Optimization Extraction of Scandium from Scandium Concentrate with Titanium Dioxide Wastewater by Response Surface Methodology
Scandium concentrate and titanium dioxide wastewater (TDWW) all belong to waste, especially TDWW belongs to hazardous waste, it is urgent to find a more efficient and safer treatment method to deal with them, and both waste acid and waste ore contain scandium. The use of waste acid as a leaching age...
Saved in:
Published in | Journal of sustainable metallurgy Vol. 10; no. 1; pp. 278 - 295 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scandium concentrate and titanium dioxide wastewater (TDWW) all belong to waste, especially TDWW belongs to hazardous waste, it is urgent to find a more efficient and safer treatment method to deal with them, and both waste acid and waste ore contain scandium. The use of waste acid as a leaching agent can achieve the synergistic recovery effect of scandium. First, the leaching temperature, time, and liquid–solid ratio are found to be significant factors through single-factor tests. Then, the test program is designed by using the Box Behnken unit of Design Expert software to explore the relationship between each factor including leaching temperature (℃), leaching time (h), and liquid-to-solid ratio (mL/g). The results show that the interaction between leaching time and liquid–solid ratio was the strongest. The second-order regression model equation generated by the software can well predict the leaching effect of scandium. The scandium leaching efficiency reaches 85.30%, and the scandium content in the leaching residue decreases to 10.24 g/t under the optimal conditions: leaching temperature of 70 ℃, leaching time of 2.0 h, and liquid–solid ratio 8.7 mL/g. The finite element analysis is to simulate the mineral roasting process and the temperature field changes are always present.
Graphical Abstract |
---|---|
AbstractList | Scandium concentrate and titanium dioxide wastewater (TDWW) all belong to waste, especially TDWW belongs to hazardous waste, it is urgent to find a more efficient and safer treatment method to deal with them, and both waste acid and waste ore contain scandium. The use of waste acid as a leaching agent can achieve the synergistic recovery effect of scandium. First, the leaching temperature, time, and liquid–solid ratio are found to be significant factors through single-factor tests. Then, the test program is designed by using the Box Behnken unit of Design Expert software to explore the relationship between each factor including leaching temperature (℃), leaching time (h), and liquid-to-solid ratio (mL/g). The results show that the interaction between leaching time and liquid–solid ratio was the strongest. The second-order regression model equation generated by the software can well predict the leaching effect of scandium. The scandium leaching efficiency reaches 85.30%, and the scandium content in the leaching residue decreases to 10.24 g/t under the optimal conditions: leaching temperature of 70 ℃, leaching time of 2.0 h, and liquid–solid ratio 8.7 mL/g. The finite element analysis is to simulate the mineral roasting process and the temperature field changes are always present.
Graphical Abstract Scandium concentrate and titanium dioxide wastewater (TDWW) all belong to waste, especially TDWW belongs to hazardous waste, it is urgent to find a more efficient and safer treatment method to deal with them, and both waste acid and waste ore contain scandium. The use of waste acid as a leaching agent can achieve the synergistic recovery effect of scandium. First, the leaching temperature, time, and liquid–solid ratio are found to be significant factors through single-factor tests. Then, the test program is designed by using the Box Behnken unit of Design Expert software to explore the relationship between each factor including leaching temperature (℃), leaching time (h), and liquid-to-solid ratio (mL/g). The results show that the interaction between leaching time and liquid–solid ratio was the strongest. The second-order regression model equation generated by the software can well predict the leaching effect of scandium. The scandium leaching efficiency reaches 85.30%, and the scandium content in the leaching residue decreases to 10.24 g/t under the optimal conditions: leaching temperature of 70 ℃, leaching time of 2.0 h, and liquid–solid ratio 8.7 mL/g. The finite element analysis is to simulate the mineral roasting process and the temperature field changes are always present. |
Author | Xiao, Junhui Cheng, Renju Zhang, Junhui Zhong, Nanlan |
Author_xml | – sequence: 1 givenname: Junhui orcidid: 0000-0002-1256-2196 surname: Xiao fullname: Xiao, Junhui email: xiaojunhui33@163.com organization: School of Environment and Resource, Southwest University of Science and Technology, Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources, Ministry of Natural Resources, Chinese Academy of Geological Sciences, Applied Technology Innovation Center of Rare Earth Resources, China Geological Survey, Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Dongfang Boiler Group Co., Ltd., Sichuan Provincial Engineering Lab of Nonmetallic Mineral Powder Modification and High-Value Utilization, Southwest University of Science and Technology, Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology – sequence: 2 givenname: Nanlan surname: Zhong fullname: Zhong, Nanlan organization: School of Environment and Resource, Southwest University of Science and Technology – sequence: 3 givenname: Renju surname: Cheng fullname: Cheng, Renju organization: Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources, Ministry of Natural Resources, Chinese Academy of Geological Sciences, Applied Technology Innovation Center of Rare Earth Resources, China Geological Survey, Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences – sequence: 4 givenname: Junhui surname: Zhang fullname: Zhang, Junhui organization: Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources, Ministry of Natural Resources, Chinese Academy of Geological Sciences, Applied Technology Innovation Center of Rare Earth Resources, China Geological Survey, Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences |
BookMark | eNp9kMtKQzEQhoMoqNUXcBVwfTS35pwspV5BEbzgMqQ5czTSJjVJaevCZze1YsFFV3P7_5nh20fbPnhA6IiSE0pIfZoEaTitCBNVKZWo5BbaY1Spipf-9l_O-C46TOmdEMJqLuqa7qGv-0l2Y_dpsgseX8xzNPYnDR1-tMa3bjrGXQzjdTUI3oIvwgx45vIbfnLZ-OXk3IW5awG_mJRhVuYRDxf4AdIk-AT4cRo7YwHfQX4LbRiF18UB2unMKMHhb-yh58uLp8F1dXt_dTM4u60spypXoKRQ3A67tq05CCJ5B0PFG2Ja6EvbUdkwYVsBw37dlzVh1rKGMAlSgVBU8h46Xu2dxPAxhZT1e5hGX05qpvqSkYbyuqjYSmVjSClCpyfRjU1caEr0ErVeodYFtf5BrZerm38mW3gsGRZEbrTZylfWVO74V4jrrza4vgEw95co |
CitedBy_id | crossref_primary_10_1080_01496395_2024_2339869 crossref_primary_10_1016_j_cep_2024_110131 |
Cites_doi | 10.3390/met11091342 10.1007/s11837-019-03541-5 10.1016/j.mineng.2022.107401 10.1016/j.hydromet.2021.105724 10.1016/j.jre.2022.04.006 10.1016/j.jre.2022.06.003 10.1007/s40831-023-00678-1 10.1016/j.hydromet.2018.10.011 10.1007/s12598-016-0805-5 10.1016/j.jclepro.2021.126358 10.3390/pr8030365 10.1016/j.resconrec.2014.11.002 10.1515/reveh-2018-0078 10.1007/s11837-021-04665-3 10.1007/s40831-019-00210-4 10.3390/min10040382 10.1016/j.jclepro.2021.129783 10.1016/j.eti.2021.101525 10.1007/s40831-021-00484-7 10.1515/gps-2019-0050 10.1016/j.wasman.2019.06.044 10.1016/j.hydromet.2018.07.005 10.1007/s10967-016-4990-3 10.1177/0263617420916592 10.1016/j.jhazmat.2021.125923 10.1016/j.hydromet.2022.105893 10.3390/min8100426 10.1016/j.jece.2020.104897 10.1007/s13762-014-0504-4 10.1134/S0036023619020128 10.1002/clen.201700429 10.1016/j.hydromet.2022.105819 10.1016/j.hydromet.2017.10.026 10.5382/econgeo.2018.4579 10.3390/met12020228 10.1080/08827508.2019.1706049 10.1016/j.jclepro.2012.11.041 |
ContentType | Journal Article |
Copyright | The Minerals, Metals & Materials Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Minerals, Metals & Materials Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s40831-024-00794-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2199-3831 |
EndPage | 295 |
ExternalDocumentID | 10_1007_s40831_024_00794_6 |
GroupedDBID | -EM 0R~ 203 4.4 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AVXWI AXYYD AZFZN BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW Z7R Z7V Z7Y Z7Z Z85 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-e96493cbfdd73e4063feb9380ade56cf16824cd4eb5756702cc28026e69e49163 |
ISSN | 2199-3823 |
IngestDate | Fri Jul 25 11:02:30 EDT 2025 Tue Jul 01 01:00:21 EDT 2025 Thu Apr 24 23:10:59 EDT 2025 Fri Feb 21 02:40:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Finite element analysis Titanium dioxide wastewater Rare earths Response surface methodology (RSM) Scandium |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-e96493cbfdd73e4063feb9380ade56cf16824cd4eb5756702cc28026e69e49163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1256-2196 |
PQID | 2956208137 |
PQPubID | 2044445 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2956208137 crossref_primary_10_1007_s40831_024_00794_6 crossref_citationtrail_10_1007_s40831_024_00794_6 springer_journals_10_1007_s40831_024_00794_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Journal of sustainable metallurgy |
PublicationTitleAbbrev | J. Sustain. Metall |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Zaman, Lehmann (CR13) 2013; 50 Zhang, Xue, Yang (CR8) 2022; 178 Zhang, Li, Liu (CR11) 2016; 35 Salman, Jalhoom, Le, Abdullah, Cretescu, Domokos, Nguyen (CR21) 2022; 8 Nie, Wang, Wang, Zhao, Dong, Sun (CR24) 2018; 175 Li, Liu, Zhang, Huang (CR36) 2018; 8 Yin, Wang, Xu, Wan, Wang (CR16) 2022; 330 Fathianpour, Taheriyoun, Soleimani (CR28) 2018; 46 Yan, Zhang, Yang, McLean (CR20) 2019; 71 Ding, Xiao, Peng, Shen, Chen (CR34) 2021; 42 Krishnan, Zulkapli, Kamyab, Taib, Din, Majid, Chaiprapat, Kenzo, Ichikawa, Nasrullah, Chelliapan, Othman (CR15) 2021; 22 Alkhatib, Mamun, Akbar (CR27) 2015; 12 Anawati, Azimi (CR32) 2019; 95 Williams-Jones, Vasyukova (CR1) 2018; 113 Xiao, Peng, Ding, Chen, Zou, Wang (CR10) 2020; 8 Luo, Zhang, Li, Zhang, Zou, Hu, Yang, Xi, Liao (CR29) 2019; 8 Gu, Tang, Liu, Li, Fujiwara, Sun, Gu, Yao, Duan, Song, Jia (CR18) 2021; 295 Zhou, Teng, Zhang, Peng, Chen (CR22) 2018; 182 Tanvar, Mishra (CR14) 2023; 9 Kostikova, Mal'tseva, Zhilov (CR5) 2019; 64 Hidayat, Felicia, Rafandi, Machmudah (CR25) 2020; 10 Xiao, Zou, Chen, Peng, Ding, Chen, Deng, Li, Wang (CR26) 2021; 73 Xiao, Zou, Zhong, Gao (CR33) 2023; 41 Zou, Xiao, Liang, Huang, Xiong (CR6) 2021; 11 Rychkov, Semenishchev, Mashkovtsev, Kirillov, Kirillov, Botalov, MS (CR4) 2016; 310 Peng, Li, Zhang, Cui, Jiang, Sun (CR35) 2023; 41 Zhang, Zhang, Li, Lv, Cao (CR19) 2021; 9 Xu, Shah, Cui, Jin, Peng, Zhang, Sun (CR2) 2018; 180 Zeters, Kaya, Dittrich, Forsberg (CR12) 2019; 5 Zhou, Ma, Wang, Chen, Zhang, Huang (CR9) 2022; 208 Ilyas, Ahmad, Khan, Yousaf, Yasir, Khan (CR17) 2019; 34 Tsakanika, Panagiotatos, Lymperopoulou, Chatzitheodoridis, Ochsenkuhn, Ochsenkuhn-Petropoulou (CR7) 2021; 12 Alman-Abad, Pirkharrati, Asadzadeh, Maleki-Kakelar (CR23) 2020; 38 Martire, Castellani, Sala (CR31) 2015; 94 Masoumi, Ghaemi, Gilani (CR37) 2021; 416 Zhou, Ma, Ning, SY, Wei YZ, Fujita T (CR3) 2021; 204 Sahlabad, Javanshir, Honarmand (CR30) 2022; 211 GV Kostikova (794_CR5) 2019; 64 S Martire (794_CR31) 2015; 94 EM Zeters (794_CR12) 2019; 5 K Zou (794_CR6) 2021; 11 J Zhou (794_CR3) 2021; 204 JH Xiao (794_CR26) 2021; 73 RM Li (794_CR36) 2018; 8 MK Sahlabad (794_CR30) 2022; 211 H Tanvar (794_CR14) 2023; 9 J Anawati (794_CR32) 2019; 95 S Krishnan (794_CR15) 2021; 22 ZG Zhou (794_CR9) 2022; 208 YG Luo (794_CR29) 2019; 8 Q Yin (794_CR16) 2022; 330 KG Zhou (794_CR22) 2018; 182 LA Tsakanika (794_CR7) 2021; 12 B Zhang (794_CR8) 2022; 178 M Ilyas (794_CR17) 2019; 34 AU Zaman (794_CR13) 2013; 50 VN Rychkov (794_CR4) 2016; 310 H Masoumi (794_CR37) 2021; 416 A Fathianpour (794_CR28) 2018; 46 MF Alkhatib (794_CR27) 2015; 12 ZS Alman-Abad (794_CR23) 2020; 38 JH Xiao (794_CR33) 2023; 41 W Ding (794_CR34) 2021; 42 AD Salman (794_CR21) 2022; 8 N Zhang (794_CR11) 2016; 35 MIP Hidayat (794_CR25) 2020; 10 XJ Peng (794_CR35) 2023; 41 BX Gu (794_CR18) 2021; 295 AE Williams-Jones (794_CR1) 2018; 113 DD Xu (794_CR2) 2018; 180 HP Nie (794_CR24) 2018; 175 JH Xiao (794_CR10) 2020; 8 P Yan (794_CR20) 2019; 71 WG Zhang (794_CR19) 2021; 9 |
References_xml | – volume: 11 start-page: 1342 year: 2021 ident: CR6 article-title: Effective extraction of vanadium from bauxite-type vanadium ore using roasting and leaching publication-title: Metals doi: 10.3390/met11091342 – volume: 71 start-page: 4666 year: 2019 end-page: 4673 ident: CR20 article-title: Characterization and pre-concentration of scandium in low-grade magnetite ore publication-title: JOM doi: 10.1007/s11837-019-03541-5 – volume: 178 year: 2022 ident: CR8 article-title: A novel process for recovery of scandium, rare earth and niobium from Bayan Obo tailings: NaCl-Ca(OH) -coal roasting and acid leaching publication-title: Miner Eng doi: 10.1016/j.mineng.2022.107401 – volume: 204 year: 2021 ident: CR3 article-title: Recovery of scandium from red mud by leaching with titanium white waste acid and solvent extraction with P204 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2021.105724 – volume: 41 start-page: 746 year: 2023 end-page: 770 ident: CR35 article-title: Preparation of ultra-high pure scandium oxide with crude product from titanium white waste acid publication-title: J Rare Earths doi: 10.1016/j.jre.2022.04.006 – volume: 41 start-page: 1099 year: 2023 end-page: 1107 ident: CR33 article-title: Selective separation of iron and scandium from Bayer Sc-bearing red mud publication-title: J Rare Earths doi: 10.1016/j.jre.2022.06.003 – volume: 9 start-page: 665 year: 2023 end-page: 677 ident: CR14 article-title: Extraction of titanium, aluminum, and rare earth values from upgraded bauxite residue publication-title: J Sustain Metall doi: 10.1007/s40831-023-00678-1 – volume: 182 start-page: 57 year: 2018 end-page: 63 ident: CR22 article-title: Enhanced selective leaching of scandium from red mud publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2018.10.011 – volume: 35 start-page: 887 year: 2016 end-page: 900 ident: CR11 article-title: Recovery of scandium from bauxite residue-red mud: a review publication-title: Rare Met doi: 10.1007/s12598-016-0805-5 – volume: 295 year: 2021 ident: CR18 article-title: The recyclable waste recycling potential towards zero waste cities—a comparison of three cities in China publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2021.126358 – volume: 8 start-page: 365 year: 2020 ident: CR10 article-title: Recovering scandium from scandium rough concentrate using roasting-hydrolysis-leaching process publication-title: Processes doi: 10.3390/pr8030365 – volume: 94 start-page: 11 year: 2015 end-page: 20 ident: CR31 article-title: Carrying capacity assessment of forest resources: enhancing environmental sustainability in energy production at local scale publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2014.11.002 – volume: 34 start-page: 171 year: 2019 end-page: 186 ident: CR17 article-title: Environmental and health impacts of industrial wastewater effluents in Pakistan: a review publication-title: Rev Environ Health doi: 10.1515/reveh-2018-0078 – volume: 73 start-page: 1836 year: 2021 end-page: 1844 ident: CR26 article-title: Extraction of Sc from Sc-bearing V-Ti magnetite tailings publication-title: JOM doi: 10.1007/s11837-021-04665-3 – volume: 5 start-page: 48 year: 2019 end-page: 56 ident: CR12 article-title: Recovery of scandium by crystallization techniques publication-title: J Sustain Metall doi: 10.1007/s40831-019-00210-4 – volume: 10 start-page: 382 year: 2020 ident: CR25 article-title: Effects of sample shapes and thickness on distribution of temperature inside the mineral ilmenite due to microwave heating publication-title: Minerals doi: 10.3390/min10040382 – volume: 330 year: 2022 ident: CR16 article-title: Factors influencing green transformation efficiency in China's mineral resource-based cities: method analysis based on IPAT-E and PLS-SEM publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2021.129783 – volume: 22 year: 2021 ident: CR15 article-title: Current technologies for recovery of metals from industrial wastes: an overview publication-title: Environ Technol Innovation doi: 10.1016/j.eti.2021.101525 – volume: 8 start-page: 135 year: 2022 end-page: 147 ident: CR21 article-title: Potential application of macrocyclic compounds for selective recovery of rare earth scandium elements from aqueous media publication-title: J Sustain Metall doi: 10.1007/s40831-021-00484-7 – volume: 8 start-page: 808 year: 2019 end-page: 813 ident: CR29 article-title: Optimization of uranium removal from uranium plant wastewater by response surface methodology (RSM) publication-title: Green Process Synth doi: 10.1515/gps-2019-0050 – volume: 95 start-page: 549 year: 2019 end-page: 559 ident: CR32 article-title: Recovery of scandium from Canadian bauxite residue utilizing acid baking followed by water leaching publication-title: Waste Manage doi: 10.1016/j.wasman.2019.06.044 – volume: 180 start-page: 132 year: 2018 end-page: 138 ident: CR2 article-title: Recovery of rare earths from nitric acid leach solutions of phosphate ores using solvent extraction with a new amide extractant (TODGA) publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2018.07.005 – volume: 310 start-page: 1247 year: 2016 end-page: 1253 ident: CR4 article-title: Deactivation of the scandium concentrate recovered from uranium leach liquors publication-title: J Radioanal Nucl Chem doi: 10.1007/s10967-016-4990-3 – volume: 38 start-page: 79 year: 2020 end-page: 93 ident: CR23 article-title: Application of response surface methodology for optimization of zinc elimination from a polluted soil using tartaric acid publication-title: Adsorpt Sci Technol doi: 10.1177/0263617420916592 – volume: 416 year: 2021 ident: CR37 article-title: Synthesis of polystyrene-based hyper-cross-linked polymers for Cd(II) ions removal from aqueous solutions: experimental and RSM modeling publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.125923 – volume: 211 year: 2022 ident: CR30 article-title: Improvement in atmospheric leaching of chalcopyrite concentrate using a new environmentally-friendly ionic liquid publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2022.105893 – volume: 8 start-page: 426 year: 2018 ident: CR36 article-title: Mechanism of Novel K SO /KCl composite roasting additive for strengthening vanadium extraction from vanadium-titanium magnetite concentrate publication-title: Minerals doi: 10.3390/min8100426 – volume: 9 year: 2021 ident: CR19 article-title: Basic research on the leaching behavior of vanadium-bearing steel slag with titanium white waste acid publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2020.104897 – volume: 12 start-page: 1295 year: 2015 end-page: 1302 ident: CR27 article-title: Application of response surface methodology (RSM) for optimization of color removal from POME by granular activated carbon publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-014-0504-4 – volume: 64 start-page: 277 year: 2019 end-page: 282 ident: CR5 article-title: Extraction recovery of scandium and concomitant elements with isoamyldialkylphosphine oxide from different media publication-title: Russ J Inorg Chem doi: 10.1134/S0036023619020128 – volume: 46 start-page: 1700429 year: 2018 ident: CR28 article-title: Lead and zinc stabilization of soil using sewage sludge biochar: optimization through response surface methodology publication-title: Clean-Soil Air Water doi: 10.1002/clen.201700429 – volume: 208 year: 2022 ident: CR9 article-title: Enrichment of scandium and aluminum from limonitic laterite during the nitric acid pressure leaching process publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2022.105819 – volume: 175 start-page: 117 year: 2018 end-page: 123 ident: CR24 article-title: Recovery of scandium from leaching solutions of tungsten residue using solvent extraction with Cyanex 572 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2017.10.026 – volume: 113 start-page: 973 year: 2018 end-page: 988 ident: CR1 article-title: The economic geology of scandium, the runt of the rare earth element litter publication-title: Econ Geol doi: 10.5382/econgeo.2018.4579 – volume: 12 start-page: 228 year: 2021 ident: CR7 article-title: Direct phosphoric acid leaching of bauxite residue for selective scandium extraction publication-title: Metals doi: 10.3390/met12020228 – volume: 42 start-page: 153 year: 2021 end-page: 161 ident: CR34 article-title: Iron extraction from red mud using roasting with sodium salt publication-title: Miner Process Extr Metall Rev doi: 10.1080/08827508.2019.1706049 – volume: 50 start-page: 123 year: 2013 end-page: 132 ident: CR13 article-title: The zero waste index: a performance measurement tool for waste management systems in a 'zero waste city' publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2012.11.041 – volume: 5 start-page: 48 year: 2019 ident: 794_CR12 publication-title: J Sustain Metall doi: 10.1007/s40831-019-00210-4 – volume: 178 year: 2022 ident: 794_CR8 publication-title: Miner Eng doi: 10.1016/j.mineng.2022.107401 – volume: 182 start-page: 57 year: 2018 ident: 794_CR22 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2018.10.011 – volume: 211 year: 2022 ident: 794_CR30 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2022.105893 – volume: 71 start-page: 4666 year: 2019 ident: 794_CR20 publication-title: JOM doi: 10.1007/s11837-019-03541-5 – volume: 38 start-page: 79 year: 2020 ident: 794_CR23 publication-title: Adsorpt Sci Technol doi: 10.1177/0263617420916592 – volume: 50 start-page: 123 year: 2013 ident: 794_CR13 publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2012.11.041 – volume: 12 start-page: 228 year: 2021 ident: 794_CR7 publication-title: Metals doi: 10.3390/met12020228 – volume: 9 start-page: 665 year: 2023 ident: 794_CR14 publication-title: J Sustain Metall doi: 10.1007/s40831-023-00678-1 – volume: 95 start-page: 549 year: 2019 ident: 794_CR32 publication-title: Waste Manage doi: 10.1016/j.wasman.2019.06.044 – volume: 8 start-page: 426 year: 2018 ident: 794_CR36 publication-title: Minerals doi: 10.3390/min8100426 – volume: 8 start-page: 135 year: 2022 ident: 794_CR21 publication-title: J Sustain Metall doi: 10.1007/s40831-021-00484-7 – volume: 10 start-page: 382 year: 2020 ident: 794_CR25 publication-title: Minerals doi: 10.3390/min10040382 – volume: 8 start-page: 808 year: 2019 ident: 794_CR29 publication-title: Green Process Synth doi: 10.1515/gps-2019-0050 – volume: 41 start-page: 746 year: 2023 ident: 794_CR35 publication-title: J Rare Earths doi: 10.1016/j.jre.2022.04.006 – volume: 310 start-page: 1247 year: 2016 ident: 794_CR4 publication-title: J Radioanal Nucl Chem doi: 10.1007/s10967-016-4990-3 – volume: 208 year: 2022 ident: 794_CR9 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2022.105819 – volume: 175 start-page: 117 year: 2018 ident: 794_CR24 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2017.10.026 – volume: 73 start-page: 1836 year: 2021 ident: 794_CR26 publication-title: JOM doi: 10.1007/s11837-021-04665-3 – volume: 11 start-page: 1342 year: 2021 ident: 794_CR6 publication-title: Metals doi: 10.3390/met11091342 – volume: 34 start-page: 171 year: 2019 ident: 794_CR17 publication-title: Rev Environ Health doi: 10.1515/reveh-2018-0078 – volume: 8 start-page: 365 year: 2020 ident: 794_CR10 publication-title: Processes doi: 10.3390/pr8030365 – volume: 295 year: 2021 ident: 794_CR18 publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2021.126358 – volume: 113 start-page: 973 year: 2018 ident: 794_CR1 publication-title: Econ Geol doi: 10.5382/econgeo.2018.4579 – volume: 64 start-page: 277 year: 2019 ident: 794_CR5 publication-title: Russ J Inorg Chem doi: 10.1134/S0036023619020128 – volume: 12 start-page: 1295 year: 2015 ident: 794_CR27 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-014-0504-4 – volume: 180 start-page: 132 year: 2018 ident: 794_CR2 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2018.07.005 – volume: 94 start-page: 11 year: 2015 ident: 794_CR31 publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2014.11.002 – volume: 9 year: 2021 ident: 794_CR19 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2020.104897 – volume: 204 year: 2021 ident: 794_CR3 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2021.105724 – volume: 42 start-page: 153 year: 2021 ident: 794_CR34 publication-title: Miner Process Extr Metall Rev doi: 10.1080/08827508.2019.1706049 – volume: 416 year: 2021 ident: 794_CR37 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.125923 – volume: 46 start-page: 1700429 year: 2018 ident: 794_CR28 publication-title: Clean-Soil Air Water doi: 10.1002/clen.201700429 – volume: 330 year: 2022 ident: 794_CR16 publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2021.129783 – volume: 22 year: 2021 ident: 794_CR15 publication-title: Environ Technol Innovation doi: 10.1016/j.eti.2021.101525 – volume: 35 start-page: 887 year: 2016 ident: 794_CR11 publication-title: Rare Met doi: 10.1007/s12598-016-0805-5 – volume: 41 start-page: 1099 year: 2023 ident: 794_CR33 publication-title: J Rare Earths doi: 10.1016/j.jre.2022.06.003 |
SSID | ssj0002734771 |
Score | 2.2630417 |
Snippet | Scandium concentrate and titanium dioxide wastewater (TDWW) all belong to waste, especially TDWW belongs to hazardous waste, it is urgent to find a more... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 278 |
SubjectTerms | Earth and Environmental Science Environment Finite element method Hazardous wastes Leaching Metallic Materials Regression models Research Article Response surface methodology Scandium Software Sustainable Development Temperature distribution Titanium Titanium dioxide Wastewater |
Title | Optimization Extraction of Scandium from Scandium Concentrate with Titanium Dioxide Wastewater by Response Surface Methodology |
URI | https://link.springer.com/article/10.1007/s40831-024-00794-6 https://www.proquest.com/docview/2956208137 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMUFuQDtxLkOonTHHdLq9Vq6V5S0VsUP6INatNV20gLB_4Mf5Sx48RZuqyAS9Q4jfv4vozHY38zCL0XUvky9KUnwlHmBeMs9zImMo-xCLxXEnLfKLw_z9nZIjhfhste72dn11K15x_F9zt1Jf-DKrQBrlol-w_Itp1CA7wGfOEICMPxrzC-hOd9bYWUw-nNfmsLf2shitB6lWpd60fas4lWKZYmI20dgk0K8A71lU_F5qaQavgl2-l4ms6dyLV_brbQKjAw2zzTNsBUnHax-EO_dteRZK0V-ParausC98si2wzPq_KqKlzMWtc7AjO_ckydXCmzLbD8Wh2Etjt323AFDdx-rVvhSr0XW6-QtHIabfHAesaeXpisB6dumx0qGpNNDqhp7W9dD8gO5bSu33kwStQbQ3aBrrLmme9IwCx5d6Tknl-ms8XFRZpMl8kDdERhLkL76Ohkdno6b0N5OkNQZKb27Q-w8iwj0jz4mNsukJvX_LYUbzyc5Al6bCHEJzXPnqKeKp-hR52Elc_Rjy7jsGMc3uS44RjWjHNnHcZhzTjcMA5bxmHHOMy_4YZx2DIOdxj3Ai1m02Ry5tkKHp4A0773VMyC2Bc8lzLyFfiOfq547I9JJlXIRD5iYxoIGSgOswYWESoEHRPKFItVABMX_yXql5tSvUI4IzTzheIsjCW4-IRLokgkmWARJ4KSARo1f2oqbHp7XWVllbaJuQ0QKQCRGiBSNkDD9p7rOrnLve8-brBKrRHYpUAxRsGt9qMB-tDg5y7_ubfX9_f2Bj10T88x6u-3lXoL7u-ev7P0-wW5TbRm |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+Extraction+of+Scandium+from+Scandium+Concentrate+with+Titanium+Dioxide+Wastewater+by+Response+Surface+Methodology&rft.jtitle=Journal+of+sustainable+metallurgy&rft.au=Xiao+Junhui&rft.au=Zhong+Nanlan&rft.au=Cheng+Renju&rft.au=Zhang%2C+Junhui&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2199-3823&rft.eissn=2199-3831&rft.volume=10&rft.issue=1&rft.spage=278&rft.epage=295&rft_id=info:doi/10.1007%2Fs40831-024-00794-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-3823&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-3823&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-3823&client=summon |