A vehicle detection method based on disparity segmentation

The detection of small objects has always been one of the key challenges in vehicle detection. In this work, a standard for dividing the object more accurately than traditional methods is presented. Based on the division standard of disparity segmentation, we propose a novel multi-scale detection ne...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 13; pp. 19643 - 19655
Main Authors Li, Shiyang, Chen, Jing, Peng, Weimin, Shi, Xiaoying, Bu, Wanghui
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The detection of small objects has always been one of the key challenges in vehicle detection. In this work, a standard for dividing the object more accurately than traditional methods is presented. Based on the division standard of disparity segmentation, we propose a novel multi-scale detection network aiming to reduce the transmission of redundant information between each scale. We divide the objects by depth, which is the distance from the object to the viewpoint. Then, a multi-branch architecture providing specialized detection for objects of each scale separately is constructed. Through ablation experiments, our method achieves an increase of 1.63 to 2.01 mAP compared with the baseline method. On the KITTI dataset, our method combined with state-of-arts achieves an increase of 3.54 mAP for small objects and 0.79 mAP for medium objects.
AbstractList The detection of small objects has always been one of the key challenges in vehicle detection. In this work, a standard for dividing the object more accurately than traditional methods is presented. Based on the division standard of disparity segmentation, we propose a novel multi-scale detection network aiming to reduce the transmission of redundant information between each scale. We divide the objects by depth, which is the distance from the object to the viewpoint. Then, a multi-branch architecture providing specialized detection for objects of each scale separately is constructed. Through ablation experiments, our method achieves an increase of 1.63 to 2.01 mAP compared with the baseline method. On the KITTI dataset, our method combined with state-of-arts achieves an increase of 3.54 mAP for small objects and 0.79 mAP for medium objects.
Author Bu, Wanghui
Shi, Xiaoying
Li, Shiyang
Chen, Jing
Peng, Weimin
Author_xml – sequence: 1
  givenname: Shiyang
  surname: Li
  fullname: Li, Shiyang
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
– sequence: 2
  givenname: Jing
  orcidid: 0000-0003-3127-8462
  surname: Chen
  fullname: Chen, Jing
  email: cj@hdu.edu.cn
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
– sequence: 3
  givenname: Weimin
  surname: Peng
  fullname: Peng, Weimin
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
– sequence: 4
  givenname: Xiaoying
  surname: Shi
  fullname: Shi, Xiaoying
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
– sequence: 5
  givenname: Wanghui
  surname: Bu
  fullname: Bu, Wanghui
  organization: School of Mechanical Engineering, Tongji Univerity
BookMark eNp9kEFPwzAMhSM0JLbBH-BUiXPASdpm5TZNMJAmcYFz5Kbu1mlrR5Kh7d-TUSQkDjvZlt5nP78RG7RdS4zdCrgXAPrBCwGp5CAVF6nKgR8u2FBkWnGtpRjEXk2A6wzEFRt5vwYQeSbTIXucJl-0auyGkooC2dB0bbKlsOqqpERPVRLnqvE7dE04Jp6WW2oDnmTX7LLGjaeb3zpmH89P77MXvnibv86mC26VKAKnwkqtC8JUpVBgVdtSoLVosSAlslJDoUuyuc4RJaaCakkApVRlpDCv1Jjd9Xt3rvvckw9m3e1dG08aOYE0Eyq-HVWTXmVd572j2tim9xkcNhsjwJySMn1SJiLmJylziKj8h-5cs0V3PA-pHvJR3C7J_bk6Q30D7Q1-XA
CitedBy_id crossref_primary_10_1016_j_jksuci_2024_102083
crossref_primary_10_1016_j_measurement_2024_115513
crossref_primary_10_1007_s11554_024_01579_6
crossref_primary_10_1007_s11276_024_03733_1
crossref_primary_10_1038_s41598_025_91565_0
crossref_primary_10_1109_ACCESS_2024_3517711
crossref_primary_10_1109_JSEN_2024_3352599
crossref_primary_10_3390_su16010117
crossref_primary_10_1007_s10723_024_09752_8
crossref_primary_10_1007_s11831_024_10208_1
crossref_primary_10_1016_j_aei_2024_102599
crossref_primary_10_1109_ACCESS_2024_3372190
crossref_primary_10_1007_s11277_024_11153_9
crossref_primary_10_1109_ACCESS_2024_3385636
crossref_primary_10_1007_s11694_024_02973_1
crossref_primary_10_1109_ACCESS_2024_3417267
crossref_primary_10_1007_s11277_024_11152_w
crossref_primary_10_1016_j_jksuci_2024_101984
crossref_primary_10_3390_su16166917
crossref_primary_10_1016_j_aej_2025_02_063
crossref_primary_10_1007_s13042_024_02310_4
crossref_primary_10_1109_ACCESS_2024_3485089
crossref_primary_10_1109_ACCESS_2025_3530242
crossref_primary_10_32604_cmc_2024_050865
crossref_primary_10_1007_s12559_024_10255_7
crossref_primary_10_1007_s10723_024_09747_5
crossref_primary_10_1007_s11277_024_11203_2
crossref_primary_10_1007_s11235_024_01171_0
crossref_primary_10_1007_s00607_024_01282_1
crossref_primary_10_1007_s10586_024_04549_6
crossref_primary_10_1007_s11227_024_06251_1
crossref_primary_10_1007_s13042_024_02401_2
crossref_primary_10_1038_s41598_024_81075_w
crossref_primary_10_1109_ACCESS_2024_3466220
crossref_primary_10_1109_ACCESS_2025_3526476
crossref_primary_10_3389_fnbot_2024_1448538
crossref_primary_10_1371_journal_pone_0304619
crossref_primary_10_1007_s10462_024_10958_1
crossref_primary_10_1016_j_eswa_2024_126196
crossref_primary_10_1186_s13677_023_00582_9
crossref_primary_10_1007_s10586_024_04603_3
crossref_primary_10_1080_03610918_2024_2362306
crossref_primary_10_1109_TITS_2024_3353257
crossref_primary_10_1109_ACCESS_2024_3413848
crossref_primary_10_1007_s11277_024_11041_2
crossref_primary_10_3389_fnbot_2024_1430155
crossref_primary_10_1007_s11277_024_11147_7
crossref_primary_10_1109_TITS_2024_3432761
crossref_primary_10_1007_s10586_024_04621_1
crossref_primary_10_1007_s10668_025_05996_w
crossref_primary_10_1007_s11277_024_11226_9
crossref_primary_10_1016_j_sasc_2025_200206
crossref_primary_10_1371_journal_pone_0299666
crossref_primary_10_1007_s11277_024_11154_8
crossref_primary_10_1109_ACCESS_2024_3450580
crossref_primary_10_1007_s10586_024_04385_8
crossref_primary_10_1007_s11277_024_11261_6
crossref_primary_10_1007_s11760_024_03590_7
crossref_primary_10_1016_j_enbuild_2023_113847
crossref_primary_10_1109_ACCESS_2024_3401253
crossref_primary_10_1109_ACCESS_2024_3471068
crossref_primary_10_1007_s13042_024_02278_1
crossref_primary_10_1007_s11554_024_01553_2
crossref_primary_10_1016_j_engappai_2025_110219
crossref_primary_10_1109_ACCESS_2024_3417436
crossref_primary_10_1007_s11277_024_11218_9
crossref_primary_10_1016_j_compag_2024_109505
Cites_doi 10.1109/TPAMI.2015.2389824
10.1109/TPAMI.2016.2577031
10.1109/TPAMI.2018.2858826
10.1109/TITS.2018.2838132
10.1007/s11042-021-11102-9
10.1109/ICCV.2017.89
10.1609/aaai.v33i01.33019259
10.1109/ICCV.2019.00615
10.1109/ICCV.2017.593
10.1109/ACCESS.2018.2815149
10.3390/s20041010
10.1109/CVPR.2018.00377
10.1109/CVPR.2019.00374
10.1007/978-3-030-58517-4_27
10.1109/CVPR.2019.00720
10.1109/TITS.2017.2762718
10.1109/CVPR.2017.106
10.1109/TVT.2021.3049805
10.1109/CVPR.2017.87
10.1109/CVPR46437.2021.00191
10.1109/CVPR.2018.00644
10.1007/978-3-319-46493-0_22
10.1109/CVPR.2018.00913
10.1109/CVPR42600.2020.00943
10.1109/ICCVW.2019.00289
10.1109/CVPR.2014.81
10.1109/ICCV.2015.169
10.1007/978-3-030-58580-8_39
10.1109/ICCV.2017.322
10.1109/ICCV.2019.00984
10.1007/978-3-030-58580-8_24
10.1109/CVPR.2019.00237
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-14360-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 19655
ExternalDocumentID 10_1007_s11042_023_14360_x
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY17F020026
  funderid: https://doi.org/10.13039/501100004731
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY21F020014
  funderid: https://doi.org/10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 61703127
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61903109
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 51475331
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-e9c2779ea43409adfcb1accaca9e315b7097bec676aa2a41ef2e00b23b779a6d3
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 23:06:10 EDT 2025
Tue Jul 01 04:13:19 EDT 2025
Thu Apr 24 22:54:54 EDT 2025
Fri Feb 21 02:43:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Stereovision
Multi-scale
Disparity segmentation
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e9c2779ea43409adfcb1accaca9e315b7097bec676aa2a41ef2e00b23b779a6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3127-8462
PQID 2804513023
PQPubID 54626
PageCount 13
ParticipantIDs proquest_journals_2804513023
crossref_citationtrail_10_1007_s11042_023_14360_x
crossref_primary_10_1007_s11042_023_14360_x
springer_journals_10_1007_s11042_023_14360_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230500
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 5
  year: 2023
  text: 20230500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Lu, Wang, Shen, Crandall, Luo (CR30) 2019; 44
CR19
CR17
CR39
CR38
CR15
CR37
CR14
CR36
CR13
CR35
CR12
CR11
CR33
CR10
CR32
CR31
Guo, Duan (CR16) 2021; 80
Adelson, Anderson, Bergen, Burt, Ogden (CR1) 1984; 29
Lin, Goyal, Girshick, He, Dollar (CR25) 2020; 42
Hu (CR20) 2017; 20
Ren, He, Girshick, Sun (CR34) 2017; 39
He, Zhang, Ren, Sun (CR18) 2015; 37
CR2
CR4
CR3
CR6
CR5
CR8
CR7
CR29
CR28
CR9
CR27
CR24
CR23
CR22
CR21
CR40
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (CR26) 2016
14360_CR22
14360_CR23
14360_CR24
14360_CR40
14360_CR21
14360_CR27
14360_CR28
14360_CR29
X Hu (14360_CR20) 2017; 20
14360_CR11
14360_CR33
14360_CR12
14360_CR13
14360_CR35
14360_CR14
14360_CR36
14360_CR2
14360_CR3
W Liu (14360_CR26) 2016
X Lu (14360_CR30) 2019; 44
14360_CR31
14360_CR10
14360_CR32
14360_CR19
S Ren (14360_CR34) 2017; 39
14360_CR15
14360_CR37
14360_CR38
14360_CR17
14360_CR39
EH Adelson (14360_CR1) 1984; 29
14360_CR6
14360_CR7
T-Y Lin (14360_CR25) 2020; 42
14360_CR4
14360_CR5
K He (14360_CR18) 2015; 37
14360_CR8
14360_CR9
L Guo (14360_CR16) 2021; 80
References_xml – volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  end-page: 1916
  ident: CR18
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2389824
– ident: CR22
– ident: CR4
– ident: CR14
– ident: CR39
– ident: CR2
– ident: CR37
– ident: CR12
– ident: CR10
– ident: CR33
– volume: 29
  start-page: 33
  issue: 6
  year: 1984
  end-page: 41
  ident: CR1
  article-title: Pyramid methods in image processing
  publication-title: RCA engineer
– ident: CR35
– ident: CR6
– ident: CR29
– ident: CR8
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  end-page: 1149
  ident: CR34
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– ident: CR40
– volume: 42
  start-page: 318
  issue: 2
  year: 2020
  end-page: 327
  ident: CR25
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2858826
– year: 2016
  ident: CR26
  publication-title: Berg, SSD: Single Shot MultiBox Detector
– ident: CR27
– ident: CR23
– ident: CR21
– ident: CR19
– volume: 44
  start-page: 2228
  issue: 4
  year: 2019
  end-page: 2242
  ident: CR30
  article-title: Zero-shot video object segmentation with co-attention siamese networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: CR3
– ident: CR15
– ident: CR38
– ident: CR17
– volume: 20
  start-page: 1010
  issue: 3
  year: 2017
  end-page: 1019
  ident: CR20
  article-title: SINet: a Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2018.2838132
– ident: CR31
– ident: CR13
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR36
– ident: CR5
– ident: CR7
– ident: CR28
– volume: 80
  start-page: 28583
  year: 2021
  end-page: 28601
  ident: CR16
  article-title: Multiple attention networks for stereo matching
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-11102-9
– ident: CR24
– ident: 14360_CR10
  doi: 10.1109/ICCV.2017.89
– ident: 14360_CR39
  doi: 10.1609/aaai.v33i01.33019259
– volume: 20
  start-page: 1010
  issue: 3
  year: 2017
  ident: 14360_CR20
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2018.2838132
– ident: 14360_CR22
  doi: 10.1109/ICCV.2019.00615
– ident: 14360_CR2
  doi: 10.1109/ICCV.2017.593
– ident: 14360_CR8
  doi: 10.1109/ACCESS.2018.2815149
– ident: 14360_CR21
  doi: 10.1109/ICCV.2019.00615
– ident: 14360_CR38
  doi: 10.3390/s20041010
– ident: 14360_CR35
  doi: 10.1109/CVPR.2018.00377
– ident: 14360_CR29
  doi: 10.1109/CVPR.2019.00374
– ident: 14360_CR37
  doi: 10.1007/978-3-030-58517-4_27
– volume: 44
  start-page: 2228
  issue: 4
  year: 2019
  ident: 14360_CR30
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 14360_CR34
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– ident: 14360_CR13
  doi: 10.1109/CVPR.2019.00720
– ident: 14360_CR19
– volume: 80
  start-page: 28583
  year: 2021
  ident: 14360_CR16
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-11102-9
– ident: 14360_CR6
  doi: 10.1109/TITS.2017.2762718
– ident: 14360_CR24
  doi: 10.1109/CVPR.2017.106
– ident: 14360_CR12
  doi: 10.1109/TVT.2021.3049805
– ident: 14360_CR32
  doi: 10.1109/CVPR.2017.87
– ident: 14360_CR23
  doi: 10.1109/CVPR46437.2021.00191
– ident: 14360_CR4
  doi: 10.1109/CVPR.2018.00644
– ident: 14360_CR3
  doi: 10.1007/978-3-319-46493-0_22
– ident: 14360_CR5
– ident: 14360_CR27
  doi: 10.1109/CVPR.2018.00913
– ident: 14360_CR9
– ident: 14360_CR31
  doi: 10.1109/CVPR42600.2020.00943
– ident: 14360_CR33
– ident: 14360_CR7
  doi: 10.1109/ICCVW.2019.00289
– ident: 14360_CR15
  doi: 10.1109/CVPR.2014.81
– volume: 29
  start-page: 33
  issue: 6
  year: 1984
  ident: 14360_CR1
  publication-title: RCA engineer
– ident: 14360_CR14
  doi: 10.1109/ICCV.2015.169
– volume: 42
  start-page: 318
  issue: 2
  year: 2020
  ident: 14360_CR25
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2858826
– ident: 14360_CR28
  doi: 10.1007/978-3-030-58580-8_39
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 14360_CR18
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2389824
– ident: 14360_CR17
  doi: 10.1109/ICCV.2017.322
– ident: 14360_CR36
  doi: 10.1109/ICCV.2019.00984
– ident: 14360_CR11
  doi: 10.1007/978-3-030-58580-8_24
– volume-title: Berg, SSD: Single Shot MultiBox Detector
  year: 2016
  ident: 14360_CR26
– ident: 14360_CR40
  doi: 10.1109/CVPR.2019.00237
SSID ssj0016524
Score 2.5660918
Snippet The detection of small objects has always been one of the key challenges in vehicle detection. In this work, a standard for dividing the object more accurately...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19643
SubjectTerms Ablation
Accuracy
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Methods
Multimedia
Multimedia Information Systems
Proposals
Segmentation
Sensors
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yXvTgY1VcXSUHbxpImjZpvC3isgh6cmFvJWlSFbSKraL_3kmb7qqo4LE0E8pMpt-EeXwIHaVGQdxdON9-ZkjMtCWaq4SYiBXKUGt4w0N2eSUm0_hilsxCU1jVVbt3KcnmT71odmO-lQQwhgDGC0ogclxO4O7uC7mm0WieOxBJoLJNKQE8ZKFV5uc9vsLRIsb8lhZt0Ga8gdZCmIhHrV030ZIr-2i9o2DAwSP7aPXTPMEtdDrCr-7WS2Dr6qbIqsQtRzT2cGUxPNu7yjMP1u-4cjcPofWo3EbT8fn12YQEcgSSg9fUxKk8klI5HXO4omlb5IZpMEeuleMsMZIqCfYRUmgd6Zi5InKUmogbkNLC8h3UKx9Lt4uwgJBEFFQ6zlWskyilhRaRYlbmPJcyHSDW6SjLw-RwT2Bxny1mHnu9ZqDXrNFr9jZAx3OZp3Zuxp-rh53qs-BDVQbfESc-r8oH6KQzx-L177vt_W_5PlrxHPJtFeMQ9ernF3cAkUZtDpuD9QFQzcj8
  priority: 102
  providerName: Springer Nature
Title A vehicle detection method based on disparity segmentation
URI https://link.springer.com/article/10.1007/s11042-023-14360-x
https://www.proquest.com/docview/2804513023
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH8a7WU7AOs2UT4qH3Yb1uI4sWMuqEVNq02rJrRK7BTZscMmQfhoQPDfYydOA5PGKYqc58N7fh_x-_gBfE6UsHF3YVz7mcIRkRpLKmKsQlIIFWhFaxyyHws2X0bfzuIzf-G28mWVrU2sDbW-yt0d-dcwcZNQHMTN8fUNdqhRLrvqITQ2oG9NcJL0oD-ZLn6ervMILPawtkmArW8kvm2maZ4jrjXFbohtzMAC_PDSNXXx5j8p0trzpNuw6UNGNG5k_B7emHIAWy0cA_LaOYB3z2YLfoCjMbo3fxwF0qaqC65K1OBFI-e6NLLv-u_KoRBWj2hlzi99G1L5EZbp9NfJHHugBJxbDaqwEXnIuTAyovZ3TeoiV0Ra0eRSGEpixQPBrawYZ1KGMiKmCE0QqJAqSyWZpp-gV16VZgcQs-EJKwJuKBWRjC3XC8lCQTTPac55MgTS8ijL_RRxB2ZxkXXzjx1fM8vXrOZr9jCEL2ua62aGxqtf77esz7w-rbJO-kM4bMXRLf9_t93Xd9uDtw4_vqlg3IdedXtnDmyUUakRbCTpbAT9cTqZLNxz9vv7dOQPmF1dhuMnvjXRzg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFEDBjVhOF1CBRewk9gYJIQQsy1mBRBfs2AEkCMeG66f4RsY5WECCjjJKxoqfJ55x7DcPYKmpI8y7U-voZ5oGTBmq_CikmrM00p7RfqFDdnwi2mfBwXl43gPvNRfGHaus58RiojZ3iftHvsabrhKKk7jZvH-gTjXK7a7WEhqlWxzatxdcsnU29ndwfJc5b-2ebrdppSpAE3S3nNoo4VJGVgU-rm2USRPNFPYjUZH1WailF0nsmJBCKa4CZlNuPU9zX6OVEsbHdnuhP_Axkjtmemvvc9dChJWIbtOjGIlZRdIpqXrMEWHw9SlmKMKjr98DYTe7_bEhW8S51igMVwkq2So9agx6bDYOI7X4A6nmgnEY-lLJcALWt8izvXIWxNi8ON6VkVKdmrhAaQhem-uO0zzM30jHXt5WpKdsEs7-BcAp6MvuMjsNRGAyJFJPWgQzUCGOcaoEj5iRiZ9I2WwAqzGKk6pmuZPOuIm71ZYdrjHiGhe4xq8NWPm0uS8rdvz59FwNfVx9vZ2462sNWK2Ho3v799Zm_m5tEQbap8dH8dH-yeEsDDrl-vLs5Bz05Y9Pdh7zm1wvFE5F4OK_vfgD4ecKZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxQxEJ7AkRB48AdIPEXtAz5Jw7bdba8mxqBwAYELMZLwtrTbrpjIHnCLwr_mX-d0t8upibzxuNmdJp352pluZ-YDWBtYjXF36UP5maUpM44aoTNqOSu1TZwVDQ_ZwUjuHKWfjrPjGfjV1cKEtMpuT2w2ajcuwj_yDT4InVACxc1GGdMiDreG788vaGCQCjetHZ1GC5E9f_MTj2-Td7tbaOvXnA-3v3zcoZFhgBYIvZp6XXCltDepwHOOcWVhmcE5FUZ7wTKrEq1wklJJY7hJmS-5TxLLhUUpI53AcWdhToVTUQ_mPmyPDj_f3mHILFLqDhKKfpnFkp22cI-FshicDMV4RSb0-m-3OI11_7mebbze8BE8iOEq2Wzx9RhmfLUEDzsqCBJ3hiVY_KOv4TK83SQ__GmQIM7XTbJXRVquahLcpiP47L5NAgNifUMm_utZLIGqnsDRvahwBXrVuPJPgUgMjWSZKC-ETk2GFi-N5Jo5VYhCqUEfWKejvIgdzAORxvd82ns56DVHveaNXvPrPry5lTlv-3fc-fVqp_o8ruVJPkVeH9Y7c0xf_3-0Z3eP9grmEcH5_u5o7zksBBr7NpFyFXr15ZV_gcFObV9GVBE4uW8g_wbBQg_4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+vehicle+detection+method+based+on+disparity+segmentation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Li%2C+Shiyang&rft.au=Chen%2C+Jing&rft.au=Peng%2C+Weimin&rft.au=Shi%2C+Xiaoying&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=13&rft.spage=19643&rft.epage=19655&rft_id=info:doi/10.1007%2Fs11042-023-14360-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon