An intelligent approach using boosted support vector machine based arithmetic optimization algorithm for accurate detection of plant leaf disease

Leaf disease is considered a serious threat which affects agricultural productivity and ultimately reduces the GDP of the Indian economy. The precise detection and timely analysis of foliar diseases can mitigate the spread of the disease to other parties. However, certain complications such as low p...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 26; no. 1; pp. 367 - 379
Main Authors Prabu, M., Chelliah, Balika J.
Format Journal Article
LanguageEnglish
Published London Springer London 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-022-01086-z

Cover

Loading…
Abstract Leaf disease is considered a serious threat which affects agricultural productivity and ultimately reduces the GDP of the Indian economy. The precise detection and timely analysis of foliar diseases can mitigate the spread of the disease to other parties. However, certain complications such as low precision, high calculation cost, and low recognition speed are raised when detecting leaf diseases. Therefore, to overcome these limitations, we proposed a novel technique called Boosted support vector machine-based Arithmetic optimization algorithm (BSVM-AOA) for accurate detection of plant leaf disease. In this case, image segmentation is done using the vector value active contour model, and feature extraction is done using the greyscale co-occurrence matrix. Furthermore, the performance of the proposed approach is determined by performance parameters such as accuracy, accuracy, recall, specificity, and f-rating. Finally, the comparative analysis is conducted between the different existing techniques and the proposed technique. The comparative results showed that the proposed BSVM-AOA approach is about 98.6% more accurate than other existing techniques.
AbstractList Leaf disease is considered a serious threat which affects agricultural productivity and ultimately reduces the GDP of the Indian economy. The precise detection and timely analysis of foliar diseases can mitigate the spread of the disease to other parties. However, certain complications such as low precision, high calculation cost, and low recognition speed are raised when detecting leaf diseases. Therefore, to overcome these limitations, we proposed a novel technique called Boosted support vector machine-based Arithmetic optimization algorithm (BSVM-AOA) for accurate detection of plant leaf disease. In this case, image segmentation is done using the vector value active contour model, and feature extraction is done using the greyscale co-occurrence matrix. Furthermore, the performance of the proposed approach is determined by performance parameters such as accuracy, accuracy, recall, specificity, and f-rating. Finally, the comparative analysis is conducted between the different existing techniques and the proposed technique. The comparative results showed that the proposed BSVM-AOA approach is about 98.6% more accurate than other existing techniques.
Author Prabu, M.
Chelliah, Balika J.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0002-2352-4515
  surname: Prabu
  fullname: Prabu, M.
  email: manavalanprabu@gmail.com
  organization: Department of Computer Science and Engineering, SRM Institute of Science and Technology
– sequence: 2
  givenname: Balika J.
  surname: Chelliah
  fullname: Chelliah, Balika J.
  organization: Department of Computer Science and Engineering, SRM Institute of Science and Technology
BookMark eNp9kU1LxDAQhoMo-PkHPAU8V5Om3bTHRfwCwYuCtzBNJ2uWblKTVHD_hf_YuCsKHrxkAvM-78zwHpJd5x0ScsrZOWdMXsT8VlXByrJgnDWzYr1DDnglRCHr-nn351_xfXIY45IxIUTZHJCPuaPWJRwGu0CXKIxj8KBf6BStW9DO-5iwp3EaRx8SfUOdfKCrrLAOaQcxNyHY9LLCZDX1Y7Iru4ZkvaMwLPymRU1mQOspQELaY8ouXwJv6DhAnjogGNrbiNnvmOwZGCKefNcj8nR99Xh5W9w_3Nxdzu8LLXibCoSmr01vhJCdbqDtul73Qs_qVtRdA1Iz4ILxFmVlJDcARssOpW6YqZlsQRyRs61vPvh1wpjU0k_B5ZGqlLIUzayVbVY1W5UOPsaARmmbNuelAHZQnKmvANQ2AJUDUJsA1Dqj5R90DHYF4f1_SGyhmMVugeF3q3-oT12ToI4
CitedBy_id crossref_primary_10_1007_s11760_023_02552_9
crossref_primary_10_1109_ACCESS_2023_3286935
crossref_primary_10_3390_su151511681
crossref_primary_10_1007_s11042_024_18733_8
crossref_primary_10_1109_ACCESS_2024_3481675
crossref_primary_10_1007_s10044_024_01337_1
crossref_primary_10_1016_j_ecoinf_2023_102302
crossref_primary_10_1016_j_heliyon_2024_e32707
crossref_primary_10_1007_s11042_023_17084_0
crossref_primary_10_1007_s10462_023_10517_0
crossref_primary_10_3390_agronomy13061530
crossref_primary_10_3390_ijpb14040087
Cites_doi 10.3390/s21093169
10.1109/JSEN.2021.3064060
10.3390/app12020593
10.1016/j.envres.2021.111275
10.1016/j.eswa.2020.114154
10.1016/j.ecoinf.2020.101182
10.1016/j.compag.2018.07.032
10.1016/j.ijleo.2021.167753
10.1016/j.cma.2020.113609
10.1007/s11042-020-09567-1
10.3390/s20123535
10.1007/978-981-15-2414-1_66
10.1007/s41348-020-00368-0
10.1016/j.procs.2020.03.225
10.1016/j.compag.2020.105749
10.1016/j.pmpp.2020.101595
10.1016/j.compag.2018.04.023
10.1007/s41348-020-00403-0
10.1007/s11760-021-01979-2
10.32604/cmc.2022.022264
10.1109/ICAEM53552.2021.9547133
10.1109/STI47673.2019.9068096
10.1016/j.matpr.2021.03.700
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s10044-022-01086-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 379
ExternalDocumentID 10_1007_s10044_022_01086_z
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-ea8d5fdf337bc8a9bbdcd3c65935b8a7c0a13019e74f71faafc7be7c80f5079a3
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Mon Jul 14 08:13:36 EDT 2025
Tue Jul 01 01:15:18 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
Fri Feb 21 02:44:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Plant leaf disease
Arithmetic optimization algorithm
Gray-level co-occurrence matrix
Boosted support vector machine
Vector-valued active contour model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ea8d5fdf337bc8a9bbdcd3c65935b8a7c0a13019e74f71faafc7be7c80f5079a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2352-4515
PQID 2772386979
PQPubID 2043691
PageCount 13
ParticipantIDs proquest_journals_2772386979
crossref_citationtrail_10_1007_s10044_022_01086_z
crossref_primary_10_1007_s10044_022_01086_z
springer_journals_10_1007_s10044_022_01086_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Vishnoi, Kumar, Kumar (CR2) 2021; 128
Sharif, Khan, Iqbal, Azam, Lali, Javed (CR3) 2018; 150
Mukhopadhyay, Paul, Pal, De (CR22) 2021; 80
CR19
Quoc, Xuan, Phuong, Trang, Chau, Duong, Dickinson (CR16) 2021; 113
Khan, Alqahtani, Khan, Alsubai, Binbusayyis, Ch, Yong, Cha (CR9) 2022; 12
Rehman, Ahmed, Khan, Tariq, Jamal, Ahmad, Hussain (CR13) 2022; 70
Panigrahi, Das, Sahoo, Moharana (CR18) 2020
CR10
Yan, Yang, Wang, Wang, Chen, Zhang (CR14) 2020; 20
Caldeira, Santiago, Teruel (CR17) 2021; 21
Hussain, Khan, Tariq, Kadry, Yar, Mostafa, Alnuaim, Ahmad (CR20) 2022; 70
Atila, Uçar, Akyol, Uçar (CR7) 2021; 61
Ganatra, Patel (CR1) 2020; 11
Agarwal, Singh, Arjaria, Sinha, Gupta (CR21) 2020; 167
Devi, Srinivasan, Bandhopadhyay (CR25) 2020; 178
Kashef (CR29) 2021; 167
Thangaraj, Anandamurugan, Kaliappan (CR26) 2021; 128
Abualigah, Diabat, Mirjalili, AbdElaziz, Gandomi (CR30) 2021; 376
CR6
Dwivedi, Dey, Chakraborty, Tiwari (CR23) 2021; 21
CR5
Shah, Khan, Sharif, Tariq, Khan, Kadry, Thinnukool (CR15) 2021; 70
CR28
CR27
Iqbal, Khan, Sharif, Shah, ur Rehman, Javed (CR8) 2018; 153
Singh, Misra (CR4) 2017; 4
Singh, Sharma, Singh (CR11) 2020; 4
Krishnamoorthy, Prasad, Kumar, Subedi, Abraha, Sathishkumar (CR12) 2021; 198
Hamdani, Septiarini, Sunyoto, Suyanto, Utaminingrum (CR24) 2021; 245
KS Devi (1086_CR25) 2020; 178
N Ganatra (1086_CR1) 2020; 11
Z Iqbal (1086_CR8) 2018; 153
Ü Atila (1086_CR7) 2021; 61
R Kashef (1086_CR29) 2021; 167
V Singh (1086_CR11) 2020; 4
N Hussain (1086_CR20) 2022; 70
1086_CR19
KP Panigrahi (1086_CR18) 2020
1086_CR10
FA Shah (1086_CR15) 2021; 70
M Sharif (1086_CR3) 2018; 150
V Singh (1086_CR4) 2017; 4
H Hamdani (1086_CR24) 2021; 245
R Thangaraj (1086_CR26) 2021; 128
MZU Rehman (1086_CR13) 2022; 70
M Agarwal (1086_CR21) 2020; 167
R Dwivedi (1086_CR23) 2021; 21
NB Quoc (1086_CR16) 2021; 113
L Abualigah (1086_CR30) 2021; 376
Q Yan (1086_CR14) 2020; 20
1086_CR27
1086_CR28
MA Khan (1086_CR9) 2022; 12
S Mukhopadhyay (1086_CR22) 2021; 80
VK Vishnoi (1086_CR2) 2021; 128
1086_CR6
N Krishnamoorthy (1086_CR12) 2021; 198
1086_CR5
RF Caldeira (1086_CR17) 2021; 21
References_xml – volume: 70
  start-page: 1491
  year: 2021
  end-page: 1507
  ident: CR15
  article-title: A Cascaded design of best features selection for fruit diseases recognition
  publication-title: Comput Mater Contin
– volume: 21
  start-page: 3169
  issue: 9
  year: 2021
  ident: CR17
  article-title: Identification of cotton leaf lesions using deep learning techniques
  publication-title: Sensors
  doi: 10.3390/s21093169
– volume: 21
  start-page: 17573
  year: 2021
  end-page: 17580
  ident: CR23
  article-title: Grape disease detection network based on multi-task learning and attention features
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3064060
– volume: 70
  start-page: 3281
  year: 2022
  end-page: 3294
  ident: CR20
  article-title: Multiclass cucumber leaf diseases recognition using best feature selection
  publication-title: Comput Mater Contin
– volume: 12
  start-page: 593
  issue: 2
  year: 2022
  ident: CR9
  article-title: Cucumber leaf diseases recognition using multi level deep entropy-ELM feature selection
  publication-title: Appl Sci
  doi: 10.3390/app12020593
– volume: 198
  start-page: 111275
  year: 2021
  ident: CR12
  article-title: Rice leaf diseases prediction using deep neural networks with transfer learning
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.111275
– volume: 167
  start-page: 114154
  year: 2021
  ident: CR29
  article-title: A boosted SVM classifier trained by incremental learning and decremental unlearning approach
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114154
– volume: 70
  start-page: 1401
  year: 2022
  end-page: 1417
  ident: CR13
  article-title: Classification of citrus plant diseases using deep transfer learning
  publication-title: CMC Comput Mater Contin
– ident: CR10
– volume: 61
  start-page: 101182
  year: 2021
  ident: CR7
  article-title: Plant leaf disease classification using EfficientNet deep learning model
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2020.101182
– volume: 153
  start-page: 12
  year: 2018
  end-page: 32
  ident: CR8
  article-title: Automated detection and classification of citrus plant diseases using image processing techniques: a review
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.07.032
– volume: 4
  start-page: 41
  issue: 1
  year: 2017
  end-page: 49
  ident: CR4
  article-title: Detection of plant leaf diseases using image segmentation and soft computing techniques
  publication-title: Inf Process Agric
– ident: CR6
– volume: 245
  start-page: 167753
  year: 2021
  ident: CR24
  article-title: Detection of oil palm leaf disease based on color histogram and supervised classifier
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.167753
– volume: 11
  start-page: 388421
  issue: 2
  year: 2020
  ident: CR1
  article-title: A multiclass plant leaf disease detection using image processing and machine learning techniques
  publication-title: Int J Emerg Technol
– ident: CR27
– volume: 376
  start-page: 113609
  year: 2021
  ident: CR30
  article-title: The arithmetic optimization algorithm
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– volume: 4
  start-page: 229
  year: 2020
  end-page: 242
  ident: CR11
  article-title: A review of imaging techniques for plant disease detection
  publication-title: Artif Intell Agric
– ident: CR19
– volume: 80
  start-page: 753
  issue: 1
  year: 2021
  end-page: 771
  ident: CR22
  article-title: Tea leaf disease detection using multi-objective image segmentation
  publication-title: Multim Tools Appl
  doi: 10.1007/s11042-020-09567-1
– volume: 20
  start-page: 3535
  issue: 12
  year: 2020
  ident: CR14
  article-title: Apple leaf diseases recognition is based on an improved convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s20123535
– start-page: 659
  year: 2020
  end-page: 669
  ident: CR18
  article-title: Maize leaf disease detection and classification using machine learning algorithms
  publication-title: Progress in computing, analytics, and networking
  doi: 10.1007/978-981-15-2414-1_66
– volume: 128
  start-page: 19
  issue: 1
  year: 2021
  end-page: 53
  ident: CR2
  article-title: Plant disease detection using computational intelligence and image processing
  publication-title: J Plant Dis Prot
  doi: 10.1007/s41348-020-00368-0
– volume: 167
  start-page: 293
  year: 2020
  end-page: 301
  ident: CR21
  article-title: ToLeD: tomato leaf disease detection using convolution neural network
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.03.225
– volume: 178
  start-page: 105749
  year: 2020
  ident: CR25
  article-title: H2K–A robust and optimum approach for the detection and classification of groundnut leaf diseases
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2020.105749
– volume: 113
  start-page: 101595
  year: 2021
  ident: CR16
  article-title: Development of loop-mediated isothermal amplification assays for the detection of sugarcane white leaf disease
  publication-title: Physiol Mol Plant Pathol
  doi: 10.1016/j.pmpp.2020.101595
– volume: 150
  start-page: 220
  year: 2018
  end-page: 234
  ident: CR3
  article-title: Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.04.023
– ident: CR5
– volume: 128
  start-page: 73
  issue: 1
  year: 2021
  end-page: 86
  ident: CR26
  article-title: Automated tomato leaf disease classification using transfer learning-based deep convolution neural network
  publication-title: J Plant Dis Prot
  doi: 10.1007/s41348-020-00403-0
– ident: CR28
– ident: 1086_CR27
  doi: 10.1007/s11760-021-01979-2
– volume: 80
  start-page: 753
  issue: 1
  year: 2021
  ident: 1086_CR22
  publication-title: Multim Tools Appl
  doi: 10.1007/s11042-020-09567-1
– ident: 1086_CR5
– ident: 1086_CR10
  doi: 10.32604/cmc.2022.022264
– volume: 21
  start-page: 17573
  year: 2021
  ident: 1086_CR23
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3064060
– start-page: 659
  volume-title: Progress in computing, analytics, and networking
  year: 2020
  ident: 1086_CR18
  doi: 10.1007/978-981-15-2414-1_66
– volume: 70
  start-page: 3281
  year: 2022
  ident: 1086_CR20
  publication-title: Comput Mater Contin
– volume: 4
  start-page: 41
  issue: 1
  year: 2017
  ident: 1086_CR4
  publication-title: Inf Process Agric
– volume: 70
  start-page: 1401
  year: 2022
  ident: 1086_CR13
  publication-title: CMC Comput Mater Contin
– volume: 178
  start-page: 105749
  year: 2020
  ident: 1086_CR25
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2020.105749
– volume: 21
  start-page: 3169
  issue: 9
  year: 2021
  ident: 1086_CR17
  publication-title: Sensors
  doi: 10.3390/s21093169
– volume: 128
  start-page: 73
  issue: 1
  year: 2021
  ident: 1086_CR26
  publication-title: J Plant Dis Prot
  doi: 10.1007/s41348-020-00403-0
– volume: 198
  start-page: 111275
  year: 2021
  ident: 1086_CR12
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.111275
– volume: 245
  start-page: 167753
  year: 2021
  ident: 1086_CR24
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.167753
– volume: 167
  start-page: 293
  year: 2020
  ident: 1086_CR21
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.03.225
– ident: 1086_CR19
  doi: 10.1109/ICAEM53552.2021.9547133
– volume: 153
  start-page: 12
  year: 2018
  ident: 1086_CR8
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.07.032
– volume: 113
  start-page: 101595
  year: 2021
  ident: 1086_CR16
  publication-title: Physiol Mol Plant Pathol
  doi: 10.1016/j.pmpp.2020.101595
– volume: 376
  start-page: 113609
  year: 2021
  ident: 1086_CR30
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– volume: 70
  start-page: 1491
  year: 2021
  ident: 1086_CR15
  publication-title: Comput Mater Contin
– volume: 61
  start-page: 101182
  year: 2021
  ident: 1086_CR7
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2020.101182
– volume: 128
  start-page: 19
  issue: 1
  year: 2021
  ident: 1086_CR2
  publication-title: J Plant Dis Prot
  doi: 10.1007/s41348-020-00368-0
– volume: 150
  start-page: 220
  year: 2018
  ident: 1086_CR3
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.04.023
– ident: 1086_CR6
  doi: 10.1109/STI47673.2019.9068096
– volume: 4
  start-page: 229
  year: 2020
  ident: 1086_CR11
  publication-title: Artif Intell Agric
– volume: 167
  start-page: 114154
  year: 2021
  ident: 1086_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114154
– volume: 20
  start-page: 3535
  issue: 12
  year: 2020
  ident: 1086_CR14
  publication-title: Sensors
  doi: 10.3390/s20123535
– volume: 12
  start-page: 593
  issue: 2
  year: 2022
  ident: 1086_CR9
  publication-title: Appl Sci
  doi: 10.3390/app12020593
– ident: 1086_CR28
  doi: 10.1016/j.matpr.2021.03.700
– volume: 11
  start-page: 388421
  issue: 2
  year: 2020
  ident: 1086_CR1
  publication-title: Int J Emerg Technol
SSID ssj0033328
Score 2.4318395
Snippet Leaf disease is considered a serious threat which affects agricultural productivity and ultimately reduces the GDP of the Indian economy. The precise detection...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 367
SubjectTerms Algorithms
Arithmetic
Computer Science
Disease
Feature extraction
Image segmentation
Optimization
Optimization algorithms
Pattern Recognition
Plant diseases
Short Paper
Support vector machines
Title An intelligent approach using boosted support vector machine based arithmetic optimization algorithm for accurate detection of plant leaf disease
URI https://link.springer.com/article/10.1007/s10044-022-01086-z
https://www.proquest.com/docview/2772386979
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxELVouHApn1VTKJpDb7DSbmyvd48RgiIq9dRIcFr5k1ZKNhHZcMi_6D9m7NgJoFKJq71rrXbsmWd75j1CvmEMqEqHuxPJpMkY82qAVpRZXXGlS6e4MIHt82d5PWI3t_w2FoXNU7Z7upIMnvpZsVvOWOazz3MvD5QtP5Btjnt3P69Hg2Hyv5TSoKiKQIBmgrMilsr8e4yX4WiDMV9di4Zoc7VHPkaYCMOVXffJlm0PyG6EjBAX5BybkipDajskf4ct_FkTbXaQWMPBp7jfA6Jqf8IJ88XMQ294DMf2MAlJlRZ8VDOAG-ju98TXN8IUfcokFmuCHN9PQxcg1gWp9cIzTYCxXcjoamHqYDZGY8HYSgfx9ueIjK4uf11cZ1F4IdO4IrvMyspwZxylQulK1koZbagueU25qqTQucTQV6BRmROFk9JpoazQVe4QXtaSfiK9dtrazwQKV-CeiaJf1JoZLpS0ivFceV6-AX5mnxTp_zc6spJ7cYxxs-FT9jZr0GZNsFmz7JOz9TuzFSfHf58-SWZt4vqcNwPhxdbKWtR9cp5Mvel-e7Qv73v8mOx4ffpVmvcJ6XUPC_sVUUynTsn28Pvdj8vTMHmfAK777qs
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BeoAL5SkCBebADVzZ2V2vfYxQS6Clp0YqJ2ufBZE4EXE45F_wj5l1dhuoAKlX73q11uzOfOOZ-QbgNdmAqvTknSiubMZ56AboZJnVldCm9FpI27N9npWTKf94IS5iUdgqZbunkGSvqX8rdss5z0L2eR7aA2Wb27DHyQcXA9gbv_98cpQ0MGOs76lKUIBlUvAiFsv8fZU_DdIOZV4LjPb25ngfpmmn2zSTb4frTh-azTUSx5t-yn24FwEojrcn5gHccu1D2I9gFONVX9Gj1O8hPXsEP8ctfr2i8Oww8ZFjSJ6_RMLr4d8prtbLAOrxRx8QwHmfrukw2EuL5Jp3X-ahchIXpK3msQwU1exy0Q8hoWhUxqwDhwVa1_W5Yi0uPC5ndAxw5pTHGFd6DNPjo_N3kyy2dMgM3fUuc6qywlvPmNSmUrXW1lhmSlEzoSslTa7IqBZ0XLiXhVfKG6mdNFXuCbjWij2BQbto3VPAwhfkjTHSuMZwK6RWTnOR68D4N6JtDqFIcm1M5DsPbTdmzY6pOYihITE0vRiazRDeXL2z3LJ9_Hf2QTouTbz5q2YkQxu3spb1EN4m6e-G_73as5tNfwV3JuefTpvTD2cnz-HuiLDXNpn8AAbd97V7QVip0y_j1fgFvNMNRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUKSIhLgRbULV9z6K1EJGs7To4rYAUUIQ5diVvkT4q0m111sz3sv-g_Zux1WKgoElfbsaK8eObZnnlDyDf0AUXucHcimTQJY74aoBV5UhZc6dwpLkxQ-7zJLwbs6o7fPcviD9Hu7ZXkIqfBqzTVzcnEuJNniW8pY4mPRE99qaBkvkLW0BxnPqhr0O21tphSGqqrIimgieAsi2kzr8_x0jUt-eY_V6TB8_S3yMdIGaG3wHibfLD1J7IZ6SPExTnFprZCQ9v2mfzt1fDwJLrZQKsgDj7c_R6QYfvTTpjOJp6Gw59whA-jEGBpwXs4A7iZbn6NfK4jjNG-jGLiJsjh_Th0AfJekFrPvOoEGNuE6K4axg4mQwQOhlY6iDdBO2TQP_95epHEIgyJxtXZJFYWhjvjKBVKF7JUymhDdc5LylUhhU4lusEMAWZOZE5Kp4WyQhepQ6pZSrpLVutxbb8QyFyG-yeKNlJrZrhQ0irGU-U1-rr4mh2Std-_0lGh3BfKGFZLbWWPWYWYVQGzat4h35-emSz0Od4cvd_CWsW1Oq26whdey0tRdshxC_Wy-_-zfX3f8COyfnvWr64vb37skQ1ftn4R_b1PVpvfM3uA5KZRh-H_fQQoEfRG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+approach+using+boosted+support+vector+machine+based+arithmetic+optimization+algorithm+for+accurate+detection+of+plant+leaf+disease&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Prabu%2C+M.&rft.au=Chelliah%2C+Balika+J.&rft.date=2023-02-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=26&rft.issue=1&rft.spage=367&rft.epage=379&rft_id=info:doi/10.1007%2Fs10044-022-01086-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_022_01086_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon