Optimization Extraction of Scandium from Scandium Concentrate with Titanium Dioxide Wastewater by Response Surface Methodology

Scandium concentrate and titanium dioxide wastewater (TDWW) all belong to waste, especially TDWW belongs to hazardous waste, it is urgent to find a more efficient and safer treatment method to deal with them, and both waste acid and waste ore contain scandium. The use of waste acid as a leaching age...

Full description

Saved in:
Bibliographic Details
Published inJournal of sustainable metallurgy Vol. 10; no. 1; pp. 278 - 295
Main Authors Xiao, Junhui, Zhong, Nanlan, Cheng, Renju, Zhang, Junhui
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Scandium concentrate and titanium dioxide wastewater (TDWW) all belong to waste, especially TDWW belongs to hazardous waste, it is urgent to find a more efficient and safer treatment method to deal with them, and both waste acid and waste ore contain scandium. The use of waste acid as a leaching agent can achieve the synergistic recovery effect of scandium. First, the leaching temperature, time, and liquid–solid ratio are found to be significant factors through single-factor tests. Then, the test program is designed by using the Box Behnken unit of Design Expert software to explore the relationship between each factor including leaching temperature (℃), leaching time (h), and liquid-to-solid ratio (mL/g). The results show that the interaction between leaching time and liquid–solid ratio was the strongest. The second-order regression model equation generated by the software can well predict the leaching effect of scandium. The scandium leaching efficiency reaches 85.30%, and the scandium content in the leaching residue decreases to 10.24 g/t under the optimal conditions: leaching temperature of 70 ℃, leaching time of 2.0 h, and liquid–solid ratio 8.7 mL/g. The finite element analysis is to simulate the mineral roasting process and the temperature field changes are always present. Graphical Abstract
AbstractList Scandium concentrate and titanium dioxide wastewater (TDWW) all belong to waste, especially TDWW belongs to hazardous waste, it is urgent to find a more efficient and safer treatment method to deal with them, and both waste acid and waste ore contain scandium. The use of waste acid as a leaching agent can achieve the synergistic recovery effect of scandium. First, the leaching temperature, time, and liquid–solid ratio are found to be significant factors through single-factor tests. Then, the test program is designed by using the Box Behnken unit of Design Expert software to explore the relationship between each factor including leaching temperature (℃), leaching time (h), and liquid-to-solid ratio (mL/g). The results show that the interaction between leaching time and liquid–solid ratio was the strongest. The second-order regression model equation generated by the software can well predict the leaching effect of scandium. The scandium leaching efficiency reaches 85.30%, and the scandium content in the leaching residue decreases to 10.24 g/t under the optimal conditions: leaching temperature of 70 ℃, leaching time of 2.0 h, and liquid–solid ratio 8.7 mL/g. The finite element analysis is to simulate the mineral roasting process and the temperature field changes are always present. Graphical Abstract
Scandium concentrate and titanium dioxide wastewater (TDWW) all belong to waste, especially TDWW belongs to hazardous waste, it is urgent to find a more efficient and safer treatment method to deal with them, and both waste acid and waste ore contain scandium. The use of waste acid as a leaching agent can achieve the synergistic recovery effect of scandium. First, the leaching temperature, time, and liquid–solid ratio are found to be significant factors through single-factor tests. Then, the test program is designed by using the Box Behnken unit of Design Expert software to explore the relationship between each factor including leaching temperature (℃), leaching time (h), and liquid-to-solid ratio (mL/g). The results show that the interaction between leaching time and liquid–solid ratio was the strongest. The second-order regression model equation generated by the software can well predict the leaching effect of scandium. The scandium leaching efficiency reaches 85.30%, and the scandium content in the leaching residue decreases to 10.24 g/t under the optimal conditions: leaching temperature of 70 ℃, leaching time of 2.0 h, and liquid–solid ratio 8.7 mL/g. The finite element analysis is to simulate the mineral roasting process and the temperature field changes are always present.
Author Xiao, Junhui
Cheng, Renju
Zhang, Junhui
Zhong, Nanlan
Author_xml – sequence: 1
  givenname: Junhui
  orcidid: 0000-0002-1256-2196
  surname: Xiao
  fullname: Xiao, Junhui
  email: xiaojunhui33@163.com
  organization: School of Environment and Resource, Southwest University of Science and Technology, Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources, Ministry of Natural Resources, Chinese Academy of Geological Sciences, Applied Technology Innovation Center of Rare Earth Resources, China Geological Survey, Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Dongfang Boiler Group Co., Ltd., Sichuan Provincial Engineering Lab of Nonmetallic Mineral Powder Modification and High-Value Utilization, Southwest University of Science and Technology, Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology
– sequence: 2
  givenname: Nanlan
  surname: Zhong
  fullname: Zhong, Nanlan
  organization: School of Environment and Resource, Southwest University of Science and Technology
– sequence: 3
  givenname: Renju
  surname: Cheng
  fullname: Cheng, Renju
  organization: Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources, Ministry of Natural Resources, Chinese Academy of Geological Sciences, Applied Technology Innovation Center of Rare Earth Resources, China Geological Survey, Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences
– sequence: 4
  givenname: Junhui
  surname: Zhang
  fullname: Zhang, Junhui
  organization: Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources, Ministry of Natural Resources, Chinese Academy of Geological Sciences, Applied Technology Innovation Center of Rare Earth Resources, China Geological Survey, Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences
BookMark eNp9kMtKQzEQhoMoqNUXcBVwfTS35pwspV5BEbzgMqQ5czTSJjVJaevCZze1YsFFV3P7_5nh20fbPnhA6IiSE0pIfZoEaTitCBNVKZWo5BbaY1Spipf-9l_O-C46TOmdEMJqLuqa7qGv-0l2Y_dpsgseX8xzNPYnDR1-tMa3bjrGXQzjdTUI3oIvwgx45vIbfnLZ-OXk3IW5awG_mJRhVuYRDxf4AdIk-AT4cRo7YwHfQX4LbRiF18UB2unMKMHhb-yh58uLp8F1dXt_dTM4u60spypXoKRQ3A67tq05CCJ5B0PFG2Ja6EvbUdkwYVsBw37dlzVh1rKGMAlSgVBU8h46Xu2dxPAxhZT1e5hGX05qpvqSkYbyuqjYSmVjSClCpyfRjU1caEr0ErVeodYFtf5BrZerm38mW3gsGRZEbrTZylfWVO74V4jrrza4vgEw95co
CitedBy_id crossref_primary_10_1080_01496395_2024_2339869
crossref_primary_10_1016_j_cep_2024_110131
Cites_doi 10.3390/met11091342
10.1007/s11837-019-03541-5
10.1016/j.mineng.2022.107401
10.1016/j.hydromet.2021.105724
10.1016/j.jre.2022.04.006
10.1016/j.jre.2022.06.003
10.1007/s40831-023-00678-1
10.1016/j.hydromet.2018.10.011
10.1007/s12598-016-0805-5
10.1016/j.jclepro.2021.126358
10.3390/pr8030365
10.1016/j.resconrec.2014.11.002
10.1515/reveh-2018-0078
10.1007/s11837-021-04665-3
10.1007/s40831-019-00210-4
10.3390/min10040382
10.1016/j.jclepro.2021.129783
10.1016/j.eti.2021.101525
10.1007/s40831-021-00484-7
10.1515/gps-2019-0050
10.1016/j.wasman.2019.06.044
10.1016/j.hydromet.2018.07.005
10.1007/s10967-016-4990-3
10.1177/0263617420916592
10.1016/j.jhazmat.2021.125923
10.1016/j.hydromet.2022.105893
10.3390/min8100426
10.1016/j.jece.2020.104897
10.1007/s13762-014-0504-4
10.1134/S0036023619020128
10.1002/clen.201700429
10.1016/j.hydromet.2022.105819
10.1016/j.hydromet.2017.10.026
10.5382/econgeo.2018.4579
10.3390/met12020228
10.1080/08827508.2019.1706049
10.1016/j.jclepro.2012.11.041
ContentType Journal Article
Copyright The Minerals, Metals & Materials Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Minerals, Metals & Materials Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s40831-024-00794-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2199-3831
EndPage 295
ExternalDocumentID 10_1007_s40831_024_00794_6
GroupedDBID -EM
0R~
203
4.4
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z7R
Z7V
Z7Y
Z7Z
Z85
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-e96493cbfdd73e4063feb9380ade56cf16824cd4eb5756702cc28026e69e49163
ISSN 2199-3823
IngestDate Fri Jul 25 11:02:30 EDT 2025
Tue Jul 01 01:00:21 EDT 2025
Thu Apr 24 23:10:59 EDT 2025
Fri Feb 21 02:40:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Finite element analysis
Titanium dioxide wastewater
Rare earths
Response surface methodology (RSM)
Scandium
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-e96493cbfdd73e4063feb9380ade56cf16824cd4eb5756702cc28026e69e49163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1256-2196
PQID 2956208137
PQPubID 2044445
PageCount 18
ParticipantIDs proquest_journals_2956208137
crossref_primary_10_1007_s40831_024_00794_6
crossref_citationtrail_10_1007_s40831_024_00794_6
springer_journals_10_1007_s40831_024_00794_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of sustainable metallurgy
PublicationTitleAbbrev J. Sustain. Metall
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Zaman, Lehmann (CR13) 2013; 50
Zhang, Xue, Yang (CR8) 2022; 178
Zhang, Li, Liu (CR11) 2016; 35
Salman, Jalhoom, Le, Abdullah, Cretescu, Domokos, Nguyen (CR21) 2022; 8
Nie, Wang, Wang, Zhao, Dong, Sun (CR24) 2018; 175
Li, Liu, Zhang, Huang (CR36) 2018; 8
Yin, Wang, Xu, Wan, Wang (CR16) 2022; 330
Fathianpour, Taheriyoun, Soleimani (CR28) 2018; 46
Yan, Zhang, Yang, McLean (CR20) 2019; 71
Ding, Xiao, Peng, Shen, Chen (CR34) 2021; 42
Krishnan, Zulkapli, Kamyab, Taib, Din, Majid, Chaiprapat, Kenzo, Ichikawa, Nasrullah, Chelliapan, Othman (CR15) 2021; 22
Alkhatib, Mamun, Akbar (CR27) 2015; 12
Anawati, Azimi (CR32) 2019; 95
Williams-Jones, Vasyukova (CR1) 2018; 113
Xiao, Peng, Ding, Chen, Zou, Wang (CR10) 2020; 8
Luo, Zhang, Li, Zhang, Zou, Hu, Yang, Xi, Liao (CR29) 2019; 8
Gu, Tang, Liu, Li, Fujiwara, Sun, Gu, Yao, Duan, Song, Jia (CR18) 2021; 295
Zhou, Teng, Zhang, Peng, Chen (CR22) 2018; 182
Tanvar, Mishra (CR14) 2023; 9
Kostikova, Mal'tseva, Zhilov (CR5) 2019; 64
Hidayat, Felicia, Rafandi, Machmudah (CR25) 2020; 10
Xiao, Zou, Chen, Peng, Ding, Chen, Deng, Li, Wang (CR26) 2021; 73
Xiao, Zou, Zhong, Gao (CR33) 2023; 41
Zou, Xiao, Liang, Huang, Xiong (CR6) 2021; 11
Rychkov, Semenishchev, Mashkovtsev, Kirillov, Kirillov, Botalov, MS (CR4) 2016; 310
Peng, Li, Zhang, Cui, Jiang, Sun (CR35) 2023; 41
Zhang, Zhang, Li, Lv, Cao (CR19) 2021; 9
Xu, Shah, Cui, Jin, Peng, Zhang, Sun (CR2) 2018; 180
Zeters, Kaya, Dittrich, Forsberg (CR12) 2019; 5
Zhou, Ma, Wang, Chen, Zhang, Huang (CR9) 2022; 208
Ilyas, Ahmad, Khan, Yousaf, Yasir, Khan (CR17) 2019; 34
Tsakanika, Panagiotatos, Lymperopoulou, Chatzitheodoridis, Ochsenkuhn, Ochsenkuhn-Petropoulou (CR7) 2021; 12
Alman-Abad, Pirkharrati, Asadzadeh, Maleki-Kakelar (CR23) 2020; 38
Martire, Castellani, Sala (CR31) 2015; 94
Masoumi, Ghaemi, Gilani (CR37) 2021; 416
Zhou, Ma, Ning, SY, Wei YZ, Fujita T (CR3) 2021; 204
Sahlabad, Javanshir, Honarmand (CR30) 2022; 211
GV Kostikova (794_CR5) 2019; 64
S Martire (794_CR31) 2015; 94
EM Zeters (794_CR12) 2019; 5
K Zou (794_CR6) 2021; 11
J Zhou (794_CR3) 2021; 204
JH Xiao (794_CR26) 2021; 73
RM Li (794_CR36) 2018; 8
MK Sahlabad (794_CR30) 2022; 211
H Tanvar (794_CR14) 2023; 9
J Anawati (794_CR32) 2019; 95
S Krishnan (794_CR15) 2021; 22
ZG Zhou (794_CR9) 2022; 208
YG Luo (794_CR29) 2019; 8
Q Yin (794_CR16) 2022; 330
KG Zhou (794_CR22) 2018; 182
LA Tsakanika (794_CR7) 2021; 12
B Zhang (794_CR8) 2022; 178
M Ilyas (794_CR17) 2019; 34
AU Zaman (794_CR13) 2013; 50
VN Rychkov (794_CR4) 2016; 310
H Masoumi (794_CR37) 2021; 416
A Fathianpour (794_CR28) 2018; 46
MF Alkhatib (794_CR27) 2015; 12
ZS Alman-Abad (794_CR23) 2020; 38
JH Xiao (794_CR33) 2023; 41
W Ding (794_CR34) 2021; 42
AD Salman (794_CR21) 2022; 8
N Zhang (794_CR11) 2016; 35
MIP Hidayat (794_CR25) 2020; 10
XJ Peng (794_CR35) 2023; 41
BX Gu (794_CR18) 2021; 295
AE Williams-Jones (794_CR1) 2018; 113
DD Xu (794_CR2) 2018; 180
HP Nie (794_CR24) 2018; 175
JH Xiao (794_CR10) 2020; 8
P Yan (794_CR20) 2019; 71
WG Zhang (794_CR19) 2021; 9
References_xml – volume: 11
  start-page: 1342
  year: 2021
  ident: CR6
  article-title: Effective extraction of vanadium from bauxite-type vanadium ore using roasting and leaching
  publication-title: Metals
  doi: 10.3390/met11091342
– volume: 71
  start-page: 4666
  year: 2019
  end-page: 4673
  ident: CR20
  article-title: Characterization and pre-concentration of scandium in low-grade magnetite ore
  publication-title: JOM
  doi: 10.1007/s11837-019-03541-5
– volume: 178
  year: 2022
  ident: CR8
  article-title: A novel process for recovery of scandium, rare earth and niobium from Bayan Obo tailings: NaCl-Ca(OH) -coal roasting and acid leaching
  publication-title: Miner Eng
  doi: 10.1016/j.mineng.2022.107401
– volume: 204
  year: 2021
  ident: CR3
  article-title: Recovery of scandium from red mud by leaching with titanium white waste acid and solvent extraction with P204
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2021.105724
– volume: 41
  start-page: 746
  year: 2023
  end-page: 770
  ident: CR35
  article-title: Preparation of ultra-high pure scandium oxide with crude product from titanium white waste acid
  publication-title: J Rare Earths
  doi: 10.1016/j.jre.2022.04.006
– volume: 41
  start-page: 1099
  year: 2023
  end-page: 1107
  ident: CR33
  article-title: Selective separation of iron and scandium from Bayer Sc-bearing red mud
  publication-title: J Rare Earths
  doi: 10.1016/j.jre.2022.06.003
– volume: 9
  start-page: 665
  year: 2023
  end-page: 677
  ident: CR14
  article-title: Extraction of titanium, aluminum, and rare earth values from upgraded bauxite residue
  publication-title: J Sustain Metall
  doi: 10.1007/s40831-023-00678-1
– volume: 182
  start-page: 57
  year: 2018
  end-page: 63
  ident: CR22
  article-title: Enhanced selective leaching of scandium from red mud
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2018.10.011
– volume: 35
  start-page: 887
  year: 2016
  end-page: 900
  ident: CR11
  article-title: Recovery of scandium from bauxite residue-red mud: a review
  publication-title: Rare Met
  doi: 10.1007/s12598-016-0805-5
– volume: 295
  year: 2021
  ident: CR18
  article-title: The recyclable waste recycling potential towards zero waste cities—a comparison of three cities in China
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2021.126358
– volume: 8
  start-page: 365
  year: 2020
  ident: CR10
  article-title: Recovering scandium from scandium rough concentrate using roasting-hydrolysis-leaching process
  publication-title: Processes
  doi: 10.3390/pr8030365
– volume: 94
  start-page: 11
  year: 2015
  end-page: 20
  ident: CR31
  article-title: Carrying capacity assessment of forest resources: enhancing environmental sustainability in energy production at local scale
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2014.11.002
– volume: 34
  start-page: 171
  year: 2019
  end-page: 186
  ident: CR17
  article-title: Environmental and health impacts of industrial wastewater effluents in Pakistan: a review
  publication-title: Rev Environ Health
  doi: 10.1515/reveh-2018-0078
– volume: 73
  start-page: 1836
  year: 2021
  end-page: 1844
  ident: CR26
  article-title: Extraction of Sc from Sc-bearing V-Ti magnetite tailings
  publication-title: JOM
  doi: 10.1007/s11837-021-04665-3
– volume: 5
  start-page: 48
  year: 2019
  end-page: 56
  ident: CR12
  article-title: Recovery of scandium by crystallization techniques
  publication-title: J Sustain Metall
  doi: 10.1007/s40831-019-00210-4
– volume: 10
  start-page: 382
  year: 2020
  ident: CR25
  article-title: Effects of sample shapes and thickness on distribution of temperature inside the mineral ilmenite due to microwave heating
  publication-title: Minerals
  doi: 10.3390/min10040382
– volume: 330
  year: 2022
  ident: CR16
  article-title: Factors influencing green transformation efficiency in China's mineral resource-based cities: method analysis based on IPAT-E and PLS-SEM
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2021.129783
– volume: 22
  year: 2021
  ident: CR15
  article-title: Current technologies for recovery of metals from industrial wastes: an overview
  publication-title: Environ Technol Innovation
  doi: 10.1016/j.eti.2021.101525
– volume: 8
  start-page: 135
  year: 2022
  end-page: 147
  ident: CR21
  article-title: Potential application of macrocyclic compounds for selective recovery of rare earth scandium elements from aqueous media
  publication-title: J Sustain Metall
  doi: 10.1007/s40831-021-00484-7
– volume: 8
  start-page: 808
  year: 2019
  end-page: 813
  ident: CR29
  article-title: Optimization of uranium removal from uranium plant wastewater by response surface methodology (RSM)
  publication-title: Green Process Synth
  doi: 10.1515/gps-2019-0050
– volume: 95
  start-page: 549
  year: 2019
  end-page: 559
  ident: CR32
  article-title: Recovery of scandium from Canadian bauxite residue utilizing acid baking followed by water leaching
  publication-title: Waste Manage
  doi: 10.1016/j.wasman.2019.06.044
– volume: 180
  start-page: 132
  year: 2018
  end-page: 138
  ident: CR2
  article-title: Recovery of rare earths from nitric acid leach solutions of phosphate ores using solvent extraction with a new amide extractant (TODGA)
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2018.07.005
– volume: 310
  start-page: 1247
  year: 2016
  end-page: 1253
  ident: CR4
  article-title: Deactivation of the scandium concentrate recovered from uranium leach liquors
  publication-title: J Radioanal Nucl Chem
  doi: 10.1007/s10967-016-4990-3
– volume: 38
  start-page: 79
  year: 2020
  end-page: 93
  ident: CR23
  article-title: Application of response surface methodology for optimization of zinc elimination from a polluted soil using tartaric acid
  publication-title: Adsorpt Sci Technol
  doi: 10.1177/0263617420916592
– volume: 416
  year: 2021
  ident: CR37
  article-title: Synthesis of polystyrene-based hyper-cross-linked polymers for Cd(II) ions removal from aqueous solutions: experimental and RSM modeling
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125923
– volume: 211
  year: 2022
  ident: CR30
  article-title: Improvement in atmospheric leaching of chalcopyrite concentrate using a new environmentally-friendly ionic liquid
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2022.105893
– volume: 8
  start-page: 426
  year: 2018
  ident: CR36
  article-title: Mechanism of Novel K SO /KCl composite roasting additive for strengthening vanadium extraction from vanadium-titanium magnetite concentrate
  publication-title: Minerals
  doi: 10.3390/min8100426
– volume: 9
  year: 2021
  ident: CR19
  article-title: Basic research on the leaching behavior of vanadium-bearing steel slag with titanium white waste acid
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2020.104897
– volume: 12
  start-page: 1295
  year: 2015
  end-page: 1302
  ident: CR27
  article-title: Application of response surface methodology (RSM) for optimization of color removal from POME by granular activated carbon
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-014-0504-4
– volume: 64
  start-page: 277
  year: 2019
  end-page: 282
  ident: CR5
  article-title: Extraction recovery of scandium and concomitant elements with isoamyldialkylphosphine oxide from different media
  publication-title: Russ J Inorg Chem
  doi: 10.1134/S0036023619020128
– volume: 46
  start-page: 1700429
  year: 2018
  ident: CR28
  article-title: Lead and zinc stabilization of soil using sewage sludge biochar: optimization through response surface methodology
  publication-title: Clean-Soil Air Water
  doi: 10.1002/clen.201700429
– volume: 208
  year: 2022
  ident: CR9
  article-title: Enrichment of scandium and aluminum from limonitic laterite during the nitric acid pressure leaching process
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2022.105819
– volume: 175
  start-page: 117
  year: 2018
  end-page: 123
  ident: CR24
  article-title: Recovery of scandium from leaching solutions of tungsten residue using solvent extraction with Cyanex 572
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2017.10.026
– volume: 113
  start-page: 973
  year: 2018
  end-page: 988
  ident: CR1
  article-title: The economic geology of scandium, the runt of the rare earth element litter
  publication-title: Econ Geol
  doi: 10.5382/econgeo.2018.4579
– volume: 12
  start-page: 228
  year: 2021
  ident: CR7
  article-title: Direct phosphoric acid leaching of bauxite residue for selective scandium extraction
  publication-title: Metals
  doi: 10.3390/met12020228
– volume: 42
  start-page: 153
  year: 2021
  end-page: 161
  ident: CR34
  article-title: Iron extraction from red mud using roasting with sodium salt
  publication-title: Miner Process Extr Metall Rev
  doi: 10.1080/08827508.2019.1706049
– volume: 50
  start-page: 123
  year: 2013
  end-page: 132
  ident: CR13
  article-title: The zero waste index: a performance measurement tool for waste management systems in a 'zero waste city'
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2012.11.041
– volume: 5
  start-page: 48
  year: 2019
  ident: 794_CR12
  publication-title: J Sustain Metall
  doi: 10.1007/s40831-019-00210-4
– volume: 178
  year: 2022
  ident: 794_CR8
  publication-title: Miner Eng
  doi: 10.1016/j.mineng.2022.107401
– volume: 182
  start-page: 57
  year: 2018
  ident: 794_CR22
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2018.10.011
– volume: 211
  year: 2022
  ident: 794_CR30
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2022.105893
– volume: 71
  start-page: 4666
  year: 2019
  ident: 794_CR20
  publication-title: JOM
  doi: 10.1007/s11837-019-03541-5
– volume: 38
  start-page: 79
  year: 2020
  ident: 794_CR23
  publication-title: Adsorpt Sci Technol
  doi: 10.1177/0263617420916592
– volume: 50
  start-page: 123
  year: 2013
  ident: 794_CR13
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2012.11.041
– volume: 12
  start-page: 228
  year: 2021
  ident: 794_CR7
  publication-title: Metals
  doi: 10.3390/met12020228
– volume: 9
  start-page: 665
  year: 2023
  ident: 794_CR14
  publication-title: J Sustain Metall
  doi: 10.1007/s40831-023-00678-1
– volume: 95
  start-page: 549
  year: 2019
  ident: 794_CR32
  publication-title: Waste Manage
  doi: 10.1016/j.wasman.2019.06.044
– volume: 8
  start-page: 426
  year: 2018
  ident: 794_CR36
  publication-title: Minerals
  doi: 10.3390/min8100426
– volume: 8
  start-page: 135
  year: 2022
  ident: 794_CR21
  publication-title: J Sustain Metall
  doi: 10.1007/s40831-021-00484-7
– volume: 10
  start-page: 382
  year: 2020
  ident: 794_CR25
  publication-title: Minerals
  doi: 10.3390/min10040382
– volume: 8
  start-page: 808
  year: 2019
  ident: 794_CR29
  publication-title: Green Process Synth
  doi: 10.1515/gps-2019-0050
– volume: 41
  start-page: 746
  year: 2023
  ident: 794_CR35
  publication-title: J Rare Earths
  doi: 10.1016/j.jre.2022.04.006
– volume: 310
  start-page: 1247
  year: 2016
  ident: 794_CR4
  publication-title: J Radioanal Nucl Chem
  doi: 10.1007/s10967-016-4990-3
– volume: 208
  year: 2022
  ident: 794_CR9
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2022.105819
– volume: 175
  start-page: 117
  year: 2018
  ident: 794_CR24
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2017.10.026
– volume: 73
  start-page: 1836
  year: 2021
  ident: 794_CR26
  publication-title: JOM
  doi: 10.1007/s11837-021-04665-3
– volume: 11
  start-page: 1342
  year: 2021
  ident: 794_CR6
  publication-title: Metals
  doi: 10.3390/met11091342
– volume: 34
  start-page: 171
  year: 2019
  ident: 794_CR17
  publication-title: Rev Environ Health
  doi: 10.1515/reveh-2018-0078
– volume: 8
  start-page: 365
  year: 2020
  ident: 794_CR10
  publication-title: Processes
  doi: 10.3390/pr8030365
– volume: 295
  year: 2021
  ident: 794_CR18
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2021.126358
– volume: 113
  start-page: 973
  year: 2018
  ident: 794_CR1
  publication-title: Econ Geol
  doi: 10.5382/econgeo.2018.4579
– volume: 64
  start-page: 277
  year: 2019
  ident: 794_CR5
  publication-title: Russ J Inorg Chem
  doi: 10.1134/S0036023619020128
– volume: 12
  start-page: 1295
  year: 2015
  ident: 794_CR27
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-014-0504-4
– volume: 180
  start-page: 132
  year: 2018
  ident: 794_CR2
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2018.07.005
– volume: 94
  start-page: 11
  year: 2015
  ident: 794_CR31
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2014.11.002
– volume: 9
  year: 2021
  ident: 794_CR19
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2020.104897
– volume: 204
  year: 2021
  ident: 794_CR3
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2021.105724
– volume: 42
  start-page: 153
  year: 2021
  ident: 794_CR34
  publication-title: Miner Process Extr Metall Rev
  doi: 10.1080/08827508.2019.1706049
– volume: 416
  year: 2021
  ident: 794_CR37
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125923
– volume: 46
  start-page: 1700429
  year: 2018
  ident: 794_CR28
  publication-title: Clean-Soil Air Water
  doi: 10.1002/clen.201700429
– volume: 330
  year: 2022
  ident: 794_CR16
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2021.129783
– volume: 22
  year: 2021
  ident: 794_CR15
  publication-title: Environ Technol Innovation
  doi: 10.1016/j.eti.2021.101525
– volume: 35
  start-page: 887
  year: 2016
  ident: 794_CR11
  publication-title: Rare Met
  doi: 10.1007/s12598-016-0805-5
– volume: 41
  start-page: 1099
  year: 2023
  ident: 794_CR33
  publication-title: J Rare Earths
  doi: 10.1016/j.jre.2022.06.003
SSID ssj0002734771
Score 2.2630417
Snippet Scandium concentrate and titanium dioxide wastewater (TDWW) all belong to waste, especially TDWW belongs to hazardous waste, it is urgent to find a more...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 278
SubjectTerms Earth and Environmental Science
Environment
Finite element method
Hazardous wastes
Leaching
Metallic Materials
Regression models
Research Article
Response surface methodology
Scandium
Software
Sustainable Development
Temperature distribution
Titanium
Titanium dioxide
Wastewater
Title Optimization Extraction of Scandium from Scandium Concentrate with Titanium Dioxide Wastewater by Response Surface Methodology
URI https://link.springer.com/article/10.1007/s40831-024-00794-6
https://www.proquest.com/docview/2956208137
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMUFuQDtxLkOonTHHdLq9Vq6V5S0VsUP6INatNV20gLB_4Mf5Sx48RZuqyAS9Q4jfv4vozHY38zCL0XUvky9KUnwlHmBeMs9zImMo-xCLxXEnLfKLw_z9nZIjhfhste72dn11K15x_F9zt1Jf-DKrQBrlol-w_Itp1CA7wGfOEICMPxrzC-hOd9bYWUw-nNfmsLf2shitB6lWpd60fas4lWKZYmI20dgk0K8A71lU_F5qaQavgl2-l4ms6dyLV_brbQKjAw2zzTNsBUnHax-EO_dteRZK0V-ParausC98si2wzPq_KqKlzMWtc7AjO_ckydXCmzLbD8Wh2Etjt323AFDdx-rVvhSr0XW6-QtHIabfHAesaeXpisB6dumx0qGpNNDqhp7W9dD8gO5bSu33kwStQbQ3aBrrLmme9IwCx5d6Tknl-ms8XFRZpMl8kDdERhLkL76Ohkdno6b0N5OkNQZKb27Q-w8iwj0jz4mNsukJvX_LYUbzyc5Al6bCHEJzXPnqKeKp-hR52Elc_Rjy7jsGMc3uS44RjWjHNnHcZhzTjcMA5bxmHHOMy_4YZx2DIOdxj3Ai1m02Ry5tkKHp4A0773VMyC2Bc8lzLyFfiOfq547I9JJlXIRD5iYxoIGSgOswYWESoEHRPKFItVABMX_yXql5tSvUI4IzTzheIsjCW4-IRLokgkmWARJ4KSARo1f2oqbHp7XWVllbaJuQ0QKQCRGiBSNkDD9p7rOrnLve8-brBKrRHYpUAxRsGt9qMB-tDg5y7_ubfX9_f2Bj10T88x6u-3lXoL7u-ev7P0-wW5TbRm
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+Extraction+of+Scandium+from+Scandium+Concentrate+with+Titanium+Dioxide+Wastewater+by+Response+Surface+Methodology&rft.jtitle=Journal+of+sustainable+metallurgy&rft.au=Xiao+Junhui&rft.au=Zhong+Nanlan&rft.au=Cheng+Renju&rft.au=Zhang%2C+Junhui&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2199-3823&rft.eissn=2199-3831&rft.volume=10&rft.issue=1&rft.spage=278&rft.epage=295&rft_id=info:doi/10.1007%2Fs40831-024-00794-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-3823&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-3823&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-3823&client=summon