Green synthesis of Lawsonia inermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) cell lines
Magnetic spinel zinc ferrite nanoparticles have been prepared via simple, green, cost effective and eco-friendly methods. The development of a single cubic phase of prepared zinc ferrite is affirmed by XRD with an average crystallite size of 17.12 nm. FTIR analysis confirms the modes of the cubic Zn...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 31; no. 11; pp. 8589 - 8596 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetic spinel zinc ferrite nanoparticles have been prepared via simple, green, cost effective and eco-friendly methods. The development of a single cubic phase of prepared zinc ferrite is affirmed by XRD with an average crystallite size of 17.12 nm. FTIR analysis confirms the modes of the cubic ZnFe
2
O
4
phase due to the stretching and bending vibrations of Zn–O (tetrahedral site) and Fe–O (octahedral site) bonds. FESEM micrographs revealed the formation of homogeneous and agglomerated ZnFe
2
O
4
nanoparticles. EDAX spectrum shows the elemental composition of the synthesized zinc ferrite nanoparticles. Investigation of magnetic properties viz remanent magnetization, saturation magnetization and coercivity were found to be 37.0 emu/g, 42.9 emu/g and 11.9 Oe, respectively. The magnetic properties confirmed by the vibrating sample magnetometer exhibit ferromagnetic behaviour of synthesized zinc ferrite nanoparticles. Furthermore, synthesized zinc ferrite nanoparticles showed good anticancer activity against breast cancer (MCF-7) cell lines. |
---|---|
AbstractList | Magnetic spinel zinc ferrite nanoparticles have been prepared via simple, green, cost effective and eco-friendly methods. The development of a single cubic phase of prepared zinc ferrite is affirmed by XRD with an average crystallite size of 17.12 nm. FTIR analysis confirms the modes of the cubic ZnFe2O4 phase due to the stretching and bending vibrations of Zn–O (tetrahedral site) and Fe–O (octahedral site) bonds. FESEM micrographs revealed the formation of homogeneous and agglomerated ZnFe2O4 nanoparticles. EDAX spectrum shows the elemental composition of the synthesized zinc ferrite nanoparticles. Investigation of magnetic properties viz remanent magnetization, saturation magnetization and coercivity were found to be 37.0 emu/g, 42.9 emu/g and 11.9 Oe, respectively. The magnetic properties confirmed by the vibrating sample magnetometer exhibit ferromagnetic behaviour of synthesized zinc ferrite nanoparticles. Furthermore, synthesized zinc ferrite nanoparticles showed good anticancer activity against breast cancer (MCF-7) cell lines. Magnetic spinel zinc ferrite nanoparticles have been prepared via simple, green, cost effective and eco-friendly methods. The development of a single cubic phase of prepared zinc ferrite is affirmed by XRD with an average crystallite size of 17.12 nm. FTIR analysis confirms the modes of the cubic ZnFe 2 O 4 phase due to the stretching and bending vibrations of Zn–O (tetrahedral site) and Fe–O (octahedral site) bonds. FESEM micrographs revealed the formation of homogeneous and agglomerated ZnFe 2 O 4 nanoparticles. EDAX spectrum shows the elemental composition of the synthesized zinc ferrite nanoparticles. Investigation of magnetic properties viz remanent magnetization, saturation magnetization and coercivity were found to be 37.0 emu/g, 42.9 emu/g and 11.9 Oe, respectively. The magnetic properties confirmed by the vibrating sample magnetometer exhibit ferromagnetic behaviour of synthesized zinc ferrite nanoparticles. Furthermore, synthesized zinc ferrite nanoparticles showed good anticancer activity against breast cancer (MCF-7) cell lines. |
Author | Sarala, E. Rami Reddy, Y. V. Madhukara Naik, M. Vinuth, M. Sujatha, H. R. |
Author_xml | – sequence: 1 givenname: E. surname: Sarala fullname: Sarala, E. organization: Department of Chemistry, Sri Venkateswara University – sequence: 2 givenname: M. surname: Madhukara Naik fullname: Madhukara Naik, M. organization: Department of Chemistry, MVJ College of Engineering – sequence: 3 givenname: M. surname: Vinuth fullname: Vinuth, M. organization: Department of Chemistry, NIE Institute of Technology – sequence: 4 givenname: Y. V. surname: Rami Reddy fullname: Rami Reddy, Y. V. email: dryvrsvu@gmail.com organization: Department of Chemistry, Sri Venkateswara University – sequence: 5 givenname: H. R. surname: Sujatha fullname: Sujatha, H. R. organization: Department of Chemistry, NIE Institute of Technology |
BookMark | eNp9kc-KFDEQxoPsgrOrL-Ap4EUP0eok3UkfZXB3hREvCt5Cdbp6zNKTHpOMMr7LvutmnQXBwx6Kov786iv4LthZXCIx9qqBdw2AeZ8bsK0WIEGAUr0W9hlbNa1RQlv5_YytoG-N0K2Uz9lFzrcA0GllV-zuOhFFno-x_KAcMl8mvsHfeYkBeYiUdiGLHY0BC438T4ieT5RSKMQjxmWPqQQ_U-bTkvgOt5FqzXM5jKE2MY41agejp8TRl_ArlCPHLYaYCx8SYU2P4zef11fCvOWe5pnPVTy_YOcTzplePuZL9u3q49f1jdh8uf60_rARXjV9EdTrDqxBNEM3jHJUo247q9FO3pD3HtD3tm_BTzAMnTJSWuimQUEr20HJRl2y16e7-7T8PFAu7nY5pFglndTQ9Y3pjK1b8rTl05JzosntU9hhOroG3IMN7mSDqza4vza4B8j-B_lQsIQlloRhfhpVJzRXnbil9O-rJ6h7M6uhRA |
CitedBy_id | crossref_primary_10_3389_fmicb_2024_1358467 crossref_primary_10_1016_j_ceramint_2024_03_210 crossref_primary_10_1007_s11164_022_04935_y crossref_primary_10_1016_j_jphotochem_2023_114897 crossref_primary_10_1016_j_diamond_2023_110300 crossref_primary_10_1016_j_ab_2025_115767 crossref_primary_10_1016_j_surfin_2023_103525 crossref_primary_10_3390_ijms241612860 crossref_primary_10_1007_s00339_022_05700_z crossref_primary_10_1016_j_ccr_2024_216158 crossref_primary_10_1007_s10008_021_04953_7 crossref_primary_10_1016_j_jallcom_2023_169372 crossref_primary_10_1515_ntrev_2022_0027 crossref_primary_10_1016_j_ijbiomac_2021_11_197 crossref_primary_10_1016_j_rsurfi_2024_100286 crossref_primary_10_1002_cbdv_202301777 crossref_primary_10_1016_j_jsps_2023_101735 crossref_primary_10_1002_cnma_202400348 crossref_primary_10_1016_j_mtchem_2024_102502 crossref_primary_10_51753_flsrt_1344431 crossref_primary_10_58567_bab02010004 crossref_primary_10_2139_ssrn_4131289 crossref_primary_10_1016_j_arabjc_2023_105186 crossref_primary_10_1038_s41598_024_71758_9 crossref_primary_10_1016_j_rineng_2023_101702 crossref_primary_10_1007_s10904_025_03598_7 crossref_primary_10_1007_s12010_023_04582_y crossref_primary_10_1016_j_emcon_2025_100469 crossref_primary_10_1016_j_jpowsour_2024_235856 crossref_primary_10_1007_s42114_023_00768_4 crossref_primary_10_1016_j_inoche_2024_112709 crossref_primary_10_1021_acsomega_4c06231 crossref_primary_10_1016_j_jenvman_2022_116746 crossref_primary_10_1016_j_matchemphys_2024_129251 crossref_primary_10_1109_TNANO_2021_3108797 crossref_primary_10_1002_adsu_202200035 crossref_primary_10_3390_ddc2020014 crossref_primary_10_3390_v15030741 crossref_primary_10_1016_j_cej_2024_157273 crossref_primary_10_1016_j_optmat_2024_115181 crossref_primary_10_1002_aoc_6768 crossref_primary_10_1088_2053_1591_ad1774 crossref_primary_10_1016_j_jksus_2020_101331 crossref_primary_10_2147_IJN_S487188 crossref_primary_10_1016_j_ceramint_2024_01_076 crossref_primary_10_1016_j_jallcom_2024_175048 crossref_primary_10_3390_molecules28207192 crossref_primary_10_1007_s12668_024_01536_4 crossref_primary_10_36899_JAPS_2024_1_0692 crossref_primary_10_1016_j_jpcs_2022_110952 crossref_primary_10_1016_j_nanoso_2023_101002 crossref_primary_10_1016_j_envres_2024_120367 crossref_primary_10_1016_j_surfin_2024_103995 crossref_primary_10_3390_toxics12010077 crossref_primary_10_1515_chem_2022_0304 crossref_primary_10_1016_j_inoche_2023_111976 crossref_primary_10_1007_s41779_023_00917_4 crossref_primary_10_1051_e3sconf_202343001150 crossref_primary_10_1007_s12011_023_03814_w crossref_primary_10_1016_j_jacomc_2024_100038 crossref_primary_10_1016_j_jallcom_2020_158352 crossref_primary_10_1016_j_matchemphys_2024_129590 crossref_primary_10_1007_s10854_020_04817_2 crossref_primary_10_1007_s12010_021_03598_6 crossref_primary_10_1016_j_ijbiomac_2025_142232 |
Cites_doi | 10.1016/j.ceramint.2015.11.003 10.1039/C1JM14874E 10.1016/j.jmmm.2017.09.033 10.1016/j.matchemphys.2017.03.020 10.1016/j.ijleo.2016.10.058 10.1016/j.molliq.2016.03.041 10.1007/s11051-019-4631-1 10.1016/j.microc.2019.02.059 10.1016/j.scient.2012.10.013 10.1016/j.rinp.2019.102221 10.1021/acsomega.9b01477 10.1016/j.solidstatesciences.2010.02.007 10.1007/s41779-018-0173-8 10.1039/C9QI00241C 10.1016/j.jmmm.2018.05.098 10.3390/app6090184 10.1080/15421406.2019.1578495 10.1016/j.jmmm.2016.10.038 10.1016/j.ijbiomac.2017.10.061 10.1016/j.jmmm.2014.06.062 10.1016/j.apsusc.2018.02.187 10.1016/j.colsurfb.2013.01.072 10.1016/j.colsurfb.2018.08.049 10.1007/s10904-017-0752-0 10.1016/j.jphotobiol.2018.11.001 10.1016/j.ijleo.2017.01.018 10.1016/j.jece.2016.05.020 10.1016/j.jmst.2017.01.004 10.1016/j.cej.2009.08.008 10.1088/2053-1591/aadd88 10.1016/j.msec.2018.07.007 10.1016/j.matchemphys.2018.03.038 10.1016/j.spmi.2013.09.021 10.4103/0973-8258.126816 10.1016/j.procbio.2015.12.017 10.1016/j.jallcom.2013.02.147 10.1016/j.mycmed.2018.05.012 10.1016/j.jpcs.2017.05.029 10.1016/j.jphotobiol.2016.03.056 10.1016/j.colsurfb.2018.11.014 10.1016/j.ceramint.2015.07.191 10.1039/C5CP05840F 10.1016/j.jallcom.2017.10.103 10.1016/j.mehy.2009.06.001 10.1016/j.seppur.2017.07.015 10.1016/j.matpr.2017.09.099 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-020-03394-8 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
EndPage | 8596 |
ExternalDocumentID | 10_1007_s10854_020_03394_8 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-e946087aa7b6bd2d3d45684a8fc7eccc0ac98950cf0bb63722806fb30525b3213 |
IEDL.DBID | U2A |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 12:17:46 EDT 2025 Tue Jul 01 02:34:45 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Fri Feb 21 02:39:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e946087aa7b6bd2d3d45684a8fc7eccc0ac98950cf0bb63722806fb30525b3213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2406917678 |
PQPubID | 326250 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2406917678 crossref_primary_10_1007_s10854_020_03394_8 crossref_citationtrail_10_1007_s10854_020_03394_8 springer_journals_10_1007_s10854_020_03394_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200600 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Bardhan, Ghosh, Mitra, Das, Mukherjee, Chattopadhyay (CR2) 2010; 12 Kombaiah, Vijaya, Kennedy, Bououdina (CR13) 2016; 42 Karthik, Shashank, Revathi, Tatarchuk (CR49) 2018; 673 Kanagesan, Hashim, Aziz, Ismail, Tamilselvan, Alitheen, Kumara Swamy, Purna Chandra Rao (CR48) 2016; 6 Tatarchuk, Paliychuk, Bououdina, Al-Najar, Pacia, Macyk, Shyichuk (CR41) 2018; 731 Kombaiah, Vijaya, Kennedy, Bououdina, Al-Lohedan, Ramalingam (CR22) 2017; 194 Tharani, Nehru, Muthuselvam, Armugam (CR26) 2018; 8 Qiao, Xiao, Jia, Lu, Fan (CR8) 2019; 13 Masoudpanah, Derakhshani, Mirkazemi, SeyyedEbrahimi (CR11) 2014; 370 Anooj, Sreelekshmi, Gopukumar, Praseetha (CR25) 2017; 46 Sriramulu, Shukla, Sumathi (CR38) 2018; 5 Matinise, Kaviyarasu, Mongwaketsia, Khamlich, Kotsedi, Mayedwaa, Maaza (CR21) 2018; 446 Kombaiah, Judith, John Kennedy, Bououdina (CR35) 2017; 129 Ali, Jabri, Al-Shammari (CR34) 2019; 14 Liu, Deng, Huang, Yin, Liao, Gu (CR20) 2013; 107 Kumar, Dosanjh, Singh (CR39) 2018; 28 Yadav, Kuritka, Vilcakova, Urbanek, Machovsky, Masar, Holek (CR14) 2017; 110 Wu, Yu, Wu, Gao, Xie (CR10) 2018; 465 Rameshthangam, Chitra (CR33) 2018; 34 Hoshyar, Khayati, Poorgholami, Kaykhaii (CR37) 2016; 159 Dolcet, Kirchbeg, Antonello, Suchomski, Marschall, Diodati, Munoz-Espi, Landfester, Gross (CR3) 2019; 6 Ahmadian, Fakhree (CR30) 2009; 73 Mondal, Kundu, Mandal, Saha, Roy, Roychowdhury, Das (CR7) 2019; 4 Patil, Bhojya Naik, Nagaraju, Viswanath, Rashmi, Vijay Kumar (CR23) 2018; 212 Yaralizadeh, Abedi, Namjoyan, Fatahinia, Chegini (CR29) 2018; 28 Sai, Kulkarni, Vinoy, Bhat, Shivashankar (CR45) 2012; 22 Muthukumar, Sudhakumari, Sambandam, Aravinthan, Sastry, Kim (CR31) 2016; 51 Vinosha, Mely, Jeronsia, Krishnan, Das (CR6) 2017; 134 Pendyala, Thyagarajan, Guru Sampath Kumar, Obulapathi (CR43) 2018; 54 Kant Sharma, Ghose (CR12) 2015; 41 Hadisi, Nourmohammadi, Nassiri (CR28) 2019; 107 Preethi, Ninan, Kumar, Balan, Nagaswarupa (CR16) 2017; 4 Ajitha, Reddy, Reddy, Suneetha, Jeon, Ahn (CR32) 2016; 219 Matloubi Moghaddam, Doulabi, Saeidian (CR42) 2012; 19 Madhukara Naik, Bhojya Naik, Nagaraju, Vinuth, Raja Naik, Vinu (CR18) 2019; 146 Kumar, Kumar, Kaur (CR47) 2014; 8 Kalakotla, Jayarambabu, Mohan, Mydin, Gupta (CR27) 2019; 174 Abdel Maksouda, El-Sayyad, Ashour, El-Batal, Abd-Elmonem, Hendawy, Abdel-Khalek, Labib, Abdeltwab, El-Okr (CR4) 2018; 92 Fan, Gu, Yang, Li (CR15) 2009; 155 Maiti, Saha, Devi (CR9) 2016; 18 Karthik, Dhanuskodi, Gobinath, Prabukumar, Sivaramakrishnan (CR46) 2019; 190 Manikandan, Judith Vijaya, Sundararajan, Meganathan, Kennedy, Bououdina (CR44) 2013; 64 Singh Yadav, Kuritka, Havlica, Hnatko, Alexander, Masilko, Kalina, Hajduchova, Rusnak, Enev (CR40) 2018; 447 Kefeni, Mamba, Msagati (CR1) 2017; 188 Liu, Lv, Wang, Li, Guo, Zhao (CR17) 2017; 424 Rivero, Marin-barba, Gutierrez, Lozano-Velasco, Wheeler, Sanchez-Marcos, Munoz-Bonilla, Morris, Ruiz (CR24) 2019; 21 Amiri, Pardakhti, Ahmadi-Zeidabadi, Akbari, Salavati- Niasari (CR36) 2018; 172 Mandal, Natarajan, Tamilselvi, Mayadevi (CR5) 2016; 4 Sun, Shao, Tang, Chen (CR19) 2013; 564 K Karthik (3394_CR46) 2019; 190 J Liu (3394_CR20) 2013; 107 P Dolcet (3394_CR3) 2019; 6 Y Qiao (3394_CR8) 2019; 13 B Ajitha (3394_CR32) 2016; 219 TR Tatarchuk (3394_CR41) 2018; 731 M Madhukara Naik (3394_CR18) 2019; 146 A Bardhan (3394_CR2) 2010; 12 R Kant Sharma (3394_CR12) 2015; 41 ES Anooj (3394_CR25) 2017; 46 G Fan (3394_CR15) 2009; 155 M Sriramulu (3394_CR38) 2018; 5 S Ahmadian (3394_CR30) 2009; 73 R Hoshyar (3394_CR37) 2016; 159 R Sai (3394_CR45) 2012; 22 L Sun (3394_CR19) 2013; 564 M Yaralizadeh (3394_CR29) 2018; 28 K Karthik (3394_CR49) 2018; 673 S Kalakotla (3394_CR27) 2019; 174 Q Wu (3394_CR10) 2018; 465 Z Ali (3394_CR34) 2019; 14 PA Vinosha (3394_CR6) 2017; 134 B Mondal (3394_CR7) 2019; 4 M Rivero (3394_CR24) 2019; 21 G Preethi (3394_CR16) 2017; 4 K Tharani (3394_CR26) 2018; 8 N Matinise (3394_CR21) 2018; 446 RS Yadav (3394_CR14) 2017; 110 Z Hadisi (3394_CR28) 2019; 107 K Kombaiah (3394_CR13) 2016; 42 M Kumar (3394_CR39) 2018; 28 KK Kefeni (3394_CR1) 2017; 188 R Singh Yadav (3394_CR40) 2018; 447 SB Patil (3394_CR23) 2018; 212 S Kanagesan (3394_CR48) 2016; 6 A Manikandan (3394_CR44) 2013; 64 MIA Abdel Maksouda (3394_CR4) 2018; 92 R Liu (3394_CR17) 2017; 424 P Rameshthangam (3394_CR33) 2018; 34 T Muthukumar (3394_CR31) 2016; 51 SK Pendyala (3394_CR43) 2018; 54 K Kombaiah (3394_CR35) 2017; 129 S Mandal (3394_CR5) 2016; 4 K Kombaiah (3394_CR22) 2017; 194 M Kumar (3394_CR47) 2014; 8 SM Masoudpanah (3394_CR11) 2014; 370 F Matloubi Moghaddam (3394_CR42) 2012; 19 M Amiri (3394_CR36) 2018; 172 D Maiti (3394_CR9) 2016; 18 |
References_xml | – volume: 42 start-page: 2741 year: 2016 end-page: 2749 ident: CR13 article-title: Studies on the microwave studies on the microwave assisted and conventional combustion synthesis of plant extract-based ZnFe O nanoparticles and their optical and magnetic properties publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.11.003 – volume: 22 start-page: 2149 issue: 5 year: 2012 end-page: 2156 ident: CR45 article-title: ZnFe O : rapid and sub-100 ℃ synthesis and anneal-tuned magnetic properties publication-title: J. Mater. Chem. doi: 10.1039/C1JM14874E – volume: 447 start-page: 48 year: 2018 end-page: 57 ident: CR40 article-title: Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co Zn Fe O (x = 0.0, 0.5) spinel ferrite nanoparticles publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.09.033 – volume: 8 start-page: 2969 year: 2018 end-page: 2977 ident: CR26 article-title: Synthesis and characterization of the zinc ferrite ZnFe O nanopowder for anticancer activity publication-title: Int. J. Manag. Technol. Eng. – volume: 194 start-page: 153 year: 2017 end-page: 164 ident: CR22 article-title: Studies on opuntiadilenii haw mediated multifunctional ZnFe O nanoparticles, optical, magnetic and catalytic applications publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.03.020 – volume: 129 start-page: 57 year: 2017 end-page: 68 ident: CR35 article-title: Optical, magnetic and structural properties of ZnFe O nanoparticles synthesized by conventional and microwave-assisted combustion method: a comparative investigation publication-title: Optik doi: 10.1016/j.ijleo.2016.10.058 – volume: 219 start-page: 474 year: 2016 end-page: 481 ident: CR32 article-title: Instant biosynthesis of silver nanoparticles using leaf extract: innate catalytic, antimicrobial and antioxidant activities publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.03.041 – volume: 21 start-page: 1 issue: 8 year: 2019 end-page: 19 ident: CR24 article-title: Toxicity and biodegradation of zinc ferrite nanoparticles in xenopuslaevis publication-title: J. Nanopart. Res. doi: 10.1007/s11051-019-4631-1 – volume: 146 start-page: 1227 year: 2019 end-page: 1235 ident: CR18 article-title: Green synthesis of Zinc ferrite nanoparticles in juice: characterization and their application as photocatalytic and antibacterial activities publication-title: Microchem. J. doi: 10.1016/j.microc.2019.02.059 – volume: 19 start-page: 1597 issue: 6 year: 2012 end-page: 1600 ident: CR42 article-title: Controlled microwave-assisted synthesis of ZnFe O nanoparticles and their catalytic activity for -acylation of alcohol and phenol in acetic anhydride publication-title: Sci. Iran doi: 10.1016/j.scient.2012.10.013 – volume: 13 start-page: 102221 issue: 1–8 year: 2019 end-page: 102229 ident: CR8 article-title: Preparation and microwave absorption properties of ZnFe O /polyaniline/graphene oxide composite publication-title: Results Phys. doi: 10.1016/j.rinp.2019.102221 – volume: 4 start-page: 13845 issue: 9 year: 2019 end-page: 13852 ident: CR7 article-title: Sonochemically synthesized spin-canted CuFe O nanoparticles for heterogeneous green catalytic click chemistry publication-title: ACS Omega doi: 10.1021/acsomega.9b01477 – volume: 12 start-page: 839 year: 2010 end-page: 844 ident: CR2 article-title: Low-temperature synthesis of zinc ferrite nanoparticles publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2010.02.007 – volume: 54 start-page: 467 year: 2018 end-page: 473 ident: CR43 article-title: Effect of Mg doping on physical properties of Zn ferrite nanoparticles publication-title: J. Aust. Ceram. Soc. doi: 10.1007/s41779-018-0173-8 – volume: 6 start-page: 1527 year: 2019 end-page: 1534 ident: CR3 article-title: Exploring wet chemistry approaches to ZnFe O spinel ferrite nanoparticles with different inversion degrees: a comparative study publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI00241C – volume: 465 start-page: 1 year: 2018 end-page: 8 ident: CR10 article-title: The magnetic and photocatalytic properties of nanocomposites SrFe O /ZnFe O publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.05.098 – volume: 14 start-page: 79 year: 2019 end-page: 82 ident: CR34 article-title: Gold nanoparticles inhibiting proliferation of human breast cancer cell line publication-title: Res. J. Biotechnol. – volume: 6 start-page: 184 issue: 9 year: 2016 end-page: 197 ident: CR48 article-title: Evaluation of antioxidant and cytotoxicity activities of copper ferrite (CuFe O ) and zinc ferrite (ZnFe O ) nanoparticles synthesized by sol–gel self-combustion method publication-title: Appl. Sci. doi: 10.3390/app6090184 – volume: 673 start-page: 70 year: 2018 end-page: 80 ident: CR49 article-title: Facile microwave-assisted green synthesis of NiO nanoparticles from leaf extract and evaluation of their photocatalytic and anticancer activities publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421406.2019.1578495 – volume: 4 start-page: 11816 issue: 11 year: 2017 end-page: 11819 ident: CR16 article-title: Molten salt synthesis of nanocrystalline ZnFe O and its photocatalytic dye degradation studies publication-title: Mater. Today – volume: 424 start-page: 155 year: 2017 end-page: 160 ident: CR17 article-title: Solvothermal synthesis of size-tunable ZnFe O colloidal nanocrystal assemblies and their electrocatalytic activity towards hydrogen peroxide publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.10.038 – volume: 107 start-page: 2008 year: 2019 end-page: 2019 ident: CR28 article-title: The antibacterial and anti-inflammatory investigation of Lawsoniainermis-gelatin starch nano-fibrous dressing in burn wound publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.10.061 – volume: 370 start-page: 122 year: 2014 end-page: 126 ident: CR11 article-title: Structure and magnetic properties of La substituted ZnFe O nanoparticles synthesized by sol–gel auto combustion method publication-title: J. Magn. Mater. doi: 10.1016/j.jmmm.2014.06.062 – volume: 446 start-page: 66 year: 2018 end-page: 73 ident: CR21 article-title: Green synthesis of novel zinc iron oxide (ZnFe O ) nanocomposite via moringaoleifera natural extract for electrochemical applications publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.187 – volume: 107 start-page: 19 year: 2013 end-page: 26 ident: CR20 article-title: Preparation of ZnFe O nanoparticles in the template of silk -fibrion peptide and their neuro-cytocompability in PC 12 cells publication-title: Colloids Surf. B. doi: 10.1016/j.colsurfb.2013.01.072 – volume: 172 start-page: 244 year: 2018 end-page: 253 ident: CR36 article-title: Magnetic nickel ferrite nanoparticles: green synthesis by urtica and therapeutic effect of frequency magnetic field on creating a cytotoxic response in neural cell lines publication-title: Colloid Surf. B. doi: 10.1016/j.colsurfb.2018.08.049 – volume: 28 start-page: 880 issue: 3 year: 2018 end-page: 898 ident: CR39 article-title: Magnetic zinc ferrite-chitosan bio- composite: synthesis, characterization, and adsorption behavior studies for cationic dyes in single and binary systems publication-title: J. Inorg. Organomet. Polym. Mater. doi: 10.1007/s10904-017-0752-0 – volume: 190 start-page: 8 year: 2019 end-page: 20 ident: CR46 article-title: Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2018.11.001 – volume: 134 start-page: 99 year: 2017 end-page: 108 ident: CR6 article-title: Synthesis and properties of spinel ZnFe O nanoparticles by facile co-precipitation route publication-title: Optik doi: 10.1016/j.ijleo.2017.01.018 – volume: 4 start-page: 2706 issue: 3 year: 2016 end-page: 2712 ident: CR5 article-title: Photocatalytic and antimicrobial activities of zinc ferriet nanoparticles synthesized through soft chemical route: a magnetically recyclable catalyst for water/wastewater treatment publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.05.020 – volume: 34 start-page: 508 issue: 3 year: 2018 end-page: 522 ident: CR33 article-title: Synergistic anticancer effect of green synthesized nickel nanoparticles and quercitin extracted from leaf extract publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2017.01.004 – volume: 155 start-page: 534 year: 2009 end-page: 541 ident: CR15 article-title: Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.08.008 – volume: 5 start-page: 1 issue: 11 year: 2018 end-page: 9 ident: CR38 article-title: leaves extract mediated synthesis of zinc ferrite: antibacterial activity and drug delivery publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aadd88 – volume: 92 start-page: 644 year: 2018 end-page: 656 ident: CR4 article-title: Synthesis and characterization of metals-substituted cobalt ferrite [Co ]M Fe O ; (M = Zn, Cu, Mn; x = 0.05)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.07.007 – volume: 46 start-page: 22 issue: 1 year: 2017 end-page: 26 ident: CR25 article-title: Evaluation of the zinc ferrite nanoparticles for bio- applications publication-title: Int. J. Pharm. Sci. Rev. Res. – volume: 212 start-page: 351 year: 2018 end-page: 362 ident: CR23 article-title: Sugarcane juice mediated eco-friendly synthesis of visible light active zinc ferrite nanoparticles: application to degradation of mixed dyes and antibacterial activities publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2018.03.038 – volume: 64 start-page: 118 year: 2013 end-page: 131 ident: CR44 article-title: Optical and magnetic properties of Mg-doped ZnFe O nanoparticles prepared by rapid microwave combustion method publication-title: Superlattice Microst. doi: 10.1016/j.spmi.2013.09.021 – volume: 8 start-page: 23 issue: 1 year: 2014 end-page: 36 ident: CR47 article-title: Identification of polyphenols in leaf extracts of L. with antioxidant, antigenotoxic and antiproliferative potential publication-title: Int. J. Green Pharm. doi: 10.4103/0973-8258.126816 – volume: 51 start-page: 384 issue: 3 year: 2016 end-page: 391 ident: CR31 article-title: Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects publication-title: J. Process Biochem. doi: 10.1016/j.procbio.2015.12.017 – volume: 564 start-page: 55 year: 2013 end-page: 62 ident: CR19 article-title: Synthesis of ZnFe O /ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2013.02.147 – volume: 28 start-page: 419 year: 2018 end-page: 423 ident: CR29 article-title: A comparison of the effects of Lawsoniainermis (Iranian henna) and clotrimazole on in rats publication-title: J. Mycol. Med. doi: 10.1016/j.mycmed.2018.05.012 – volume: 110 start-page: 87 year: 2017 end-page: 99 ident: CR14 article-title: Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe O spinel ferrite nanoparticles synthesized via honey-mediated sol–gel combustion method publication-title: J. Phys. Chem. Solids. doi: 10.1016/j.jpcs.2017.05.029 – volume: 159 start-page: 237 year: 2016 end-page: 242 ident: CR37 article-title: A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities publication-title: J. Photochem. Photobiol. doi: 10.1016/j.jphotobiol.2016.03.056 – volume: 174 start-page: 199 year: 2019 end-page: 206 ident: CR27 article-title: A novel pharmacological approach of herbal mediated cerium oxide and silver nanoparticles with improved biomedical activity in comparison with Lawsoniainermis publication-title: Colloids Surf. B. doi: 10.1016/j.colsurfb.2018.11.014 – volume: 41 start-page: 14684 issue: 10 year: 2015 end-page: 14691 ident: CR12 article-title: Synthesis and characterization of nanocrystalline zinc ferrite spinel powders by homogeneous precipitation method publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.07.191 – volume: 18 start-page: 1439 issue: 3 year: 2016 end-page: 1450 ident: CR9 article-title: Surface modified multifunctional ZnFe O nanoparticles for hydrophobic and hydrophilic anti-cancer drug molecules loading publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP05840F – volume: 731 start-page: 1256 year: 2018 end-page: 1266 ident: CR41 article-title: Effect of cobalt substitution on structural elastic, magnetic and optical properties of zinc ferrite nanoparticles publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.10.103 – volume: 73 start-page: 629 issue: 4 year: 2009 end-page: 630 ident: CR30 article-title: Henna (Lawsoniainermis) might be used to prevent mycotic infection publication-title: Med. Hypotheses. doi: 10.1016/j.mehy.2009.06.001 – volume: 188 start-page: 399 year: 2017 end-page: 422 ident: CR1 article-title: Application of spinel ferrite nanoparticles in water and wastewater treatment: a review publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.07.015 – volume: 28 start-page: 419 year: 2018 ident: 3394_CR29 publication-title: J. Mycol. Med. doi: 10.1016/j.mycmed.2018.05.012 – volume: 447 start-page: 48 year: 2018 ident: 3394_CR40 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.09.033 – volume: 564 start-page: 55 year: 2013 ident: 3394_CR19 publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2013.02.147 – volume: 129 start-page: 57 year: 2017 ident: 3394_CR35 publication-title: Optik doi: 10.1016/j.ijleo.2016.10.058 – volume: 46 start-page: 22 issue: 1 year: 2017 ident: 3394_CR25 publication-title: Int. J. Pharm. Sci. Rev. Res. – volume: 212 start-page: 351 year: 2018 ident: 3394_CR23 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2018.03.038 – volume: 107 start-page: 19 year: 2013 ident: 3394_CR20 publication-title: Colloids Surf. B. doi: 10.1016/j.colsurfb.2013.01.072 – volume: 134 start-page: 99 year: 2017 ident: 3394_CR6 publication-title: Optik doi: 10.1016/j.ijleo.2017.01.018 – volume: 424 start-page: 155 year: 2017 ident: 3394_CR17 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.10.038 – volume: 22 start-page: 2149 issue: 5 year: 2012 ident: 3394_CR45 publication-title: J. Mater. Chem. doi: 10.1039/C1JM14874E – volume: 51 start-page: 384 issue: 3 year: 2016 ident: 3394_CR31 publication-title: J. Process Biochem. doi: 10.1016/j.procbio.2015.12.017 – volume: 8 start-page: 2969 year: 2018 ident: 3394_CR26 publication-title: Int. J. Manag. Technol. Eng. – volume: 370 start-page: 122 year: 2014 ident: 3394_CR11 publication-title: J. Magn. Mater. doi: 10.1016/j.jmmm.2014.06.062 – volume: 19 start-page: 1597 issue: 6 year: 2012 ident: 3394_CR42 publication-title: Sci. Iran doi: 10.1016/j.scient.2012.10.013 – volume: 673 start-page: 70 year: 2018 ident: 3394_CR49 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421406.2019.1578495 – volume: 194 start-page: 153 year: 2017 ident: 3394_CR22 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.03.020 – volume: 146 start-page: 1227 year: 2019 ident: 3394_CR18 publication-title: Microchem. J. doi: 10.1016/j.microc.2019.02.059 – volume: 21 start-page: 1 issue: 8 year: 2019 ident: 3394_CR24 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-019-4631-1 – volume: 28 start-page: 880 issue: 3 year: 2018 ident: 3394_CR39 publication-title: J. Inorg. Organomet. Polym. Mater. doi: 10.1007/s10904-017-0752-0 – volume: 13 start-page: 102221 issue: 1–8 year: 2019 ident: 3394_CR8 publication-title: Results Phys. doi: 10.1016/j.rinp.2019.102221 – volume: 731 start-page: 1256 year: 2018 ident: 3394_CR41 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.10.103 – volume: 188 start-page: 399 year: 2017 ident: 3394_CR1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.07.015 – volume: 107 start-page: 2008 year: 2019 ident: 3394_CR28 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.10.061 – volume: 5 start-page: 1 issue: 11 year: 2018 ident: 3394_CR38 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aadd88 – volume: 54 start-page: 467 year: 2018 ident: 3394_CR43 publication-title: J. Aust. Ceram. Soc. doi: 10.1007/s41779-018-0173-8 – volume: 73 start-page: 629 issue: 4 year: 2009 ident: 3394_CR30 publication-title: Med. Hypotheses. doi: 10.1016/j.mehy.2009.06.001 – volume: 12 start-page: 839 year: 2010 ident: 3394_CR2 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2010.02.007 – volume: 8 start-page: 23 issue: 1 year: 2014 ident: 3394_CR47 publication-title: Int. J. Green Pharm. doi: 10.4103/0973-8258.126816 – volume: 4 start-page: 2706 issue: 3 year: 2016 ident: 3394_CR5 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.05.020 – volume: 18 start-page: 1439 issue: 3 year: 2016 ident: 3394_CR9 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP05840F – volume: 41 start-page: 14684 issue: 10 year: 2015 ident: 3394_CR12 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.07.191 – volume: 172 start-page: 244 year: 2018 ident: 3394_CR36 publication-title: Colloid Surf. B. doi: 10.1016/j.colsurfb.2018.08.049 – volume: 4 start-page: 11816 issue: 11 year: 2017 ident: 3394_CR16 publication-title: Mater. Today doi: 10.1016/j.matpr.2017.09.099 – volume: 465 start-page: 1 year: 2018 ident: 3394_CR10 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.05.098 – volume: 446 start-page: 66 year: 2018 ident: 3394_CR21 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.187 – volume: 6 start-page: 1527 year: 2019 ident: 3394_CR3 publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI00241C – volume: 4 start-page: 13845 issue: 9 year: 2019 ident: 3394_CR7 publication-title: ACS Omega doi: 10.1021/acsomega.9b01477 – volume: 92 start-page: 644 year: 2018 ident: 3394_CR4 publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.07.007 – volume: 190 start-page: 8 year: 2019 ident: 3394_CR46 publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2018.11.001 – volume: 159 start-page: 237 year: 2016 ident: 3394_CR37 publication-title: J. Photochem. Photobiol. doi: 10.1016/j.jphotobiol.2016.03.056 – volume: 34 start-page: 508 issue: 3 year: 2018 ident: 3394_CR33 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2017.01.004 – volume: 64 start-page: 118 year: 2013 ident: 3394_CR44 publication-title: Superlattice Microst. doi: 10.1016/j.spmi.2013.09.021 – volume: 219 start-page: 474 year: 2016 ident: 3394_CR32 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.03.041 – volume: 155 start-page: 534 year: 2009 ident: 3394_CR15 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.08.008 – volume: 174 start-page: 199 year: 2019 ident: 3394_CR27 publication-title: Colloids Surf. B. doi: 10.1016/j.colsurfb.2018.11.014 – volume: 14 start-page: 79 year: 2019 ident: 3394_CR34 publication-title: Res. J. Biotechnol. – volume: 110 start-page: 87 year: 2017 ident: 3394_CR14 publication-title: J. Phys. Chem. Solids. doi: 10.1016/j.jpcs.2017.05.029 – volume: 6 start-page: 184 issue: 9 year: 2016 ident: 3394_CR48 publication-title: Appl. Sci. doi: 10.3390/app6090184 – volume: 42 start-page: 2741 year: 2016 ident: 3394_CR13 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.11.003 |
SSID | ssj0006438 |
Score | 2.534454 |
Snippet | Magnetic spinel zinc ferrite nanoparticles have been prepared via simple, green, cost effective and eco-friendly methods. The development of a single cubic... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8589 |
SubjectTerms | Anticancer properties Biotechnology Breast cancer Characterization and Evaluation of Materials Chemistry and Materials Science Coercivity Crystallites Ferromagnetism Magnetic properties Magnetic saturation Magnetism Magnetization Magnetometers Materials Science Nanoparticles Optical and Electronic Materials Photomicrographs Synthesis Zinc ferrites |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZYd2GHaTAQZQW9A4dNm0UaO4lzQlC1mhCtJkSl3iL_SKpK4JYmO4z_hf9176VuC0j0kJMTH_LZz5_fj-8x9k6KUqS5qXiqXcRJ3YRTMIwbZ2Nt4iiJHDn0x5P0dio_z5JZcLjVIa1yaxNbQ-2Wlnzk79sSzX6GtvXD6ienrlEUXQ0tNI7YMZpgpTrs-NNwcvd1Z4vxvFUbtT1S947jUDYTiudUIjldnyIhcsnV30fTnm_-EyJtT57RGTsNlBE-bjB-xp6U_jk7-UNI8Jz9btNnoH7wyOfqRQ3LCr608dCFBirvQzR5WySCBBN-LbyFiiQZmxK89nhvDulxgBQWfui5p9JGqDc5hqC9w4ec3rhC1kClENRxAvRcL5BdgqHE9gbC8OV4MOLZFVBIAIjE1i_YdDT8NrjlofECt7gjG17mMo1UpnVmUuNiJxzSLCW1qmyGkNtI21zlSWSryJhUZCSpk1ZGUE88I-K-eMk6funLVwyE1EkpnSQJYmlErqXIcGKrMmUdXke7rL_954UNquTUHON7sddTJpwKxKlocSpUl13vvlltNDkOvt3bQlmE_VkX-9XUZTdbePfD_5_t9eHZLtjTuF1R5KbpsU6zvi_fIGtpzNuwNB8BVUXppQ priority: 102 providerName: ProQuest |
Title | Green synthesis of Lawsonia inermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) cell lines |
URI | https://link.springer.com/article/10.1007/s10854-020-03394-8 https://www.proquest.com/docview/2406917678 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3R9gIHRPkQC-1qDhxAYCkbO4lzXKrdVoVWCLFSOUX-SKqViouacID_0v_aGW_SLVWLxCHKwY4PebbnjWfmGeCNkrXMS9uI3PhEsLqJ4GCYsN6lxqZJlng-0D86zg8W6vAkO-mLwtoh230IScad-kaxm86UYHcnkbJUQm_AVka-OydyLdLp9f5LNlavFPZY0TtN-1KZu8f42xytOeatsGi0NvMn8LiniThd4boND-rwFB7dEA98BpcxZQbb34E4XLts8bzBzzEGujTIJX2EoIiFIUQq8c8yOGxYhrGrMZhAvnKfEodEW_GHOQ1czojtKq8QTfD08EE3zYoL5PIHvmUCzalZEqNEy8nsHfbNb4_25qJ4hxwGQCau7XNYzGff9g5Ef9mCcLQKO1GXKk90YUxhc-tTLz1RK62MblxBMLvEuFKXWeKaxNpcFiyjkzdW8j14VqYT-QI2w3moXwJKZbJaecWyw8rK0ihZ0MBOF9p5ckFHMBn-eeV6JXK-EOOsWmsoM04V4VRFnCo9gvfX3_xc6XD8s_fOAGXVr8m2ikW-k4Ks8wg-DPCum-8f7dX_dX8ND9M4w_ioZgc2u4tf9S4xl86OYUPP98ewNd3__mlG74-z4y9fx3H6XgHE8Oky |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKOUAPiE-xUGAOIIHAIms7iXOoECosW7rbUyv1FvyRVCsVb2mCUPkv_AV-Y2ecpAtI9NZDToktJTMZP3vmvWHsuZKVzApb88z4hJO6CadkGLfeCWNFkiaeDvTne9n0QH0-TA_X2O-BC0NllUNMjIHaLx2dkb-NFM1xjrH13ck3Tl2jKLs6tNDo3GK3OvuBW7Zma-cD2veFEJOP-9tT3ncV4A7dreVVobJE58bkNrNeeOkRQ2hldO1yfB-XGFfoIk1cnVibyZz0YrLaSmr4ZqUYS5z3GruuJK7kxEyffLqI_Li6607bj7TEhehJOj1VT6eK02YtwZGK678XwhW6_SchG9e5yW12qweo8L7zqDtsrQp32cYfsoX32K9YrAPNWUD02CwaWNYwi9nXhQEiE6Lv8EhJQTgLPxfBQU0CkG0FwQTcpffFeICAGb6ao0BESmi6ikYwweNFR-zoj6dAxAvqbwHmyCwQy4KlMvoW-tsv59sTnr8CSkAAQebmPju4EoM8YOthGaqHDKQyaaW8IsFjZWVhlMxxYqdz7TxufkdsPHzz0vUa6NSK47hcqTeTnUq0UxntVOoRe30x5qRTALn06c3BlGUfDZpy5bsj9mYw7-r2_2d7dPlsz9iN6f58Vs529nYfs5siehcdEG2y9fb0e_UE8VJrn0YnBfblqv-Kc9AhJO4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtRADLbKVkJwQPyKhQI-gASCUbOZSTI5IARtVy1tVxWiUm9hfpJqJciWJgiVd-FFeDrsZNIFJHrrIadJLCV2PJ_H9meAp0qWMs1tJVLjI8HsJoKTYcJ6FxsbR0nk-UB_f5ZuH6r3R8nRCvwaemG4rHLwiZ2j9gvHZ-TrXYvmJCPful6FsoiDzembk6-CJ0hxpnUYp9GbyG559p3Ct-b1zibp-lkcT7c-bmyLMGFAODK9VpS5SiOdGZPZ1PrYS094QiujK5fRu7nIuFznSeSqyNpUZswdk1ZW8vA3K-OJJLlXYDXjqGgEq--2ZgcfzvcB2ut1z_THzOJxHFp2QuOeTpTg0C2SMldC_70tLrHuP-nZbteb3oQbAa7i296-bsFKWd-G63-QGN6Bn13pDjZnNWHJZt7gosK9Lhc7N8ithWRJomtQIXCLP-a1w4rpINsSa1NTzB5K85DgM34xxzW3VWLT1zeiqT1dfOBO1nmK3IbB0y7QHJs5IVu0XFTfYlh-vr8xFdkL5HQEMoBu7sLhpajkHozqRV3eB5TKJKXyiumPlZW5UTIjwU5n2nkKhccwGb554QIjOg_m-FwsuZxZTwXpqej0VOgxvDx_5qTnA7nw7rVBlUXwDU2xtOQxvBrUu1z-v7QHF0t7Alfpjyj2dma7D-Fa3BkXnxatwag9_VY-IvDU2sfBShE-XfaP8RtpTSqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+synthesis+of+Lawsonia+inermis-mediated+zinc+ferrite+nanoparticles+for+magnetic+studies+and+anticancer+activity+against+breast+cancer+%28MCF-7%29+cell+lines&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Sarala%2C+E.&rft.au=Madhukara+Naik%2C+M.&rft.au=Vinuth%2C+M.&rft.au=Rami+Reddy%2C+Y.+V.&rft.date=2020-06-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=31&rft.issue=11&rft.spage=8589&rft.epage=8596&rft_id=info:doi/10.1007%2Fs10854-020-03394-8&rft.externalDocID=10_1007_s10854_020_03394_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |