An intelligent approach using boosted support vector machine based arithmetic optimization algorithm for accurate detection of plant leaf disease
Leaf disease is considered a serious threat which affects agricultural productivity and ultimately reduces the GDP of the Indian economy. The precise detection and timely analysis of foliar diseases can mitigate the spread of the disease to other parties. However, certain complications such as low p...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 26; no. 1; pp. 367 - 379 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.02.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7541 1433-755X |
DOI | 10.1007/s10044-022-01086-z |
Cover
Loading…
Abstract | Leaf disease is considered a serious threat which affects agricultural productivity and ultimately reduces the GDP of the Indian economy. The precise detection and timely analysis of foliar diseases can mitigate the spread of the disease to other parties. However, certain complications such as low precision, high calculation cost, and low recognition speed are raised when detecting leaf diseases. Therefore, to overcome these limitations, we proposed a novel technique called Boosted support vector machine-based Arithmetic optimization algorithm (BSVM-AOA) for accurate detection of plant leaf disease. In this case, image segmentation is done using the vector value active contour model, and feature extraction is done using the greyscale co-occurrence matrix. Furthermore, the performance of the proposed approach is determined by performance parameters such as accuracy, accuracy, recall, specificity, and f-rating. Finally, the comparative analysis is conducted between the different existing techniques and the proposed technique. The comparative results showed that the proposed BSVM-AOA approach is about 98.6% more accurate than other existing techniques. |
---|---|
AbstractList | Leaf disease is considered a serious threat which affects agricultural productivity and ultimately reduces the GDP of the Indian economy. The precise detection and timely analysis of foliar diseases can mitigate the spread of the disease to other parties. However, certain complications such as low precision, high calculation cost, and low recognition speed are raised when detecting leaf diseases. Therefore, to overcome these limitations, we proposed a novel technique called Boosted support vector machine-based Arithmetic optimization algorithm (BSVM-AOA) for accurate detection of plant leaf disease. In this case, image segmentation is done using the vector value active contour model, and feature extraction is done using the greyscale co-occurrence matrix. Furthermore, the performance of the proposed approach is determined by performance parameters such as accuracy, accuracy, recall, specificity, and f-rating. Finally, the comparative analysis is conducted between the different existing techniques and the proposed technique. The comparative results showed that the proposed BSVM-AOA approach is about 98.6% more accurate than other existing techniques. |
Author | Prabu, M. Chelliah, Balika J. |
Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0002-2352-4515 surname: Prabu fullname: Prabu, M. email: manavalanprabu@gmail.com organization: Department of Computer Science and Engineering, SRM Institute of Science and Technology – sequence: 2 givenname: Balika J. surname: Chelliah fullname: Chelliah, Balika J. organization: Department of Computer Science and Engineering, SRM Institute of Science and Technology |
BookMark | eNp9kU1LxDAQhoMo-PkHPAU8V5Om3bTHRfwCwYuCtzBNJ2uWblKTVHD_hf_YuCsKHrxkAvM-78zwHpJd5x0ScsrZOWdMXsT8VlXByrJgnDWzYr1DDnglRCHr-nn351_xfXIY45IxIUTZHJCPuaPWJRwGu0CXKIxj8KBf6BStW9DO-5iwp3EaRx8SfUOdfKCrrLAOaQcxNyHY9LLCZDX1Y7Iru4ZkvaMwLPymRU1mQOspQELaY8ouXwJv6DhAnjogGNrbiNnvmOwZGCKefNcj8nR99Xh5W9w_3Nxdzu8LLXibCoSmr01vhJCdbqDtul73Qs_qVtRdA1Iz4ILxFmVlJDcARssOpW6YqZlsQRyRs61vPvh1wpjU0k_B5ZGqlLIUzayVbVY1W5UOPsaARmmbNuelAHZQnKmvANQ2AJUDUJsA1Dqj5R90DHYF4f1_SGyhmMVugeF3q3-oT12ToI4 |
CitedBy_id | crossref_primary_10_1007_s11760_023_02552_9 crossref_primary_10_1109_ACCESS_2023_3286935 crossref_primary_10_3390_su151511681 crossref_primary_10_1007_s11042_024_18733_8 crossref_primary_10_1109_ACCESS_2024_3481675 crossref_primary_10_1007_s10044_024_01337_1 crossref_primary_10_1016_j_ecoinf_2023_102302 crossref_primary_10_1016_j_heliyon_2024_e32707 crossref_primary_10_1007_s11042_023_17084_0 crossref_primary_10_1007_s10462_023_10517_0 crossref_primary_10_3390_agronomy13061530 crossref_primary_10_3390_ijpb14040087 |
Cites_doi | 10.3390/s21093169 10.1109/JSEN.2021.3064060 10.3390/app12020593 10.1016/j.envres.2021.111275 10.1016/j.eswa.2020.114154 10.1016/j.ecoinf.2020.101182 10.1016/j.compag.2018.07.032 10.1016/j.ijleo.2021.167753 10.1016/j.cma.2020.113609 10.1007/s11042-020-09567-1 10.3390/s20123535 10.1007/978-981-15-2414-1_66 10.1007/s41348-020-00368-0 10.1016/j.procs.2020.03.225 10.1016/j.compag.2020.105749 10.1016/j.pmpp.2020.101595 10.1016/j.compag.2018.04.023 10.1007/s41348-020-00403-0 10.1007/s11760-021-01979-2 10.32604/cmc.2022.022264 10.1109/ICAEM53552.2021.9547133 10.1109/STI47673.2019.9068096 10.1016/j.matpr.2021.03.700 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-022-01086-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 379 |
ExternalDocumentID | 10_1007_s10044_022_01086_z |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-ea8d5fdf337bc8a9bbdcd3c65935b8a7c0a13019e74f71faafc7be7c80f5079a3 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Mon Jul 14 08:13:36 EDT 2025 Tue Jul 01 01:15:18 EDT 2025 Thu Apr 24 23:07:27 EDT 2025 Fri Feb 21 02:44:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Plant leaf disease Arithmetic optimization algorithm Gray-level co-occurrence matrix Boosted support vector machine Vector-valued active contour model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-ea8d5fdf337bc8a9bbdcd3c65935b8a7c0a13019e74f71faafc7be7c80f5079a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2352-4515 |
PQID | 2772386979 |
PQPubID | 2043691 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2772386979 crossref_citationtrail_10_1007_s10044_022_01086_z crossref_primary_10_1007_s10044_022_01086_z springer_journals_10_1007_s10044_022_01086_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Vishnoi, Kumar, Kumar (CR2) 2021; 128 Sharif, Khan, Iqbal, Azam, Lali, Javed (CR3) 2018; 150 Mukhopadhyay, Paul, Pal, De (CR22) 2021; 80 CR19 Quoc, Xuan, Phuong, Trang, Chau, Duong, Dickinson (CR16) 2021; 113 Khan, Alqahtani, Khan, Alsubai, Binbusayyis, Ch, Yong, Cha (CR9) 2022; 12 Rehman, Ahmed, Khan, Tariq, Jamal, Ahmad, Hussain (CR13) 2022; 70 Panigrahi, Das, Sahoo, Moharana (CR18) 2020 CR10 Yan, Yang, Wang, Wang, Chen, Zhang (CR14) 2020; 20 Caldeira, Santiago, Teruel (CR17) 2021; 21 Hussain, Khan, Tariq, Kadry, Yar, Mostafa, Alnuaim, Ahmad (CR20) 2022; 70 Atila, Uçar, Akyol, Uçar (CR7) 2021; 61 Ganatra, Patel (CR1) 2020; 11 Agarwal, Singh, Arjaria, Sinha, Gupta (CR21) 2020; 167 Devi, Srinivasan, Bandhopadhyay (CR25) 2020; 178 Kashef (CR29) 2021; 167 Thangaraj, Anandamurugan, Kaliappan (CR26) 2021; 128 Abualigah, Diabat, Mirjalili, AbdElaziz, Gandomi (CR30) 2021; 376 CR6 Dwivedi, Dey, Chakraborty, Tiwari (CR23) 2021; 21 CR5 Shah, Khan, Sharif, Tariq, Khan, Kadry, Thinnukool (CR15) 2021; 70 CR28 CR27 Iqbal, Khan, Sharif, Shah, ur Rehman, Javed (CR8) 2018; 153 Singh, Misra (CR4) 2017; 4 Singh, Sharma, Singh (CR11) 2020; 4 Krishnamoorthy, Prasad, Kumar, Subedi, Abraha, Sathishkumar (CR12) 2021; 198 Hamdani, Septiarini, Sunyoto, Suyanto, Utaminingrum (CR24) 2021; 245 KS Devi (1086_CR25) 2020; 178 N Ganatra (1086_CR1) 2020; 11 Z Iqbal (1086_CR8) 2018; 153 Ü Atila (1086_CR7) 2021; 61 R Kashef (1086_CR29) 2021; 167 V Singh (1086_CR11) 2020; 4 N Hussain (1086_CR20) 2022; 70 1086_CR19 KP Panigrahi (1086_CR18) 2020 1086_CR10 FA Shah (1086_CR15) 2021; 70 M Sharif (1086_CR3) 2018; 150 V Singh (1086_CR4) 2017; 4 H Hamdani (1086_CR24) 2021; 245 R Thangaraj (1086_CR26) 2021; 128 MZU Rehman (1086_CR13) 2022; 70 M Agarwal (1086_CR21) 2020; 167 R Dwivedi (1086_CR23) 2021; 21 NB Quoc (1086_CR16) 2021; 113 L Abualigah (1086_CR30) 2021; 376 Q Yan (1086_CR14) 2020; 20 1086_CR27 1086_CR28 MA Khan (1086_CR9) 2022; 12 S Mukhopadhyay (1086_CR22) 2021; 80 VK Vishnoi (1086_CR2) 2021; 128 1086_CR6 N Krishnamoorthy (1086_CR12) 2021; 198 1086_CR5 RF Caldeira (1086_CR17) 2021; 21 |
References_xml | – volume: 70 start-page: 1491 year: 2021 end-page: 1507 ident: CR15 article-title: A Cascaded design of best features selection for fruit diseases recognition publication-title: Comput Mater Contin – volume: 21 start-page: 3169 issue: 9 year: 2021 ident: CR17 article-title: Identification of cotton leaf lesions using deep learning techniques publication-title: Sensors doi: 10.3390/s21093169 – volume: 21 start-page: 17573 year: 2021 end-page: 17580 ident: CR23 article-title: Grape disease detection network based on multi-task learning and attention features publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3064060 – volume: 70 start-page: 3281 year: 2022 end-page: 3294 ident: CR20 article-title: Multiclass cucumber leaf diseases recognition using best feature selection publication-title: Comput Mater Contin – volume: 12 start-page: 593 issue: 2 year: 2022 ident: CR9 article-title: Cucumber leaf diseases recognition using multi level deep entropy-ELM feature selection publication-title: Appl Sci doi: 10.3390/app12020593 – volume: 198 start-page: 111275 year: 2021 ident: CR12 article-title: Rice leaf diseases prediction using deep neural networks with transfer learning publication-title: Environ Res doi: 10.1016/j.envres.2021.111275 – volume: 167 start-page: 114154 year: 2021 ident: CR29 article-title: A boosted SVM classifier trained by incremental learning and decremental unlearning approach publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114154 – volume: 70 start-page: 1401 year: 2022 end-page: 1417 ident: CR13 article-title: Classification of citrus plant diseases using deep transfer learning publication-title: CMC Comput Mater Contin – ident: CR10 – volume: 61 start-page: 101182 year: 2021 ident: CR7 article-title: Plant leaf disease classification using EfficientNet deep learning model publication-title: Eco Inform doi: 10.1016/j.ecoinf.2020.101182 – volume: 153 start-page: 12 year: 2018 end-page: 32 ident: CR8 article-title: Automated detection and classification of citrus plant diseases using image processing techniques: a review publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.07.032 – volume: 4 start-page: 41 issue: 1 year: 2017 end-page: 49 ident: CR4 article-title: Detection of plant leaf diseases using image segmentation and soft computing techniques publication-title: Inf Process Agric – ident: CR6 – volume: 245 start-page: 167753 year: 2021 ident: CR24 article-title: Detection of oil palm leaf disease based on color histogram and supervised classifier publication-title: Optik doi: 10.1016/j.ijleo.2021.167753 – volume: 11 start-page: 388421 issue: 2 year: 2020 ident: CR1 article-title: A multiclass plant leaf disease detection using image processing and machine learning techniques publication-title: Int J Emerg Technol – ident: CR27 – volume: 376 start-page: 113609 year: 2021 ident: CR30 article-title: The arithmetic optimization algorithm publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – volume: 4 start-page: 229 year: 2020 end-page: 242 ident: CR11 article-title: A review of imaging techniques for plant disease detection publication-title: Artif Intell Agric – ident: CR19 – volume: 80 start-page: 753 issue: 1 year: 2021 end-page: 771 ident: CR22 article-title: Tea leaf disease detection using multi-objective image segmentation publication-title: Multim Tools Appl doi: 10.1007/s11042-020-09567-1 – volume: 20 start-page: 3535 issue: 12 year: 2020 ident: CR14 article-title: Apple leaf diseases recognition is based on an improved convolutional neural network publication-title: Sensors doi: 10.3390/s20123535 – start-page: 659 year: 2020 end-page: 669 ident: CR18 article-title: Maize leaf disease detection and classification using machine learning algorithms publication-title: Progress in computing, analytics, and networking doi: 10.1007/978-981-15-2414-1_66 – volume: 128 start-page: 19 issue: 1 year: 2021 end-page: 53 ident: CR2 article-title: Plant disease detection using computational intelligence and image processing publication-title: J Plant Dis Prot doi: 10.1007/s41348-020-00368-0 – volume: 167 start-page: 293 year: 2020 end-page: 301 ident: CR21 article-title: ToLeD: tomato leaf disease detection using convolution neural network publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.03.225 – volume: 178 start-page: 105749 year: 2020 ident: CR25 article-title: H2K–A robust and optimum approach for the detection and classification of groundnut leaf diseases publication-title: Comput Electron Agric doi: 10.1016/j.compag.2020.105749 – volume: 113 start-page: 101595 year: 2021 ident: CR16 article-title: Development of loop-mediated isothermal amplification assays for the detection of sugarcane white leaf disease publication-title: Physiol Mol Plant Pathol doi: 10.1016/j.pmpp.2020.101595 – volume: 150 start-page: 220 year: 2018 end-page: 234 ident: CR3 article-title: Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.04.023 – ident: CR5 – volume: 128 start-page: 73 issue: 1 year: 2021 end-page: 86 ident: CR26 article-title: Automated tomato leaf disease classification using transfer learning-based deep convolution neural network publication-title: J Plant Dis Prot doi: 10.1007/s41348-020-00403-0 – ident: CR28 – ident: 1086_CR27 doi: 10.1007/s11760-021-01979-2 – volume: 80 start-page: 753 issue: 1 year: 2021 ident: 1086_CR22 publication-title: Multim Tools Appl doi: 10.1007/s11042-020-09567-1 – ident: 1086_CR5 – ident: 1086_CR10 doi: 10.32604/cmc.2022.022264 – volume: 21 start-page: 17573 year: 2021 ident: 1086_CR23 publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3064060 – start-page: 659 volume-title: Progress in computing, analytics, and networking year: 2020 ident: 1086_CR18 doi: 10.1007/978-981-15-2414-1_66 – volume: 70 start-page: 3281 year: 2022 ident: 1086_CR20 publication-title: Comput Mater Contin – volume: 4 start-page: 41 issue: 1 year: 2017 ident: 1086_CR4 publication-title: Inf Process Agric – volume: 70 start-page: 1401 year: 2022 ident: 1086_CR13 publication-title: CMC Comput Mater Contin – volume: 178 start-page: 105749 year: 2020 ident: 1086_CR25 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2020.105749 – volume: 21 start-page: 3169 issue: 9 year: 2021 ident: 1086_CR17 publication-title: Sensors doi: 10.3390/s21093169 – volume: 128 start-page: 73 issue: 1 year: 2021 ident: 1086_CR26 publication-title: J Plant Dis Prot doi: 10.1007/s41348-020-00403-0 – volume: 198 start-page: 111275 year: 2021 ident: 1086_CR12 publication-title: Environ Res doi: 10.1016/j.envres.2021.111275 – volume: 245 start-page: 167753 year: 2021 ident: 1086_CR24 publication-title: Optik doi: 10.1016/j.ijleo.2021.167753 – volume: 167 start-page: 293 year: 2020 ident: 1086_CR21 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.03.225 – ident: 1086_CR19 doi: 10.1109/ICAEM53552.2021.9547133 – volume: 153 start-page: 12 year: 2018 ident: 1086_CR8 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.07.032 – volume: 113 start-page: 101595 year: 2021 ident: 1086_CR16 publication-title: Physiol Mol Plant Pathol doi: 10.1016/j.pmpp.2020.101595 – volume: 376 start-page: 113609 year: 2021 ident: 1086_CR30 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – volume: 70 start-page: 1491 year: 2021 ident: 1086_CR15 publication-title: Comput Mater Contin – volume: 61 start-page: 101182 year: 2021 ident: 1086_CR7 publication-title: Eco Inform doi: 10.1016/j.ecoinf.2020.101182 – volume: 128 start-page: 19 issue: 1 year: 2021 ident: 1086_CR2 publication-title: J Plant Dis Prot doi: 10.1007/s41348-020-00368-0 – volume: 150 start-page: 220 year: 2018 ident: 1086_CR3 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.04.023 – ident: 1086_CR6 doi: 10.1109/STI47673.2019.9068096 – volume: 4 start-page: 229 year: 2020 ident: 1086_CR11 publication-title: Artif Intell Agric – volume: 167 start-page: 114154 year: 2021 ident: 1086_CR29 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114154 – volume: 20 start-page: 3535 issue: 12 year: 2020 ident: 1086_CR14 publication-title: Sensors doi: 10.3390/s20123535 – volume: 12 start-page: 593 issue: 2 year: 2022 ident: 1086_CR9 publication-title: Appl Sci doi: 10.3390/app12020593 – ident: 1086_CR28 doi: 10.1016/j.matpr.2021.03.700 – volume: 11 start-page: 388421 issue: 2 year: 2020 ident: 1086_CR1 publication-title: Int J Emerg Technol |
SSID | ssj0033328 |
Score | 2.4318395 |
Snippet | Leaf disease is considered a serious threat which affects agricultural productivity and ultimately reduces the GDP of the Indian economy. The precise detection... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 367 |
SubjectTerms | Algorithms Arithmetic Computer Science Disease Feature extraction Image segmentation Optimization Optimization algorithms Pattern Recognition Plant diseases Short Paper Support vector machines |
Title | An intelligent approach using boosted support vector machine based arithmetic optimization algorithm for accurate detection of plant leaf disease |
URI | https://link.springer.com/article/10.1007/s10044-022-01086-z https://www.proquest.com/docview/2772386979 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxELVouHApn1VTKJpDb7DSbmyvd48RgiIq9dRIcFr5k1ZKNhHZcMi_6D9m7NgJoFKJq71rrXbsmWd75j1CvmEMqEqHuxPJpMkY82qAVpRZXXGlS6e4MIHt82d5PWI3t_w2FoXNU7Z7upIMnvpZsVvOWOazz3MvD5QtP5Btjnt3P69Hg2Hyv5TSoKiKQIBmgrMilsr8e4yX4WiDMV9di4Zoc7VHPkaYCMOVXffJlm0PyG6EjBAX5BybkipDajskf4ct_FkTbXaQWMPBp7jfA6Jqf8IJ88XMQ294DMf2MAlJlRZ8VDOAG-ju98TXN8IUfcokFmuCHN9PQxcg1gWp9cIzTYCxXcjoamHqYDZGY8HYSgfx9ueIjK4uf11cZ1F4IdO4IrvMyspwZxylQulK1koZbagueU25qqTQucTQV6BRmROFk9JpoazQVe4QXtaSfiK9dtrazwQKV-CeiaJf1JoZLpS0ivFceV6-AX5mnxTp_zc6spJ7cYxxs-FT9jZr0GZNsFmz7JOz9TuzFSfHf58-SWZt4vqcNwPhxdbKWtR9cp5Mvel-e7Qv73v8mOx4ffpVmvcJ6XUPC_sVUUynTsn28Pvdj8vTMHmfAK777qs |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BeoAL5SkCBebADVzZ2V2vfYxQS6Clp0YqJ2ufBZE4EXE45F_wj5l1dhuoAKlX73q11uzOfOOZ-QbgNdmAqvTknSiubMZ56AboZJnVldCm9FpI27N9npWTKf94IS5iUdgqZbunkGSvqX8rdss5z0L2eR7aA2Wb27DHyQcXA9gbv_98cpQ0MGOs76lKUIBlUvAiFsv8fZU_DdIOZV4LjPb25ngfpmmn2zSTb4frTh-azTUSx5t-yn24FwEojrcn5gHccu1D2I9gFONVX9Gj1O8hPXsEP8ctfr2i8Oww8ZFjSJ6_RMLr4d8prtbLAOrxRx8QwHmfrukw2EuL5Jp3X-ahchIXpK3msQwU1exy0Q8hoWhUxqwDhwVa1_W5Yi0uPC5ndAxw5pTHGFd6DNPjo_N3kyy2dMgM3fUuc6qywlvPmNSmUrXW1lhmSlEzoSslTa7IqBZ0XLiXhVfKG6mdNFXuCbjWij2BQbto3VPAwhfkjTHSuMZwK6RWTnOR68D4N6JtDqFIcm1M5DsPbTdmzY6pOYihITE0vRiazRDeXL2z3LJ9_Hf2QTouTbz5q2YkQxu3spb1EN4m6e-G_73as5tNfwV3JuefTpvTD2cnz-HuiLDXNpn8AAbd97V7QVip0y_j1fgFvNMNRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUKSIhLgRbULV9z6K1EJGs7To4rYAUUIQ5diVvkT4q0m111sz3sv-g_Zux1WKgoElfbsaK8eObZnnlDyDf0AUXucHcimTQJY74aoBV5UhZc6dwpLkxQ-7zJLwbs6o7fPcviD9Hu7ZXkIqfBqzTVzcnEuJNniW8pY4mPRE99qaBkvkLW0BxnPqhr0O21tphSGqqrIimgieAsi2kzr8_x0jUt-eY_V6TB8_S3yMdIGaG3wHibfLD1J7IZ6SPExTnFprZCQ9v2mfzt1fDwJLrZQKsgDj7c_R6QYfvTTpjOJp6Gw59whA-jEGBpwXs4A7iZbn6NfK4jjNG-jGLiJsjh_Th0AfJekFrPvOoEGNuE6K4axg4mQwQOhlY6iDdBO2TQP_95epHEIgyJxtXZJFYWhjvjKBVKF7JUymhDdc5LylUhhU4lusEMAWZOZE5Kp4WyQhepQ6pZSrpLVutxbb8QyFyG-yeKNlJrZrhQ0irGU-U1-rr4mh2Std-_0lGh3BfKGFZLbWWPWYWYVQGzat4h35-emSz0Od4cvd_CWsW1Oq26whdey0tRdshxC_Wy-_-zfX3f8COyfnvWr64vb37skQ1ftn4R_b1PVpvfM3uA5KZRh-H_fQQoEfRG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+approach+using+boosted+support+vector+machine+based+arithmetic+optimization+algorithm+for+accurate+detection+of+plant+leaf+disease&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Prabu%2C+M.&rft.au=Chelliah%2C+Balika+J.&rft.date=2023-02-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=26&rft.issue=1&rft.spage=367&rft.epage=379&rft_id=info:doi/10.1007%2Fs10044-022-01086-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_022_01086_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |