Hot working behaviour of experimental Ti-4.5Al-1 V-3Fe alloy with initial lamellar microstructure

Isothermal compression testing was carried out on newly developed low-cost (α + β) Ti-4.5Al-1 V-3Fe alloy with lamellar initial microstructure using a Gleeble 3500 thermomechanical simulator. The tests were performed under different conditions of strain rate (0.001, 0.01, 0.1, 1 and 10 s −1 ), defor...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 106; no. 5-6; pp. 1901 - 1916
Main Authors Bodunrin, Michael O., Chown, Lesley H., van der Merwe, Josias W., Alaneme, Kenneth K.
Format Journal Article
LanguageEnglish
Published London Springer London 01.01.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Isothermal compression testing was carried out on newly developed low-cost (α + β) Ti-4.5Al-1 V-3Fe alloy with lamellar initial microstructure using a Gleeble 3500 thermomechanical simulator. The tests were performed under different conditions of strain rate (0.001, 0.01, 0.1, 1 and 10 s −1 ), deformation temperature (750, 800, 850, 900 and 950 °C) and a constant total strain of 0.6. Stress-strain analysis, constitutive constant calculations, processing maps and microstructural validation were used to understand the hot working behaviour of the alloys and the underlying softening mechanisms. The results show that the deformation behaviour was significantly influenced by the deformation parameters. Two main softening mechanisms, which have been reported in existing commercial alloys with a fully lamellar structure, also controlled the deformation behaviour of the Ti-4.5Al-1 V-3Fe alloy. Lath bending and rotation caused flow softening at low temperatures and high strain rates, while dynamic globularisation led to flow softening at the higher temperatures and low strain rates. The optimum condition for hot working of the alloy in the safe deformation region was found at ~890–905 °C and 0.003–0.01 s −1 . The region of instability identified at ~875–930 °C/0.15–0.4 s −1 should be avoided during hot working to prevent flow localisation, shear cracks, cavitation and other instabilities that may arise.
AbstractList Isothermal compression testing was carried out on newly developed low-cost (α + β) Ti-4.5Al-1 V-3Fe alloy with lamellar initial microstructure using a Gleeble 3500 thermomechanical simulator. The tests were performed under different conditions of strain rate (0.001, 0.01, 0.1, 1 and 10 s −1 ), deformation temperature (750, 800, 850, 900 and 950 °C) and a constant total strain of 0.6. Stress-strain analysis, constitutive constant calculations, processing maps and microstructural validation were used to understand the hot working behaviour of the alloys and the underlying softening mechanisms. The results show that the deformation behaviour was significantly influenced by the deformation parameters. Two main softening mechanisms, which have been reported in existing commercial alloys with a fully lamellar structure, also controlled the deformation behaviour of the Ti-4.5Al-1 V-3Fe alloy. Lath bending and rotation caused flow softening at low temperatures and high strain rates, while dynamic globularisation led to flow softening at the higher temperatures and low strain rates. The optimum condition for hot working of the alloy in the safe deformation region was found at ~890–905 °C and 0.003–0.01 s −1 . The region of instability identified at ~875–930 °C/0.15–0.4 s −1 should be avoided during hot working to prevent flow localisation, shear cracks, cavitation and other instabilities that may arise.
Isothermal compression testing was carried out on newly developed low-cost (α + β) Ti-4.5Al-1 V-3Fe alloy with lamellar initial microstructure using a Gleeble 3500 thermomechanical simulator. The tests were performed under different conditions of strain rate (0.001, 0.01, 0.1, 1 and 10 s −1), deformation temperature (750, 800, 850, 900 and 950 °C) and a constant total strain of 0.6. Stress-strain analysis, constitutive constant calculations, processing maps and microstructural validation were used to understand the hot working behaviour of the alloys and the underlying softening mechanisms. The results show that the deformation behaviour was significantly influenced by the deformation parameters. Two main softening mechanisms, which have been reported in existing commercial alloys with a fully lamellar structure, also controlled the deformation behaviour of the Ti-4.5Al-1 V-3Fe alloy. Lath bending and rotation caused flow softening at low temperatures and high strain rates, while dynamic globularisation led to flow softening at the higher temperatures and low strain rates. The optimum condition for hot working of the alloy in the safe deformation region was found at ~890–905 °C and 0.003–0.01 s −1. The region of instability identified at ~875–930 °C/0.15–0.4 s −1 should be avoided during hot working to prevent flow localisation, shear cracks, cavitation and other instabilities that may arise.
Author Chown, Lesley H.
Bodunrin, Michael O.
Alaneme, Kenneth K.
van der Merwe, Josias W.
Author_xml – sequence: 1
  givenname: Michael O.
  surname: Bodunrin
  fullname: Bodunrin, Michael O.
  email: mic.tosin@live.com, michael.bodunrin@wits.ac.za
  organization: School of Chemical and Metallurgical Engineering, DST-NRF Centre of Excellence in Strong Materials and African Materials Science and Engineering Network (AMSEN), University of the Witwatersrand, Materials Design and Structural Integrity Research Group, Department of Metallurgical and Materials Engineering, Federal University of Technology Akure, African Academy of Sciences
– sequence: 2
  givenname: Lesley H.
  surname: Chown
  fullname: Chown, Lesley H.
  organization: School of Chemical and Metallurgical Engineering, DST-NRF Centre of Excellence in Strong Materials and African Materials Science and Engineering Network (AMSEN), University of the Witwatersrand
– sequence: 3
  givenname: Josias W.
  surname: van der Merwe
  fullname: van der Merwe, Josias W.
  organization: School of Chemical and Metallurgical Engineering, DST-NRF Centre of Excellence in Strong Materials and African Materials Science and Engineering Network (AMSEN), University of the Witwatersrand
– sequence: 4
  givenname: Kenneth K.
  surname: Alaneme
  fullname: Alaneme, Kenneth K.
  organization: Materials Design and Structural Integrity Research Group, Department of Metallurgical and Materials Engineering, Federal University of Technology Akure
BookMark eNp9UE9LwzAUDzLBOf0CngKeoy9Nm6RHEaeC4EW9hqx91cysmWnm3Lc3c4LgYacHj9__YzLqQ4-EnHG44ADqcgDgChjwmkGpuGbqgIx5KQQTwKsRGUMhNRNK6iNyPAzzDJdc6jGxdyHRdYjvrn-lM3yzny6sIg0dxa8lRrfAPllPnxwrL6orzzh9YWKK1HofNnTt0ht1vUsuY7xdoPc20oVrYhhSXDVpFfGEHHbWD3j6eyfkeXrzdH3HHh5v76-vHlgjeJ0YzkBa1ami1brWgK3seAkSRTXrbNGBgsZKbdHyVudP086aUhcttDUiykaJCTnf6S5j-FjhkMw8N-mzpSlEVYDidVVnVLFDbSMOETuzzCVt3BgOZjul2U1p8pTmZ0qzldb_SI1LNrnQp2id308VO-qQffpXjH-p9rC-AR-ti2s
CitedBy_id crossref_primary_10_1016_j_mtcomm_2021_102296
crossref_primary_10_3390_app13074449
crossref_primary_10_1007_s00170_023_11265_9
crossref_primary_10_3390_app13042310
crossref_primary_10_3390_app13042686
crossref_primary_10_1016_j_jallcom_2023_169556
crossref_primary_10_3390_met11010160
crossref_primary_10_1002_maco_202213076
crossref_primary_10_1016_j_msea_2020_139622
crossref_primary_10_1016_j_msea_2024_147400
Cites_doi 10.1007/BF02664902
10.1179/095066000771048782
10.1016/S0921-5093(98)01155-1
10.1088/0965-0393/10/5/303
10.1016/j.matdes.2015.04.005
10.1016/j.msea.2004.12.005
10.1361/105994903322692420
10.1016/j.msea.2008.11.001
10.1016/j.matdes.2014.04.019
10.1007/s11003-008-9081-3
10.1007/BF02914711
10.1016/j.actamat.2007.05.009
10.1063/1.5008194
10.1016/j.biomaterials.2004.09.007
10.1016/S1003-6326(15)63765-7
10.1016/S1875-5372(12)60035-6
10.1016/j.msea.2014.01.005
10.1016/j.msea.2011.03.030
10.1016/j.msea.2013.02.033
10.1016/j.jmatprotec.2006.10.002
10.1016/j.intermet.2011.08.027
10.1016/j.msea.2014.01.064
10.1016/j.msea.2010.11.004
10.1016/S0921-5093(00)00741-3
10.1098/rsta.1999.0386
10.1016/j.matdes.2011.11.057
10.1016/j.matdes.2016.08.010
10.1007/s12289-013-1150-y
10.1007/BF00554942
10.1007/s10853-015-9718-1
10.1016/j.dt.2014.01.003
10.1016/1359-6454(95)00257-X
10.1016/j.jmatprotec.2008.04.063
10.1007/s11837-007-0074-8
10.1016/S0921-5093(01)01531-3
10.1179/mst.1997.13.3.210
10.1007/s11837-016-2238-x
10.1016/S0921-5093(99)00173-2
10.1016/j.jmatprotec.2016.12.013
10.1016/j.matdes.2010.11.048
10.1016/j.msea.2016.11.063
10.1016/S0921-5093(97)00778-8
10.1007/s10853-010-4667-1
10.1016/S0921-5093(97)00776-4
10.1016/j.actamat.2011.07.008
10.1002/9780470686652.eae198
10.1007/s11661-997-0188-1
10.1016/j.jmbbm.2012.05.019
10.1002/adem.201801215
10.1016/j.jallcom.2004.03.096
10.1179/174329009X457063
10.1016/j.msea.2013.12.076
10.1016/j.matdes.2010.01.060
10.1002/maco.201709709
10.1016/S0921-5093(01)01117-0
10.1016/j.matdes.2013.03.009
10.1016/S1003-6326(07)60249-0
10.1016/j.jallcom.2014.01.157
10.1002/3527602119
10.1007/s11837-004-0144-0
10.1361/105994901770344593
10.1016/j.matdes.2013.02.044
10.1016/S0026-0657(09)70040-2
10.1063/1.1707363
10.1080/1478422X.2019.1654218
10.1179/026708300101508171
10.1179/mht.2006.005
10.1016/S1003-6326(11)60957-6
10.1016/S0921-5093(01)01448-4
10.1590/1980-5373-mr-2016-0448
10.1016/j.conbuildmat.2016.02.107
10.1016/j.msea.2010.01.034
10.31399/asm.tb.ttg2.9781627082693
10.1016/j.pnsc.2013.11.004
10.1016/j.stam.2003.09.002
10.1016/j.commatsci.2007.08.011
10.1179/mst.1996.12.7.579
10.1016/0001-6160(66)90207-0
10.1016/j.msea.2019.138047
10.1016/S0921-5093(97)00783-1
10.1007/s12289-018-1457-9
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-019-04718-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 1916
ExternalDocumentID 10_1007_s00170_019_04718_7
GrantInformation_xml – fundername: DST-NRF Centre Of Excellence in Strong Materials, University of the Witwatersrand, South Africa
  grantid: N/A
– fundername: African Materials Science and Engineering Network (A Carnegie-IAS RISE network), University of the Witwatersrand, South Africa
  grantid: N/A
– fundername: African Academy of Sciences, Nairobi, Kenya
  grantid: ARPDF-18-03
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-eb06a7f72d88980ed6f1406e35bfa2f070ca68aea1d8bfacdbc482d0d9eee6c73
IEDL.DBID U2A
ISSN 0268-3768
IngestDate Fri Jul 25 11:01:05 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Tue Jul 01 00:40:22 EDT 2025
Fri Feb 21 02:33:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Low-cost (α + β) titanium
Dynamic globularisation
Microstructural evolution
Processing maps
Constitutive analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-eb06a7f72d88980ed6f1406e35bfa2f070ca68aea1d8bfacdbc482d0d9eee6c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2352071959
PQPubID 2044010
PageCount 16
ParticipantIDs proquest_journals_2352071959
crossref_primary_10_1007_s00170_019_04718_7
crossref_citationtrail_10_1007_s00170_019_04718_7
springer_journals_10_1007_s00170_019_04718_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200100
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References LinC-WJuC-PChern LinJ-HA comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4 V and Ti-13Nb-13Zr alloysBiomaterials2005262899290710.1016/j.biomaterials.2004.09.007
PorntadawitJUthaisangsukVChoungthongPModeling of flow behavior of Ti–6Al–4 V alloy at elevated temperaturesMater Sci Eng A201459921222210.1016/j.msea.2014.01.064
Bloomberg One battery material sector is cheering for lower prices. In: Eng. News. https://www.engineeringnews.co.za/article/one-battery-material-sector-is-cheering-for-lower-prices-2019-09-19. Accessed 11 Nov 2019
NochovnayaNAIsaichevAVAntashevVGFoundations of the development of economically alloyed widely applicable titanium alloysMater Sci20084439639910.1007/s11003-008-9081-3
WuCYangHFanXSunZDynamic globularization kinetics during hot working of TA15 titanium alloy with colony microstructureTrans Nonferrous Met Soc China2011211963196910.1016/S1003-6326(11)60957-6
RoebuckBLordJDBrooksMMeasurement of flow stress in hot axisymmetric compression testsMater High Temp200623598310.1179/mht.2006.005
SeshacharyuluTMedeirosSCFrazierWGPrasadYVRKMicrostructural mechanisms during hot working of commercial grade Ti–6Al–4 V with lamellar starting structureMater Sci Eng A200232511212510.1016/S0921-5093(01)01448-4
WeissISemiatinS.LThermomechanical processing of alpha titanium alloys—an overviewMaterials Science and Engineering: A1999263224325610.1016/S0921-5093(98)01155-1
PrasadYVRKGegelHLDoraiveluSMModeling of dynamic material behavior in hot deformation: Forging of Ti-6242Metall Trans A1984151883189210.1007/BF02664902
LiHZhaoZGuoHEffect of initial alpha lamellar thickness on deformation behavior of a near-α high-temperature alloy during thermomechanical processingMater Sci Eng A201768234535310.1016/j.msea.2016.11.063
BettlesCJTomusDGibsonMAThe role of microstructure in the mechanical behaviour of Ti–1.6 wt.%Fe alloys containing O and NMater Sci Eng A20115284899490910.1016/j.msea.2011.03.030
BodunrinMOChownLHvan der MerweJWAlanemeKKCorrosion behaviour of Ti-Al-xV-yFe experimental alloys in 3.5 wt% NaCl and 3.5 M H2SO4Mater Corros20186977078010.1002/maco.201709709
BaiXFZhaoYQZengWDCharacterization of hot deformation behavior of a biomedical titanium alloy TLMMater Sci Eng A201459823624310.1016/j.msea.2014.01.005
XiaYLongSZhouYIdentification for the optimal working parameters of Ti-6Al-4 V-0.1Ru alloy in a wide deformation condition range by processing maps based on DMMMater Res2016191449146010.1590/1980-5373-mr-2016-0448
Fujii H, Fujisawa K, Ishil M, Yamashita Y (2002) Development of low-cost high-strength Ti-Fe-O-N alloy series. NIPPON STEEL
BolzoniLHerraizERuiz-NavasEMGordoEStudy of the properties of low-cost powder metallurgy titanium alloys by 430 stainless steel additionMater Des20146062863610.1016/j.matdes.2014.04.019
SeshacharyuluTMedeirosSCFrazierWGPrasadYVRKHot working of commercial Ti–6Al–4 V with an equiaxed α–β microstructure: materials modeling considerationsMater Sci Eng A200028418419410.1016/S0921-5093(00)00741-3
Narayana MurtySVSNageswara RaoBKashyapBPInstability criteria for hot deformation of materialsInt Mater Rev200045152610.1179/095066000771048782
EstebanPGRuiz-NavasEMBolzoniLGordoELow-cost titanium alloys? Iron may hold the answersMet Powder Rep200863242710.1016/S0026-0657(09)70040-2
SongHZhangSChengMDynamic globularization prediction during cogging process of large size TC11 titanium alloy billet with lamellar structureDef Technol201410404610.1016/j.dt.2014.01.003
PengXGuoHShiZConstitutive equations for high temperature flow stress of TC4-DT alloy incorporating strain, strain rate and temperatureMater Des20135019820610.1016/j.matdes.2013.03.009
CabreraJMJonasJJPradoJMFlow behaviour of medium carbon microalloyed steel under hot working conditionsMater Sci Technol19961257958510.1179/mst.1996.12.7.579
LinYCChenX-MA critical review of experimental results and constitutive descriptions for metals and alloys in hot workingMater Des2011321733175910.1016/j.matdes.2010.11.048
ZongYYShanDBXuMLvYFlow softening and microstructural evolution of TC11 titanium alloy during hot deformationJ Mater Process Technol20092091988199410.1016/j.jmatprotec.2008.04.063
McQueenHJRyanNDConstitutive analysis in hot workingMater Sci Eng A2002322436310.1016/S0921-5093(01)01117-0
WeissISemiatinSLThermomechanical processing of beta titanium alloys—an overviewMater Sci Eng A1998243466510.1016/S0921-5093(97)00783-1
LiMPanHLinYLuoJHigh temperature deformation behavior of near alpha Ti–5.6Al–4.8Sn–2.0Zr alloyJ Mater Process Technol2007183717610.1016/j.jmatprotec.2006.10.002
SemiatinSLSeetharamanVWeissIHot workability of titanium and titanium aluminide alloys—an overviewMater Sci Eng A199824312410.1016/S0921-5093(97)00776-4
BalasundarIRaghuTKashyapBPModeling the hot working behavior of near-α titanium alloy IMI 834Prog Nat Sci Mater Int20132359860710.1016/j.pnsc.2013.11.004
SellarsCMTegartWJOn the mechanism of hot deformationActa Metall1966141136113810.1016/0001-6160(66)90207-0
GoetzRLSemiatinSLThe adiabatic correction factor for deformation heating during the uniaxial compression testJ Mater Eng Perform20011071071710.1361/105994901770344593
Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press
MomeniAAbbasiSMEffect of hot working on flow behavior of Ti–6Al–4 V alloy in single phase and two phase regionsMater Des2010313599360410.1016/j.matdes.2010.01.060
PrasadYVRKProcessing maps: A status reportJ Mater Eng Perform20031263864510.1361/105994903322692420
XuXNashPMangabhaiDCharacterization and sintering of Armstrong process titanium powderJOM20176977077510.1007/s11837-016-2238-x
BriottetLJonasJJMontheilletFA mechanical interpretation of the activation energy of high temperature deformation in two phase materialsActa Mater1996441665167210.1016/1359-6454(95)00257-X
MurtySVSNRaoBNKashyapBPDevelopment and validation of a processing map for zirconium alloysModel Simul Mater Sci Eng20021050310.1088/0965-0393/10/5/303
BodunrinMOChownLHvan der MerweJWAlanemeKKHot working of Ti-6Al-4 V with a complex initial microstructureInt J Mater Form.20181285787410.1007/s12289-018-1457-9
Boyer RR (2010) Titanium and its alloys: metallurgy, heat treatment and alloy characteristics. In: Encyclopedia of Aerospace Engineering. American Cancer Society
AkbariZMirzadehHCabreraJ-MA simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformationMater Des20157712613110.1016/j.matdes.2015.04.005
BolzoniLRuiz-NavasEMGordoEUnderstanding the properties of low-cost iron-containing powder metallurgy titanium alloysMater Des201611031732310.1016/j.matdes.2016.08.010
BalasundarIRaghuTKashyapBPProcessing map for a cast and homogenized near alpha titanium alloyInt J Mater Form20138859710.1007/s12289-013-1150-y
ShiJSunWJiangJZhangYInfluence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solutionConstr Build Mater201611180581310.1016/j.conbuildmat.2016.02.107
FanJKKouHCLaiMJCharacterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333Mater Des20134994595210.1016/j.matdes.2013.02.044
ShiHMcLarenAJSellarsCMConstitutive equations for high temperature flow stress of aluminium alloysMater Sci Technol19971321021610.1179/mst.1997.13.3.210
SeshacharyuluTMedeirosSCMorganJTHot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti–6Al–4 VMater Sci Eng A200027928929910.1016/S0921-5093(99)00173-2
ZenerCHollomonJHEffect of strain rate upon plastic flow of steelJ Appl Phys194415223210.1063/1.1707363
WangKZengWZhaoYLaiYZhouYHot working of Ti-17 titanium alloy with lamellar starting structure using 3-D processing mapsJ Mater Sci2010455883589110.1007/s10853-010-4667-1
ProzeskyDJBodunrinMOChownLHHot-deformation behaviour of α + β Ti-Al-V-Fe experimental alloysAIP Conf Proc2017189616001910.1063/1.5008194
WanjaraPJahaziMMonajatiHHot working behavior of near-α alloy IMI834Mater Sci Eng A2005396506010.1016/j.msea.2004.12.005
CarmanAZhangLCIvasishinOMRole of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-β titanium alloyMater Sci Eng A20115281686169310.1016/j.msea.2010.11.004
LütjeringGWilliamsJCEngineering materials: titanium, Second2007Berlin Heidelberg NewyorkSpringer
VeigaCDavimJPLoureiroAJRReview on machinability of titanium alloys: the process perspectiveRev Adv Mater Sci201334148164
BensonLLMellorIJacksonMDirect reduction of synthetic rutile using the FFC process to produce low-cost novel titanium alloysJ Mater Sci2016514250426110.1007/s10853-015-9718-1
samaterials (2014) Why titanium is so expensive. In: Stanf. Adv. Mater. https://samaterials.wordpress.com/2014/07/29/why-titanium-is-so-expensive/. Accessed 22 Oct 2016
LinYCChenM-SZhongJConstitutive modeling for elevated temperature flow behavior of 42CrMo steelComput Mater Sci20084247047710.1016/j.commatsci.2007.08.011
SemiatinSLSeetharamanVGhoshAKPlastic flow, microstructure evolution, and defect formation during primary hot working of titanium and titanium aluminide alloys with lamellar colony microstructuresPhilos Trans R Soc Lond Math Phys Eng Sci19993571487151210.1098/rsta.1999.0386
JunhuiCHeYZhichaoSFlow behavior and constitutive model using piecewise function of strain for TC11 alloyRare Met Mater Eng20124139740110.1016/S1875-5372(12)60035-6
Fujii H, Takahashi K (2002) Development of high performance Ti-Fe-Al alloy series. NIPPON STEEL
SenITamirisakandalaSMiracleDBRamamurtyUMicrostructural effects on the mechanical behavior of B-modified Ti–6Al–4 V alloysActa Mater2007554983499310.1016/j.actamat.2007.05.009
FroesFH(S)FriedrichHKieseJBergointDTitanium in the family automobile: the cost challengeJOM200456404410.1007/s11837-004-0144-0
LiCZhangXLiZZhouK-CHot Deformation of Ti-5Al-5Mo-5 V-1Cr-1Fe Near β Titanium Alloys Containing Thin and Thick Lamellar α PhaseMater Sci Eng A2013573758310.1016/j.msea.2013.02.033
MaXZengWXuBCharacterization of
RKC Nkhoma (4718_CR40) 2014; 595
A Carman (4718_CR17) 2011; 528
K Wang (4718_CR58) 2010; 45
H Mirzadeh (4718_CR66) 2011; 59
CJ Bettles (4718_CR29) 2011; 528
T Seshacharyulu (4718_CR49) 2002; 325
SL Semiatin (4718_CR63) 1998; 243
M Li (4718_CR83) 2007; 183
J Liu (4718_CR48) 2014; 597
I Weiss (4718_CR91) 1999; 263
I Balasundar (4718_CR31) 2013; 8
YVRK Prasad (4718_CR43) 2000; 16
YVRK Prasad (4718_CR87) 2003; 12
I Balasundar (4718_CR81) 2013; 23
H Shi (4718_CR68) 1997; 13
C Li (4718_CR54) 2013; 573
H Mirzadeh (4718_CR65) 2015; 25
B Roebuck (4718_CR36) 2006; 23
X Peng (4718_CR79) 2013; 50
B Guo (4718_CR85) 2019; 761
MO Bodunrin (4718_CR35) 2018; 69
A Momeni (4718_CR78) 2010; 31
SL Semiatin (4718_CR92) 1997; 49
PM Souza (4718_CR80) 2015
CM Sellars (4718_CR37) 1966; 14
YC Lin (4718_CR41) 2011; 32
NS Weston (4718_CR16) 2017; 243
4718_CR44
HJ McQueen (4718_CR39) 2002; 322
C Veiga (4718_CR11) 2013; 34
J Shi (4718_CR42) 2016; 111
Michael O. Bodunrin (4718_CR25) 2019; 54
Z Akbari (4718_CR62) 2015; 77
RG Guan (4718_CR77) 1980; 36
P Wanjara (4718_CR82) 2005; 396
JK Fan (4718_CR94) 2013; 49
L Bolzoni (4718_CR13) 2014; 60
JM Cabrera (4718_CR64) 1996; 12
XF Bai (4718_CR55) 2014; 598
Y Xia (4718_CR74) 2016; 19
RL Goetz (4718_CR59) 2001; 10
C-W Lin (4718_CR27) 2005; 26
T Seshacharyulu (4718_CR10) 2000; 284
FHS Froes (4718_CR21) 2007; 59
E Calvert (4718_CR60) 2015
G Lütjering (4718_CR19) 1998; 243
T Seshacharyulu (4718_CR51) 2000; 279
C Leyens (4718_CR2) 2003
PG Esteban (4718_CR4) 2008; 63
H Song (4718_CR50) 2014; 10
DJ Prozesky (4718_CR3) 2017; 1896
4718_CR6
MO Bodunrin (4718_CR52) 2018; 12
SL Semiatin (4718_CR70) 1999; 357
X Xu (4718_CR15) 2017; 69
G Lütjering (4718_CR18) 2007
J Luo (4718_CR76) 2009; 505
4718_CR57
V Seetharaman (4718_CR69) 1997; 28
X Ma (4718_CR46) 2012; 20
4718_CR8
R Ding (4718_CR84) 2002; 327
4718_CR9
L Bolzoni (4718_CR34) 2016; 110
H Li (4718_CR90) 2017; 682
M Niinomi (4718_CR7) 2003; 4
Y Duan (4718_CR20) 2007; 17
L Bolzoni (4718_CR26) 2012; 15
FH(S) Froes (4718_CR5) 2004; 56
L-C Zhang (4718_CR28) 2019; 21
LL Benson (4718_CR14) 2016; 51
A Choubey (4718_CR33) 2004; 381
SVS Narayana Murty (4718_CR45) 2000; 45
C Wu (4718_CR53) 2011; 21
YC Lin (4718_CR61) 2008; 42
YVRK Prasad (4718_CR88) 1984; 15
I Weiss (4718_CR56) 1998; 243
4718_CR1
C Junhui (4718_CR75) 2012; 41
4718_CR24
I Sen (4718_CR32) 2007; 55
4718_CR22
4718_CR23
4718_CR67
PG Esteban (4718_CR12) 2011; 54
NA Nochovnaya (4718_CR30) 2008; 44
C Zener (4718_CR38) 1944; 15
K Wang (4718_CR89) 2010; 527
L Briottet (4718_CR72) 1996; 44
RG Guan (4718_CR93) 2012; 36
WA Bryant (4718_CR71) 1975; 10
YY Zong (4718_CR47) 2009; 209
J Porntadawit (4718_CR73) 2014; 599
SVSN Murty (4718_CR86) 2002; 10
References_xml – reference: JunhuiCHeYZhichaoSFlow behavior and constitutive model using piecewise function of strain for TC11 alloyRare Met Mater Eng20124139740110.1016/S1875-5372(12)60035-6
– reference: VeigaCDavimJPLoureiroAJRReview on machinability of titanium alloys: the process perspectiveRev Adv Mater Sci201334148164
– reference: EstebanPGRuiz-NavasEMBolzoniLGordoELow-cost titanium alloys? Iron may hold the answersMet Powder Rep200863242710.1016/S0026-0657(09)70040-2
– reference: BriottetLJonasJJMontheilletFA mechanical interpretation of the activation energy of high temperature deformation in two phase materialsActa Mater1996441665167210.1016/1359-6454(95)00257-X
– reference: samaterials (2014) Why titanium is so expensive. In: Stanf. Adv. Mater. https://samaterials.wordpress.com/2014/07/29/why-titanium-is-so-expensive/. Accessed 22 Oct 2016
– reference: WeissISemiatinSLThermomechanical processing of beta titanium alloys—an overviewMater Sci Eng A1998243466510.1016/S0921-5093(97)00783-1
– reference: BolzoniLHerraizERuiz-NavasEMGordoEStudy of the properties of low-cost powder metallurgy titanium alloys by 430 stainless steel additionMater Des20146062863610.1016/j.matdes.2014.04.019
– reference: BaiXFZhaoYQZengWDCharacterization of hot deformation behavior of a biomedical titanium alloy TLMMater Sci Eng A201459823624310.1016/j.msea.2014.01.005
– reference: PengXGuoHShiZConstitutive equations for high temperature flow stress of TC4-DT alloy incorporating strain, strain rate and temperatureMater Des20135019820610.1016/j.matdes.2013.03.009
– reference: WuCYangHFanXSunZDynamic globularization kinetics during hot working of TA15 titanium alloy with colony microstructureTrans Nonferrous Met Soc China2011211963196910.1016/S1003-6326(11)60957-6
– reference: SemiatinSLSeetharamanVGhoshAKPlastic flow, microstructure evolution, and defect formation during primary hot working of titanium and titanium aluminide alloys with lamellar colony microstructuresPhilos Trans R Soc Lond Math Phys Eng Sci19993571487151210.1098/rsta.1999.0386
– reference: WanjaraPJahaziMMonajatiHHot working behavior of near-α alloy IMI834Mater Sci Eng A2005396506010.1016/j.msea.2004.12.005
– reference: DuanYLiPXueKFlow behavior and microstructure evolution of TB8 alloy during hot deformation processTrans Nonferrous Met Soc China2007171199120410.1016/S1003-6326(07)60249-0
– reference: Prasad YVRK, Rao KP, Sasidhara S (2015) Hot working guide : a compendium of processing maps. ASM International
– reference: FroesFHSGungorMNImamMACost-affordable titanium: the component fabrication perspectiveJOM200759283110.1007/s11837-007-0074-8
– reference: SemiatinSLSeetharamanVWeissIHot workability of titanium and titanium aluminide alloys—an overviewMater Sci Eng A199824312410.1016/S0921-5093(97)00776-4
– reference: ProzeskyDJBodunrinMOChownLHHot-deformation behaviour of α + β Ti-Al-V-Fe experimental alloysAIP Conf Proc2017189616001910.1063/1.5008194
– reference: BolzoniLRuiz-NavasEMGordoEUnderstanding the properties of low-cost iron-containing powder metallurgy titanium alloysMater Des201611031732310.1016/j.matdes.2016.08.010
– reference: PrasadYVRKGegelHLDoraiveluSMModeling of dynamic material behavior in hot deformation: Forging of Ti-6242Metall Trans A1984151883189210.1007/BF02664902
– reference: PorntadawitJUthaisangsukVChoungthongPModeling of flow behavior of Ti–6Al–4 V alloy at elevated temperaturesMater Sci Eng A201459921222210.1016/j.msea.2014.01.064
– reference: ChoubeyABalasubramaniamRBasuBEffect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti–6Al–4 V in simulated physiological environmentJ Alloys Compd200438128829410.1016/j.jallcom.2004.03.096
– reference: MurtySVSNRaoBNKashyapBPDevelopment and validation of a processing map for zirconium alloysModel Simul Mater Sci Eng20021050310.1088/0965-0393/10/5/303
– reference: ZhangL-CChenL-YA review on biomedical titanium alloys: recent progress and prospectAdv Eng Mater201921180121510.1002/adem.201801215
– reference: BensonLLMellorIJacksonMDirect reduction of synthetic rutile using the FFC process to produce low-cost novel titanium alloysJ Mater Sci2016514250426110.1007/s10853-015-9718-1
– reference: WangKZengWZhaoYLaiYZhouYHot working of Ti-17 titanium alloy with lamellar starting structure using 3-D processing mapsJ Mater Sci2010455883589110.1007/s10853-010-4667-1
– reference: Narayana MurtySVSNageswara RaoBKashyapBPInstability criteria for hot deformation of materialsInt Mater Rev200045152610.1179/095066000771048782
– reference: Fujii H, Fujisawa K, Ishil M, Yamashita Y (2002) Development of low-cost high-strength Ti-Fe-O-N alloy series. NIPPON STEEL
– reference: ShiJSunWJiangJZhangYInfluence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solutionConstr Build Mater201611180581310.1016/j.conbuildmat.2016.02.107
– reference: SeshacharyuluTMedeirosSCFrazierWGPrasadYVRKMicrostructural mechanisms during hot working of commercial grade Ti–6Al–4 V with lamellar starting structureMater Sci Eng A200232511212510.1016/S0921-5093(01)01448-4
– reference: LeyensCPetersMTitanium and titanium alloys: fundamentals and application2003GermanyWILEY-VCH10.1002/3527602119
– reference: LütjeringGInfluence of processing on microstructure and mechanical properties of (α + β) titanium alloysMater Sci Eng A1998243324510.1016/S0921-5093(97)00778-8
– reference: PrasadYVRKSeshacharyuluTMedeirosSCFrazierWGEffect of preform microstructure on the hot working mechanisms in ELI grade Ti–6Al–4 V: transformed β v. equiaxed (α + β)Mater Sci Technol20001651151610.1179/026708300101508171
– reference: MirzadehHCabreraJMNajafizadehAConstitutive relationships for hot deformation of austeniteActa Mater2011596441644810.1016/j.actamat.2011.07.008
– reference: ShiHMcLarenAJSellarsCMConstitutive equations for high temperature flow stress of aluminium alloysMater Sci Technol19971321021610.1179/mst.1997.13.3.210
– reference: BryantWACorrelation of data on the hot deformation of Ti-6Al-4 VJ Mater Sci1975101793179710.1007/BF00554942
– reference: NkhomaRKCSiyasiyaCWStumpfWEHot workability of AISI 321 and AISI 304 austenitic stainless steelsJ Alloys Compd201459510311210.1016/j.jallcom.2014.01.157
– reference: MomeniAAbbasiSMEffect of hot working on flow behavior of Ti–6Al–4 V alloy in single phase and two phase regionsMater Des2010313599360410.1016/j.matdes.2010.01.060
– reference: ZongYYShanDBXuMLvYFlow softening and microstructural evolution of TC11 titanium alloy during hot deformationJ Mater Process Technol20092091988199410.1016/j.jmatprotec.2008.04.063
– reference: EstebanPGBolzoniLRuiz-NavasEMGordoEPM processing and characterisation of Ti–7Fe low cost titanium alloysPowder Metall20115424225210.1179/174329009X457063
– reference: Fujii H, Takahashi K, Yamashita Y (2003) Application of titanium and its alloys for automobile parts. Shinnittetsu Giho:62–67
– reference: BettlesCJTomusDGibsonMAThe role of microstructure in the mechanical behaviour of Ti–1.6 wt.%Fe alloys containing O and NMater Sci Eng A20115284899490910.1016/j.msea.2011.03.030
– reference: NiinomiMRecent research and development in titanium alloys for biomedical applications and healthcare goodsSci Technol Adv Mater2003444545410.1016/j.stam.2003.09.002
– reference: BodunrinMichael O.ChownLesley H.van der MerweJosais W.AlanemeKenneth K.Corrosion behaviour of low-cost Ti–4.5Al–xV–yFe alloys in sodium chloride and sulphuric acid solutionsCorrosion Engineering, Science and Technology201954863764810.1080/1478422X.2019.1654218
– reference: LiHZhaoZGuoHEffect of initial alpha lamellar thickness on deformation behavior of a near-α high-temperature alloy during thermomechanical processingMater Sci Eng A201768234535310.1016/j.msea.2016.11.063
– reference: GuanRGJeYTZhaoZYLeeCSEffect of microstructure on deformation behavior of Ti–6Al–4 V alloy during compressing processMater Des20123679680310.1016/j.matdes.2011.11.057
– reference: Bodunrin MO (2018) Hot deformation and corrosion behaviour of low-cost α + β titanium alloys with aluminium, vanadium and iron additions. Thesis
– reference: LuoJLiMLiHYuWEffect of the strain on the deformation behavior of isothermally compressed Ti–6Al–4 V alloyMater Sci Eng A2009505889510.1016/j.msea.2008.11.001
– reference: DingRGuoZXWilsonAMicrostructural evolution of a Ti–6Al–4 V alloy during thermomechanical processingMater Sci Eng A200232723324510.1016/S0921-5093(01)01531-3
– reference: FanJKKouHCLaiMJCharacterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333Mater Des20134994595210.1016/j.matdes.2013.02.044
– reference: CabreraJMJonasJJPradoJMFlow behaviour of medium carbon microalloyed steel under hot working conditionsMater Sci Technol19961257958510.1179/mst.1996.12.7.579
– reference: GuoBSemiatinSLJonasJJDynamic transformation during the high temperature deformation of two-phase titanium alloysMater Sci Eng A201976113804710.1016/j.msea.2019.138047
– reference: BolzoniLEstebanPGRuiz-NavasEMGordoEMechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powdersJ Mech Behav Biomed Mater201215334510.1016/j.jmbbm.2012.05.019
– reference: Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press
– reference: MaXZengWXuBCharacterization of the hot deformation behavior of a Ti–22Al–25Nb alloy using processing maps based on the Murty criterionIntermetallics2012201710.1016/j.intermet.2011.08.027
– reference: BodunrinMOChownLHvan der MerweJWAlanemeKKCorrosion behaviour of Ti-Al-xV-yFe experimental alloys in 3.5 wt% NaCl and 3.5 M H2SO4Mater Corros20186977078010.1002/maco.201709709
– reference: Fujii H, Takahashi K (2002) Development of high performance Ti-Fe-Al alloy series. NIPPON STEEL
– reference: SeshacharyuluTMedeirosSCFrazierWGPrasadYVRKHot working of commercial Ti–6Al–4 V with an equiaxed α–β microstructure: materials modeling considerationsMater Sci Eng A200028418419410.1016/S0921-5093(00)00741-3
– reference: BalasundarIRaghuTKashyapBPProcessing map for a cast and homogenized near alpha titanium alloyInt J Mater Form20138859710.1007/s12289-013-1150-y
– reference: McQueenHJRyanNDConstitutive analysis in hot workingMater Sci Eng A2002322436310.1016/S0921-5093(01)01117-0
– reference: SongHZhangSChengMDynamic globularization prediction during cogging process of large size TC11 titanium alloy billet with lamellar structureDef Technol201410404610.1016/j.dt.2014.01.003
– reference: GoetzRLSemiatinSLThe adiabatic correction factor for deformation heating during the uniaxial compression testJ Mater Eng Perform20011071071710.1361/105994901770344593
– reference: WangKZengWZhaoYDynamic globularization kinetics during hot working of Ti-17 alloy with initial lamellar microstructureMater Sci Eng A20105272559256610.1016/j.msea.2010.01.034
– reference: GuanRGJeYTZhaoZYLee CS (2012) Effect of microstructure on deformation behavior of Ti–6Al–4 V alloy during compressing processMater Des19803679680310.1016/j.matdes.2011.11.0572015
– reference: PrasadYVRKProcessing maps: A status reportJ Mater Eng Perform20031263864510.1361/105994903322692420
– reference: SeshacharyuluTMedeirosSCMorganJTHot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti–6Al–4 VMater Sci Eng A200027928929910.1016/S0921-5093(99)00173-2
– reference: BodunrinMOChownLHvan der MerweJWAlanemeKKHot working of Ti-6Al-4 V with a complex initial microstructureInt J Mater Form.20181285787410.1007/s12289-018-1457-9
– reference: WeissISemiatinS.LThermomechanical processing of alpha titanium alloys—an overviewMaterials Science and Engineering: A1999263224325610.1016/S0921-5093(98)01155-1
– reference: SemiatinSLSeetharamanVWeissIThe thermomechanical processing of alpha/beta titanium alloysJOM199749333910.1007/BF02914711
– reference: MirzadehHSimple physically-based constitutive equations for hot deformation of 2024 and 7075 aluminum alloysTrans Nonferrous Met Soc China2015251614161810.1016/S1003-6326(15)63765-7
– reference: SenITamirisakandalaSMiracleDBRamamurtyUMicrostructural effects on the mechanical behavior of B-modified Ti–6Al–4 V alloysActa Mater2007554983499310.1016/j.actamat.2007.05.009
– reference: BalasundarIRaghuTKashyapBPModeling the hot working behavior of near-α titanium alloy IMI 834Prog Nat Sci Mater Int20132359860710.1016/j.pnsc.2013.11.004
– reference: RoebuckBLordJDBrooksMMeasurement of flow stress in hot axisymmetric compression testsMater High Temp200623598310.1179/mht.2006.005
– reference: Donachie MJ (2000) Titanium: a technical guide, 2nd edn. ASM International
– reference: XuXNashPMangabhaiDCharacterization and sintering of Armstrong process titanium powderJOM20176977077510.1007/s11837-016-2238-x
– reference: ZenerCHollomonJHEffect of strain rate upon plastic flow of steelJ Appl Phys194415223210.1063/1.1707363
– reference: CalvertEPollardJJacksonMDetermining a Flow Stress Model for High Temperature Deformation of Ti-6Al-4 VMaterials Science Forum2015Switzerland, Port Elizabeth, South AfricaTrans Tech Publications441446
– reference: LinC-WJuC-PChern LinJ-HA comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4 V and Ti-13Nb-13Zr alloysBiomaterials2005262899290710.1016/j.biomaterials.2004.09.007
– reference: LinYCChenM-SZhongJConstitutive modeling for elevated temperature flow behavior of 42CrMo steelComput Mater Sci20084247047710.1016/j.commatsci.2007.08.011
– reference: CarmanAZhangLCIvasishinOMRole of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-β titanium alloyMater Sci Eng A20115281686169310.1016/j.msea.2010.11.004
– reference: FroesFH(S)FriedrichHKieseJBergointDTitanium in the family automobile: the cost challengeJOM200456404410.1007/s11837-004-0144-0
– reference: WestonNSJacksonMFAST-forge − a new cost-effective hybrid processing route for consolidating titanium powder into near net shape forged componentsJ Mater Process Technol201724333534610.1016/j.jmatprotec.2016.12.013
– reference: SellarsCMTegartWJOn the mechanism of hot deformationActa Metall1966141136113810.1016/0001-6160(66)90207-0
– reference: LiCZhangXLiZZhouK-CHot Deformation of Ti-5Al-5Mo-5 V-1Cr-1Fe Near β Titanium Alloys Containing Thin and Thick Lamellar α PhaseMater Sci Eng A2013573758310.1016/j.msea.2013.02.033
– reference: LiMPanHLinYLuoJHigh temperature deformation behavior of near alpha Ti–5.6Al–4.8Sn–2.0Zr alloyJ Mater Process Technol2007183717610.1016/j.jmatprotec.2006.10.002
– reference: LiuJZengWLaiYJiaZConstitutive model of Ti17 titanium alloy with lamellar-type initial microstructure during hot deformation based on orthogonal analysisMater Sci Eng A201459738739410.1016/j.msea.2013.12.076
– reference: SeetharamanVSemiatinSLPlastic-flow and microstructure evolution during hot deformation of a gamma titanium aluminide alloyMetall Mater Trans A1997282309232110.1007/s11661-997-0188-1
– reference: XiaYLongSZhouYIdentification for the optimal working parameters of Ti-6Al-4 V-0.1Ru alloy in a wide deformation condition range by processing maps based on DMMMater Res2016191449146010.1590/1980-5373-mr-2016-0448
– reference: AkbariZMirzadehHCabreraJ-MA simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformationMater Des20157712613110.1016/j.matdes.2015.04.005
– reference: Bloomberg One battery material sector is cheering for lower prices. In: Eng. News. https://www.engineeringnews.co.za/article/one-battery-material-sector-is-cheering-for-lower-prices-2019-09-19. Accessed 11 Nov 2019
– reference: NochovnayaNAIsaichevAVAntashevVGFoundations of the development of economically alloyed widely applicable titanium alloysMater Sci20084439639910.1007/s11003-008-9081-3
– reference: LinYCChenX-MA critical review of experimental results and constitutive descriptions for metals and alloys in hot workingMater Des2011321733175910.1016/j.matdes.2010.11.048
– reference: LütjeringGWilliamsJCEngineering materials: titanium, Second2007Berlin Heidelberg NewyorkSpringer
– reference: Boyer RR (2010) Titanium and its alloys: metallurgy, heat treatment and alloy characteristics. In: Encyclopedia of Aerospace Engineering. American Cancer Society
– reference: SouzaPMBeladiHRolfeBSoftening behavior of Ti6Al4V alloy during hot deformationMaterials Science Forum2015Port Elizabeth, South AfricaMaterials Science Forum407412
– volume: 15
  start-page: 1883
  year: 1984
  ident: 4718_CR88
  publication-title: Metall Trans A
  doi: 10.1007/BF02664902
– volume: 45
  start-page: 15
  year: 2000
  ident: 4718_CR45
  publication-title: Int Mater Rev
  doi: 10.1179/095066000771048782
– volume: 263
  start-page: 243
  issue: 2
  year: 1999
  ident: 4718_CR91
  publication-title: Materials Science and Engineering: A
  doi: 10.1016/S0921-5093(98)01155-1
– volume: 10
  start-page: 503
  year: 2002
  ident: 4718_CR86
  publication-title: Model Simul Mater Sci Eng
  doi: 10.1088/0965-0393/10/5/303
– volume: 77
  start-page: 126
  year: 2015
  ident: 4718_CR62
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.04.005
– volume: 396
  start-page: 50
  year: 2005
  ident: 4718_CR82
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2004.12.005
– volume: 12
  start-page: 638
  year: 2003
  ident: 4718_CR87
  publication-title: J Mater Eng Perform
  doi: 10.1361/105994903322692420
– volume: 505
  start-page: 88
  year: 2009
  ident: 4718_CR76
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2008.11.001
– ident: 4718_CR22
– volume: 60
  start-page: 628
  year: 2014
  ident: 4718_CR13
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2014.04.019
– volume: 44
  start-page: 396
  year: 2008
  ident: 4718_CR30
  publication-title: Mater Sci
  doi: 10.1007/s11003-008-9081-3
– volume: 49
  start-page: 33
  year: 1997
  ident: 4718_CR92
  publication-title: JOM
  doi: 10.1007/BF02914711
– volume: 55
  start-page: 4983
  year: 2007
  ident: 4718_CR32
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.05.009
– volume: 1896
  start-page: 160019
  year: 2017
  ident: 4718_CR3
  publication-title: AIP Conf Proc
  doi: 10.1063/1.5008194
– volume: 26
  start-page: 2899
  year: 2005
  ident: 4718_CR27
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.09.007
– volume: 25
  start-page: 1614
  year: 2015
  ident: 4718_CR65
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(15)63765-7
– volume: 41
  start-page: 397
  year: 2012
  ident: 4718_CR75
  publication-title: Rare Met Mater Eng
  doi: 10.1016/S1875-5372(12)60035-6
– ident: 4718_CR8
– volume: 598
  start-page: 236
  year: 2014
  ident: 4718_CR55
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2014.01.005
– volume: 528
  start-page: 4899
  year: 2011
  ident: 4718_CR29
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2011.03.030
– volume: 573
  start-page: 75
  year: 2013
  ident: 4718_CR54
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2013.02.033
– ident: 4718_CR67
– volume: 183
  start-page: 71
  year: 2007
  ident: 4718_CR83
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2006.10.002
– volume: 20
  start-page: 1
  year: 2012
  ident: 4718_CR46
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.08.027
– volume: 599
  start-page: 212
  year: 2014
  ident: 4718_CR73
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2014.01.064
– volume: 528
  start-page: 1686
  year: 2011
  ident: 4718_CR17
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2010.11.004
– ident: 4718_CR57
– volume: 284
  start-page: 184
  year: 2000
  ident: 4718_CR10
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(00)00741-3
– volume: 357
  start-page: 1487
  year: 1999
  ident: 4718_CR70
  publication-title: Philos Trans R Soc Lond Math Phys Eng Sci
  doi: 10.1098/rsta.1999.0386
– volume: 36
  start-page: 796
  year: 2012
  ident: 4718_CR93
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2011.11.057
– volume: 110
  start-page: 317
  year: 2016
  ident: 4718_CR34
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.08.010
– volume: 8
  start-page: 85
  year: 2013
  ident: 4718_CR31
  publication-title: Int J Mater Form
  doi: 10.1007/s12289-013-1150-y
– volume: 10
  start-page: 1793
  year: 1975
  ident: 4718_CR71
  publication-title: J Mater Sci
  doi: 10.1007/BF00554942
– volume: 51
  start-page: 4250
  year: 2016
  ident: 4718_CR14
  publication-title: J Mater Sci
  doi: 10.1007/s10853-015-9718-1
– volume: 10
  start-page: 40
  year: 2014
  ident: 4718_CR50
  publication-title: Def Technol
  doi: 10.1016/j.dt.2014.01.003
– volume: 44
  start-page: 1665
  year: 1996
  ident: 4718_CR72
  publication-title: Acta Mater
  doi: 10.1016/1359-6454(95)00257-X
– volume: 209
  start-page: 1988
  year: 2009
  ident: 4718_CR47
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2008.04.063
– volume: 34
  start-page: 148
  year: 2013
  ident: 4718_CR11
  publication-title: Rev Adv Mater Sci
– volume: 59
  start-page: 28
  year: 2007
  ident: 4718_CR21
  publication-title: JOM
  doi: 10.1007/s11837-007-0074-8
– volume: 327
  start-page: 233
  year: 2002
  ident: 4718_CR84
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(01)01531-3
– volume: 13
  start-page: 210
  year: 1997
  ident: 4718_CR68
  publication-title: Mater Sci Technol
  doi: 10.1179/mst.1997.13.3.210
– volume: 69
  start-page: 770
  year: 2017
  ident: 4718_CR15
  publication-title: JOM
  doi: 10.1007/s11837-016-2238-x
– volume: 279
  start-page: 289
  year: 2000
  ident: 4718_CR51
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(99)00173-2
– volume: 243
  start-page: 335
  year: 2017
  ident: 4718_CR16
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2016.12.013
– volume: 32
  start-page: 1733
  year: 2011
  ident: 4718_CR41
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2010.11.048
– volume: 682
  start-page: 345
  year: 2017
  ident: 4718_CR90
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2016.11.063
– volume: 243
  start-page: 32
  year: 1998
  ident: 4718_CR19
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(97)00778-8
– volume: 45
  start-page: 5883
  year: 2010
  ident: 4718_CR58
  publication-title: J Mater Sci
  doi: 10.1007/s10853-010-4667-1
– volume: 243
  start-page: 1
  year: 1998
  ident: 4718_CR63
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(97)00776-4
– volume: 59
  start-page: 6441
  year: 2011
  ident: 4718_CR66
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2011.07.008
– ident: 4718_CR23
  doi: 10.1002/9780470686652.eae198
– volume: 28
  start-page: 2309
  year: 1997
  ident: 4718_CR69
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-997-0188-1
– volume: 15
  start-page: 33
  year: 2012
  ident: 4718_CR26
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2012.05.019
– volume: 21
  start-page: 1801215
  year: 2019
  ident: 4718_CR28
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.201801215
– ident: 4718_CR24
– volume: 381
  start-page: 288
  year: 2004
  ident: 4718_CR33
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2004.03.096
– volume: 54
  start-page: 242
  year: 2011
  ident: 4718_CR12
  publication-title: Powder Metall
  doi: 10.1179/174329009X457063
– volume: 597
  start-page: 387
  year: 2014
  ident: 4718_CR48
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2013.12.076
– start-page: 407
  volume-title: Materials Science Forum
  year: 2015
  ident: 4718_CR80
– ident: 4718_CR6
– volume: 31
  start-page: 3599
  year: 2010
  ident: 4718_CR78
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2010.01.060
– volume: 69
  start-page: 770
  year: 2018
  ident: 4718_CR35
  publication-title: Mater Corros
  doi: 10.1002/maco.201709709
– volume: 322
  start-page: 43
  year: 2002
  ident: 4718_CR39
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(01)01117-0
– volume: 50
  start-page: 198
  year: 2013
  ident: 4718_CR79
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.03.009
– volume: 17
  start-page: 1199
  year: 2007
  ident: 4718_CR20
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(07)60249-0
– volume: 595
  start-page: 103
  year: 2014
  ident: 4718_CR40
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2014.01.157
– volume-title: Titanium and titanium alloys: fundamentals and application
  year: 2003
  ident: 4718_CR2
  doi: 10.1002/3527602119
– volume: 56
  start-page: 40
  year: 2004
  ident: 4718_CR5
  publication-title: JOM
  doi: 10.1007/s11837-004-0144-0
– ident: 4718_CR44
– volume: 10
  start-page: 710
  year: 2001
  ident: 4718_CR59
  publication-title: J Mater Eng Perform
  doi: 10.1361/105994901770344593
– volume: 49
  start-page: 945
  year: 2013
  ident: 4718_CR94
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.02.044
– volume: 36
  start-page: 796
  year: 1980
  ident: 4718_CR77
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2011.11.057
– volume: 63
  start-page: 24
  year: 2008
  ident: 4718_CR4
  publication-title: Met Powder Rep
  doi: 10.1016/S0026-0657(09)70040-2
– volume: 15
  start-page: 22
  year: 1944
  ident: 4718_CR38
  publication-title: J Appl Phys
  doi: 10.1063/1.1707363
– volume: 54
  start-page: 637
  issue: 8
  year: 2019
  ident: 4718_CR25
  publication-title: Corrosion Engineering, Science and Technology
  doi: 10.1080/1478422X.2019.1654218
– volume: 16
  start-page: 511
  year: 2000
  ident: 4718_CR43
  publication-title: Mater Sci Technol
  doi: 10.1179/026708300101508171
– start-page: 441
  volume-title: Materials Science Forum
  year: 2015
  ident: 4718_CR60
– volume-title: Engineering materials: titanium, Second
  year: 2007
  ident: 4718_CR18
– volume: 23
  start-page: 59
  year: 2006
  ident: 4718_CR36
  publication-title: Mater High Temp
  doi: 10.1179/mht.2006.005
– volume: 21
  start-page: 1963
  year: 2011
  ident: 4718_CR53
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(11)60957-6
– volume: 325
  start-page: 112
  year: 2002
  ident: 4718_CR49
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(01)01448-4
– volume: 19
  start-page: 1449
  year: 2016
  ident: 4718_CR74
  publication-title: Mater Res
  doi: 10.1590/1980-5373-mr-2016-0448
– volume: 111
  start-page: 805
  year: 2016
  ident: 4718_CR42
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2016.02.107
– volume: 527
  start-page: 2559
  year: 2010
  ident: 4718_CR89
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2010.01.034
– ident: 4718_CR1
  doi: 10.31399/asm.tb.ttg2.9781627082693
– volume: 23
  start-page: 598
  year: 2013
  ident: 4718_CR81
  publication-title: Prog Nat Sci Mater Int
  doi: 10.1016/j.pnsc.2013.11.004
– volume: 4
  start-page: 445
  year: 2003
  ident: 4718_CR7
  publication-title: Sci Technol Adv Mater
  doi: 10.1016/j.stam.2003.09.002
– ident: 4718_CR9
– volume: 42
  start-page: 470
  year: 2008
  ident: 4718_CR61
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2007.08.011
– volume: 12
  start-page: 579
  year: 1996
  ident: 4718_CR64
  publication-title: Mater Sci Technol
  doi: 10.1179/mst.1996.12.7.579
– volume: 14
  start-page: 1136
  year: 1966
  ident: 4718_CR37
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(66)90207-0
– volume: 761
  start-page: 138047
  year: 2019
  ident: 4718_CR85
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2019.138047
– volume: 243
  start-page: 46
  year: 1998
  ident: 4718_CR56
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(97)00783-1
– volume: 12
  start-page: 857
  year: 2018
  ident: 4718_CR52
  publication-title: Int J Mater Form.
  doi: 10.1007/s12289-018-1457-9
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.3219037
Snippet Isothermal compression testing was carried out on newly developed low-cost (α + β) Ti-4.5Al-1 V-3Fe alloy with lamellar initial microstructure using a Gleeble...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1901
SubjectTerms Alloys
CAE) and Design
Cavitation
Compression tests
Computer-Aided Engineering (CAD
Cracks
Engineering
Hot working
Industrial and Production Engineering
Lamellar structure
Low temperature
Mechanical Engineering
Media Management
Microstructure
Original Article
Process mapping
Softening
Strain analysis
Strain rate
Stress-strain relationships
Thermal simulators
Titanium base alloys
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSyQxEA6uXnYP4mvZ8UUO3jTaSSfp5CQqDoOgiKh4a6rTCQg6o-OI-O-tdKdnXEGv_cih8qVSz68I2ZFgNfdZYJ4HxWQoArOeO4b-LWQGBMgq9g6fX-jBjTy7U3cp4PaSyio7ndgo6nrkYoz8QKClgNehVfbw6ZnFqVExu5pGaPwiC6iCDTpfC8enF5dXHaK4LeJUzCnihI2j6GeIzqXK2zxXyjto3jTPoWNi4tEzqc2mabZrqGbQ9Y7JBNTorPj_KpvZp19Sqs1N1V8ii8nEpEctJpbJnB-ukD-fiAdXCQxGE_rWxslp6tR_HdNRoJ8Z_-n1PZP76uiBcXrL8r6nMUv_TmPslt7HqiP8BhEVC6jG9DGW9rV0tK9jv0Zu-qfXJwOWhi0wh6dwwnyVaShCIWpjrMl8rQP6XtrnqgogAmoGB9qAB14bfOLqykkj6qy23nvtivwvmR-Ohv4foRkoAQHyTFReag0AhkvQUNVGOaugR3gnt9IlJvI4EOOhnHIoN7IuUdZlI-uy6JHd6T9PLQ_Hj19vdttRpjP5Us4Q1CN73RbNXn-_2vrPq22Q3yI64U1cZpPMo6D9Floqk2o7wfEDQATgGw
  priority: 102
  providerName: ProQuest
Title Hot working behaviour of experimental Ti-4.5Al-1 V-3Fe alloy with initial lamellar microstructure
URI https://link.springer.com/article/10.1007/s00170-019-04718-7
https://www.proquest.com/docview/2352071959
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH_047IdxtZtLFsXdOit07BkSZaOyYgbNhrKaEZ3Ms-2BIU2GWnK6H_fJ38kbdkGOxls2Yann6T3-XsARwqdET4J3IuguQpZ4M6LipN9i4lFiaqMtcOnMzOdq68X-qIrCrvps937kGSzU2-K3RqqFzJ9ozOfdlSe7cK-jrY7oXguRz2KhMtiJ8wNyqSL7ee3KE6VTtvYVhdrMKIpmCNjxMblZrvSmj__8_HxtdVJn4RRm9MpfwkvOrWSjVocvIIdvziA5w_IBl8DTpdr9rv1jbOuOv92xZaBPWT5Z-eXXH3Woysu2A-e5p7FyPwdi_5adhkzjWgMoSgmTa3YdUznaylob1f-DczzyfmXKe8aLPCKVt6a-zIxmIVM1tY6m_jaBLK3jE91GVAG2g0qNBY9itrSnaouK2VlndTOe2-qLH0Le4vlwr8DlqCWGDBNZOmVMYhohUKDZW115TQOQPRyK6qOfTw2wbgqNrzJjawLknXRyLrIBnC8eedXy73xz9GH_XQU3Tq8KSTpl6REOe0G8Kmfou3jv3_t_f8N_wDPZDTEG9_MIeyR4P1H0lbW5RB2bX4yhP1RPh7P4vXk57cJXceT2dn3YQPde8QG4S4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeKp5i2wI-wAkMsWM79gGhCli29HHaot7CJLGlSmW33W5V9U_1NzJ2kt2CRG-95uHDzDee9wzAG4XOCJ8F7kXQXIUicOdFzcm_xcyiRFXF3uH9AzM6VD-O9NEKXPe9MLGssr8T00XdTOsYI_8oyVIgdei0-3x6xuPWqJhd7VdotLDY9VeX5LKdf9r5Svx9K-Xw2_jLiHdbBXhNcJtzX2UGi1DIxlpnM9-YQE6G8bmuAspAIlCjsehRNJae1E1VKyubrHHee1MXOZ17D-6rPHdRouzwe49f4Yq4g3OBb-ni4vul_ORK521WrctyGJFa9cgNslHQbdfUk1r70mAbcvRj6oL0By_-VpxLa_ifBG7Si8NHsN4ZtGy7ReBjWPGTJ7B2Y8zhU8DRdM4u26g86-YCXMzYNLCb-wXY-JirD3r7hAv2k-dDz2JNwBWLkWJ2HGuc6BvCbyzXmrHfsZCwHX57MfPP4PBOmPAcVifTiX8BLEMtMWCeycorYxDRCoUGq8bq2mkcgOjpVtbd3PO4fuOkXExsTrQuidZlonVZDODd4p_TdurHrV9v9ewouxvgvFzidQDvexYtX___tI3bT3sND0bj_b1yb-dgdxMeyuj-p4jQFqwS0f1LspHm1asETAa_7loS_gBEzh52
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfRBvOJ0ah5807gmTdLkcahjXvHByd7KaZvAYG4yJ-K_N-llm6KCr23SwsmX5Fy_g9AxBy2pCSwx1ArCbWSJNjQlzr6FQAEDnvja4bt72eny657ozVXx59nuVUiyqGnwLE3DSfMls81p4VtO--LMYO_Yd6criRbRkjuOqcd1l7UqRFEd-a6YU8Qx7VvRzxAdchEWca4y7iBpXjznDBPlt54qy2x-_ufXq2ymn34LqeY3VXsdrZUqJm4VmNhAC2a4iVbniAe3EHRGE_xe-MlxWan_NsYji-cZ__Fjn_Az0RoQip9I2DbYR-k_sPfd4r7POnJjHKJ8AtUYP_vUvoKO9m1stlG3ffl43iFlswWSOrFNiEkCCZGNWKaUVoHJpHW2lzShSCww606GFKQCAzRT7kmaJSlXLAsybYyRaRTuoNpwNDS7CAcgGFgIA5YYLiUAKMpBQpIpkWoBdUQrucVpyUTuG2IM4imHci7r2Mk6zmUdR3V0Mp3zUvBw_Dm6US1HXO7J15g5XdMpVFroOjqtlmj2-vev7f1v-BFafrhox7dX9zf7aIV5-zx32TRQza2BOXBKzCQ5zHH6CXWF4s0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hot+working+behaviour+of+experimental+Ti-4.5Al-1+V-3Fe+alloy+with+initial+lamellar+microstructure&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Bodunrin%2C+Michael+O.&rft.au=Chown%2C+Lesley+H.&rft.au=van+der+Merwe%2C+Josias+W.&rft.au=Alaneme%2C+Kenneth+K.&rft.date=2020-01-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=106&rft.issue=5-6&rft.spage=1901&rft.epage=1916&rft_id=info:doi/10.1007%2Fs00170-019-04718-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_019_04718_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon