TPRNet: camouflaged object detection via transformer-induced progressive refinement network
Camouflaged object detection (COD) is a challenging task which aims to detect objects similar to the surrounding environment. In this paper, we propose a transformer-induced progressive refinement network ( TPRNet ) to solve challenging COD tasks. Specifically, our network includes a Transformer-ind...
Saved in:
Published in | The Visual computer Vol. 39; no. 10; pp. 4593 - 4607 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Camouflaged object detection (COD) is a challenging task which aims to detect objects similar to the surrounding environment. In this paper, we propose a transformer-induced progressive refinement network (
TPRNet
) to solve challenging COD tasks. Specifically, our network includes a Transformer-induced Progressive Refinement Module (TPRM) and a Semantic-Spatial Interaction Enhancement Module (SIEM). In TPRM, high-level features with rich semantic information are integrated through transformers as prior guidance, and then, it is sent to the refinement concurrency unit (RCU), and the accurately positioned feature area is obtained through a progressive refinement strategy. In SIEM, we perform feature interaction to localized-accurate semantic features and low-level features to obtain rich fine-grained clues and increase the symbolic power of boundary features. Extensive experiments on four widely used benchmark datasets (i.e., CAMO, CHAMELEON, COD10K, and NC4K) demonstrate that our
TPRNet
is an effective COD model and outperforms state-of-the-art models. The code is available
https://github.com/zhangqiao970914/TPRNet
. |
---|---|
AbstractList | Camouflaged object detection (COD) is a challenging task which aims to detect objects similar to the surrounding environment. In this paper, we propose a transformer-induced progressive refinement network (TPRNet) to solve challenging COD tasks. Specifically, our network includes a Transformer-induced Progressive Refinement Module (TPRM) and a Semantic-Spatial Interaction Enhancement Module (SIEM). In TPRM, high-level features with rich semantic information are integrated through transformers as prior guidance, and then, it is sent to the refinement concurrency unit (RCU), and the accurately positioned feature area is obtained through a progressive refinement strategy. In SIEM, we perform feature interaction to localized-accurate semantic features and low-level features to obtain rich fine-grained clues and increase the symbolic power of boundary features. Extensive experiments on four widely used benchmark datasets (i.e., CAMO, CHAMELEON, COD10K, and NC4K) demonstrate that our TPRNet is an effective COD model and outperforms state-of-the-art models. The code is available https://github.com/zhangqiao970914/TPRNet. Camouflaged object detection (COD) is a challenging task which aims to detect objects similar to the surrounding environment. In this paper, we propose a transformer-induced progressive refinement network ( TPRNet ) to solve challenging COD tasks. Specifically, our network includes a Transformer-induced Progressive Refinement Module (TPRM) and a Semantic-Spatial Interaction Enhancement Module (SIEM). In TPRM, high-level features with rich semantic information are integrated through transformers as prior guidance, and then, it is sent to the refinement concurrency unit (RCU), and the accurately positioned feature area is obtained through a progressive refinement strategy. In SIEM, we perform feature interaction to localized-accurate semantic features and low-level features to obtain rich fine-grained clues and increase the symbolic power of boundary features. Extensive experiments on four widely used benchmark datasets (i.e., CAMO, CHAMELEON, COD10K, and NC4K) demonstrate that our TPRNet is an effective COD model and outperforms state-of-the-art models. The code is available https://github.com/zhangqiao970914/TPRNet . |
Author | Ge, Yanliang Bi, Hongbo Zhang, Qiao Zhang, Cong |
Author_xml | – sequence: 1 givenname: Qiao surname: Zhang fullname: Zhang, Qiao organization: School of electrical information engineering, Northeast Petroleum University – sequence: 2 givenname: Yanliang surname: Ge fullname: Ge, Yanliang organization: School of electrical information engineering, Northeast Petroleum University – sequence: 3 givenname: Cong surname: Zhang fullname: Zhang, Cong email: congzhang98@126.com organization: School of electrical information engineering, Northeast Petroleum University – sequence: 4 givenname: Hongbo orcidid: 0000-0003-2442-330X surname: Bi fullname: Bi, Hongbo email: bhbdq@126.com organization: School of electrical information engineering, Northeast Petroleum University |
BookMark | eNp9kE9LwzAYh4NMcE6_gKeC52repF1SbzL8B0NF5slDSNtkZK7JTNKJ397MCoKHHcKbwO_J--M5RiPrrELoDPAFYMwuA8aUQY4JSWcKkMMBGkNBSU4olCM0xsB4ThivjtBxCCuc3qyoxuht8fzyqOJV1sjO9Xotl6rNXL1STcxaFdMwzmZbI7PopQ3a-U753Ni2b1Jw493SqxDMVmVeaWNVp2zMrIqfzr-foEMt10Gd_s4Jer29Wczu8_nT3cPsep43FKqYK14xLWWLQeNyCqTSZQuS0ILQBlq2u06Z5rSoGeCaMkpLXsm6qrEuJKWcTtD58G-q89GrEMXK9d6mlYJUwHFRkLJIKTKkGu9CSG3FxptO-i8BWOwkikGiSBLFj0QBCeL_oMZEuXOSdJj1fpQOaEh77FL5v1Z7qG-4v4iC |
CitedBy_id | crossref_primary_10_1007_s00371_024_03333_2 crossref_primary_10_1007_s00371_024_03688_6 crossref_primary_10_1007_s00371_023_02860_8 crossref_primary_10_1016_j_eswa_2024_124747 crossref_primary_10_1007_s00371_024_03515_y crossref_primary_10_1016_j_cviu_2024_104061 crossref_primary_10_3390_app15010173 crossref_primary_10_1007_s10489_024_05559_y crossref_primary_10_1007_s11263_025_02406_6 crossref_primary_10_1016_j_engappai_2024_109984 crossref_primary_10_1007_s00371_024_03713_8 crossref_primary_10_1007_s10489_025_06264_0 crossref_primary_10_1016_j_imavis_2024_105339 crossref_primary_10_1109_TMM_2024_3521761 crossref_primary_10_1007_s00371_023_03104_5 crossref_primary_10_1177_15589250241258272 crossref_primary_10_1109_TPAMI_2024_3438565 crossref_primary_10_3390_electronics13193922 crossref_primary_10_1007_s00371_024_03658_y crossref_primary_10_1109_TCSVT_2024_3403264 crossref_primary_10_3390_app14178063 crossref_primary_10_1109_TIM_2023_3306520 crossref_primary_10_1109_TIFS_2025_3530703 crossref_primary_10_1109_TCSVT_2024_3417607 crossref_primary_10_1007_s00371_024_03422_2 crossref_primary_10_3390_s25051555 crossref_primary_10_1007_s44267_023_00019_6 crossref_primary_10_1007_s00371_024_03786_5 crossref_primary_10_1007_s11227_024_06376_3 crossref_primary_10_1109_TIM_2023_3290965 crossref_primary_10_1109_TCSVT_2023_3245883 crossref_primary_10_1007_s00371_023_02827_9 crossref_primary_10_1016_j_neucom_2025_130005 |
Cites_doi | 10.1109/ICCV.2019.00736 10.1007/s00371-022-02404-6 10.1109/TMI.2020.2996645 10.1109/CVPR.2018.00745 10.1109/CVPR46437.2021.01280 10.1109/IGARSS.2016.7730352 10.1007/s00371-020-01842-4 10.1016/j.neucom.2019.09.107 10.1109/CVPR46437.2021.00969 10.1109/CVPR.2016.90 10.1109/CVPR.2012.6247743 10.1109/ACCESS.2021.3064443 10.1109/TIE.2021.3078379 10.1109/CVPR46437.2021.00866 10.1109/CVPR.2018.00813 10.1109/CVPR46437.2021.00994 10.24963/ijcai.2021/142 10.1109/ICCV.2017.487 10.1109/ICCV48922.2021.00411 10.1016/j.patcog.2022.108644 10.1007/s00371-021-02231-1 10.1109/ICCV48922.2021.00803 10.1109/ICCV48922.2021.00986 10.1109/ICCV48922.2021.01196 10.1109/CVPR.2019.00326 10.1016/j.patcog.2021.108414 10.1109/CVPR42600.2020.00285 10.1016/j.proeng.2011.08.412 10.1109/WACV51458.2022.00347 10.1007/s00371-020-01855-z 10.1007/s00371-020-01854-0 10.1109/CVPR42600.2020.00943 10.1109/TCSVT.2021.3124952 10.1109/TPAMI.2019.2938758 10.1016/j.cviu.2019.04.006 10.1109/CVPR46437.2021.01142 10.1109/TIP.2021.3058783 10.24963/ijcai.2018/97 10.1109/TPAMI.2021.3085766 10.1109/CVPR.2019.00403 10.5539/mas.v5n4p152 10.1007/978-3-030-59725-2_26 10.1109/ICETET.2008.232 10.1109/ICCV48922.2021.00060 10.1109/CVPR.2014.39 10.1007/s00371-022-02414-4 10.1016/j.neucom.2020.05.027 10.1109/ICCV.2019.00887 10.1109/ICCV48922.2021.00061 10.1109/TIP.2012.2200492 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00371-022-02611-1 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 4607 |
ExternalDocumentID | 10_1007_s00371_022_02611_1 |
GrantInformation_xml | – fundername: AnHui Province Key Laboratory of Infrared and Low-Temperature Plasma grantid: NO.IRKL2022KF07 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-e897faad01f056129f5d1a23423c1d71a2367f834b710b3733589ab9b0f4a3383 |
IEDL.DBID | U2A |
ISSN | 0178-2789 |
IngestDate | Fri Jul 25 23:38:10 EDT 2025 Thu Apr 24 22:52:46 EDT 2025 Tue Jul 01 01:05:51 EDT 2025 Fri Feb 21 02:41:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Deep learning Transformer Progressive refinement Camouflaged object detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e897faad01f056129f5d1a23423c1d71a2367f834b710b3733589ab9b0f4a3383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2442-330X |
PQID | 2918044254 |
PQPubID | 2043737 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2918044254 crossref_primary_10_1007_s00371_022_02611_1 crossref_citationtrail_10_1007_s00371_022_02611_1 springer_journals_10_1007_s00371_022_02611_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231000 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao, L.: Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 568–578 (2021) Mei, H., Ji, G.P., Wei, Z., Yang, X., Wei, X., Fan, D.P.: Camouflaged object segmentation with distraction mining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8772–8781 (2021) Zhao, J.X., Liu, J.J., Fan, D.P., Cao, Y., Yang, J., Cheng, M.M.: Egnet: Edge guidance network for salient object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 8779–8788 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016) Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141 (2018) FanDPJiGPChengMMShaoLConcealed object detectionIEEE Trans. Pattern Anal. Mach. Intell.202110.1109/TPAMI.2021.3085766 Fan, D.P., Ji, G.P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L.: Pranet: Parallel reverse attention network for polyp segmentation. In: International conference on medical image computing and computer-assisted intervention, pp. 263–273. Springer (2020) HouJYYHWLiJDetection of the mobile object with camouflage color under dynamic background based on optical flowProcedia Eng.2011152201220510.1016/j.proeng.2011.08.412 Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7794–7803 (2018) XiaoHRanZMabuSLiYLiLSaunet++: an automatic segmentation model of covid-19 lesion from ct slicesVis. Comput.202210.1007/s00371-022-02414-4 Wu, Z., Su, L., Huang, Q.: Stacked cross refinement network for edge-aware salient object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 7264–7273 (2019) ZhangXWangXGuCOnline multi-object tracking with pedestrian re-identification and occlusion processingVis. Comput.20213751089109910.1007/s00371-020-01854-0 Skurowski, P., Abdulameer, H., Błaszczyk, J., Depta, T., Kornacki, A., Kozieł, P.: Animal camouflage analysis: Chameleon database. Unpublished manuscript 2(6), 7 (2018) Li, A., Zhang, J., Lv, Y., Liu, B., Zhang, T., Dai, Y.: Uncertainty-aware joint salient object and camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10071–10081 (2021) Wang, X., Wang, W., Bi, H., Wang, K.: Reverse collaborative fusion model for co-saliency detection. The Visual Computer pp. 1–11 (2021) Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.H., Tay, F.E., Feng, J., Yan, S.: Tokens-to-token vit: Training vision transformers from scratch on imagenet. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 558–567 (2021) Zhai, Q., Li, X., Yang, F., Chen, C., Cheng, H., Fan, D.P.: Mutual graph learning for camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12997–13007 (2021) Sun, Y., Chen, G., Zhou, T., Zhang, Y., Liu, N.: Context-aware cross-level fusion network for camouflaged object detection. arXiv preprint arXiv:2105.12555 (2021) WangKBiHZhangYZhangCLiuZZhengSD 2 c-net: a dual-branch, dual-guidance and cross-refine network for camouflaged object detectionIEEE Trans. Ind. Electron.202169536410.1109/TIE.2021.3078379 LeTNNguyenTVNieZTranMTSugimotoAAnabranch network for camouflaged object segmentationComput. Vis. Image Underst.2019184455610.1016/j.cviu.2019.04.006 WeiJWangSHuangQF3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}net: fusion, feedback and focus for salient object detectionProc. AAAI Conf. Artif. Intell.202034. 1232112328 BiHWangKLuDWuCWangWYangLC 2 net: a complementary co-saliency detection networkVis. Comput.202137591192310.1007/s00371-020-01842-4 Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps? In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 248–255 (2014) Sengottuvelan, P., Wahi, A., Shanmugam, A.: Performance of decamouflaging through exploratory image analysis. In: 2008 First International Conference on Emerging Trends in Engineering and Technology, pp. 6–10. IEEE (2008) JiGPZhuLZhugeMFuKFast camouflaged object detection via edge-based reversible re-calibration networkPattern Recogn.202212310.1016/j.patcog.2021.108414 ZhugeMLuXGuoYCaiZChenSCubenet: X-shape connection for camouflaged object detectionPattern Recogn.202212710.1016/j.patcog.2022.108644 Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: an imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Cui, Y., Yan, L., Cao, Z., Liu, D.: Tf-blender: Temporal feature blender for video object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8138–8147 (2021) LiuDCuiYChenYZhangJFanBVideo object detection for autonomous driving: Motion-aid feature calibrationNeurocomputing202040911110.1016/j.neucom.2020.05.027 Youwei, P., Xiaoqi, Z., Tian-Zhu, X., Lihe, Z., Huchuan, L.: Zoom in and out: A mixed-scale triplet network for camouflaged object detection. arXiv preprint arXiv:2203.02688 (2022) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020) Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3146–3154 (2019) Yang, F., Zhai, Q., Li, X., Huang, R., Luo, A., Cheng, H., Fan, D.P.: Uncertainty-guided transformer reasoning for camouflaged object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4146–4155 (2021) WuYHGaoSHMeiJXuJFanDPZhangRGChengMMJcs: an explainable covid-19 diagnosis system by joint classification and segmentationIEEE Trans. Image Process.2021303113312610.1109/TIP.2021.3058783 Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: Contrast based filtering for salient region detection. In: 2012 IEEE conference on computer vision and pattern recognition, pp. 733–740. IEEE (2012) GaoSHChengMMZhaoKZhangXYYangMHTorrPRes2net: a new multi-scale backbone architectureIEEE Trans. Pattern Anal. Mach. Intell.201943265266210.1109/TPAMI.2019.2938758 YanJLeTNNguyenKDTranMTDoTTNguyenTVMirrornet: bio-inspired camouflaged object segmentationIEEE Access20219432904330010.1109/ACCESS.2021.3064443 Liu, D., Cui, Y., Tan, W., Chen, Y.: Sg-net: Spatial granularity network for one-stage video instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9816–9825 (2021) ZhangYHanSZhangZWangJBiHCf-gan: cross-domain feature fusion generative adversarial network for text-to-image synthesisVis. Comput.202210.1007/s00371-022-02404-6 Amit, S.N.K.B., Shiraishi, S., Inoshita, T., Aoki, Y.: Analysis of satellite images for disaster detection. In: 2016 IEEE International geoscience and remote sensing symposium (IGARSS), pp. 5189–5192. IEEE (2016) Fan, D.P., Ji, G.P., Sun, G., Cheng, M.M., Shen, J., Shao, L.: Camouflaged object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2777–2787 (2020) BiHZhangCWangKTongJZhengFRethinking camouflaged object detection: models and datasetsIEEE Trans. Circuits Syst. Video Technol.202110.1109/TCSVT.2021.3124952 Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint arXiv:1805.10421 (2018) Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: Proceedings of the IEEE international conference on computer vision, pp. 4548–4557 (2017) LiuZHuangKTanTForeground object detection using top-down information based on em frameworkIEEE Trans. Image Process.201221942044217297241110.1109/TIP.2012.22004921373.94798 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems 30 (2017) Lv, Y., Zhang, J., Dai, Y., Li, A., Liu, B., Barnes, N., Fan, D.P.: Simultaneously localize, segment and rank the camouflaged objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11591–11601 (2021) PanYChenYFuQZhangPXuXStudy on the camouflaged target detection method based on 3d convexityMod. Appl. Sci.20115415210.5539/mas.v5n4p152 Wu, Z., Su, L., Huang, Q.: Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3907–3916 (2019) Dong, B., Zhuge, M., Wang, Y., Bi, H., Chen, G.: Towards accurate camouflaged object detection with mixture convolution and interactive fusion. arXiv preprint arXiv:2101.056871(2) (2021) FanDPZhouTJiGPZhouYChenGFuHShenJShaoLInf-net: automatic covid-19 lung infection segmentation from ct imagesIEEE Trans. Med. Imaging20203982626263710.1109/TMI.2020.2996645 LeXMeiJZhangHZhouBXiJA learning-based approach for surface defect detection using small image da X Le (2611_CR23) 2020; 408 DP Fan (2611_CR11) 2021 2611_CR26 2611_CR24 2611_CR21 K Wang (2611_CR42) 2021; 69 2611_CR28 2611_CR29 Z Liu (2611_CR27) 2012; 21 H Bi (2611_CR4) 2021 2611_CR52 D Wang (2611_CR41) 2021; 37 J Wei (2611_CR46) 2020; 34 2611_CR15 2611_CR13 2611_CR58 2611_CR55 2611_CR12 2611_CR53 2611_CR10 TN Le (2611_CR22) 2019; 184 2611_CR54 2611_CR19 2611_CR17 GP Ji (2611_CR20) 2022; 123 2611_CR1 2611_CR40 D Liu (2611_CR25) 2020; 409 2611_CR9 2611_CR48 2611_CR8 2611_CR49 2611_CR7 2611_CR6 2611_CR5 2611_CR44 2611_CR45 2611_CR2 2611_CR43 H Xiao (2611_CR50) 2022 SH Gao (2611_CR16) 2019; 43 X Zhang (2611_CR56) 2021; 37 H Bi (2611_CR3) 2021; 37 JYYHW Hou (2611_CR18) 2011; 15 M Zhuge (2611_CR59) 2022; 127 2611_CR30 2611_CR37 2611_CR38 2611_CR35 2611_CR36 2611_CR33 2611_CR34 2611_CR31 J Yan (2611_CR51) 2021; 9 Y Zhang (2611_CR57) 2022 Y Pan (2611_CR32) 2011; 5 2611_CR39 DP Fan (2611_CR14) 2020; 39 YH Wu (2611_CR47) 2021; 30 |
References_xml | – reference: Dong, B., Zhuge, M., Wang, Y., Bi, H., Chen, G.: Towards accurate camouflaged object detection with mixture convolution and interactive fusion. arXiv preprint arXiv:2101.056871(2) (2021) – reference: Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016) – reference: Skurowski, P., Abdulameer, H., Błaszczyk, J., Depta, T., Kornacki, A., Kozieł, P.: Animal camouflage analysis: Chameleon database. Unpublished manuscript 2(6), 7 (2018) – reference: Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao, L.: Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 568–578 (2021) – reference: WeiJWangSHuangQF3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}net: fusion, feedback and focus for salient object detectionProc. AAAI Conf. Artif. Intell.202034. 1232112328 – reference: Fan, D.P., Ji, G.P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L.: Pranet: Parallel reverse attention network for polyp segmentation. In: International conference on medical image computing and computer-assisted intervention, pp. 263–273. Springer (2020) – reference: XiaoHRanZMabuSLiYLiLSaunet++: an automatic segmentation model of covid-19 lesion from ct slicesVis. Comput.202210.1007/s00371-022-02414-4 – reference: He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016) – reference: LiuZHuangKTanTForeground object detection using top-down information based on em frameworkIEEE Trans. Image Process.201221942044217297241110.1109/TIP.2012.22004921373.94798 – reference: Mei, H., Ji, G.P., Wei, Z., Yang, X., Wei, X., Fan, D.P.: Camouflaged object segmentation with distraction mining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8772–8781 (2021) – reference: Li, A., Zhang, J., Lv, Y., Liu, B., Zhang, T., Dai, Y.: Uncertainty-aware joint salient object and camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10071–10081 (2021) – reference: Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12179–12188 (2021) – reference: Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: an imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) – reference: Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: Proceedings of the IEEE international conference on computer vision, pp. 4548–4557 (2017) – reference: JiGPZhuLZhugeMFuKFast camouflaged object detection via edge-based reversible re-calibration networkPattern Recogn.202212310.1016/j.patcog.2021.108414 – reference: Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3146–3154 (2019) – reference: Wu, Z., Su, L., Huang, Q.: Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3907–3916 (2019) – reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems 30 (2017) – reference: ZhugeMLuXGuoYCaiZChenSCubenet: X-shape connection for camouflaged object detectionPattern Recogn.202212710.1016/j.patcog.2022.108644 – reference: Wu, Z., Su, L., Huang, Q.: Stacked cross refinement network for edge-aware salient object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 7264–7273 (2019) – reference: WuYHGaoSHMeiJXuJFanDPZhangRGChengMMJcs: an explainable covid-19 diagnosis system by joint classification and segmentationIEEE Trans. Image Process.2021303113312610.1109/TIP.2021.3058783 – reference: LeXMeiJZhangHZhouBXiJA learning-based approach for surface defect detection using small image datasetsNeurocomputing202040811212010.1016/j.neucom.2019.09.107 – reference: FanDPJiGPChengMMShaoLConcealed object detectionIEEE Trans. Pattern Anal. Mach. Intell.202110.1109/TPAMI.2021.3085766 – reference: Fan, D.P., Ji, G.P., Sun, G., Cheng, M.M., Shen, J., Shao, L.: Camouflaged object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2777–2787 (2020) – reference: Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps? In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 248–255 (2014) – reference: Liu, D., Cui, Y., Tan, W., Chen, Y.: Sg-net: Spatial granularity network for one-stage video instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9816–9825 (2021) – reference: Zhao, J.X., Liu, J.J., Fan, D.P., Cao, Y., Yang, J., Cheng, M.M.: Egnet: Edge guidance network for salient object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 8779–8788 (2019) – reference: Lv, Y., Zhang, J., Dai, Y., Li, A., Liu, B., Barnes, N., Fan, D.P.: Simultaneously localize, segment and rank the camouflaged objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11591–11601 (2021) – reference: Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint arXiv:1805.10421 (2018) – reference: WangDHuGLyuCFrnet: an end-to-end feature refinement neural network for medical image segmentationVis. Comput.20213751101111210.1007/s00371-020-01855-z – reference: Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7794–7803 (2018) – reference: Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.H., Tay, F.E., Feng, J., Yan, S.: Tokens-to-token vit: Training vision transformers from scratch on imagenet. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 558–567 (2021) – reference: Pang, Y., Zhao, X., Zhang, L., Lu, H.: Multi-scale interactive network for salient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9413–9422 (2020) – reference: Sengottuvelan, P., Wahi, A., Shanmugam, A.: Performance of decamouflaging through exploratory image analysis. In: 2008 First International Conference on Emerging Trends in Engineering and Technology, pp. 6–10. IEEE (2008) – reference: Cui, Y., Cao, Z., Xie, Y., Jiang, X., Tao, F., Chen, Y.V., Li, L., Liu, D.: Dg-labeler and dgl-mots dataset: Boost the autonomous driving perception. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 58–67 (2022) – reference: Zhai, Q., Li, X., Yang, F., Chen, C., Cheng, H., Fan, D.P.: Mutual graph learning for camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12997–13007 (2021) – reference: ZhangXWangXGuCOnline multi-object tracking with pedestrian re-identification and occlusion processingVis. Comput.20213751089109910.1007/s00371-020-01854-0 – reference: Youwei, P., Xiaoqi, Z., Tian-Zhu, X., Lihe, Z., Huchuan, L.: Zoom in and out: A mixed-scale triplet network for camouflaged object detection. arXiv preprint arXiv:2203.02688 (2022) – reference: Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) – reference: GaoSHChengMMZhaoKZhangXYYangMHTorrPRes2net: a new multi-scale backbone architectureIEEE Trans. Pattern Anal. Mach. Intell.201943265266210.1109/TPAMI.2019.2938758 – reference: BiHZhangCWangKTongJZhengFRethinking camouflaged object detection: models and datasetsIEEE Trans. Circuits Syst. Video Technol.202110.1109/TCSVT.2021.3124952 – reference: PanYChenYFuQZhangPXuXStudy on the camouflaged target detection method based on 3d convexityMod. Appl. Sci.20115415210.5539/mas.v5n4p152 – reference: YanJLeTNNguyenKDTranMTDoTTNguyenTVMirrornet: bio-inspired camouflaged object segmentationIEEE Access20219432904330010.1109/ACCESS.2021.3064443 – reference: Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) – reference: ZhangYHanSZhangZWangJBiHCf-gan: cross-domain feature fusion generative adversarial network for text-to-image synthesisVis. Comput.202210.1007/s00371-022-02404-6 – reference: Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: Contrast based filtering for salient region detection. In: 2012 IEEE conference on computer vision and pattern recognition, pp. 733–740. IEEE (2012) – reference: WangKBiHZhangYZhangCLiuZZhengSD 2 c-net: a dual-branch, dual-guidance and cross-refine network for camouflaged object detectionIEEE Trans. Ind. Electron.202169536410.1109/TIE.2021.3078379 – reference: LeTNNguyenTVNieZTranMTSugimotoAAnabranch network for camouflaged object segmentationComput. Vis. Image Underst.2019184455610.1016/j.cviu.2019.04.006 – reference: Amit, S.N.K.B., Shiraishi, S., Inoshita, T., Aoki, Y.: Analysis of satellite images for disaster detection. In: 2016 IEEE International geoscience and remote sensing symposium (IGARSS), pp. 5189–5192. IEEE (2016) – reference: Sun, Y., Chen, G., Zhou, T., Zhang, Y., Liu, N.: Context-aware cross-level fusion network for camouflaged object detection. arXiv preprint arXiv:2105.12555 (2021) – reference: LiuDCuiYChenYZhangJFanBVideo object detection for autonomous driving: Motion-aid feature calibrationNeurocomputing202040911110.1016/j.neucom.2020.05.027 – reference: Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141 (2018) – reference: Yang, F., Zhai, Q., Li, X., Huang, R., Luo, A., Cheng, H., Fan, D.P.: Uncertainty-guided transformer reasoning for camouflaged object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4146–4155 (2021) – reference: Cui, Y., Yan, L., Cao, Z., Liu, D.: Tf-blender: Temporal feature blender for video object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8138–8147 (2021) – reference: Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020) – reference: HouJYYHWLiJDetection of the mobile object with camouflage color under dynamic background based on optical flowProcedia Eng.2011152201220510.1016/j.proeng.2011.08.412 – reference: Wang, X., Wang, W., Bi, H., Wang, K.: Reverse collaborative fusion model for co-saliency detection. The Visual Computer pp. 1–11 (2021) – reference: FanDPZhouTJiGPZhouYChenGFuHShenJShaoLInf-net: automatic covid-19 lung infection segmentation from ct imagesIEEE Trans. Med. Imaging20203982626263710.1109/TMI.2020.2996645 – reference: BiHWangKLuDWuCWangWYangLC 2 net: a complementary co-saliency detection networkVis. Comput.202137591192310.1007/s00371-020-01842-4 – ident: 2611_CR49 doi: 10.1109/ICCV.2019.00736 – year: 2022 ident: 2611_CR57 publication-title: Vis. Comput. doi: 10.1007/s00371-022-02404-6 – volume: 39 start-page: 2626 issue: 8 year: 2020 ident: 2611_CR14 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2996645 – ident: 2611_CR19 doi: 10.1109/CVPR.2018.00745 – ident: 2611_CR55 doi: 10.1109/CVPR46437.2021.01280 – ident: 2611_CR1 doi: 10.1109/IGARSS.2016.7730352 – volume: 37 start-page: 911 issue: 5 year: 2021 ident: 2611_CR3 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01842-4 – volume: 408 start-page: 112 year: 2020 ident: 2611_CR23 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.107 – ident: 2611_CR26 doi: 10.1109/CVPR46437.2021.00969 – ident: 2611_CR17 doi: 10.1109/CVPR.2016.90 – ident: 2611_CR35 doi: 10.1109/CVPR.2012.6247743 – volume: 9 start-page: 43290 year: 2021 ident: 2611_CR51 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064443 – volume: 69 start-page: 5364 year: 2021 ident: 2611_CR42 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3078379 – ident: 2611_CR31 doi: 10.1109/CVPR46437.2021.00866 – ident: 2611_CR44 doi: 10.1109/CVPR.2018.00813 – ident: 2611_CR8 – ident: 2611_CR24 doi: 10.1109/CVPR46437.2021.00994 – ident: 2611_CR39 doi: 10.24963/ijcai.2021/142 – ident: 2611_CR9 doi: 10.1109/ICCV.2017.487 – ident: 2611_CR52 doi: 10.1109/ICCV48922.2021.00411 – volume: 127 year: 2022 ident: 2611_CR59 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2022.108644 – ident: 2611_CR45 doi: 10.1007/s00371-021-02231-1 – ident: 2611_CR6 doi: 10.1109/ICCV48922.2021.00803 – ident: 2611_CR28 doi: 10.1109/ICCV48922.2021.00986 – ident: 2611_CR36 doi: 10.1109/ICCV48922.2021.01196 – ident: 2611_CR15 doi: 10.1109/CVPR.2019.00326 – volume: 123 year: 2022 ident: 2611_CR20 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2021.108414 – ident: 2611_CR12 doi: 10.1109/CVPR42600.2020.00285 – volume: 34 start-page: . 12321 year: 2020 ident: 2611_CR46 publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 15 start-page: 2201 year: 2011 ident: 2611_CR18 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2011.08.412 – ident: 2611_CR5 doi: 10.1109/WACV51458.2022.00347 – volume: 37 start-page: 1101 issue: 5 year: 2021 ident: 2611_CR41 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01855-z – volume: 37 start-page: 1089 issue: 5 year: 2021 ident: 2611_CR56 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01854-0 – ident: 2611_CR33 doi: 10.1109/CVPR42600.2020.00943 – ident: 2611_CR40 – ident: 2611_CR38 – year: 2021 ident: 2611_CR4 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3124952 – ident: 2611_CR7 – volume: 43 start-page: 652 issue: 2 year: 2019 ident: 2611_CR16 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2938758 – volume: 184 start-page: 45 year: 2019 ident: 2611_CR22 publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2019.04.006 – ident: 2611_CR34 – ident: 2611_CR29 doi: 10.1109/CVPR46437.2021.01142 – volume: 30 start-page: 3113 year: 2021 ident: 2611_CR47 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3058783 – ident: 2611_CR10 doi: 10.24963/ijcai.2018/97 – year: 2021 ident: 2611_CR11 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3085766 – ident: 2611_CR48 doi: 10.1109/CVPR.2019.00403 – volume: 5 start-page: 152 issue: 4 year: 2011 ident: 2611_CR32 publication-title: Mod. Appl. Sci. doi: 10.5539/mas.v5n4p152 – ident: 2611_CR13 doi: 10.1007/978-3-030-59725-2_26 – ident: 2611_CR37 doi: 10.1109/ICETET.2008.232 – ident: 2611_CR54 doi: 10.1109/ICCV48922.2021.00060 – ident: 2611_CR21 – ident: 2611_CR2 – ident: 2611_CR30 doi: 10.1109/CVPR.2014.39 – year: 2022 ident: 2611_CR50 publication-title: Vis. Comput. doi: 10.1007/s00371-022-02414-4 – ident: 2611_CR53 – volume: 409 start-page: 1 year: 2020 ident: 2611_CR25 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.027 – ident: 2611_CR58 doi: 10.1109/ICCV.2019.00887 – ident: 2611_CR43 doi: 10.1109/ICCV48922.2021.00061 – volume: 21 start-page: 4204 issue: 9 year: 2012 ident: 2611_CR27 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2200492 |
SSID | ssj0017749 |
Score | 2.5445879 |
Snippet | Camouflaged object detection (COD) is a challenging task which aims to detect objects similar to the surrounding environment. In this paper, we propose a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4593 |
SubjectTerms | Artificial Intelligence Computer Graphics Computer Science Deep learning Image Processing and Computer Vision Methods Mining Modules Neural networks Object recognition Original Article Semantics Transformers |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6veiD-InTKXnwTYNN27WpL6KyMQTHGBsMfCj5BGF0c6v7-71k6aaC61NK21Duksvvd7ncIXQT8EAaCrRER5EhMaiYcCoSaOlMxHBxl9TnrZd0R_HruDX2DreFD6usbKIz1GoqrY_8PswoC2IYYfHj7JPYqlF2d9WX0NhFdTDBDMhX_bnd6w_W-wgAbhwApsCV7JlPf2zGHZ5z2eqIjWa3PIQS-ntp2uDNP1ukbuXpHKIDDxnx00rHR2hHF8do_0ciwRP0PuwPerp8wJIDlTcTMBIKT4X1sWClSxduVeDlB8dlBVT1nAAdB8Uq7GK0bDjsUmP4K-jWugxxsYoQP0WjTnv40iW-bAKRMJ9KolmWGs5VQI2lB2FmWory0Kb6k1SltpmkhkWxAHQhojSKWizjIhOBibllrGeoVkwLfY4w3AMfYtIwYFU8TkQQKZllYaIYjwIdNhCtJJZLn1PclraY5OtsyE7KOUg5d1LOaQPdrr-ZrTJqbH27WSki97NrkW_GQgPdVcrZPP6_t4vtvV2iPVtNfhWr10S1cv6lrwBzlOLaD6xv8Q_Qzg priority: 102 providerName: ProQuest |
Title | TPRNet: camouflaged object detection via transformer-induced progressive refinement network |
URI | https://link.springer.com/article/10.1007/s00371-022-02611-1 https://www.proquest.com/docview/2918044254 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7o9qIPXqbivIw8-KaFpvf4NmUXFMcYG0x8KEmbgDA62ep-vydpu6moYF-a0jSUc3L5vuRcAK5sbieKIi2RrqssD1VscSoCLEkmPLy4CerzNAj6E-9h6k9Lp7BlZe1eHUmamXrt7Gaiy1na-lzzBmoh56n7mrtjL5447fXZAQIaA3op8iPt51m6yvzcxtflaIMxvx2LmtWmewB7JUwk7UKvh7AlswbsVykYSDkiG7D7KZ7gEbyMh6OBzG9JwpHRqxnOFSmZC73VQlKZG6urjKxeOckrvCoXFrJy1G9KjKmWtopdSYI_is3qnUOSFYbixzDpdsb3favMnmAlOKxyS0YsVJynNlWaJThM-Snljo74l9A01MUgVJHrCQQZwg1d148YF0zYyuOauJ5ALZtn8hQIPiMtihIVIbniXiBsN00Yc4I04q4tnSbQSohxUoYW1xkuZvE6KLIRfIyCj43gY9qE6_U3b0VgjT9rX1S6ictBtowdRiPbw0nHa8JNpa_N699bO_tf9XPY0UnmCxO-C6jli3d5iVAkFy3Yjrq9FtTbvefHDt7vOoPhqGX64wf73daT |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcKspDbB_UBziBRRx7szESqhB02dJ2hdBWqsQhtWNbQirZPtKi_qn-RmacZBcqtbfm5CiJFc18tuez5wHwOjFJGQTSEi9l4ApVzI2wGba8tgovE5P67I-z0YH6dtg_XIDrLhaG3Cq7OTFO1G5a0h75-1SLPFGIMLV1csqpahSdrnYlNBpY7PqrP0jZzj_ufEH9vknT4fbk84i3VQV4iXCruc_1IBjjEhHIek516DthUsqEVwo3oGY2CLlUFhdfKwdS9nNtrLZJUIYIHfb7AJaUlJpGVD78Oju1QFMqmtsCmRlFmLZBOjFUL-bG4-Q7T6xHcPH_Qji3bm8cyMZ1bvgEllsDlX1qELUCC756Co__SVv4DH5Ovv8Y-_oDK83v6UU4xinJsamlHR3mfB2duyp2-cuwujOL_RlH8o8wcix6hJHz7aVn-FfYLW1QsqrxR38OB_cizhewWE0r_xIY3iP7ysuQI4czKrOJdKXWaeZyIxOf9kB0EivKNoM5FdI4Lma5l6OUC5RyEaVciB68nX1z0uTvuPPt9U4RRTuWz4s58nrwrlPO_PHtva3e3dsmPBxN9veKvZ3x7ho8ojr2jZfgOizWZxd-A62d2r6KEGNwdN-Y_gsz7AqJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQfTgoypWq-bgTZdudtN9eCtqqa9SpIWCh5BsEhDKttS1v99J9tEqKrinLJsNYSaP-ZKZbxC6cLmbaAKwRPm-diio2OFEBFBSsaDwcEvq89wPeiP6MG6PV6L4rbd7eSWZxzQYlqY0a82kblWBb5ZpzjGe6AZDEAfwzzosx8SM65HXqe4RwLixBjABrGRiPouwmZ_b-Lo1Le3Nb1ekdufp7qLtwmTEnVzHe2hNpXW0U6ZjwMXsrKOtFW7BffQ6HLz0VXaNEw7oXk9g3ZB4KsyxC5Yqsx5YKV68cZyVtquaO4DQQdcSW7ct4yG7UBg6Cs2aU0Sc5k7jB2jUvRve9Jwik4KTgEwyR0VxqDmXLtEGMXixbkvCPcP-lxAZmmIQ6sinAgwO4Ye-345iLmLhasoNiD1EtXSaqiOE4R0gUpToCIAWp4FwfZnEsRfIiPuu8hqIlEJkSUEzbrJdTFhFkGwFz0DwzAqekQa6rP6Z5SQbf9ZulrphxYR7Z15MIpfCAkQb6KrU1_Lz760d_6_6OdoY3HbZ033_8QRtmtzzuWdfE9Wy-Yc6BQslE2d2EH4CaQ3Zrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TPRNet%3A+camouflaged+object+detection+via+transformer-induced+progressive+refinement+network&rft.jtitle=The+Visual+computer&rft.au=Zhang%2C+Qiao&rft.au=Ge%2C+Yanliang&rft.au=Zhang%2C+Cong&rft.au=Bi%2C+Hongbo&rft.date=2023-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=39&rft.issue=10&rft.spage=4593&rft.epage=4607&rft_id=info:doi/10.1007%2Fs00371-022-02611-1&rft.externalDocID=10_1007_s00371_022_02611_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |