A vehicle detection method based on disparity segmentation
The detection of small objects has always been one of the key challenges in vehicle detection. In this work, a standard for dividing the object more accurately than traditional methods is presented. Based on the division standard of disparity segmentation, we propose a novel multi-scale detection ne...
Saved in:
Published in | Multimedia tools and applications Vol. 82; no. 13; pp. 19643 - 19655 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The detection of small objects has always been one of the key challenges in vehicle detection. In this work, a standard for dividing the object more accurately than traditional methods is presented. Based on the division standard of disparity segmentation, we propose a novel multi-scale detection network aiming to reduce the transmission of redundant information between each scale. We divide the objects by depth, which is the distance from the object to the viewpoint. Then, a multi-branch architecture providing specialized detection for objects of each scale separately is constructed. Through ablation experiments, our method achieves an increase of 1.63 to 2.01 mAP compared with the baseline method. On the KITTI dataset, our method combined with state-of-arts achieves an increase of 3.54 mAP for small objects and 0.79 mAP for medium objects. |
---|---|
AbstractList | The detection of small objects has always been one of the key challenges in vehicle detection. In this work, a standard for dividing the object more accurately than traditional methods is presented. Based on the division standard of disparity segmentation, we propose a novel multi-scale detection network aiming to reduce the transmission of redundant information between each scale. We divide the objects by depth, which is the distance from the object to the viewpoint. Then, a multi-branch architecture providing specialized detection for objects of each scale separately is constructed. Through ablation experiments, our method achieves an increase of 1.63 to 2.01 mAP compared with the baseline method. On the KITTI dataset, our method combined with state-of-arts achieves an increase of 3.54 mAP for small objects and 0.79 mAP for medium objects. |
Author | Bu, Wanghui Shi, Xiaoying Li, Shiyang Chen, Jing Peng, Weimin |
Author_xml | – sequence: 1 givenname: Shiyang surname: Li fullname: Li, Shiyang organization: School of Computer Science and Technology, Hangzhou Dianzi University – sequence: 2 givenname: Jing orcidid: 0000-0003-3127-8462 surname: Chen fullname: Chen, Jing email: cj@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University – sequence: 3 givenname: Weimin surname: Peng fullname: Peng, Weimin organization: School of Computer Science and Technology, Hangzhou Dianzi University – sequence: 4 givenname: Xiaoying surname: Shi fullname: Shi, Xiaoying organization: School of Computer Science and Technology, Hangzhou Dianzi University – sequence: 5 givenname: Wanghui surname: Bu fullname: Bu, Wanghui organization: School of Mechanical Engineering, Tongji Univerity |
BookMark | eNp9kEFPwzAMhSM0JLbBH-BUiXPASdpm5TZNMJAmcYFz5Kbu1mlrR5Kh7d-TUSQkDjvZlt5nP78RG7RdS4zdCrgXAPrBCwGp5CAVF6nKgR8u2FBkWnGtpRjEXk2A6wzEFRt5vwYQeSbTIXucJl-0auyGkooC2dB0bbKlsOqqpERPVRLnqvE7dE04Jp6WW2oDnmTX7LLGjaeb3zpmH89P77MXvnibv86mC26VKAKnwkqtC8JUpVBgVdtSoLVosSAlslJDoUuyuc4RJaaCakkApVRlpDCv1Jjd9Xt3rvvckw9m3e1dG08aOYE0Eyq-HVWTXmVd572j2tim9xkcNhsjwJySMn1SJiLmJylziKj8h-5cs0V3PA-pHvJR3C7J_bk6Q30D7Q1-XA |
CitedBy_id | crossref_primary_10_1016_j_jksuci_2024_102083 crossref_primary_10_1016_j_measurement_2024_115513 crossref_primary_10_1007_s11554_024_01579_6 crossref_primary_10_1007_s11276_024_03733_1 crossref_primary_10_1038_s41598_025_91565_0 crossref_primary_10_1109_ACCESS_2024_3517711 crossref_primary_10_1109_JSEN_2024_3352599 crossref_primary_10_3390_su16010117 crossref_primary_10_1007_s10723_024_09752_8 crossref_primary_10_1007_s11831_024_10208_1 crossref_primary_10_1016_j_aei_2024_102599 crossref_primary_10_1109_ACCESS_2024_3372190 crossref_primary_10_1007_s11277_024_11153_9 crossref_primary_10_1109_ACCESS_2024_3385636 crossref_primary_10_1007_s11694_024_02973_1 crossref_primary_10_1109_ACCESS_2024_3417267 crossref_primary_10_1007_s11277_024_11152_w crossref_primary_10_1016_j_jksuci_2024_101984 crossref_primary_10_3390_su16166917 crossref_primary_10_1016_j_aej_2025_02_063 crossref_primary_10_1007_s13042_024_02310_4 crossref_primary_10_1109_ACCESS_2024_3485089 crossref_primary_10_1109_ACCESS_2025_3530242 crossref_primary_10_32604_cmc_2024_050865 crossref_primary_10_1007_s12559_024_10255_7 crossref_primary_10_1007_s10723_024_09747_5 crossref_primary_10_1007_s11277_024_11203_2 crossref_primary_10_1007_s11235_024_01171_0 crossref_primary_10_1007_s00607_024_01282_1 crossref_primary_10_1007_s10586_024_04549_6 crossref_primary_10_1007_s11227_024_06251_1 crossref_primary_10_1007_s13042_024_02401_2 crossref_primary_10_1038_s41598_024_81075_w crossref_primary_10_1109_ACCESS_2024_3466220 crossref_primary_10_1109_ACCESS_2025_3526476 crossref_primary_10_3389_fnbot_2024_1448538 crossref_primary_10_1371_journal_pone_0304619 crossref_primary_10_1007_s10462_024_10958_1 crossref_primary_10_1016_j_eswa_2024_126196 crossref_primary_10_1186_s13677_023_00582_9 crossref_primary_10_1007_s10586_024_04603_3 crossref_primary_10_1080_03610918_2024_2362306 crossref_primary_10_1109_TITS_2024_3353257 crossref_primary_10_1109_ACCESS_2024_3413848 crossref_primary_10_1007_s11277_024_11041_2 crossref_primary_10_3389_fnbot_2024_1430155 crossref_primary_10_1007_s11277_024_11147_7 crossref_primary_10_1109_TITS_2024_3432761 crossref_primary_10_1007_s10586_024_04621_1 crossref_primary_10_1007_s10668_025_05996_w crossref_primary_10_1007_s11277_024_11226_9 crossref_primary_10_1016_j_sasc_2025_200206 crossref_primary_10_1371_journal_pone_0299666 crossref_primary_10_1007_s11277_024_11154_8 crossref_primary_10_1109_ACCESS_2024_3450580 crossref_primary_10_1007_s10586_024_04385_8 crossref_primary_10_1007_s11277_024_11261_6 crossref_primary_10_1007_s11760_024_03590_7 crossref_primary_10_1016_j_enbuild_2023_113847 crossref_primary_10_1109_ACCESS_2024_3401253 crossref_primary_10_1109_ACCESS_2024_3471068 crossref_primary_10_1007_s13042_024_02278_1 crossref_primary_10_1007_s11554_024_01553_2 crossref_primary_10_1016_j_engappai_2025_110219 crossref_primary_10_1109_ACCESS_2024_3417436 crossref_primary_10_1007_s11277_024_11218_9 crossref_primary_10_1016_j_compag_2024_109505 |
Cites_doi | 10.1109/TPAMI.2015.2389824 10.1109/TPAMI.2016.2577031 10.1109/TPAMI.2018.2858826 10.1109/TITS.2018.2838132 10.1007/s11042-021-11102-9 10.1109/ICCV.2017.89 10.1609/aaai.v33i01.33019259 10.1109/ICCV.2019.00615 10.1109/ICCV.2017.593 10.1109/ACCESS.2018.2815149 10.3390/s20041010 10.1109/CVPR.2018.00377 10.1109/CVPR.2019.00374 10.1007/978-3-030-58517-4_27 10.1109/CVPR.2019.00720 10.1109/TITS.2017.2762718 10.1109/CVPR.2017.106 10.1109/TVT.2021.3049805 10.1109/CVPR.2017.87 10.1109/CVPR46437.2021.00191 10.1109/CVPR.2018.00644 10.1007/978-3-319-46493-0_22 10.1109/CVPR.2018.00913 10.1109/CVPR42600.2020.00943 10.1109/ICCVW.2019.00289 10.1109/CVPR.2014.81 10.1109/ICCV.2015.169 10.1007/978-3-030-58580-8_39 10.1109/ICCV.2017.322 10.1109/ICCV.2019.00984 10.1007/978-3-030-58580-8_24 10.1109/CVPR.2019.00237 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-023-14360-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 19655 |
ExternalDocumentID | 10_1007_s11042_023_14360_x |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province grantid: LY17F020026 funderid: https://doi.org/10.13039/501100004731 – fundername: Natural Science Foundation of Zhejiang Province grantid: LY21F020014 funderid: https://doi.org/10.13039/501100004731 – fundername: National Natural Science Foundation of China grantid: 61703127 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61903109 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 51475331 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-e9c2779ea43409adfcb1accaca9e315b7097bec676aa2a41ef2e00b23b779a6d3 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 23:06:10 EDT 2025 Tue Jul 01 04:13:19 EDT 2025 Thu Apr 24 22:54:54 EDT 2025 Fri Feb 21 02:43:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Stereovision Multi-scale Disparity segmentation Object detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e9c2779ea43409adfcb1accaca9e315b7097bec676aa2a41ef2e00b23b779a6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3127-8462 |
PQID | 2804513023 |
PQPubID | 54626 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2804513023 crossref_citationtrail_10_1007_s11042_023_14360_x crossref_primary_10_1007_s11042_023_14360_x springer_journals_10_1007_s11042_023_14360_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230500 2023-05-00 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 5 year: 2023 text: 20230500 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Lu, Wang, Shen, Crandall, Luo (CR30) 2019; 44 CR19 CR17 CR39 CR38 CR15 CR37 CR14 CR36 CR13 CR35 CR12 CR11 CR33 CR10 CR32 CR31 Guo, Duan (CR16) 2021; 80 Adelson, Anderson, Bergen, Burt, Ogden (CR1) 1984; 29 Lin, Goyal, Girshick, He, Dollar (CR25) 2020; 42 Hu (CR20) 2017; 20 Ren, He, Girshick, Sun (CR34) 2017; 39 He, Zhang, Ren, Sun (CR18) 2015; 37 CR2 CR4 CR3 CR6 CR5 CR8 CR7 CR29 CR28 CR9 CR27 CR24 CR23 CR22 CR21 CR40 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (CR26) 2016 14360_CR22 14360_CR23 14360_CR24 14360_CR40 14360_CR21 14360_CR27 14360_CR28 14360_CR29 X Hu (14360_CR20) 2017; 20 14360_CR11 14360_CR33 14360_CR12 14360_CR13 14360_CR35 14360_CR14 14360_CR36 14360_CR2 14360_CR3 W Liu (14360_CR26) 2016 X Lu (14360_CR30) 2019; 44 14360_CR31 14360_CR10 14360_CR32 14360_CR19 S Ren (14360_CR34) 2017; 39 14360_CR15 14360_CR37 14360_CR38 14360_CR17 14360_CR39 EH Adelson (14360_CR1) 1984; 29 14360_CR6 14360_CR7 T-Y Lin (14360_CR25) 2020; 42 14360_CR4 14360_CR5 K He (14360_CR18) 2015; 37 14360_CR8 14360_CR9 L Guo (14360_CR16) 2021; 80 |
References_xml | – volume: 37 start-page: 1904 issue: 9 year: 2015 end-page: 1916 ident: CR18 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2389824 – ident: CR22 – ident: CR4 – ident: CR14 – ident: CR39 – ident: CR2 – ident: CR37 – ident: CR12 – ident: CR10 – ident: CR33 – volume: 29 start-page: 33 issue: 6 year: 1984 end-page: 41 ident: CR1 article-title: Pyramid methods in image processing publication-title: RCA engineer – ident: CR35 – ident: CR6 – ident: CR29 – ident: CR8 – volume: 39 start-page: 1137 issue: 6 year: 2017 end-page: 1149 ident: CR34 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – ident: CR40 – volume: 42 start-page: 318 issue: 2 year: 2020 end-page: 327 ident: CR25 article-title: Focal loss for dense object detection publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2858826 – year: 2016 ident: CR26 publication-title: Berg, SSD: Single Shot MultiBox Detector – ident: CR27 – ident: CR23 – ident: CR21 – ident: CR19 – volume: 44 start-page: 2228 issue: 4 year: 2019 end-page: 2242 ident: CR30 article-title: Zero-shot video object segmentation with co-attention siamese networks publication-title: IEEE Trans Pattern Anal Mach Intell – ident: CR3 – ident: CR15 – ident: CR38 – ident: CR17 – volume: 20 start-page: 1010 issue: 3 year: 2017 end-page: 1019 ident: CR20 article-title: SINet: a Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2018.2838132 – ident: CR31 – ident: CR13 – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR36 – ident: CR5 – ident: CR7 – ident: CR28 – volume: 80 start-page: 28583 year: 2021 end-page: 28601 ident: CR16 article-title: Multiple attention networks for stereo matching publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11102-9 – ident: CR24 – ident: 14360_CR10 doi: 10.1109/ICCV.2017.89 – ident: 14360_CR39 doi: 10.1609/aaai.v33i01.33019259 – volume: 20 start-page: 1010 issue: 3 year: 2017 ident: 14360_CR20 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2018.2838132 – ident: 14360_CR22 doi: 10.1109/ICCV.2019.00615 – ident: 14360_CR2 doi: 10.1109/ICCV.2017.593 – ident: 14360_CR8 doi: 10.1109/ACCESS.2018.2815149 – ident: 14360_CR21 doi: 10.1109/ICCV.2019.00615 – ident: 14360_CR38 doi: 10.3390/s20041010 – ident: 14360_CR35 doi: 10.1109/CVPR.2018.00377 – ident: 14360_CR29 doi: 10.1109/CVPR.2019.00374 – ident: 14360_CR37 doi: 10.1007/978-3-030-58517-4_27 – volume: 44 start-page: 2228 issue: 4 year: 2019 ident: 14360_CR30 publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 14360_CR34 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – ident: 14360_CR13 doi: 10.1109/CVPR.2019.00720 – ident: 14360_CR19 – volume: 80 start-page: 28583 year: 2021 ident: 14360_CR16 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11102-9 – ident: 14360_CR6 doi: 10.1109/TITS.2017.2762718 – ident: 14360_CR24 doi: 10.1109/CVPR.2017.106 – ident: 14360_CR12 doi: 10.1109/TVT.2021.3049805 – ident: 14360_CR32 doi: 10.1109/CVPR.2017.87 – ident: 14360_CR23 doi: 10.1109/CVPR46437.2021.00191 – ident: 14360_CR4 doi: 10.1109/CVPR.2018.00644 – ident: 14360_CR3 doi: 10.1007/978-3-319-46493-0_22 – ident: 14360_CR5 – ident: 14360_CR27 doi: 10.1109/CVPR.2018.00913 – ident: 14360_CR9 – ident: 14360_CR31 doi: 10.1109/CVPR42600.2020.00943 – ident: 14360_CR33 – ident: 14360_CR7 doi: 10.1109/ICCVW.2019.00289 – ident: 14360_CR15 doi: 10.1109/CVPR.2014.81 – volume: 29 start-page: 33 issue: 6 year: 1984 ident: 14360_CR1 publication-title: RCA engineer – ident: 14360_CR14 doi: 10.1109/ICCV.2015.169 – volume: 42 start-page: 318 issue: 2 year: 2020 ident: 14360_CR25 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2858826 – ident: 14360_CR28 doi: 10.1007/978-3-030-58580-8_39 – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 14360_CR18 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2389824 – ident: 14360_CR17 doi: 10.1109/ICCV.2017.322 – ident: 14360_CR36 doi: 10.1109/ICCV.2019.00984 – ident: 14360_CR11 doi: 10.1007/978-3-030-58580-8_24 – volume-title: Berg, SSD: Single Shot MultiBox Detector year: 2016 ident: 14360_CR26 – ident: 14360_CR40 doi: 10.1109/CVPR.2019.00237 |
SSID | ssj0016524 |
Score | 2.5660918 |
Snippet | The detection of small objects has always been one of the key challenges in vehicle detection. In this work, a standard for dividing the object more accurately... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19643 |
SubjectTerms | Ablation Accuracy Computer Communication Networks Computer Science Data Structures and Information Theory Methods Multimedia Multimedia Information Systems Proposals Segmentation Sensors Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yXvTgY1VcXSUHbxpImjZpvC3isgh6cmFvJWlSFbSKraL_3kmb7qqo4LE0E8pMpt-EeXwIHaVGQdxdON9-ZkjMtCWaq4SYiBXKUGt4w0N2eSUm0_hilsxCU1jVVbt3KcnmT71odmO-lQQwhgDGC0ogclxO4O7uC7mm0WieOxBJoLJNKQE8ZKFV5uc9vsLRIsb8lhZt0Ga8gdZCmIhHrV030ZIr-2i9o2DAwSP7aPXTPMEtdDrCr-7WS2Dr6qbIqsQtRzT2cGUxPNu7yjMP1u-4cjcPofWo3EbT8fn12YQEcgSSg9fUxKk8klI5HXO4omlb5IZpMEeuleMsMZIqCfYRUmgd6Zi5InKUmogbkNLC8h3UKx9Lt4uwgJBEFFQ6zlWskyilhRaRYlbmPJcyHSDW6SjLw-RwT2Bxny1mHnu9ZqDXrNFr9jZAx3OZp3Zuxp-rh53qs-BDVQbfESc-r8oH6KQzx-L177vt_W_5PlrxHPJtFeMQ9ernF3cAkUZtDpuD9QFQzcj8 priority: 102 providerName: Springer Nature |
Title | A vehicle detection method based on disparity segmentation |
URI | https://link.springer.com/article/10.1007/s11042-023-14360-x https://www.proquest.com/docview/2804513023 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8a7WU7AOs2UT4qH3Yb1uI4sWMuqEVNq02rJrRK7BTZscMmQfhoQPDfYydOA5PGKYqc58N7fh_x-_gBfE6UsHF3YVz7mcIRkRpLKmKsQlIIFWhFaxyyHws2X0bfzuIzf-G28mWVrU2sDbW-yt0d-dcwcZNQHMTN8fUNdqhRLrvqITQ2oG9NcJL0oD-ZLn6ervMILPawtkmArW8kvm2maZ4jrjXFbohtzMAC_PDSNXXx5j8p0trzpNuw6UNGNG5k_B7emHIAWy0cA_LaOYB3z2YLfoCjMbo3fxwF0qaqC65K1OBFI-e6NLLv-u_KoRBWj2hlzi99G1L5EZbp9NfJHHugBJxbDaqwEXnIuTAyovZ3TeoiV0Ra0eRSGEpixQPBrawYZ1KGMiKmCE0QqJAqSyWZpp-gV16VZgcQs-EJKwJuKBWRjC3XC8lCQTTPac55MgTS8ijL_RRxB2ZxkXXzjx1fM8vXrOZr9jCEL2ua62aGxqtf77esz7w-rbJO-kM4bMXRLf9_t93Xd9uDtw4_vqlg3IdedXtnDmyUUakRbCTpbAT9cTqZLNxz9vv7dOQPmF1dhuMnvjXRzg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFEDBjVhOF1CBRewk9gYJIQQsy1mBRBfs2AEkCMeG66f4RsY5WECCjjJKxoqfJ55x7DcPYKmpI8y7U-voZ5oGTBmq_CikmrM00p7RfqFDdnwi2mfBwXl43gPvNRfGHaus58RiojZ3iftHvsabrhKKk7jZvH-gTjXK7a7WEhqlWxzatxdcsnU29ndwfJc5b-2ebrdppSpAE3S3nNoo4VJGVgU-rm2USRPNFPYjUZH1WailF0nsmJBCKa4CZlNuPU9zX6OVEsbHdnuhP_Axkjtmemvvc9dChJWIbtOjGIlZRdIpqXrMEWHw9SlmKMKjr98DYTe7_bEhW8S51igMVwkq2So9agx6bDYOI7X4A6nmgnEY-lLJcALWt8izvXIWxNi8ON6VkVKdmrhAaQhem-uO0zzM30jHXt5WpKdsEs7-BcAp6MvuMjsNRGAyJFJPWgQzUCGOcaoEj5iRiZ9I2WwAqzGKk6pmuZPOuIm71ZYdrjHiGhe4xq8NWPm0uS8rdvz59FwNfVx9vZ2462sNWK2Ho3v799Zm_m5tEQbap8dH8dH-yeEsDDrl-vLs5Bz05Y9Pdh7zm1wvFE5F4OK_vfgD4ecKZg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxQxEJ7AkRB48AdIPEXtAz5Jw7bdba8mxqBwAYELMZLwtrTbrpjIHnCLwr_mX-d0t8upibzxuNmdJp352pluZ-YDWBtYjXF36UP5maUpM44aoTNqOSu1TZwVDQ_ZwUjuHKWfjrPjGfjV1cKEtMpuT2w2ajcuwj_yDT4InVACxc1GGdMiDreG788vaGCQCjetHZ1GC5E9f_MTj2-Td7tbaOvXnA-3v3zcoZFhgBYIvZp6XXCltDepwHOOcWVhmcE5FUZ7wTKrEq1wklJJY7hJmS-5TxLLhUUpI53AcWdhToVTUQ_mPmyPDj_f3mHILFLqDhKKfpnFkp22cI-FshicDMV4RSb0-m-3OI11_7mebbze8BE8iOEq2Wzx9RhmfLUEDzsqCBJ3hiVY_KOv4TK83SQ__GmQIM7XTbJXRVquahLcpiP47L5NAgNifUMm_utZLIGqnsDRvahwBXrVuPJPgUgMjWSZKC-ETk2GFi-N5Jo5VYhCqUEfWKejvIgdzAORxvd82ns56DVHveaNXvPrPry5lTlv-3fc-fVqp_o8ruVJPkVeH9Y7c0xf_3-0Z3eP9grmEcH5_u5o7zksBBr7NpFyFXr15ZV_gcFObV9GVBE4uW8g_wbBQg_4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+vehicle+detection+method+based+on+disparity+segmentation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Li%2C+Shiyang&rft.au=Chen%2C+Jing&rft.au=Peng%2C+Weimin&rft.au=Shi%2C+Xiaoying&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=13&rft.spage=19643&rft.epage=19655&rft_id=info:doi/10.1007%2Fs11042-023-14360-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |