Structural, plasmonic and electronic properties of zirconium carbonitride thin films prepared by dual ion beam deposition
Metal carbonitride is a new type of tunable plasmonic materials and can be tuned by nitrogen and carbon content. In this work, zirconium carbonitride (ZrC x N y ) thin films are prepared by dual ion beam deposition. The effects of C content and assisting ions on the structure and plasmonic propertie...
Saved in:
Published in | Applied physics. A, Materials science & processing Vol. 129; no. 6 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal carbonitride is a new type of tunable plasmonic materials and can be tuned by nitrogen and carbon content. In this work, zirconium carbonitride (ZrC
x
N
y
) thin films are prepared by dual ion beam deposition. The effects of C content and assisting ions on the structure and plasmonic properties of the films are studied. The results show that all the films are in B1-structure. C content increasing can reduce the shielding plasma frequency
ħ
ω
c
and the carrier concentration of the film. Appropriate assisting ion beam energy
E
a
and current density
J
a
can promote the crystallinity of the film. As
E
a
and
J
a
increases,
ħ
ω
c
increases initially and then decreases. The effects of the assisting ions can be attributed to the C content and the C-related defects, which is confirmed by the calculation of electronic states. The calculated density of state of the electrons shows that increasing C-substitute defects can decrease the threshold energy of interband transition, and the interstitial C defects lead to the similar effect. The study shows that metal carbonitride is a more tunable plasmonic material in visible and infrared region, and can also be modulated by the assisting ions. |
---|---|
AbstractList | Metal carbonitride is a new type of tunable plasmonic materials and can be tuned by nitrogen and carbon content. In this work, zirconium carbonitride (ZrCxNy) thin films are prepared by dual ion beam deposition. The effects of C content and assisting ions on the structure and plasmonic properties of the films are studied. The results show that all the films are in B1-structure. C content increasing can reduce the shielding plasma frequency ħωc and the carrier concentration of the film. Appropriate assisting ion beam energy Ea and current density Ja can promote the crystallinity of the film. As Ea and Ja increases, ħωc increases initially and then decreases. The effects of the assisting ions can be attributed to the C content and the C-related defects, which is confirmed by the calculation of electronic states. The calculated density of state of the electrons shows that increasing C-substitute defects can decrease the threshold energy of interband transition, and the interstitial C defects lead to the similar effect. The study shows that metal carbonitride is a more tunable plasmonic material in visible and infrared region, and can also be modulated by the assisting ions. Metal carbonitride is a new type of tunable plasmonic materials and can be tuned by nitrogen and carbon content. In this work, zirconium carbonitride (ZrC x N y ) thin films are prepared by dual ion beam deposition. The effects of C content and assisting ions on the structure and plasmonic properties of the films are studied. The results show that all the films are in B1-structure. C content increasing can reduce the shielding plasma frequency ħ ω c and the carrier concentration of the film. Appropriate assisting ion beam energy E a and current density J a can promote the crystallinity of the film. As E a and J a increases, ħ ω c increases initially and then decreases. The effects of the assisting ions can be attributed to the C content and the C-related defects, which is confirmed by the calculation of electronic states. The calculated density of state of the electrons shows that increasing C-substitute defects can decrease the threshold energy of interband transition, and the interstitial C defects lead to the similar effect. The study shows that metal carbonitride is a more tunable plasmonic material in visible and infrared region, and can also be modulated by the assisting ions. |
ArticleNumber | 453 |
Author | Wang, Tianrun Jiang, Zhaotan Wang, Zhi Liu, Tingting Hu, Guangxiao Ran, Yujing Yu, Xiaoting |
Author_xml | – sequence: 1 givenname: Tingting surname: Liu fullname: Liu, Tingting organization: School of Physics, Beijing Institute of Technology – sequence: 2 givenname: Yujing surname: Ran fullname: Ran, Yujing email: ranyujing@ustb.edu.cn organization: School of Chemistry and Biological Engineering, Basic Experimental Center for Natural Science, University of Science and Technology Beijing – sequence: 3 givenname: Tianrun surname: Wang fullname: Wang, Tianrun organization: School of Physics, Beijing Institute of Technology – sequence: 4 givenname: Xiaoting surname: Yu fullname: Yu, Xiaoting organization: School of Physics, Beijing Institute of Technology – sequence: 5 givenname: Guangxiao surname: Hu fullname: Hu, Guangxiao organization: School of Physics, Beijing Institute of Technology – sequence: 6 givenname: Zhaotan surname: Jiang fullname: Jiang, Zhaotan organization: School of Physics, Beijing Institute of Technology – sequence: 7 givenname: Zhi orcidid: 0000-0002-0680-4849 surname: Wang fullname: Wang, Zhi email: wangzhi@bit.edu.cn organization: School of Physics, Beijing Institute of Technology |
BookMark | eNp9kElLBDEQhYMoOC5_wFPAq63ZppM-irjBgAe9h3R1tUZ6M0kf2l9vnBEED-ZSecX7KpV3RPaHcUBCzji75Izpq8iYlFXBhCxYqbkslj2y4kqKLCXbJytWKV0YWZWH5CjGd5aPEmJFlucUZkhzcN0FnToX-3HwQN3QUOwQUtjKKYwThuQx0rGlnz5Abs89BRfqfEvBN0jTmx9o67s-Zj9OLmBD64U2s-uoHwdao-tpg9MYfcr6hBy0rot4-lOPycvd7cvNQ7F5un-8ud4UIHmVCjRriVC2WmgB2gCHFgw3pQJeA1Nr0YIytVKtAiZKXSvBXNMoptCg0pU8Jue7sfkPHzPGZN_HOQz5RSuM4FIraVh2mZ0LwhhjwNaCT-57zRSc7yxn9jtnu8vZ5pztNme7ZFT8QafgexeW_yG5g2I2D68Yfrf6h_oC1zuVcw |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2025_02_160 |
Cites_doi | 10.1073/pnas.1319446111 10.1016/j.matlet.2016.08.147 10.1016/j.mattod.2014.10.039 10.1016/j.mser.2017.11.001 10.48550/arXiv.1806.10305 10.1016/j.matchemphys.2010.12.036 10.1364/OME.1.001090 10.1016/j.surfcoat.2022.129050 10.1039/D1CP03960A 10.1364/OME.2.000478 10.1016/j.surfcoat.2008.05.038 10.1016/j.surfcoat.2009.11.012 10.1002/advs.201600430 10.1063/1.372006 10.1007/s11082-020-2227-8 10.1002/adma.202005900 10.1179/1743676115Y.0000000061 10.1016/j.surfin.2022.102074 10.1016/j.matlet.2016.02.100 10.1007/978-3-642-03653-8_263 10.1038/natrevmats.2016.98 10.3390/coatings12050564 10.1007/s10853-018-2923-y 10.1088/1361-6463/ab10fe 10.1038/nature01937 10.1007/s00339-014-8495-z 10.3390/nano10050829 10.1016/j.tsf.2006.04.012 10.1166/jnn.2011.4051 10.3390/photonics8020036 10.1002/ppap.201800033 10.1016/j.physrep.2013.05.005 10.1016/j.apsusc.2012.08.093 10.1021/acsami.7b07660 10.1103/PhysRevB.95.115145 10.1016/j.apsusc.2018.04.208 10.1016/j.apsusc.2019.144579 10.1063/1.3493267 10.1021/am5026165 10.1016/j.surfin.2017.03.001 10.1073/pnas.1121517109 10.1016/j.surfcoat.2018.12.023 10.1103/PhysRevMaterials.5.065201 10.1007/s11468-015-9962-x 10.1038/nmat2629 10.1007/s00339-022-05777-6 10.1016/0001-6160%2867%2990091-0 10.1364/OME.5.002415 10.1016/j.apsusc.2020.147981 10.1002/adma.201205076 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00339-023-06713-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1432-0630 |
ExternalDocumentID | 10_1007_s00339_023_06713_y |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11774029 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -54 -5F -5G -BR -EM -XW -XX -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9T PF0 PT4 PT5 QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WIP WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZE2 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-e853ec6f7272c78c1cfc81864c1bc0452fc48b44f4c0267b420add404e8e4793 |
IEDL.DBID | U2A |
ISSN | 0947-8396 |
IngestDate | Fri Jul 25 11:17:48 EDT 2025 Tue Jul 01 00:39:41 EDT 2025 Thu Apr 24 23:12:06 EDT 2025 Fri Feb 21 02:43:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Thin films Electronic structure Zirconium carbonitride Assisting ions Plasmonic |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e853ec6f7272c78c1cfc81864c1bc0452fc48b44f4c0267b420add404e8e4793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0680-4849 |
PQID | 2821374380 |
PQPubID | 2043608 |
ParticipantIDs | proquest_journals_2821374380 crossref_citationtrail_10_1007_s00339_023_06713_y crossref_primary_10_1007_s00339_023_06713_y springer_journals_10_1007_s00339_023_06713_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Materials Science & Processing |
PublicationTitle | Applied physics. A, Materials science & processing |
PublicationTitleAbbrev | Appl. Phys. A |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Adachi, Takahashi (CR49) 2000; 87 Catellani, Calzolari (CR50) 2017 Patsalas, Kalfagiannis, Kassavetis, Abadias, Bellas, Lekka, Lidorikis (CR18) 2018; 123 Kenzhegulov, Mamaeva, Panichkin, Alibekov, Kshibekova, Bakhytuly, Wieleb (CR37) 2022; 12 Atwater, Polman (CR3) 2010; 9 von Woedtke, Reuter, Masur, Weltmann (CR1) 2013; 530 Mokkath (CR42) 2021; 23 Jaksic, Obradov, Tanaskovic, Jaksic, Radovic (CR44) 2020; 52 Braic, Vasilantonakis, Mihai, Garcia, Fearn, Zou, Alford, Doiron, Oulton, Maier, Zayats, Petrov (CR33) 2017; 9 Yu Li, Chi, Shan, Zheng, Fang (CR9) 2017; 4 Li, Zhang, Liu, Chen, Gao, Wang, Zhang, Yan, Cheng (CR5) 2022; 31 Chen, Ran, Jiang, Li, Wang (CR28) 2020; 10 Tianrun, Yujing, Tingting, Qian, Chang, Zhaotan, Zhi (CR30) 2022 Kumar, Kumar, Kalaiselvam, Dash, Jayavel (CR6) 2017; 7 Harrison, Lee (CR40) 2016; 115 Qi, Sun, Wang (CR41) 2009; 404 Ran, Lu, Zhao, Guo, Gao, Jiang, Wang (CR46) 2021; 537 Wang, Zhang, Zhu, Yi, Shao (CR22) 2015; 10 Naik, Shalaev, Boltasseva (CR17) 2013; 25 Guo, Wang, Ren, Ran, Gao, Lu, Jiang, Wang (CR34) 2021; 5 Castro, Lima, Carvalho (CR32) 2022; 451 Naik, Kim, Boltasseva (CR47) 2011; 6 Naik, Liu, Kildishev, Shalaev, Boltasseva (CR15) 2012; 109 Rizzo, Signore, Mirenghi, Dimaio (CR26) 2006; 515 Lu, Ran, Zhao, Jia, Gao, Guo, Jiang, Yang, Wang (CR25) 2019; 52 Barnes, Dereux, Ebbesen (CR8) 2003; 424 Jia, Lu, Ran, Zhao, Liu, Li, Jiang, Wang (CR35) 2018; 54 Wang, Capretti, Dal Negro (CR48) 2015; 5 Guler, Shalaev, Boltasseva (CR14) 2015; 18 Kima, Kimb, Leea, Leea, Kim (CR23) 2012; 261 Lu, Ran, Zhao, Guo, Gao, Jiang, Yang, Wang (CR29) 2020; 505 Veprek, Veprek-Heijman (CR7) 2008; 202 Naik, Schroeder, Ni, Kildishev, Sands, Boltasseva (CR16) 2012; 2 Zhang, Tong, Liu, Li, Wang (CR20) 2016; 171 Hume-rothery (CR45) 1967; 15 Ran, Lu, Zhao, Jia, Li, Jiang, Wang (CR31) 2019; 359 Larijani, Kiani, Jafari-Khamse, Fathollahi (CR24) 2014; 117 Chung, Hwang, Ahn, Jeong (CR11) 2018; 14 Braic, Braic, Balaceanu, Zoita, Kiss, Vladescu, Popescu, Ripeanu (CR38) 2011; 126 Valerini, Signore, Rizzo, Tapfer (CR27) 2010; 108 Yue-Jiao Zhang, Zhou, Zhang, Yao, Li (CR10) 2021; 33 Fang, Mak, Dai, Li, Ye, Leung (CR12) 2014; 6 Gonçalves, Melikyan, Minassian, Makaryan, Petrosyan, Sargsian (CR43) 2021; 8 Grigore, Ruset, Li, Dong (CR36) 2010; 204 Bekeschus, Favia, Robert, von Woedtke (CR2) 2018; 16 Bomers, Mezy, Cerutti, Barho, Gonzalez-Posada Flores, Tourni, Taliercio (CR13) 2018; 451 Zhang, Liu, Suo, Tong, Li, Jiang, Wang (CR19) 2016; 185 Naik, Saha, Liu, Saber, Stach, Irudayaraj, Sands, Shalaev, Boltasseva (CR21) 2014; 111 Chu, Ji, Guo, Sheng, Dong, Lin, Hu, Chu (CR39) 2011; 11 Anasori, Lukatskaya, Gogotsi (CR4) 2017; 2 L Chen (6713_CR28) 2020; 10 B Li (6713_CR5) 2022; 31 Jos D Castro (6713_CR32) 2022; 451 WM Kima (6713_CR23) 2012; 261 L Braic (6713_CR33) 2017; 9 Z Qi (6713_CR41) 2009; 404 S Veprek (6713_CR7) 2008; 202 L Jia (6713_CR35) 2018; 54 M Braic (6713_CR38) 2011; 126 Z Jaksic (6713_CR44) 2020; 52 HA Atwater (6713_CR3) 2010; 9 GV Naik (6713_CR21) 2014; 111 S Adachi (6713_CR49) 2000; 87 Q Guo (6713_CR34) 2021; 5 L Zhang (6713_CR20) 2016; 171 E Grigore (6713_CR36) 2010; 204 WL Barnes (6713_CR8) 2003; 424 CL Chu (6713_CR39) 2011; 11 T Chung (6713_CR11) 2018; 14 J Wang (6713_CR22) 2015; 10 M Gonçalves (6713_CR43) 2021; 8 PMR Yue-Jiao Zhang (6713_CR10) 2021; 33 U Guler (6713_CR14) 2015; 18 M Bomers (6713_CR13) 2018; 451 L Zhang (6713_CR19) 2016; 185 D Valerini (6713_CR27) 2010; 108 W Tianrun (6713_CR30) 2022 P Patsalas (6713_CR18) 2018; 123 A Kenzhegulov (6713_CR37) 2022; 12 MM Larijani (6713_CR24) 2014; 117 W Hume-rothery (6713_CR45) 1967; 15 X Fang (6713_CR12) 2014; 6 RW Harrison (6713_CR40) 2016; 115 GV Naik (6713_CR15) 2012; 109 Y Ran (6713_CR31) 2019; 359 ZL Yu Li (6713_CR9) 2017; 4 GV Naik (6713_CR17) 2013; 25 H Lu (6713_CR29) 2020; 505 GV Naik (6713_CR16) 2012; 2 GV Naik (6713_CR47) 2011; 6 A Catellani (6713_CR50) 2017 B Anasori (6713_CR4) 2017; 2 DD Kumar (6713_CR6) 2017; 7 Y Wang (6713_CR48) 2015; 5 T von Woedtke (6713_CR1) 2013; 530 S Bekeschus (6713_CR2) 2018; 16 H Lu (6713_CR25) 2019; 52 JH Mokkath (6713_CR42) 2021; 23 Y Ran (6713_CR46) 2021; 537 A Rizzo (6713_CR26) 2006; 515 |
References_xml | – volume: 111 start-page: 7546 year: 2014 end-page: 7551 ident: CR21 article-title: Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1319446111 – volume: 185 start-page: 295 year: 2016 end-page: 298 ident: CR19 article-title: Plasmonic properties of titanium nitride thin films prepared by ion beam assisted deposition publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.08.147 – volume: 18 start-page: 227 year: 2015 end-page: 237 ident: CR14 article-title: Nanoparticle plasmonics: going practical with transition metal nitrides publication-title: Mater. Today doi: 10.1016/j.mattod.2014.10.039 – volume: 123 start-page: 1 year: 2018 end-page: 55 ident: CR18 article-title: Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics publication-title: Mater. Sci. Eng. R. Rep. doi: 10.1016/j.mser.2017.11.001 – volume: 14 start-page: 407 year: 2018 end-page: 413 ident: CR11 article-title: Au/Ag bimetallic nanocomposites as a highly sensitive plasmonic material publication-title: Plasmonics doi: 10.48550/arXiv.1806.10305 – volume: 126 start-page: 818 year: 2011 end-page: 825 ident: CR38 article-title: Structure and properties of Zr/ZrCN coatings deposited by cathodic arc method publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2010.12.036 – volume: 6 start-page: 1090 year: 2011 end-page: 1099 ident: CR47 article-title: Oxides and nitrides as alternative plasmonic materials in the optical range publication-title: Opt. Mater. Express doi: 10.1364/OME.1.001090 – volume: 451 year: 2022 ident: CR32 article-title: Corrosion resistance of Cu-Zr(O)N films in a simulated seawater environment publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2022.129050 – volume: 23 start-page: 25807 year: 2021 ident: CR42 article-title: Localized surface plasmon resonances and electric field confinement in titanium carbide (Ti3C2) MXene nanoclusters Phys publication-title: Chem. Chem. Phys. doi: 10.1039/D1CP03960A – volume: 2 start-page: 478 year: 2012 end-page: 489 ident: CR16 article-title: Titanium nitride as a plasmonic material for visible and near-infrared wavelengths publication-title: Opt. Mater. Express doi: 10.1364/OME.2.000478 – volume: 202 start-page: 5063 year: 2008 end-page: 5073 ident: CR7 article-title: Industrial applications of superhard nanocomposite coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2008.05.038 – volume: 204 start-page: 1889 year: 2010 end-page: 1892 ident: CR36 article-title: Zirconium carbonitride films deposited by combined magnetron sputtering and ion implantation (CMSII) publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.11.012 – volume: 4 start-page: 1600430 year: 2017 ident: CR9 article-title: Plasmonics of 2D nanomaterials: properties and applications publication-title: Adv. Sci. doi: 10.1002/advs.201600430 – volume: 87 start-page: 1264 year: 2000 end-page: 1269 ident: CR49 article-title: Optical properties of TiN films deposited by direct current reactive sputtering publication-title: J. Appl. Phys. doi: 10.1063/1.372006 – volume: 52 start-page: 83 year: 2020 ident: CR44 article-title: Electromagnetic simulation of MXene based plasmonic metamaterials with enhanced optical absorption publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-020-2227-8 – volume: 33 start-page: 2005900 year: 2021 ident: CR10 article-title: Plasmonic core-shell nanomaterials and their applications in spectroscopies publication-title: Adv. Mater. doi: 10.1002/adma.202005900 – volume: 115 start-page: 294 year: 2016 end-page: 307 ident: CR40 article-title: Processing and properties of ZrC, ZrN and ZrCN ceramics: a review publication-title: Adv. Appl. Ceram. doi: 10.1179/1743676115Y.0000000061 – volume: 31 year: 2022 ident: CR5 article-title: An ultraviolet sensor based on surface plasmon resonance in no-core optical fiber deposited by Ag and ZnO film publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2022.102074 – volume: 171 start-page: 304 year: 2016 end-page: 307 ident: CR20 article-title: Effects of sputtering and assisting ions on the orientation of titanium nitride films fabricated by ion beam assisted sputtering deposition from metal target publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.02.100 – volume: 404 start-page: 796 year: 2009 end-page: 800 ident: CR41 article-title: Microstructure and mechanical properties of TiCN coatings prepared by MTCVD publication-title: Adv. Tribol. doi: 10.1007/978-3-642-03653-8_263 – volume: 2 start-page: 16098 year: 2017 ident: CR4 article-title: 2D metal carbides and nitrides(MXenes) for energy storage publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 12 start-page: 564 year: 2022 ident: CR37 article-title: Comparative study of tribological and corrosion characteristics of TiCN, TiCrCN, and TiZrCN coatings publication-title: Coatings doi: 10.3390/coatings12050564 – volume: 54 start-page: 1452 year: 2018 end-page: 1461 ident: CR35 article-title: Structural and dielectric properties of ion beam deposited titanium oxynitride thin films publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2923-y – volume: 52 year: 2019 ident: CR25 article-title: Effects of assisting ions on the structural and plasmonic properties of ZrNx thin films publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/ab10fe – volume: 424 start-page: 824 issue: 6950 year: 2003 end-page: 830 ident: CR8 article-title: Surface plasmon subwavelength optics publication-title: Nature doi: 10.1038/nature01937 – volume: 117 start-page: 1179 year: 2014 end-page: 1183 ident: CR24 article-title: Temperature dependence of the optical properties of ion-beam sputtered ZrN films publication-title: Appl. Phys. A doi: 10.1007/s00339-014-8495-z – volume: 10 start-page: 829 year: 2020 ident: CR28 article-title: Structural, compositional, and plasmonic characteristics of Ti-Zr ternary nitride thin films tuned by the nitrogen flow ratio in magnetron sputtering publication-title: Nanomaterials (Basel) doi: 10.3390/nano10050829 – volume: 515 start-page: 1486 year: 2006 end-page: 1493 ident: CR26 article-title: Deposition and properties of ZrNx films produced by radio frequency reactive magnetron sputtering publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.04.012 – volume: 11 start-page: 11176 year: 2011 end-page: 11180 ident: CR39 article-title: Surface nanomechanical behavior of ZrN and ZrCN films deposited on NiTi shape memory alloy by magnetron sputtering publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2011.4051 – volume: 8 start-page: 36 year: 2021 ident: CR43 article-title: Interband, surface plasmon and fano resonances in titanium carbide (MXene) nanoparticles in the visible to infrared range publication-title: Photonics doi: 10.3390/photonics8020036 – volume: 16 start-page: 1800033 year: 2018 ident: CR2 article-title: White paper on plasma for medicine and hygiene: future in plasma health sciences publication-title: Plasma Process. Polym. doi: 10.1002/ppap.201800033 – volume: 530 start-page: 291 year: 2013 end-page: 320 ident: CR1 article-title: Plasmas for medicine publication-title: Phys. Rep. doi: 10.1016/j.physrep.2013.05.005 – volume: 261 start-page: 749 year: 2012 end-page: 752 ident: CR23 article-title: Titanium nitride thin film as an adhesion layer for surface plasmon resonance sensor chips publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.08.093 – volume: 9 start-page: 29857 year: 2017 end-page: 29862 ident: CR33 article-title: Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.7b07660 – year: 2017 ident: CR50 article-title: Plasmonic properties of refractory titanium nitride publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.115145 – volume: 451 start-page: 241 year: 2018 end-page: 249 ident: CR13 article-title: Phosphonate monolayers on InAsSb and GaSb surfaces for mid-IR plasmonics publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.208 – volume: 505 year: 2020 ident: CR29 article-title: Modulation of the plasmonic characteristics of Ti-Zr ternary nitride thin films by assisting ions publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144579 – volume: 108 year: 2010 ident: CR27 article-title: Optical function evolution of ion-assisted ZrN films deposited by sputtering publication-title: J. Appl. Phys. doi: 10.1063/1.3493267 – volume: 6 start-page: 15743 year: 2014 end-page: 15752 ident: CR12 article-title: ITO/Au/ITO sandwich structure for near-infrared plasmonics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5026165 – volume: 7 start-page: 74 year: 2017 end-page: 82 ident: CR6 article-title: Wear resistant super-hard multilayer transition metal-nitride coatings publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2017.03.001 – volume: 109 start-page: 8834 year: 2012 end-page: 8838 ident: CR15 article-title: Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1121517109 – volume: 359 start-page: 258 year: 2019 end-page: 264 ident: CR31 article-title: Effects of substrate bias and temperature on the structure and dielectric properties of TiZrN ternary nitride thin films publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.12.023 – volume: 5 year: 2021 ident: CR34 article-title: Plasmonic properties of nonstoichiometric zirconium nitride, oxynitride thin films, and their bilayer structures publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.065201 – volume: 10 start-page: 1473 year: 2015 end-page: 1478 ident: CR22 article-title: Broadband perfect absorber with titanium nitride nano-disk array publication-title: Plasmonics doi: 10.1007/s11468-015-9962-x – volume: 9 start-page: 205 year: 2010 end-page: 213 ident: CR3 article-title: Plasmonics for improved photovoltaic devices publication-title: Nat. Mater. doi: 10.1038/nmat2629 – year: 2022 ident: CR30 article-title: Plasmonic and electronic characteristics of (Zr, Nb)Nx thin films with different metal content publication-title: Appl. Phys. A doi: 10.1007/s00339-022-05777-6 – volume: 15 start-page: 567 year: 1967 end-page: 569 ident: CR45 article-title: Comments on papers resulting from Hume-Rothery’s Note-1965 publication-title: Acta Metallur. doi: 10.1016/0001-6160%2867%2990091-0 – volume: 5 start-page: 2415 year: 2015 end-page: 2430 ident: CR48 article-title: Wide tuning of the optical and structural properties of alternative plasmonic materials publication-title: Opt. Mater. Express doi: 10.1364/OME.5.002415 – volume: 537 year: 2021 ident: CR46 article-title: Stoichiometry-modulated dual epsilon-near-zero characteristics of niobium nitride films publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147981 – volume: 25 start-page: 3264 year: 2013 end-page: 3294 ident: CR17 article-title: Alternative plasmonic materials: beyond gold and silver publication-title: Adv. Mater. doi: 10.1002/adma.201205076 – volume: 424 start-page: 824 issue: 6950 year: 2003 ident: 6713_CR8 publication-title: Nature doi: 10.1038/nature01937 – volume: 204 start-page: 1889 year: 2010 ident: 6713_CR36 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.11.012 – volume: 171 start-page: 304 year: 2016 ident: 6713_CR20 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.02.100 – volume: 5 year: 2021 ident: 6713_CR34 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.065201 – volume: 202 start-page: 5063 year: 2008 ident: 6713_CR7 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2008.05.038 – volume: 404 start-page: 796 year: 2009 ident: 6713_CR41 publication-title: Adv. Tribol. doi: 10.1007/978-3-642-03653-8_263 – volume: 25 start-page: 3264 year: 2013 ident: 6713_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201205076 – volume: 451 start-page: 241 year: 2018 ident: 6713_CR13 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.208 – volume: 505 year: 2020 ident: 6713_CR29 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144579 – volume: 10 start-page: 1473 year: 2015 ident: 6713_CR22 publication-title: Plasmonics doi: 10.1007/s11468-015-9962-x – volume: 8 start-page: 36 year: 2021 ident: 6713_CR43 publication-title: Photonics doi: 10.3390/photonics8020036 – volume: 9 start-page: 205 year: 2010 ident: 6713_CR3 publication-title: Nat. Mater. doi: 10.1038/nmat2629 – volume: 530 start-page: 291 year: 2013 ident: 6713_CR1 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2013.05.005 – volume: 23 start-page: 25807 year: 2021 ident: 6713_CR42 publication-title: Chem. Chem. Phys. doi: 10.1039/D1CP03960A – volume: 6 start-page: 15743 year: 2014 ident: 6713_CR12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5026165 – volume: 10 start-page: 829 year: 2020 ident: 6713_CR28 publication-title: Nanomaterials (Basel) doi: 10.3390/nano10050829 – volume: 14 start-page: 407 year: 2018 ident: 6713_CR11 publication-title: Plasmonics doi: 10.48550/arXiv.1806.10305 – volume: 261 start-page: 749 year: 2012 ident: 6713_CR23 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.08.093 – volume: 4 start-page: 1600430 year: 2017 ident: 6713_CR9 publication-title: Adv. Sci. doi: 10.1002/advs.201600430 – volume: 185 start-page: 295 year: 2016 ident: 6713_CR19 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.08.147 – volume: 31 year: 2022 ident: 6713_CR5 publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2022.102074 – volume: 123 start-page: 1 year: 2018 ident: 6713_CR18 publication-title: Mater. Sci. Eng. R. Rep. doi: 10.1016/j.mser.2017.11.001 – volume: 451 year: 2022 ident: 6713_CR32 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2022.129050 – volume: 9 start-page: 29857 year: 2017 ident: 6713_CR33 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.7b07660 – volume: 2 start-page: 478 year: 2012 ident: 6713_CR16 publication-title: Opt. Mater. Express doi: 10.1364/OME.2.000478 – volume: 54 start-page: 1452 year: 2018 ident: 6713_CR35 publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2923-y – volume: 7 start-page: 74 year: 2017 ident: 6713_CR6 publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2017.03.001 – volume: 515 start-page: 1486 year: 2006 ident: 6713_CR26 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.04.012 – volume: 15 start-page: 567 year: 1967 ident: 6713_CR45 publication-title: Acta Metallur. doi: 10.1016/0001-6160%2867%2990091-0 – volume: 16 start-page: 1800033 year: 2018 ident: 6713_CR2 publication-title: Plasma Process. Polym. doi: 10.1002/ppap.201800033 – volume: 87 start-page: 1264 year: 2000 ident: 6713_CR49 publication-title: J. Appl. Phys. doi: 10.1063/1.372006 – volume: 52 year: 2019 ident: 6713_CR25 publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/ab10fe – volume: 108 year: 2010 ident: 6713_CR27 publication-title: J. Appl. Phys. doi: 10.1063/1.3493267 – year: 2017 ident: 6713_CR50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.115145 – volume: 537 year: 2021 ident: 6713_CR46 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147981 – volume: 117 start-page: 1179 year: 2014 ident: 6713_CR24 publication-title: Appl. Phys. A doi: 10.1007/s00339-014-8495-z – volume: 109 start-page: 8834 year: 2012 ident: 6713_CR15 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1121517109 – volume: 18 start-page: 227 year: 2015 ident: 6713_CR14 publication-title: Mater. Today doi: 10.1016/j.mattod.2014.10.039 – volume: 359 start-page: 258 year: 2019 ident: 6713_CR31 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.12.023 – volume: 52 start-page: 83 year: 2020 ident: 6713_CR44 publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-020-2227-8 – volume: 12 start-page: 564 year: 2022 ident: 6713_CR37 publication-title: Coatings doi: 10.3390/coatings12050564 – volume: 11 start-page: 11176 year: 2011 ident: 6713_CR39 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2011.4051 – volume: 5 start-page: 2415 year: 2015 ident: 6713_CR48 publication-title: Opt. Mater. Express doi: 10.1364/OME.5.002415 – year: 2022 ident: 6713_CR30 publication-title: Appl. Phys. A doi: 10.1007/s00339-022-05777-6 – volume: 33 start-page: 2005900 year: 2021 ident: 6713_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.202005900 – volume: 115 start-page: 294 year: 2016 ident: 6713_CR40 publication-title: Adv. Appl. Ceram. doi: 10.1179/1743676115Y.0000000061 – volume: 2 start-page: 16098 year: 2017 ident: 6713_CR4 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 6 start-page: 1090 year: 2011 ident: 6713_CR47 publication-title: Opt. Mater. Express doi: 10.1364/OME.1.001090 – volume: 126 start-page: 818 year: 2011 ident: 6713_CR38 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2010.12.036 – volume: 111 start-page: 7546 year: 2014 ident: 6713_CR21 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1319446111 |
SSID | ssj0000422 |
Score | 2.4138548 |
Snippet | Metal carbonitride is a new type of tunable plasmonic materials and can be tuned by nitrogen and carbon content. In this work, zirconium carbonitride (ZrC
x
N... Metal carbonitride is a new type of tunable plasmonic materials and can be tuned by nitrogen and carbon content. In this work, zirconium carbonitride (ZrCxNy)... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Carbon content Carbon nitride Carrier density Characterization and Evaluation of Materials Condensed Matter Physics Crystal defects Deposition Electron states Ion beams Machines Manufacturing Materials science Mathematical analysis Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Plasma frequencies Plasmonics Processes Surfaces and Interfaces Thin Films Zirconium carbide |
Title | Structural, plasmonic and electronic properties of zirconium carbonitride thin films prepared by dual ion beam deposition |
URI | https://link.springer.com/article/10.1007/s00339-023-06713-y https://www.proquest.com/docview/2821374380 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58IOhBtCrWF3vwpgt5bNLm2GqrKHpRQU9hdzPBQJuWth7qr3cmTVoVFTzlkM0e8s1rd2a-ATh1E9ToO6RISRRIZTCVGqNQeir1QoqP0YTcKHx3H14_qZvn4LlsChtX1e5VSrKw1PNmNx47FknyMZIsrOvL6TKsBnR250KuJ6-1sL9qljuIFNlfPwrLVpmf9_jqjhYx5re0aOFtuluwWYaJojXDdRuWMK_BxifywBqsFcWbdrwD04eCBJYJNM7FkMLhPvPdCp0nYjHlRgz52n3E_KlikIr3bEQn4eytL6weGVbsUZagmLxmuUizXn9M67GoThdmKrhhSxCCwqDuiwSrUq9deOx2Hi-uZTlSQVrStYlE8s5ow5TTr7bRtK5NLXPaKesay-zqqVVNo1SqLI-mMspzyAAqR2ET-Q5uD1byQY77IFAlYTPQgfIMTzEjgXS06zV00FDG14lXB7f6sbEt6cZ56kUvnhMlF2DEBEZcgBFP63A2_2Y4I9v4c_VRhVdcKt44phOk6zeYRr8O5xWGi9e_73bwv-WHsO7NxEg67hGsEM54TOHJxJzAaqt92e7y8-rltnNSSOcHu8jg-g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQ5ICigLhSYA5yopcRxssmhhwqotvRxYSv1ZtnORETqpqvdrarwd_ijHXuTXUCAxKHnOFbkb17OzHwD8C4uyVASsSKVRSqUpUoYKjIhVSUzjo_JZr5R-PQsG52rLxfpxQb86HthQrV7n5IMlnrV7ObHjhWCfYxgCxsnou1KKY-pveGL2nz_6BOj-l7Kw8_jjyPRzRIQjoVsIYjdErms8nlHN8xd7CrnydyUi63ztOKVU7lVqlLOz2SySkas-SpSlJP_-cTb3oP7HHvkXnXO5cHa3KtlqqJQbO6TIus6c_78yb96v3VI-1sWNji3wyfwuItK8WApRk9hg5ptePQTV-E2PAi1om7-DNqvgXPW83Xs4ZSj74mn10XTlLgeqoNT_5d_5ula8arC7_WML9719QSdmVlvR2Z1Sbj4VjdY1ZeTOa-nUAyPtkXfH4YsMGjJTLCkvrLsOYzv4tRfwGZz1dAOIKkyy1OTKmn90DSW_8jEcmjSobKJKeUA4v5gtevYzf2QjUu94mUOYGgGQwcwdDuAD6t3pktuj3-u3u3x0p2ezzVfWONk6Fn7B7DXY7h-_PfdXv7f8rfwcDQ-PdEnR2fHr2BLLkVKRPEubDLm9Jojo4V9EyQTQd-xJtwCa6YaEA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAcEBQQCwV8gBO1mjhOdnPgULWsWgoVEq3Um2U7YxGpm652t6rSP9W_yEweuwUBEoee41iR5-nMfN8AvIsLtJhEZEhFnkrtMEiLeSaVDiqj_BhdxkDhr0fZ_on-fJqersF1j4Vput37kmSLaWCWpmqxPS3C9hL4xiPIcknxRpK3jRNZd22Vh1hf0qVt_vFgjyT8Xqnxp-PdfdnNFZCeFG4hkUIU-ixwDdIPRz72wTOxm_ax80wxHrweOa2D9jyfyWkVkRfQkcYR8o8o2vYO3NUMPiYDOlE7K9ev27JFrsn1J3nWoXT-_Mm_RsJVevtbRbYJdOPH8KjLUMVOq1JPYA2rDXh4g7dwA-41faN-_hTq7w3_LHN3bIkpZeITptoVtirEasCOmPIf_xlTt4rzIK7KGZ12eTER3s4c-5RZWaBY_CgrEcqzyZzWY9MYL1wtGCsmSHmEQzsRBfZdZs_g-DZO_TmsV-cVvgCBushGqU21cjxAjWwhsrEa2nSoXWILNYC4P1jjO6ZzHrhxZpYczY0wDAnDNMIw9QA-LN-Ztjwf_1y92cvLdDY_N3R5jZMhM_gPYKuX4erx33d7-X_L38L9b3tj8-Xg6PAVPFCtRsko3oR1Ejm-piRp4d40iinA3LIh_ATK7h5D |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural%2C+plasmonic+and+electronic+properties+of+zirconium+carbonitride+thin+films+prepared+by+dual+ion+beam+deposition&rft.jtitle=Applied+physics.+A%2C+Materials+science+%26+processing&rft.au=Liu%2C+Tingting&rft.au=Ran%2C+Yujing&rft.au=Wang%2C+Tianrun&rft.au=Yu%2C+Xiaoting&rft.date=2023-06-01&rft.issn=0947-8396&rft.eissn=1432-0630&rft.volume=129&rft.issue=6&rft_id=info:doi/10.1007%2Fs00339-023-06713-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00339_023_06713_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-8396&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-8396&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-8396&client=summon |