Estimating the Maximum Dry Density of Soil via Least Square Support Vector Regression Individual and Hybrid Forms

Maximum dry density (MDD) holds pivotal importance in geotechnical engineering as it signifies the ideal soil mass per unit volume given particular circumstances. It is important in determining the stability and effectiveness of various earthworks, such as embankments and foundations. MDD is subject...

Full description

Saved in:
Bibliographic Details
Published inIndian Geotechnical Journal Vol. 55; no. 2; pp. 866 - 878
Main Authors Zhao, Qiuduo, Liu, Ke, Xiong, Chen, Deng, Xing, Yang, Saifei
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0971-9555
2277-3347
DOI10.1007/s40098-024-00952-3

Cover

Loading…
Abstract Maximum dry density (MDD) holds pivotal importance in geotechnical engineering as it signifies the ideal soil mass per unit volume given particular circumstances. It is important in determining the stability and effectiveness of various earthworks, such as embankments and foundations. MDD is subject to variation based on factors including soil type, distribution of grain sizes, level of compaction, and moisture content. Typically, increasing compaction efforts result in higher MDD values, leading to a denser structure, while elevated moisture levels tend to decrease it. The precise estimation of MDD is indispensable for engineers to make well-founded decisions, ensuring the longevity and safety of civil engineering structures over time. This paper introduces a novel method for predicting maximum dry density ( MDD ) by utilizing the least square support vector regression (LSSVR) algorithm. The approach involves utilizing the LSSVR technique to develop precise models that connect the MDD of stabilized soil with several intrinsic soil characteristics such as particle size distribution, plasticity, linear shrinkage, and the composition and amount of stabilizing agents used. In this study, a comprehensive dataset comprising 187 samples of various soil types sourced from previously published stabilization test results is utilized to formulate and evaluate the predictive models. Furthermore, the accuracy of the LSSVR model in this research is augmented through the incorporation of meta-heuristic techniques, specifically Leader Harris Hawk's optimization (LHHO) and generalized normal distribution optimization (GNDO). The R 2 values for the training, validation, and testing data for the LSLH model were 99.55%, 98.51%, and 99.32%, respectively. Additionally, LSLH had the most suitable RMSE of 15.72  kN / m 3 . Generally, the LSLH model demonstrated acceptable predictive and generalization capabilities compared to the LSGN model developed in this study.
AbstractList Maximum dry density (MDD) holds pivotal importance in geotechnical engineering as it signifies the ideal soil mass per unit volume given particular circumstances. It is important in determining the stability and effectiveness of various earthworks, such as embankments and foundations. MDD is subject to variation based on factors including soil type, distribution of grain sizes, level of compaction, and moisture content. Typically, increasing compaction efforts result in higher MDD values, leading to a denser structure, while elevated moisture levels tend to decrease it. The precise estimation of MDD is indispensable for engineers to make well-founded decisions, ensuring the longevity and safety of civil engineering structures over time. This paper introduces a novel method for predicting maximum dry density ( MDD ) by utilizing the least square support vector regression (LSSVR) algorithm. The approach involves utilizing the LSSVR technique to develop precise models that connect the MDD of stabilized soil with several intrinsic soil characteristics such as particle size distribution, plasticity, linear shrinkage, and the composition and amount of stabilizing agents used. In this study, a comprehensive dataset comprising 187 samples of various soil types sourced from previously published stabilization test results is utilized to formulate and evaluate the predictive models. Furthermore, the accuracy of the LSSVR model in this research is augmented through the incorporation of meta-heuristic techniques, specifically Leader Harris Hawk's optimization (LHHO) and generalized normal distribution optimization (GNDO). The R 2 values for the training, validation, and testing data for the LSLH model were 99.55%, 98.51%, and 99.32%, respectively. Additionally, LSLH had the most suitable RMSE of 15.72  kN / m 3 . Generally, the LSLH model demonstrated acceptable predictive and generalization capabilities compared to the LSGN model developed in this study.
Maximum dry density (MDD) holds pivotal importance in geotechnical engineering as it signifies the ideal soil mass per unit volume given particular circumstances. It is important in determining the stability and effectiveness of various earthworks, such as embankments and foundations. MDD is subject to variation based on factors including soil type, distribution of grain sizes, level of compaction, and moisture content. Typically, increasing compaction efforts result in higher MDD values, leading to a denser structure, while elevated moisture levels tend to decrease it. The precise estimation of MDD is indispensable for engineers to make well-founded decisions, ensuring the longevity and safety of civil engineering structures over time. This paper introduces a novel method for predicting maximum dry density (MDD) by utilizing the least square support vector regression (LSSVR) algorithm. The approach involves utilizing the LSSVR technique to develop precise models that connect the MDD of stabilized soil with several intrinsic soil characteristics such as particle size distribution, plasticity, linear shrinkage, and the composition and amount of stabilizing agents used. In this study, a comprehensive dataset comprising 187 samples of various soil types sourced from previously published stabilization test results is utilized to formulate and evaluate the predictive models. Furthermore, the accuracy of the LSSVR model in this research is augmented through the incorporation of meta-heuristic techniques, specifically Leader Harris Hawk's optimization (LHHO) and generalized normal distribution optimization (GNDO). The R2 values for the training, validation, and testing data for the LSLH model were 99.55%, 98.51%, and 99.32%, respectively. Additionally, LSLH had the most suitable RMSE of 15.72 kN/m3. Generally, the LSLH model demonstrated acceptable predictive and generalization capabilities compared to the LSGN model developed in this study.
Author Yang, Saifei
Liu, Ke
Xiong, Chen
Deng, Xing
Zhao, Qiuduo
Author_xml – sequence: 1
  givenname: Qiuduo
  surname: Zhao
  fullname: Zhao, Qiuduo
  email: duoduo666z@163.com
  organization: College of Electronical and Information Engineering, Heilongjiang University of Science and Technology
– sequence: 2
  givenname: Ke
  surname: Liu
  fullname: Liu, Ke
  organization: College of Electronical and Information Engineering, Heilongjiang University of Science and Technology
– sequence: 3
  givenname: Chen
  surname: Xiong
  fullname: Xiong, Chen
  organization: College of Electronical and Information Engineering, Heilongjiang University of Science and Technology
– sequence: 4
  givenname: Xing
  surname: Deng
  fullname: Deng, Xing
  organization: College of Electronical and Information Engineering, Heilongjiang University of Science and Technology
– sequence: 5
  givenname: Saifei
  surname: Yang
  fullname: Yang, Saifei
  organization: College of Electronical and Information Engineering, Heilongjiang University of Science and Technology
BookMark eNp9kMFKAzEQhoNUsGpfwFPA82qy2TS7R1FrhYpg1WtIdmdrZJu0SbbYtze6guDB0wzM_80M3zEaWWcBoTNKLigh4jIUhFRlRvIiSw3PM3aAxnkuRMZYIUZoTCpBs4pzfoQmIRhN0ozysuRjtL0N0axVNHaF4xvgB_Vh1v0a3_g9vgEbTNxj1-KlMx3eGYUXoELEy22vPOBlv9k4H_Er1NF5_AQrD2m_s_jeNmZnml51WNkGz_famwbPnF-HU3TYqi7A5KeeoJfZ7fP1PFs83t1fXy2ymtEqZlA1utVa6Lom0JQgaAFTymqqGCnUtAWiNRTAeFGWTDRM5KzOqW65qpoCUuoEnQ97N95tewhRvrve23RSMlpyyqc5EylVDqnauxA8tLI2MelwNnplOkmJ_HIsB8cyOZbfjiVLaP4H3fik0u__h9gAhRS2K_C_X_1DfQLjn5JE
CitedBy_id crossref_primary_10_1007_s40808_024_02247_1
Cites_doi 10.21275/ART20203995
10.1016/j.enconman.2009.03.009
10.1016/j.watres.2014.09.011
10.1007/978-981-15-1967-3
10.3390/math10213960
10.1007/s40891-016-0051-9
10.1016/j.aej.2021.10.021
10.1016/j.matpr.2021.04.232
10.1063/1.1699114
10.1007/s10706-010-9379-4
10.1080/19373260802659226
10.1016/j.future.2019.02.028
10.1126/science.aaa8415
10.1007/s00477-020-01918-6
10.1021/ie404269b
10.1144/GSL.QJEG.1985.018.02.06
10.1016/0013-7952(96)00028-2
10.1155/2013/890120
10.1016/j.jhydrol.2015.12.014
10.1109/81.855471
10.1016/S0925-2312(03)00372-2
10.1007/s13369-020-04673-6
10.1007/s11356-020-11062-x
10.1016/S1006-1266(08)60037-1
10.3390/buildings12050613
10.1007/s11269-015-1107-7
10.1016/S0950-0618(97)00006-8
10.1016/j.compgeo.2006.03.006
10.1007/978-3-642-23424-8_11
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Indian Geotechnical Society 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Indian Geotechnical Society 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
DOI 10.1007/s40098-024-00952-3
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2277-3347
EndPage 878
ExternalDocumentID 10_1007_s40098_024_00952_3
GrantInformation_xml – fundername: The open competition mechanism to select the best candidates
  grantid: 2022ZXJ05C01-03-04
– fundername: Heilongjiang University of Science and Technology the introduction of high-level talent research start-up fund projects
  grantid: 000009020315
– fundername: Key Laboratory of Agricultural Renewable Resource Utilization Technology
  grantid: HLJHDNY2114
GroupedDBID AAAVM
ALMA_UNASSIGNED_HOLDINGS
AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-c319t-e9dbfbb7bcc0ed8e714e613c1a304a6fe0bbe4e3548837d3723c21bf5a9d4e1a3
ISSN 0971-9555
IngestDate Mon Jun 30 08:59:37 EDT 2025
Thu Apr 24 23:10:29 EDT 2025
Tue Jul 01 05:10:34 EDT 2025
Wed Apr 02 01:29:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Least square support vector regression
Leader Harris Hawk's optimization
Maximum dry density
Generalized normal distribution optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-e9dbfbb7bcc0ed8e714e613c1a304a6fe0bbe4e3548837d3723c21bf5a9d4e1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3185156237
PQPubID 2044449
PageCount 13
ParticipantIDs proquest_journals_3185156237
crossref_citationtrail_10_1007_s40098_024_00952_3
crossref_primary_10_1007_s40098_024_00952_3
springer_journals_10_1007_s40098_024_00952_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Heidelberg
PublicationTitle Indian Geotechnical Journal
PublicationTitleAbbrev Indian Geotech J
PublicationYear 2025
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References MI Jordan (952_CR22) 2015; 349
FG Bell (952_CR5) 1996; 42
Y Zhang (952_CR39) 2020; 224
A Bharath (952_CR9) 2021; 47
S Suman (952_CR10) 2016; 2
O Kisi (952_CR29) 2015; 29
EG Akpokodje (952_CR4) 1985; 18
SK Das (952_CR28) 2011; 29
JAK Suykens (952_CR31) 2000; 47
J Duque (952_CR2) 2020; 45
AH Alavi (952_CR6) 2009; 2
MF Allawi (952_CR26) 2021; 35
WZ Taffese (952_CR27) 2022; 12
O Kisi (952_CR34) 2016; 534
Z-H Zhou (952_CR18) 2021
952_CR19
K Kim (952_CR21) 2003; 55
MM Ghiasi (952_CR32) 2014; 53
NM Mahmoodi (952_CR33) 2014; 67
AA Heidari (952_CR38) 2019; 97
952_CR8
952_CR12
BS Narendra (952_CR14) 2006; 33
952_CR13
N Metropolis (952_CR11) 1953; 21
952_CR16
952_CR15
S-G Cao (952_CR36) 2008; 18
R Fletcher (952_CR37) 1987
ZS Janjua (952_CR1) 2016; 7
AB Ngowi (952_CR7) 1997; 11
D Moreno-Salinas (952_CR35) 2013; 2013
S Preethi (952_CR3) 2020; 10
B Mahesh (952_CR17) 2020; 9
G Biau (952_CR20) 2012; 13
MF Allawi (952_CR23) 2022; 10
M Kumar (952_CR30) 2009; 50
MF Allawi (952_CR24) 2021; 28
A Yafouz (952_CR25) 2022; 61
References_xml – ident: 952_CR13
– ident: 952_CR15
– volume: 9
  start-page: 381
  year: 2020
  ident: 952_CR17
  publication-title: Int J Sci Res (IJSR)
  doi: 10.21275/ART20203995
– volume: 50
  start-page: 1411
  year: 2009
  ident: 952_CR30
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2009.03.009
– volume: 67
  start-page: 216
  year: 2014
  ident: 952_CR33
  publication-title: Water Res
  doi: 10.1016/j.watres.2014.09.011
– volume-title: Machine learning
  year: 2021
  ident: 952_CR18
  doi: 10.1007/978-981-15-1967-3
– volume: 10
  start-page: 3960
  year: 2022
  ident: 952_CR23
  publication-title: Mathematics
  doi: 10.3390/math10213960
– volume: 2
  start-page: 1
  year: 2016
  ident: 952_CR10
  publication-title: Int J Geosynth Ground Eng
  doi: 10.1007/s40891-016-0051-9
– volume: 61
  start-page: 4607
  year: 2022
  ident: 952_CR25
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2021.10.021
– volume: 47
  start-page: 3998
  year: 2021
  ident: 952_CR9
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2021.04.232
– volume: 21
  start-page: 1087
  year: 1953
  ident: 952_CR11
  publication-title: J Chem Phys
  doi: 10.1063/1.1699114
– volume: 29
  start-page: 329
  year: 2011
  ident: 952_CR28
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-010-9379-4
– volume: 2
  start-page: 98
  year: 2009
  ident: 952_CR6
  publication-title: IES J Part A Civ Struct Eng
  doi: 10.1080/19373260802659226
– volume: 97
  start-page: 849
  year: 2019
  ident: 952_CR38
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– ident: 952_CR19
– volume: 349
  start-page: 255
  year: 2015
  ident: 952_CR22
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 35
  start-page: 499
  year: 2021
  ident: 952_CR26
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-020-01918-6
– volume: 53
  start-page: 12872
  year: 2014
  ident: 952_CR32
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie404269b
– volume: 13
  start-page: 1063
  year: 2012
  ident: 952_CR20
  publication-title: J Mach Learn Res
– volume: 10
  start-page: 5076
  year: 2020
  ident: 952_CR3
  publication-title: J Green Eng
– volume: 18
  start-page: 173
  year: 1985
  ident: 952_CR4
  publication-title: Q J Eng Geol
  doi: 10.1144/GSL.QJEG.1985.018.02.06
– volume: 42
  start-page: 223
  year: 1996
  ident: 952_CR5
  publication-title: Eng Geol
  doi: 10.1016/0013-7952(96)00028-2
– ident: 952_CR16
– volume: 2013
  start-page: 1
  year: 2013
  ident: 952_CR35
  publication-title: Math Probl Eng
  doi: 10.1155/2013/890120
– volume: 534
  start-page: 104
  year: 2016
  ident: 952_CR34
  publication-title: J Hydrol (Amst)
  doi: 10.1016/j.jhydrol.2015.12.014
– volume: 47
  start-page: 1109
  year: 2000
  ident: 952_CR31
  publication-title: IEEE Trans Circuits Syst I Fundam Theory Appl
  doi: 10.1109/81.855471
– volume: 224
  year: 2020
  ident: 952_CR39
  publication-title: Energy Convers Manag
– volume: 55
  start-page: 307
  year: 2003
  ident: 952_CR21
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00372-2
– volume: 45
  start-page: 8231
  year: 2020
  ident: 952_CR2
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-020-04673-6
– volume: 28
  start-page: 8281
  year: 2021
  ident: 952_CR24
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-11062-x
– volume: 18
  start-page: 172
  year: 2008
  ident: 952_CR36
  publication-title: J China Univ Min Technol
  doi: 10.1016/S1006-1266(08)60037-1
– volume: 7
  start-page: 57
  year: 2016
  ident: 952_CR1
  publication-title: Int J Civ Eng Technol
– ident: 952_CR8
– volume: 12
  start-page: 613
  year: 2022
  ident: 952_CR27
  publication-title: Buildings
  doi: 10.3390/buildings12050613
– volume: 29
  start-page: 5109
  year: 2015
  ident: 952_CR29
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-1107-7
– volume: 11
  start-page: 1
  year: 1997
  ident: 952_CR7
  publication-title: Constr Build Mater
  doi: 10.1016/S0950-0618(97)00006-8
– volume-title: Practical methods ofoptimization
  year: 1987
  ident: 952_CR37
– volume: 33
  start-page: 196
  year: 2006
  ident: 952_CR14
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2006.03.006
– ident: 952_CR12
  doi: 10.1007/978-3-642-23424-8_11
SSID ssib027715885
ssib013760804
ssib031263488
Score 2.29463
Snippet Maximum dry density (MDD) holds pivotal importance in geotechnical engineering as it signifies the ideal soil mass per unit volume given particular...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 866
SubjectTerms Algorithms
Civil engineering
Compaction
Dry density
Embankments
Engineering
Estimation
Foundations
Geoengineering
Geotechnical engineering
Grain size distribution
Heuristic methods
Hydraulics
Least squares
Moisture content
Normal distribution
Optimization
Original Paper
Particle size distribution
Prediction models
Safety engineering
Size distribution
Soil
Soil characteristics
Soil density
Soil shrinkage
Soil stabilization
Soil types
Stabilization
Stabilizers (agents)
Statistical analysis
Support vector machines
Water content
Title Estimating the Maximum Dry Density of Soil via Least Square Support Vector Regression Individual and Hybrid Forms
URI https://link.springer.com/article/10.1007/s40098-024-00952-3
https://www.proquest.com/docview/3185156237
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK98ILAgGiMJAfeAuZ6tj56OM2ViqkTULbUN8ix3Yg0tawNUGM_4T_lvNX3I0NMaQqqlzXdX0_n38-350ResuyQidVBwlQxmImiYgrTrOYMykFvGBPog36h0fZ4pR9XKbL0ejXhtdS31U74uetcSX_I1UoA7nqKNl7SHZoFArgPcgXniBheP6TjA9gfmrG6SKeDvmP5rw_j95fXoEeWXlvi-O2OYu-N1znUl130fFFr7299HWeQL2jz8ZsD8P8xXrEaiPhEKOlreqLKx3UFc2B3K43qayuBsrhg2ptHljhLIq-19YabSyxn5pe9u3g-9P0NiLIFywb5xe8_zUEpsEfMGVLv7Y600SSbni0OBtjTuJZavPw7ihTlugzY0ptmk2vgl2NZmMnbPVpkWXXlubiVq1vHT3WzCRHBdIRa-KYxDSscf5c_8bSNzgkDsmbTRsltFGaNkr6AG1Bj5NkjLZ253t7R15ZEe1NVIS9LFQiaRESAVGSZJSZe0-HYXBBWyZ084_OXidGYbdz44De8J6Tx-iRkyjeteh7gkZq9RRdBORhQB52yMOAPOyQh9saa-RhQB42yMMWedghD1vk4YA8HJCHAXnYIg8b5D1Dp_ODk_1F7C7viAVo9S5WM1nVVZVXQkyVLFROmALqKAinU8azWk2rSjFFYcdc0FzSPKEiIVWd8plkCmo9R-NVu1IvEJa1SAmXLOMpY5JRzpVMmJBAPTMOlHmCiB-5UrjM9vqClbPybrFOUDR855vN6_LX2tteIKWb_-tS5x0gevuQT9A7L6Tw8d2tvbzXb79CD8Pc2kbj7rJXr4EId9UbB8nfzxOrOg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+Maximum+Dry+Density+of+Soil+via+Least+Square+Support+Vector+Regression+Individual+and+Hybrid+Forms&rft.jtitle=Indian+Geotechnical+Journal&rft.au=Zhao%2C+Qiuduo&rft.au=Liu%2C+Ke&rft.au=Xiong%2C+Chen&rft.au=Deng%2C+Xing&rft.date=2025-04-01&rft.issn=0971-9555&rft.eissn=2277-3347&rft.volume=55&rft.issue=2&rft.spage=866&rft.epage=878&rft_id=info:doi/10.1007%2Fs40098-024-00952-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40098_024_00952_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0971-9555&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0971-9555&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0971-9555&client=summon