I Balasundar (4718_CR31) 2013; 8 YVRK Prasad (4718_CR43) 2000; 16 YVRK Prasad (4718_CR87) 2003; 12 I Balasundar (4718_CR81) 2013; 23 H Shi (4718_CR68) 1997; 13 C Li (4718_CR54) 2013; 573 H Mirzadeh (4718_CR65) 2015; 25 B Roebuck (4718_CR36) 2006; 23 X Peng (4718_CR79) 2013; 50 B Guo (4718_CR85) 2019; 761 MO Bodunrin (4718_CR35) 2018; 69 A Momeni (4718_CR78) 2010; 31 SL Semiatin (4718_CR92) 1997; 49 PM Souza (4718_CR80) 2015 CM Sellars (4718_CR37) 1966; 14 YC Lin (4718_CR41) 2011; 32 NS Weston (4718_CR16) 2017; 243 4718_CR44 HJ McQueen (4718_CR39) 2002; 322 C Veiga (4718_CR11) 2013; 34 J Shi (4718_CR42) 2016; 111 Michael O. Bodunrin (4718_CR25) 2019; 54 Z Akbari (4718_CR62) 2015; 77 RG Guan (4718_CR77) 1980; 36 P Wanjara (4718_CR82) 2005; 396 JK Fan (4718_CR94) 2013; 49 L Bolzoni (4718_CR13) 2014; 60 JM Cabrera (4718_CR64) 1996; 12 XF Bai (4718_CR55) 2014; 598 Y Xia (4718_CR74) 2016; 19 RL Goetz (4718_CR59) 2001; 10 C-W Lin (4718_CR27) 2005; 26 T Seshacharyulu (4718_CR10) 2000; 284 FHS Froes (4718_CR21) 2007; 59 E Calvert (4718_CR60) 2015 G Lütjering (4718_CR19) 1998; 243 T Seshacharyulu (4718_CR51) 2000; 279 C Leyens (4718_CR2) 2003 PG Esteban (4718_CR4) 2008; 63 H Song (4718_CR50) 2014; 10 DJ Prozesky (4718_CR3) 2017; 1896 4718_CR6 MO Bodunrin (4718_CR52) 2018; 12 SL Semiatin (4718_CR70) 1999; 357 X Xu (4718_CR15) 2017; 69 G Lütjering (4718_CR18) 2007 J Luo (4718_CR76) 2009; 505 4718_CR57 V Seetharaman (4718_CR69) 1997; 28 X Ma (4718_CR46) 2012; 20 4718_CR8 R Ding (4718_CR84) 2002; 327 4718_CR9 L Bolzoni (4718_CR34) 2016; 110 H Li (4718_CR90) 2017; 682 M Niinomi (4718_CR7) 2003; 4 Y Duan (4718_CR20) 2007; 17 L Bolzoni (4718_CR26) 2012; 15 FH(S) Froes (4718_CR5) 2004; 56 L-C Zhang (4718_CR28) 2019; 21 LL Benson (4718_CR14) 2016; 51 A Choubey (4718_CR33) 2004; 381 SVS Narayana Murty (4718_CR45) 2000; 45 C Wu (4718_CR53) 2011; 21 YC Lin (4718_CR61) 2008; 42 YVRK Prasad (4718_CR88) 1984; 15 I Weiss (4718_CR56) 1998; 243 4718_CR1 C Junhui (4718_CR75) 2012; 41 4718_CR24 I Sen (4718_CR32) 2007; 55 4718_CR22 4718_CR23 4718_CR67 PG Esteban (4718_CR12) 2011; 54 NA Nochovnaya (4718_CR30) 2008; 44 C Zener (4718_CR38) 1944; 15 K Wang (4718_CR89) 2010; 527 L Briottet (4718_CR72) 1996; 44 RG Guan (4718_CR93) 2012; 36 WA Bryant (4718_CR71) 1975; 10 YY Zong (4718_CR47) 2009; 209 J Porntadawit (4718_CR73) 2014; 599 SVSN Murty (4718_CR86) 2002; 10 |
References_xml | – reference: JunhuiCHeYZhichaoSFlow behavior and constitutive model using piecewise function of strain for TC11 alloyRare Met Mater Eng20124139740110.1016/S1875-5372(12)60035-6 – reference: VeigaCDavimJPLoureiroAJRReview on machinability of titanium alloys: the process perspectiveRev Adv Mater Sci201334148164 – reference: EstebanPGRuiz-NavasEMBolzoniLGordoELow-cost titanium alloys? Iron may hold the answersMet Powder Rep200863242710.1016/S0026-0657(09)70040-2 – reference: BriottetLJonasJJMontheilletFA mechanical interpretation of the activation energy of high temperature deformation in two phase materialsActa Mater1996441665167210.1016/1359-6454(95)00257-X – reference: samaterials (2014) Why titanium is so expensive. In: Stanf. Adv. Mater. https://samaterials.wordpress.com/2014/07/29/why-titanium-is-so-expensive/. Accessed 22 Oct 2016 – reference: WeissISemiatinSLThermomechanical processing of beta titanium alloys—an overviewMater Sci Eng A1998243466510.1016/S0921-5093(97)00783-1 – reference: BolzoniLHerraizERuiz-NavasEMGordoEStudy of the properties of low-cost powder metallurgy titanium alloys by 430 stainless steel additionMater Des20146062863610.1016/j.matdes.2014.04.019 – reference: BaiXFZhaoYQZengWDCharacterization of hot deformation behavior of a biomedical titanium alloy TLMMater Sci Eng A201459823624310.1016/j.msea.2014.01.005 – reference: PengXGuoHShiZConstitutive equations for high temperature flow stress of TC4-DT alloy incorporating strain, strain rate and temperatureMater Des20135019820610.1016/j.matdes.2013.03.009 – reference: WuCYangHFanXSunZDynamic globularization kinetics during hot working of TA15 titanium alloy with colony microstructureTrans Nonferrous Met Soc China2011211963196910.1016/S1003-6326(11)60957-6 – reference: SemiatinSLSeetharamanVGhoshAKPlastic flow, microstructure evolution, and defect formation during primary hot working of titanium and titanium aluminide alloys with lamellar colony microstructuresPhilos Trans R Soc Lond Math Phys Eng Sci19993571487151210.1098/rsta.1999.0386 – reference: WanjaraPJahaziMMonajatiHHot working behavior of near-α alloy IMI834Mater Sci Eng A2005396506010.1016/j.msea.2004.12.005 – reference: DuanYLiPXueKFlow behavior and microstructure evolution of TB8 alloy during hot deformation processTrans Nonferrous Met Soc China2007171199120410.1016/S1003-6326(07)60249-0 – reference: Prasad YVRK, Rao KP, Sasidhara S (2015) Hot working guide : a compendium of processing maps. ASM International – reference: FroesFHSGungorMNImamMACost-affordable titanium: the component fabrication perspectiveJOM200759283110.1007/s11837-007-0074-8 – reference: SemiatinSLSeetharamanVWeissIHot workability of titanium and titanium aluminide alloys—an overviewMater Sci Eng A199824312410.1016/S0921-5093(97)00776-4 – reference: ProzeskyDJBodunrinMOChownLHHot-deformation behaviour of α + β Ti-Al-V-Fe experimental alloysAIP Conf Proc2017189616001910.1063/1.5008194 – reference: BolzoniLRuiz-NavasEMGordoEUnderstanding the properties of low-cost iron-containing powder metallurgy titanium alloysMater Des201611031732310.1016/j.matdes.2016.08.010 – reference: PrasadYVRKGegelHLDoraiveluSMModeling of dynamic material behavior in hot deformation: Forging of Ti-6242Metall Trans A1984151883189210.1007/BF02664902 – reference: PorntadawitJUthaisangsukVChoungthongPModeling of flow behavior of Ti–6Al–4 V alloy at elevated temperaturesMater Sci Eng A201459921222210.1016/j.msea.2014.01.064 – reference: ChoubeyABalasubramaniamRBasuBEffect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti–6Al–4 V in simulated physiological environmentJ Alloys Compd200438128829410.1016/j.jallcom.2004.03.096 – reference: MurtySVSNRaoBNKashyapBPDevelopment and validation of a processing map for zirconium alloysModel Simul Mater Sci Eng20021050310.1088/0965-0393/10/5/303 – reference: ZhangL-CChenL-YA review on biomedical titanium alloys: recent progress and prospectAdv Eng Mater201921180121510.1002/adem.201801215 – reference: BensonLLMellorIJacksonMDirect reduction of synthetic rutile using the FFC process to produce low-cost novel titanium alloysJ Mater Sci2016514250426110.1007/s10853-015-9718-1 – reference: WangKZengWZhaoYLaiYZhouYHot working of Ti-17 titanium alloy with lamellar starting structure using 3-D processing mapsJ Mater Sci2010455883589110.1007/s10853-010-4667-1 – reference: Narayana MurtySVSNageswara RaoBKashyapBPInstability criteria for hot deformation of materialsInt Mater Rev200045152610.1179/095066000771048782 – reference: Fujii H, Fujisawa K, Ishil M, Yamashita Y (2002) Development of low-cost high-strength Ti-Fe-O-N alloy series. NIPPON STEEL – reference: ShiJSunWJiangJZhangYInfluence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solutionConstr Build Mater201611180581310.1016/j.conbuildmat.2016.02.107 – reference: SeshacharyuluTMedeirosSCFrazierWGPrasadYVRKMicrostructural mechanisms during hot working of commercial grade Ti–6Al–4 V with lamellar starting structureMater Sci Eng A200232511212510.1016/S0921-5093(01)01448-4 – reference: LeyensCPetersMTitanium and titanium alloys: fundamentals and application2003GermanyWILEY-VCH10.1002/3527602119 – reference: LütjeringGInfluence of processing on microstructure and mechanical properties of (α + β) titanium alloysMater Sci Eng A1998243324510.1016/S0921-5093(97)00778-8 – reference: PrasadYVRKSeshacharyuluTMedeirosSCFrazierWGEffect of preform microstructure on the hot working mechanisms in ELI grade Ti–6Al–4 V: transformed β v. equiaxed (α + β)Mater Sci Technol20001651151610.1179/026708300101508171 – reference: MirzadehHCabreraJMNajafizadehAConstitutive relationships for hot deformation of austeniteActa Mater2011596441644810.1016/j.actamat.2011.07.008 – reference: ShiHMcLarenAJSellarsCMConstitutive equations for high temperature flow stress of aluminium alloysMater Sci Technol19971321021610.1179/mst.1997.13.3.210 – reference: BryantWACorrelation of data on the hot deformation of Ti-6Al-4 VJ Mater Sci1975101793179710.1007/BF00554942 – reference: NkhomaRKCSiyasiyaCWStumpfWEHot workability of AISI 321 and AISI 304 austenitic stainless steelsJ Alloys Compd201459510311210.1016/j.jallcom.2014.01.157 – reference: MomeniAAbbasiSMEffect of hot working on flow behavior of Ti–6Al–4 V alloy in single phase and two phase regionsMater Des2010313599360410.1016/j.matdes.2010.01.060 – reference: ZongYYShanDBXuMLvYFlow softening and microstructural evolution of TC11 titanium alloy during hot deformationJ Mater Process Technol20092091988199410.1016/j.jmatprotec.2008.04.063 – reference: EstebanPGBolzoniLRuiz-NavasEMGordoEPM processing and characterisation of Ti–7Fe low cost titanium alloysPowder Metall20115424225210.1179/174329009X457063 – reference: Fujii H, Takahashi K, Yamashita Y (2003) Application of titanium and its alloys for automobile parts. Shinnittetsu Giho:62–67 – reference: BettlesCJTomusDGibsonMAThe role of microstructure in the mechanical behaviour of Ti–1.6 wt.%Fe alloys containing O and NMater Sci Eng A20115284899490910.1016/j.msea.2011.03.030 – reference: NiinomiMRecent research and development in titanium alloys for biomedical applications and healthcare goodsSci Technol Adv Mater2003444545410.1016/j.stam.2003.09.002 – reference: BodunrinMichael O.ChownLesley H.van der MerweJosais W.AlanemeKenneth K.Corrosion behaviour of low-cost Ti–4.5Al–xV–yFe alloys in sodium chloride and sulphuric acid solutionsCorrosion Engineering, Science and Technology201954863764810.1080/1478422X.2019.1654218 – reference: LiHZhaoZGuoHEffect of initial alpha lamellar thickness on deformation behavior of a near-α high-temperature alloy during thermomechanical processingMater Sci Eng A201768234535310.1016/j.msea.2016.11.063 – reference: GuanRGJeYTZhaoZYLeeCSEffect of microstructure on deformation behavior of Ti–6Al–4 V alloy during compressing processMater Des20123679680310.1016/j.matdes.2011.11.057 – reference: Bodunrin MO (2018) Hot deformation and corrosion behaviour of low-cost α + β titanium alloys with aluminium, vanadium and iron additions. Thesis – reference: LuoJLiMLiHYuWEffect of the strain on the deformation behavior of isothermally compressed Ti–6Al–4 V alloyMater Sci Eng A2009505889510.1016/j.msea.2008.11.001 – reference: DingRGuoZXWilsonAMicrostructural evolution of a Ti–6Al–4 V alloy during thermomechanical processingMater Sci Eng A200232723324510.1016/S0921-5093(01)01531-3 – reference: FanJKKouHCLaiMJCharacterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333Mater Des20134994595210.1016/j.matdes.2013.02.044 – reference: CabreraJMJonasJJPradoJMFlow behaviour of medium carbon microalloyed steel under hot working conditionsMater Sci Technol19961257958510.1179/mst.1996.12.7.579 – reference: GuoBSemiatinSLJonasJJDynamic transformation during the high temperature deformation of two-phase titanium alloysMater Sci Eng A201976113804710.1016/j.msea.2019.138047 – reference: BolzoniLEstebanPGRuiz-NavasEMGordoEMechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powdersJ Mech Behav Biomed Mater201215334510.1016/j.jmbbm.2012.05.019 – reference: Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press – reference: MaXZengWXuBCharacterization of the hot deformation behavior of a Ti–22Al–25Nb alloy using processing maps based on the Murty criterionIntermetallics2012201710.1016/j.intermet.2011.08.027 – reference: BodunrinMOChownLHvan der MerweJWAlanemeKKCorrosion behaviour of Ti-Al-xV-yFe experimental alloys in 3.5 wt% NaCl and 3.5 M H2SO4Mater Corros20186977078010.1002/maco.201709709 – reference: Fujii H, Takahashi K (2002) Development of high performance Ti-Fe-Al alloy series. NIPPON STEEL – reference: SeshacharyuluTMedeirosSCFrazierWGPrasadYVRKHot working of commercial Ti–6Al–4 V with an equiaxed α–β microstructure: materials modeling considerationsMater Sci Eng A200028418419410.1016/S0921-5093(00)00741-3 – reference: BalasundarIRaghuTKashyapBPProcessing map for a cast and homogenized near alpha titanium alloyInt J Mater Form20138859710.1007/s12289-013-1150-y – reference: McQueenHJRyanNDConstitutive analysis in hot workingMater Sci Eng A2002322436310.1016/S0921-5093(01)01117-0 – reference: SongHZhangSChengMDynamic globularization prediction during cogging process of large size TC11 titanium alloy billet with lamellar structureDef Technol201410404610.1016/j.dt.2014.01.003 – reference: GoetzRLSemiatinSLThe adiabatic correction factor for deformation heating during the uniaxial compression testJ Mater Eng Perform20011071071710.1361/105994901770344593 – reference: WangKZengWZhaoYDynamic globularization kinetics during hot working of Ti-17 alloy with initial lamellar microstructureMater Sci Eng A20105272559256610.1016/j.msea.2010.01.034 – reference: GuanRGJeYTZhaoZYLee CS (2012) Effect of microstructure on deformation behavior of Ti–6Al–4 V alloy during compressing processMater Des19803679680310.1016/j.matdes.2011.11.0572015 – reference: PrasadYVRKProcessing maps: A status reportJ Mater Eng Perform20031263864510.1361/105994903322692420 – reference: SeshacharyuluTMedeirosSCMorganJTHot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti–6Al–4 VMater Sci Eng A200027928929910.1016/S0921-5093(99)00173-2 – reference: BodunrinMOChownLHvan der MerweJWAlanemeKKHot working of Ti-6Al-4 V with a complex initial microstructureInt J Mater Form.20181285787410.1007/s12289-018-1457-9 – reference: WeissISemiatinS.LThermomechanical processing of alpha titanium alloys—an overviewMaterials Science and Engineering: A1999263224325610.1016/S0921-5093(98)01155-1 – reference: SemiatinSLSeetharamanVWeissIThe thermomechanical processing of alpha/beta titanium alloysJOM199749333910.1007/BF02914711 – reference: MirzadehHSimple physically-based constitutive equations for hot deformation of 2024 and 7075 aluminum alloysTrans Nonferrous Met Soc China2015251614161810.1016/S1003-6326(15)63765-7 – reference: SenITamirisakandalaSMiracleDBRamamurtyUMicrostructural effects on the mechanical behavior of B-modified Ti–6Al–4 V alloysActa Mater2007554983499310.1016/j.actamat.2007.05.009 – reference: BalasundarIRaghuTKashyapBPModeling the hot working behavior of near-α titanium alloy IMI 834Prog Nat Sci Mater Int20132359860710.1016/j.pnsc.2013.11.004 – reference: RoebuckBLordJDBrooksMMeasurement of flow stress in hot axisymmetric compression testsMater High Temp200623598310.1179/mht.2006.005 – reference: Donachie MJ (2000) Titanium: a technical guide, 2nd edn. ASM International – reference: XuXNashPMangabhaiDCharacterization and sintering of Armstrong process titanium powderJOM20176977077510.1007/s11837-016-2238-x – reference: ZenerCHollomonJHEffect of strain rate upon plastic flow of steelJ Appl Phys194415223210.1063/1.1707363 – reference: CalvertEPollardJJacksonMDetermining a Flow Stress Model for High Temperature Deformation of Ti-6Al-4 VMaterials Science Forum2015Switzerland, Port Elizabeth, South AfricaTrans Tech Publications441446 – reference: LinC-WJuC-PChern LinJ-HA comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4 V and Ti-13Nb-13Zr alloysBiomaterials2005262899290710.1016/j.biomaterials.2004.09.007 – reference: LinYCChenM-SZhongJConstitutive modeling for elevated temperature flow behavior of 42CrMo steelComput Mater Sci20084247047710.1016/j.commatsci.2007.08.011 – reference: CarmanAZhangLCIvasishinOMRole of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-β titanium alloyMater Sci Eng A20115281686169310.1016/j.msea.2010.11.004 – reference: FroesFH(S)FriedrichHKieseJBergointDTitanium in the family automobile: the cost challengeJOM200456404410.1007/s11837-004-0144-0 – reference: WestonNSJacksonMFAST-forge − a new cost-effective hybrid processing route for consolidating titanium powder into near net shape forged componentsJ Mater Process Technol201724333534610.1016/j.jmatprotec.2016.12.013 – reference: SellarsCMTegartWJOn the mechanism of hot deformationActa Metall1966141136113810.1016/0001-6160(66)90207-0 – reference: LiCZhangXLiZZhouK-CHot Deformation of Ti-5Al-5Mo-5 V-1Cr-1Fe Near β Titanium Alloys Containing Thin and Thick Lamellar α PhaseMater Sci Eng A2013573758310.1016/j.msea.2013.02.033 – reference: LiMPanHLinYLuoJHigh temperature deformation behavior of near alpha Ti–5.6Al–4.8Sn–2.0Zr alloyJ Mater Process Technol2007183717610.1016/j.jmatprotec.2006.10.002 – reference: LiuJZengWLaiYJiaZConstitutive model of Ti17 titanium alloy with lamellar-type initial microstructure during hot deformation based on orthogonal analysisMater Sci Eng A201459738739410.1016/j.msea.2013.12.076 – reference: SeetharamanVSemiatinSLPlastic-flow and microstructure evolution during hot deformation of a gamma titanium aluminide alloyMetall Mater Trans A1997282309232110.1007/s11661-997-0188-1 – reference: XiaYLongSZhouYIdentification for the optimal working parameters of Ti-6Al-4 V-0.1Ru alloy in a wide deformation condition range by processing maps based on DMMMater Res2016191449146010.1590/1980-5373-mr-2016-0448 – reference: AkbariZMirzadehHCabreraJ-MA simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformationMater Des20157712613110.1016/j.matdes.2015.04.005 – reference: Bloomberg One battery material sector is cheering for lower prices. In: Eng. News. https://www.engineeringnews.co.za/article/one-battery-material-sector-is-cheering-for-lower-prices-2019-09-19. Accessed 11 Nov 2019 – reference: NochovnayaNAIsaichevAVAntashevVGFoundations of the development of economically alloyed widely applicable titanium alloysMater Sci20084439639910.1007/s11003-008-9081-3 – reference: LinYCChenX-MA critical review of experimental results and constitutive descriptions for metals and alloys in hot workingMater Des2011321733175910.1016/j.matdes.2010.11.048 – reference: LütjeringGWilliamsJCEngineering materials: titanium, Second2007Berlin Heidelberg NewyorkSpringer – reference: Boyer RR (2010) Titanium and its alloys: metallurgy, heat treatment and alloy characteristics. In: Encyclopedia of Aerospace Engineering. American Cancer Society – reference: SouzaPMBeladiHRolfeBSoftening behavior of Ti6Al4V alloy during hot deformationMaterials Science Forum2015Port Elizabeth, South AfricaMaterials Science Forum407412 – volume: 15 start-page: 1883 year: 1984 ident: 4718_CR88 publication-title: Metall Trans A doi: 10.1007/BF02664902 – volume: 45 start-page: 15 year: 2000 ident: 4718_CR45 publication-title: Int Mater Rev doi: 10.1179/095066000771048782 – volume: 263 start-page: 243 issue: 2 year: 1999 ident: 4718_CR91 publication-title: Materials Science and Engineering: A doi: 10.1016/S0921-5093(98)01155-1 – volume: 10 start-page: 503 year: 2002 ident: 4718_CR86 publication-title: Model Simul Mater Sci Eng doi: 10.1088/0965-0393/10/5/303 – volume: 77 start-page: 126 year: 2015 ident: 4718_CR62 publication-title: Mater Des doi: 10.1016/j.matdes.2015.04.005 – volume: 396 start-page: 50 year: 2005 ident: 4718_CR82 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2004.12.005 – volume: 12 start-page: 638 year: 2003 ident: 4718_CR87 publication-title: J Mater Eng Perform doi: 10.1361/105994903322692420 – volume: 505 start-page: 88 year: 2009 ident: 4718_CR76 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2008.11.001 – ident: 4718_CR22 – volume: 60 start-page: 628 year: 2014 ident: 4718_CR13 publication-title: Mater Des doi: 10.1016/j.matdes.2014.04.019 – volume: 44 start-page: 396 year: 2008 ident: 4718_CR30 publication-title: Mater Sci doi: 10.1007/s11003-008-9081-3 – volume: 49 start-page: 33 year: 1997 ident: 4718_CR92 publication-title: JOM doi: 10.1007/BF02914711 – volume: 55 start-page: 4983 year: 2007 ident: 4718_CR32 publication-title: Acta Mater doi: 10.1016/j.actamat.2007.05.009 – volume: 1896 start-page: 160019 year: 2017 ident: 4718_CR3 publication-title: AIP Conf Proc doi: 10.1063/1.5008194 – volume: 26 start-page: 2899 year: 2005 ident: 4718_CR27 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.09.007 – volume: 25 start-page: 1614 year: 2015 ident: 4718_CR65 publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(15)63765-7 – volume: 41 start-page: 397 year: 2012 ident: 4718_CR75 publication-title: Rare Met Mater Eng doi: 10.1016/S1875-5372(12)60035-6 – ident: 4718_CR8 – volume: 598 start-page: 236 year: 2014 ident: 4718_CR55 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2014.01.005 – volume: 528 start-page: 4899 year: 2011 ident: 4718_CR29 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.03.030 – volume: 573 start-page: 75 year: 2013 ident: 4718_CR54 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2013.02.033 – ident: 4718_CR67 – volume: 183 start-page: 71 year: 2007 ident: 4718_CR83 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2006.10.002 – volume: 20 start-page: 1 year: 2012 ident: 4718_CR46 publication-title: Intermetallics doi: 10.1016/j.intermet.2011.08.027 – volume: 599 start-page: 212 year: 2014 ident: 4718_CR73 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2014.01.064 – volume: 528 start-page: 1686 year: 2011 ident: 4718_CR17 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2010.11.004 – ident: 4718_CR57 – volume: 284 start-page: 184 year: 2000 ident: 4718_CR10 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(00)00741-3 – volume: 357 start-page: 1487 year: 1999 ident: 4718_CR70 publication-title: Philos Trans R Soc Lond Math Phys Eng Sci doi: 10.1098/rsta.1999.0386 – volume: 36 start-page: 796 year: 2012 ident: 4718_CR93 publication-title: Mater Des doi: 10.1016/j.matdes.2011.11.057 – volume: 110 start-page: 317 year: 2016 ident: 4718_CR34 publication-title: Mater Des doi: 10.1016/j.matdes.2016.08.010 – volume: 8 start-page: 85 year: 2013 ident: 4718_CR31 publication-title: Int J Mater Form doi: 10.1007/s12289-013-1150-y – volume: 10 start-page: 1793 year: 1975 ident: 4718_CR71 publication-title: J Mater Sci doi: 10.1007/BF00554942 – volume: 51 start-page: 4250 year: 2016 ident: 4718_CR14 publication-title: J Mater Sci doi: 10.1007/s10853-015-9718-1 – volume: 10 start-page: 40 year: 2014 ident: 4718_CR50 publication-title: Def Technol doi: 10.1016/j.dt.2014.01.003 – volume: 44 start-page: 1665 year: 1996 ident: 4718_CR72 publication-title: Acta Mater doi: 10.1016/1359-6454(95)00257-X – volume: 209 start-page: 1988 year: 2009 ident: 4718_CR47 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.04.063 – volume: 34 start-page: 148 year: 2013 ident: 4718_CR11 publication-title: Rev Adv Mater Sci – volume: 59 start-page: 28 year: 2007 ident: 4718_CR21 publication-title: JOM doi: 10.1007/s11837-007-0074-8 – volume: 327 start-page: 233 year: 2002 ident: 4718_CR84 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(01)01531-3 – volume: 13 start-page: 210 year: 1997 ident: 4718_CR68 publication-title: Mater Sci Technol doi: 10.1179/mst.1997.13.3.210 – volume: 69 start-page: 770 year: 2017 ident: 4718_CR15 publication-title: JOM doi: 10.1007/s11837-016-2238-x – volume: 279 start-page: 289 year: 2000 ident: 4718_CR51 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(99)00173-2 – volume: 243 start-page: 335 year: 2017 ident: 4718_CR16 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2016.12.013 – volume: 32 start-page: 1733 year: 2011 ident: 4718_CR41 publication-title: Mater Des doi: 10.1016/j.matdes.2010.11.048 – volume: 682 start-page: 345 year: 2017 ident: 4718_CR90 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2016.11.063 – volume: 243 start-page: 32 year: 1998 ident: 4718_CR19 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(97)00778-8 – volume: 45 start-page: 5883 year: 2010 ident: 4718_CR58 publication-title: J Mater Sci doi: 10.1007/s10853-010-4667-1 – volume: 243 start-page: 1 year: 1998 ident: 4718_CR63 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(97)00776-4 – volume: 59 start-page: 6441 year: 2011 ident: 4718_CR66 publication-title: Acta Mater doi: 10.1016/j.actamat.2011.07.008 – ident: 4718_CR23 doi: 10.1002/9780470686652.eae198 – volume: 28 start-page: 2309 year: 1997 ident: 4718_CR69 publication-title: Metall Mater Trans A doi: 10.1007/s11661-997-0188-1 – volume: 15 start-page: 33 year: 2012 ident: 4718_CR26 publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2012.05.019 – volume: 21 start-page: 1801215 year: 2019 ident: 4718_CR28 publication-title: Adv Eng Mater doi: 10.1002/adem.201801215 – ident: 4718_CR24 – volume: 381 start-page: 288 year: 2004 ident: 4718_CR33 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2004.03.096 – volume: 54 start-page: 242 year: 2011 ident: 4718_CR12 publication-title: Powder Metall doi: 10.1179/174329009X457063 – volume: 597 start-page: 387 year: 2014 ident: 4718_CR48 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2013.12.076 – start-page: 407 volume-title: Materials Science Forum year: 2015 ident: 4718_CR80 – ident: 4718_CR6 – volume: 31 start-page: 3599 year: 2010 ident: 4718_CR78 publication-title: Mater Des doi: 10.1016/j.matdes.2010.01.060 – volume: 69 start-page: 770 year: 2018 ident: 4718_CR35 publication-title: Mater Corros doi: 10.1002/maco.201709709 – volume: 322 start-page: 43 year: 2002 ident: 4718_CR39 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(01)01117-0 – volume: 50 start-page: 198 year: 2013 ident: 4718_CR79 publication-title: Mater Des doi: 10.1016/j.matdes.2013.03.009 – volume: 17 start-page: 1199 year: 2007 ident: 4718_CR20 publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(07)60249-0 – volume: 595 start-page: 103 year: 2014 ident: 4718_CR40 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2014.01.157 – volume-title: Titanium and titanium alloys: fundamentals and application year: 2003 ident: 4718_CR2 doi: 10.1002/3527602119 – volume: 56 start-page: 40 year: 2004 ident: 4718_CR5 publication-title: JOM doi: 10.1007/s11837-004-0144-0 – ident: 4718_CR44 – volume: 10 start-page: 710 year: 2001 ident: 4718_CR59 publication-title: J Mater Eng Perform doi: 10.1361/105994901770344593 – volume: 49 start-page: 945 year: 2013 ident: 4718_CR94 publication-title: Mater Des doi: 10.1016/j.matdes.2013.02.044 – volume: 36 start-page: 796 year: 1980 ident: 4718_CR77 publication-title: Mater Des doi: 10.1016/j.matdes.2011.11.057 – volume: 63 start-page: 24 year: 2008 ident: 4718_CR4 publication-title: Met Powder Rep doi: 10.1016/S0026-0657(09)70040-2 – volume: 15 start-page: 22 year: 1944 ident: 4718_CR38 publication-title: J Appl Phys doi: 10.1063/1.1707363 – volume: 54 start-page: 637 issue: 8 year: 2019 ident: 4718_CR25 publication-title: Corrosion Engineering, Science and Technology doi: 10.1080/1478422X.2019.1654218 – volume: 16 start-page: 511 year: 2000 ident: 4718_CR43 publication-title: Mater Sci Technol doi: 10.1179/026708300101508171 – start-page: 441 volume-title: Materials Science Forum year: 2015 ident: 4718_CR60 – volume-title: Engineering materials: titanium, Second year: 2007 ident: 4718_CR18 – volume: 23 start-page: 59 year: 2006 ident: 4718_CR36 publication-title: Mater High Temp doi: 10.1179/mht.2006.005 – volume: 21 start-page: 1963 year: 2011 ident: 4718_CR53 publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(11)60957-6 – volume: 325 start-page: 112 year: 2002 ident: 4718_CR49 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(01)01448-4 – volume: 19 start-page: 1449 year: 2016 ident: 4718_CR74 publication-title: Mater Res doi: 10.1590/1980-5373-mr-2016-0448 – volume: 111 start-page: 805 year: 2016 ident: 4718_CR42 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.02.107 – volume: 527 start-page: 2559 year: 2010 ident: 4718_CR89 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2010.01.034 – ident: 4718_CR1 doi: 10.31399/asm.tb.ttg2.9781627082693 – volume: 23 start-page: 598 year: 2013 ident: 4718_CR81 publication-title: Prog Nat Sci Mater Int doi: 10.1016/j.pnsc.2013.11.004 – volume: 4 start-page: 445 year: 2003 ident: 4718_CR7 publication-title: Sci Technol Adv Mater doi: 10.1016/j.stam.2003.09.002 – ident: 4718_CR9 – volume: 42 start-page: 470 year: 2008 ident: 4718_CR61 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2007.08.011 – volume: 12 start-page: 579 year: 1996 ident: 4718_CR64 publication-title: Mater Sci Technol doi: 10.1179/mst.1996.12.7.579 – volume: 14 start-page: 1136 year: 1966 ident: 4718_CR37 publication-title: Acta Metall doi: 10.1016/0001-6160(66)90207-0 – volume: 761 start-page: 138047 year: 2019 ident: 4718_CR85 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2019.138047 – volume: 243 start-page: 46 year: 1998 ident: 4718_CR56 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(97)00783-1 – volume: 12 start-page: 857 year: 2018 ident: 4718_CR52 publication-title: Int J Mater Form. doi: 10.1007/s12289-018-1457-9 |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.3219037 |
Snippet | Isothermal compression testing was carried out on newly developed low-cost (α + β) Ti-4.5Al-1 V-3Fe alloy with lamellar initial microstructure using a Gleeble... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1901 |
SubjectTerms | Alloys CAE) and Design Cavitation Compression tests Computer-Aided Engineering (CAD Cracks Engineering Hot working Industrial and Production Engineering Lamellar structure Low temperature Mechanical Engineering Media Management Microstructure Original Article Process mapping Softening Strain analysis Strain rate Stress-strain relationships Thermal simulators Titanium base alloys |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSyQxEA6uXnYP4mvZ8UUO3jTaSSfp5CQqDoOgiKh4a6rTCQg6o-OI-O-tdKdnXEGv_cih8qVSz68I2ZFgNfdZYJ4HxWQoArOeO4b-LWQGBMgq9g6fX-jBjTy7U3cp4PaSyio7ndgo6nrkYoz8QKClgNehVfbw6ZnFqVExu5pGaPwiC6iCDTpfC8enF5dXHaK4LeJUzCnihI2j6GeIzqXK2zxXyjto3jTPoWNi4tEzqc2mabZrqGbQ9Y7JBNTorPj_KpvZp19Sqs1N1V8ii8nEpEctJpbJnB-ukD-fiAdXCQxGE_rWxslp6tR_HdNRoJ8Z_-n1PZP76uiBcXrL8r6nMUv_TmPslt7HqiP8BhEVC6jG9DGW9rV0tK9jv0Zu-qfXJwOWhi0wh6dwwnyVaShCIWpjrMl8rQP6XtrnqgogAmoGB9qAB14bfOLqykkj6qy23nvtivwvmR-Ohv4foRkoAQHyTFReag0AhkvQUNVGOaugR3gnt9IlJvI4EOOhnHIoN7IuUdZlI-uy6JHd6T9PLQ_Hj19vdttRpjP5Us4Q1CN73RbNXn-_2vrPq22Q3yI64U1cZpPMo6D9Floqk2o7wfEDQATgGw priority: 102 providerName: ProQuest |
Title | Hot working behaviour of experimental Ti-4.5Al-1 V-3Fe alloy with initial lamellar microstructure |
URI | https://link.springer.com/article/10.1007/s00170-019-04718-7 https://www.proquest.com/docview/2352071959 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH_047IdxtZtLFsXdOit07BkSZaOyYgbNhrKaEZ3Ms-2BIU2GWnK6H_fJ38kbdkGOxls2Yann6T3-XsARwqdET4J3IuguQpZ4M6LipN9i4lFiaqMtcOnMzOdq68X-qIrCrvps937kGSzU2-K3RqqFzJ9ozOfdlSe7cK-jrY7oXguRz2KhMtiJ8wNyqSL7ee3KE6VTtvYVhdrMKIpmCNjxMblZrvSmj__8_HxtdVJn4RRm9MpfwkvOrWSjVocvIIdvziA5w_IBl8DTpdr9rv1jbOuOv92xZaBPWT5Z-eXXH3Woysu2A-e5p7FyPwdi_5adhkzjWgMoSgmTa3YdUznaylob1f-DczzyfmXKe8aLPCKVt6a-zIxmIVM1tY6m_jaBLK3jE91GVAG2g0qNBY9itrSnaouK2VlndTOe2-qLH0Le4vlwr8DlqCWGDBNZOmVMYhohUKDZW115TQOQPRyK6qOfTw2wbgqNrzJjawLknXRyLrIBnC8eedXy73xz9GH_XQU3Tq8KSTpl6REOe0G8Kmfou3jv3_t_f8N_wDPZDTEG9_MIeyR4P1H0lbW5RB2bX4yhP1RPh7P4vXk57cJXceT2dn3YQPde8QG4S4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeKp5i2wI-wAkMsWM79gGhCli29HHaot7CJLGlSmW33W5V9U_1NzJ2kt2CRG-95uHDzDee9wzAG4XOCJ8F7kXQXIUicOdFzcm_xcyiRFXF3uH9AzM6VD-O9NEKXPe9MLGssr8T00XdTOsYI_8oyVIgdei0-3x6xuPWqJhd7VdotLDY9VeX5LKdf9r5Svx9K-Xw2_jLiHdbBXhNcJtzX2UGi1DIxlpnM9-YQE6G8bmuAspAIlCjsehRNJae1E1VKyubrHHee1MXOZ17D-6rPHdRouzwe49f4Yq4g3OBb-ni4vul_ORK521WrctyGJFa9cgNslHQbdfUk1r70mAbcvRj6oL0By_-VpxLa_ifBG7Si8NHsN4ZtGy7ReBjWPGTJ7B2Y8zhU8DRdM4u26g86-YCXMzYNLCb-wXY-JirD3r7hAv2k-dDz2JNwBWLkWJ2HGuc6BvCbyzXmrHfsZCwHX57MfPP4PBOmPAcVifTiX8BLEMtMWCeycorYxDRCoUGq8bq2mkcgOjpVtbd3PO4fuOkXExsTrQuidZlonVZDODd4p_TdurHrV9v9ewouxvgvFzidQDvexYtX___tI3bT3sND0bj_b1yb-dgdxMeyuj-p4jQFqwS0f1LspHm1asETAa_7loS_gBEzh52 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfRBvOJ0ah5807gmTdLkcahjXvHByd7KaZvAYG4yJ-K_N-llm6KCr23SwsmX5Fy_g9AxBy2pCSwx1ArCbWSJNjQlzr6FQAEDnvja4bt72eny657ozVXx59nuVUiyqGnwLE3DSfMls81p4VtO--LMYO_Yd6criRbRkjuOqcd1l7UqRFEd-a6YU8Qx7VvRzxAdchEWca4y7iBpXjznDBPlt54qy2x-_ufXq2ymn34LqeY3VXsdrZUqJm4VmNhAC2a4iVbniAe3EHRGE_xe-MlxWan_NsYji-cZ__Fjn_Az0RoQip9I2DbYR-k_sPfd4r7POnJjHKJ8AtUYP_vUvoKO9m1stlG3ffl43iFlswWSOrFNiEkCCZGNWKaUVoHJpHW2lzShSCww606GFKQCAzRT7kmaJSlXLAsybYyRaRTuoNpwNDS7CAcgGFgIA5YYLiUAKMpBQpIpkWoBdUQrucVpyUTuG2IM4imHci7r2Mk6zmUdR3V0Mp3zUvBw_Dm6US1HXO7J15g5XdMpVFroOjqtlmj2-vev7f1v-BFafrhox7dX9zf7aIV5-zx32TRQza2BOXBKzCQ5zHH6CXWF4s0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hot+working+behaviour+of+experimental+Ti-4.5Al-1+V-3Fe+alloy+with+initial+lamellar+microstructure&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Bodunrin%2C+Michael+O.&rft.au=Chown%2C+Lesley+H.&rft.au=van+der+Merwe%2C+Josias+W.&rft.au=Alaneme%2C+Kenneth+K.&rft.date=2020-01-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=106&rft.issue=5-6&rft.spage=1901&rft.epage=1916&rft_id=info:doi/10.1007%2Fs00170-019-04718-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_019_04718_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |