Structural, plasmonic and electronic properties of zirconium carbonitride thin films prepared by dual ion beam deposition

Metal carbonitride is a new type of tunable plasmonic materials and can be tuned by nitrogen and carbon content. In this work, zirconium carbonitride (ZrC x N y ) thin films are prepared by dual ion beam deposition. The effects of C content and assisting ions on the structure and plasmonic propertie...

Full description

Saved in:
Bibliographic Details
Published inApplied physics. A, Materials science & processing Vol. 129; no. 6
Main Authors Liu, Tingting, Ran, Yujing, Wang, Tianrun, Yu, Xiaoting, Hu, Guangxiao, Jiang, Zhaotan, Wang, Zhi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal carbonitride is a new type of tunable plasmonic materials and can be tuned by nitrogen and carbon content. In this work, zirconium carbonitride (ZrC x N y ) thin films are prepared by dual ion beam deposition. The effects of C content and assisting ions on the structure and plasmonic properties of the films are studied. The results show that all the films are in B1-structure. C content increasing can reduce the shielding plasma frequency ħ ω c and the carrier concentration of the film. Appropriate assisting ion beam energy E a and current density J a can promote the crystallinity of the film. As E a and J a increases, ħ ω c increases initially and then decreases. The effects of the assisting ions can be attributed to the C content and the C-related defects, which is confirmed by the calculation of electronic states. The calculated density of state of the electrons shows that increasing C-substitute defects can decrease the threshold energy of interband transition, and the interstitial C defects lead to the similar effect. The study shows that metal carbonitride is a more tunable plasmonic material in visible and infrared region, and can also be modulated by the assisting ions.
AbstractList Metal carbonitride is a new type of tunable plasmonic materials and can be tuned by nitrogen and carbon content. In this work, zirconium carbonitride (ZrCxNy) thin films are prepared by dual ion beam deposition. The effects of C content and assisting ions on the structure and plasmonic properties of the films are studied. The results show that all the films are in B1-structure. C content increasing can reduce the shielding plasma frequency ħωc and the carrier concentration of the film. Appropriate assisting ion beam energy Ea and current density Ja can promote the crystallinity of the film. As Ea and Ja increases, ħωc increases initially and then decreases. The effects of the assisting ions can be attributed to the C content and the C-related defects, which is confirmed by the calculation of electronic states. The calculated density of state of the electrons shows that increasing C-substitute defects can decrease the threshold energy of interband transition, and the interstitial C defects lead to the similar effect. The study shows that metal carbonitride is a more tunable plasmonic material in visible and infrared region, and can also be modulated by the assisting ions.
Metal carbonitride is a new type of tunable plasmonic materials and can be tuned by nitrogen and carbon content. In this work, zirconium carbonitride (ZrC x N y ) thin films are prepared by dual ion beam deposition. The effects of C content and assisting ions on the structure and plasmonic properties of the films are studied. The results show that all the films are in B1-structure. C content increasing can reduce the shielding plasma frequency ħ ω c and the carrier concentration of the film. Appropriate assisting ion beam energy E a and current density J a can promote the crystallinity of the film. As E a and J a increases, ħ ω c increases initially and then decreases. The effects of the assisting ions can be attributed to the C content and the C-related defects, which is confirmed by the calculation of electronic states. The calculated density of state of the electrons shows that increasing C-substitute defects can decrease the threshold energy of interband transition, and the interstitial C defects lead to the similar effect. The study shows that metal carbonitride is a more tunable plasmonic material in visible and infrared region, and can also be modulated by the assisting ions.
ArticleNumber 453
Author Wang, Tianrun
Jiang, Zhaotan
Wang, Zhi
Liu, Tingting
Hu, Guangxiao
Ran, Yujing
Yu, Xiaoting
Author_xml – sequence: 1
  givenname: Tingting
  surname: Liu
  fullname: Liu, Tingting
  organization: School of Physics, Beijing Institute of Technology
– sequence: 2
  givenname: Yujing
  surname: Ran
  fullname: Ran, Yujing
  email: ranyujing@ustb.edu.cn
  organization: School of Chemistry and Biological Engineering, Basic Experimental Center for Natural Science, University of Science and Technology Beijing
– sequence: 3
  givenname: Tianrun
  surname: Wang
  fullname: Wang, Tianrun
  organization: School of Physics, Beijing Institute of Technology
– sequence: 4
  givenname: Xiaoting
  surname: Yu
  fullname: Yu, Xiaoting
  organization: School of Physics, Beijing Institute of Technology
– sequence: 5
  givenname: Guangxiao
  surname: Hu
  fullname: Hu, Guangxiao
  organization: School of Physics, Beijing Institute of Technology
– sequence: 6
  givenname: Zhaotan
  surname: Jiang
  fullname: Jiang, Zhaotan
  organization: School of Physics, Beijing Institute of Technology
– sequence: 7
  givenname: Zhi
  orcidid: 0000-0002-0680-4849
  surname: Wang
  fullname: Wang, Zhi
  email: wangzhi@bit.edu.cn
  organization: School of Physics, Beijing Institute of Technology
BookMark eNp9kElLBDEQhYMoOC5_wFPAq63ZppM-irjBgAe9h3R1tUZ6M0kf2l9vnBEED-ZSecX7KpV3RPaHcUBCzji75Izpq8iYlFXBhCxYqbkslj2y4kqKLCXbJytWKV0YWZWH5CjGd5aPEmJFlucUZkhzcN0FnToX-3HwQN3QUOwQUtjKKYwThuQx0rGlnz5Abs89BRfqfEvBN0jTmx9o67s-Zj9OLmBD64U2s-uoHwdao-tpg9MYfcr6hBy0rot4-lOPycvd7cvNQ7F5un-8ud4UIHmVCjRriVC2WmgB2gCHFgw3pQJeA1Nr0YIytVKtAiZKXSvBXNMoptCg0pU8Jue7sfkPHzPGZN_HOQz5RSuM4FIraVh2mZ0LwhhjwNaCT-57zRSc7yxn9jtnu8vZ5pztNme7ZFT8QafgexeW_yG5g2I2D68Yfrf6h_oC1zuVcw
CitedBy_id crossref_primary_10_1016_j_ceramint_2025_02_160
Cites_doi 10.1073/pnas.1319446111
10.1016/j.matlet.2016.08.147
10.1016/j.mattod.2014.10.039
10.1016/j.mser.2017.11.001
10.48550/arXiv.1806.10305
10.1016/j.matchemphys.2010.12.036
10.1364/OME.1.001090
10.1016/j.surfcoat.2022.129050
10.1039/D1CP03960A
10.1364/OME.2.000478
10.1016/j.surfcoat.2008.05.038
10.1016/j.surfcoat.2009.11.012
10.1002/advs.201600430
10.1063/1.372006
10.1007/s11082-020-2227-8
10.1002/adma.202005900
10.1179/1743676115Y.0000000061
10.1016/j.surfin.2022.102074
10.1016/j.matlet.2016.02.100
10.1007/978-3-642-03653-8_263
10.1038/natrevmats.2016.98
10.3390/coatings12050564
10.1007/s10853-018-2923-y
10.1088/1361-6463/ab10fe
10.1038/nature01937
10.1007/s00339-014-8495-z
10.3390/nano10050829
10.1016/j.tsf.2006.04.012
10.1166/jnn.2011.4051
10.3390/photonics8020036
10.1002/ppap.201800033
10.1016/j.physrep.2013.05.005
10.1016/j.apsusc.2012.08.093
10.1021/acsami.7b07660
10.1103/PhysRevB.95.115145
10.1016/j.apsusc.2018.04.208
10.1016/j.apsusc.2019.144579
10.1063/1.3493267
10.1021/am5026165
10.1016/j.surfin.2017.03.001
10.1073/pnas.1121517109
10.1016/j.surfcoat.2018.12.023
10.1103/PhysRevMaterials.5.065201
10.1007/s11468-015-9962-x
10.1038/nmat2629
10.1007/s00339-022-05777-6
10.1016/0001-6160%2867%2990091-0
10.1364/OME.5.002415
10.1016/j.apsusc.2020.147981
10.1002/adma.201205076
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00339-023-06713-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1432-0630
ExternalDocumentID 10_1007_s00339_023_06713_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11774029
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -54
-5F
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WIP
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZE2
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-e853ec6f7272c78c1cfc81864c1bc0452fc48b44f4c0267b420add404e8e4793
IEDL.DBID U2A
ISSN 0947-8396
IngestDate Fri Jul 25 11:17:48 EDT 2025
Tue Jul 01 00:39:41 EDT 2025
Thu Apr 24 23:12:06 EDT 2025
Fri Feb 21 02:43:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Thin films
Electronic structure
Zirconium carbonitride
Assisting ions
Plasmonic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e853ec6f7272c78c1cfc81864c1bc0452fc48b44f4c0267b420add404e8e4793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0680-4849
PQID 2821374380
PQPubID 2043608
ParticipantIDs proquest_journals_2821374380
crossref_citationtrail_10_1007_s00339_023_06713_y
crossref_primary_10_1007_s00339_023_06713_y
springer_journals_10_1007_s00339_023_06713_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Materials Science & Processing
PublicationTitle Applied physics. A, Materials science & processing
PublicationTitleAbbrev Appl. Phys. A
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Adachi, Takahashi (CR49) 2000; 87
Catellani, Calzolari (CR50) 2017
Patsalas, Kalfagiannis, Kassavetis, Abadias, Bellas, Lekka, Lidorikis (CR18) 2018; 123
Kenzhegulov, Mamaeva, Panichkin, Alibekov, Kshibekova, Bakhytuly, Wieleb (CR37) 2022; 12
Atwater, Polman (CR3) 2010; 9
von Woedtke, Reuter, Masur, Weltmann (CR1) 2013; 530
Mokkath (CR42) 2021; 23
Jaksic, Obradov, Tanaskovic, Jaksic, Radovic (CR44) 2020; 52
Braic, Vasilantonakis, Mihai, Garcia, Fearn, Zou, Alford, Doiron, Oulton, Maier, Zayats, Petrov (CR33) 2017; 9
Yu Li, Chi, Shan, Zheng, Fang (CR9) 2017; 4
Li, Zhang, Liu, Chen, Gao, Wang, Zhang, Yan, Cheng (CR5) 2022; 31
Chen, Ran, Jiang, Li, Wang (CR28) 2020; 10
Tianrun, Yujing, Tingting, Qian, Chang, Zhaotan, Zhi (CR30) 2022
Kumar, Kumar, Kalaiselvam, Dash, Jayavel (CR6) 2017; 7
Harrison, Lee (CR40) 2016; 115
Qi, Sun, Wang (CR41) 2009; 404
Ran, Lu, Zhao, Guo, Gao, Jiang, Wang (CR46) 2021; 537
Wang, Zhang, Zhu, Yi, Shao (CR22) 2015; 10
Naik, Shalaev, Boltasseva (CR17) 2013; 25
Guo, Wang, Ren, Ran, Gao, Lu, Jiang, Wang (CR34) 2021; 5
Castro, Lima, Carvalho (CR32) 2022; 451
Naik, Kim, Boltasseva (CR47) 2011; 6
Naik, Liu, Kildishev, Shalaev, Boltasseva (CR15) 2012; 109
Rizzo, Signore, Mirenghi, Dimaio (CR26) 2006; 515
Lu, Ran, Zhao, Jia, Gao, Guo, Jiang, Yang, Wang (CR25) 2019; 52
Barnes, Dereux, Ebbesen (CR8) 2003; 424
Jia, Lu, Ran, Zhao, Liu, Li, Jiang, Wang (CR35) 2018; 54
Wang, Capretti, Dal Negro (CR48) 2015; 5
Guler, Shalaev, Boltasseva (CR14) 2015; 18
Kima, Kimb, Leea, Leea, Kim (CR23) 2012; 261
Lu, Ran, Zhao, Guo, Gao, Jiang, Yang, Wang (CR29) 2020; 505
Veprek, Veprek-Heijman (CR7) 2008; 202
Naik, Schroeder, Ni, Kildishev, Sands, Boltasseva (CR16) 2012; 2
Zhang, Tong, Liu, Li, Wang (CR20) 2016; 171
Hume-rothery (CR45) 1967; 15
Ran, Lu, Zhao, Jia, Li, Jiang, Wang (CR31) 2019; 359
Larijani, Kiani, Jafari-Khamse, Fathollahi (CR24) 2014; 117
Chung, Hwang, Ahn, Jeong (CR11) 2018; 14
Braic, Braic, Balaceanu, Zoita, Kiss, Vladescu, Popescu, Ripeanu (CR38) 2011; 126
Valerini, Signore, Rizzo, Tapfer (CR27) 2010; 108
Yue-Jiao Zhang, Zhou, Zhang, Yao, Li (CR10) 2021; 33
Fang, Mak, Dai, Li, Ye, Leung (CR12) 2014; 6
Gonçalves, Melikyan, Minassian, Makaryan, Petrosyan, Sargsian (CR43) 2021; 8
Grigore, Ruset, Li, Dong (CR36) 2010; 204
Bekeschus, Favia, Robert, von Woedtke (CR2) 2018; 16
Bomers, Mezy, Cerutti, Barho, Gonzalez-Posada Flores, Tourni, Taliercio (CR13) 2018; 451
Zhang, Liu, Suo, Tong, Li, Jiang, Wang (CR19) 2016; 185
Naik, Saha, Liu, Saber, Stach, Irudayaraj, Sands, Shalaev, Boltasseva (CR21) 2014; 111
Chu, Ji, Guo, Sheng, Dong, Lin, Hu, Chu (CR39) 2011; 11
Anasori, Lukatskaya, Gogotsi (CR4) 2017; 2
L Chen (6713_CR28) 2020; 10
B Li (6713_CR5) 2022; 31
Jos D Castro (6713_CR32) 2022; 451
WM Kima (6713_CR23) 2012; 261
L Braic (6713_CR33) 2017; 9
Z Qi (6713_CR41) 2009; 404
S Veprek (6713_CR7) 2008; 202
L Jia (6713_CR35) 2018; 54
M Braic (6713_CR38) 2011; 126
Z Jaksic (6713_CR44) 2020; 52
HA Atwater (6713_CR3) 2010; 9
GV Naik (6713_CR21) 2014; 111
S Adachi (6713_CR49) 2000; 87
Q Guo (6713_CR34) 2021; 5
L Zhang (6713_CR20) 2016; 171
E Grigore (6713_CR36) 2010; 204
WL Barnes (6713_CR8) 2003; 424
CL Chu (6713_CR39) 2011; 11
T Chung (6713_CR11) 2018; 14
J Wang (6713_CR22) 2015; 10
M Gonçalves (6713_CR43) 2021; 8
PMR Yue-Jiao Zhang (6713_CR10) 2021; 33
U Guler (6713_CR14) 2015; 18
M Bomers (6713_CR13) 2018; 451
L Zhang (6713_CR19) 2016; 185
D Valerini (6713_CR27) 2010; 108
W Tianrun (6713_CR30) 2022
P Patsalas (6713_CR18) 2018; 123
A Kenzhegulov (6713_CR37) 2022; 12
MM Larijani (6713_CR24) 2014; 117
W Hume-rothery (6713_CR45) 1967; 15
X Fang (6713_CR12) 2014; 6
RW Harrison (6713_CR40) 2016; 115
GV Naik (6713_CR15) 2012; 109
Y Ran (6713_CR31) 2019; 359
ZL Yu Li (6713_CR9) 2017; 4
GV Naik (6713_CR17) 2013; 25
H Lu (6713_CR29) 2020; 505
GV Naik (6713_CR16) 2012; 2
GV Naik (6713_CR47) 2011; 6
A Catellani (6713_CR50) 2017
B Anasori (6713_CR4) 2017; 2
DD Kumar (6713_CR6) 2017; 7
Y Wang (6713_CR48) 2015; 5
T von Woedtke (6713_CR1) 2013; 530
S Bekeschus (6713_CR2) 2018; 16
H Lu (6713_CR25) 2019; 52
JH Mokkath (6713_CR42) 2021; 23
Y Ran (6713_CR46) 2021; 537
A Rizzo (6713_CR26) 2006; 515
References_xml – volume: 111
  start-page: 7546
  year: 2014
  end-page: 7551
  ident: CR21
  article-title: Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1319446111
– volume: 185
  start-page: 295
  year: 2016
  end-page: 298
  ident: CR19
  article-title: Plasmonic properties of titanium nitride thin films prepared by ion beam assisted deposition
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.08.147
– volume: 18
  start-page: 227
  year: 2015
  end-page: 237
  ident: CR14
  article-title: Nanoparticle plasmonics: going practical with transition metal nitrides
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.10.039
– volume: 123
  start-page: 1
  year: 2018
  end-page: 55
  ident: CR18
  article-title: Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics
  publication-title: Mater. Sci. Eng. R. Rep.
  doi: 10.1016/j.mser.2017.11.001
– volume: 14
  start-page: 407
  year: 2018
  end-page: 413
  ident: CR11
  article-title: Au/Ag bimetallic nanocomposites as a highly sensitive plasmonic material
  publication-title: Plasmonics
  doi: 10.48550/arXiv.1806.10305
– volume: 126
  start-page: 818
  year: 2011
  end-page: 825
  ident: CR38
  article-title: Structure and properties of Zr/ZrCN coatings deposited by cathodic arc method
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2010.12.036
– volume: 6
  start-page: 1090
  year: 2011
  end-page: 1099
  ident: CR47
  article-title: Oxides and nitrides as alternative plasmonic materials in the optical range
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.1.001090
– volume: 451
  year: 2022
  ident: CR32
  article-title: Corrosion resistance of Cu-Zr(O)N films in a simulated seawater environment
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2022.129050
– volume: 23
  start-page: 25807
  year: 2021
  ident: CR42
  article-title: Localized surface plasmon resonances and electric field confinement in titanium carbide (Ti3C2) MXene nanoclusters Phys
  publication-title: Chem. Chem. Phys.
  doi: 10.1039/D1CP03960A
– volume: 2
  start-page: 478
  year: 2012
  end-page: 489
  ident: CR16
  article-title: Titanium nitride as a plasmonic material for visible and near-infrared wavelengths
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.2.000478
– volume: 202
  start-page: 5063
  year: 2008
  end-page: 5073
  ident: CR7
  article-title: Industrial applications of superhard nanocomposite coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2008.05.038
– volume: 204
  start-page: 1889
  year: 2010
  end-page: 1892
  ident: CR36
  article-title: Zirconium carbonitride films deposited by combined magnetron sputtering and ion implantation (CMSII)
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2009.11.012
– volume: 4
  start-page: 1600430
  year: 2017
  ident: CR9
  article-title: Plasmonics of 2D nanomaterials: properties and applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600430
– volume: 87
  start-page: 1264
  year: 2000
  end-page: 1269
  ident: CR49
  article-title: Optical properties of TiN films deposited by direct current reactive sputtering
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.372006
– volume: 52
  start-page: 83
  year: 2020
  ident: CR44
  article-title: Electromagnetic simulation of MXene based plasmonic metamaterials with enhanced optical absorption
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-020-2227-8
– volume: 33
  start-page: 2005900
  year: 2021
  ident: CR10
  article-title: Plasmonic core-shell nanomaterials and their applications in spectroscopies
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005900
– volume: 115
  start-page: 294
  year: 2016
  end-page: 307
  ident: CR40
  article-title: Processing and properties of ZrC, ZrN and ZrCN ceramics: a review
  publication-title: Adv. Appl. Ceram.
  doi: 10.1179/1743676115Y.0000000061
– volume: 31
  year: 2022
  ident: CR5
  article-title: An ultraviolet sensor based on surface plasmon resonance in no-core optical fiber deposited by Ag and ZnO film
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2022.102074
– volume: 171
  start-page: 304
  year: 2016
  end-page: 307
  ident: CR20
  article-title: Effects of sputtering and assisting ions on the orientation of titanium nitride films fabricated by ion beam assisted sputtering deposition from metal target
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.02.100
– volume: 404
  start-page: 796
  year: 2009
  end-page: 800
  ident: CR41
  article-title: Microstructure and mechanical properties of TiCN coatings prepared by MTCVD
  publication-title: Adv. Tribol.
  doi: 10.1007/978-3-642-03653-8_263
– volume: 2
  start-page: 16098
  year: 2017
  ident: CR4
  article-title: 2D metal carbides and nitrides(MXenes) for energy storage
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 12
  start-page: 564
  year: 2022
  ident: CR37
  article-title: Comparative study of tribological and corrosion characteristics of TiCN, TiCrCN, and TiZrCN coatings
  publication-title: Coatings
  doi: 10.3390/coatings12050564
– volume: 54
  start-page: 1452
  year: 2018
  end-page: 1461
  ident: CR35
  article-title: Structural and dielectric properties of ion beam deposited titanium oxynitride thin films
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2923-y
– volume: 52
  year: 2019
  ident: CR25
  article-title: Effects of assisting ions on the structural and plasmonic properties of ZrNx thin films
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/ab10fe
– volume: 424
  start-page: 824
  issue: 6950
  year: 2003
  end-page: 830
  ident: CR8
  article-title: Surface plasmon subwavelength optics
  publication-title: Nature
  doi: 10.1038/nature01937
– volume: 117
  start-page: 1179
  year: 2014
  end-page: 1183
  ident: CR24
  article-title: Temperature dependence of the optical properties of ion-beam sputtered ZrN films
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-014-8495-z
– volume: 10
  start-page: 829
  year: 2020
  ident: CR28
  article-title: Structural, compositional, and plasmonic characteristics of Ti-Zr ternary nitride thin films tuned by the nitrogen flow ratio in magnetron sputtering
  publication-title: Nanomaterials (Basel)
  doi: 10.3390/nano10050829
– volume: 515
  start-page: 1486
  year: 2006
  end-page: 1493
  ident: CR26
  article-title: Deposition and properties of ZrNx films produced by radio frequency reactive magnetron sputtering
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.04.012
– volume: 11
  start-page: 11176
  year: 2011
  end-page: 11180
  ident: CR39
  article-title: Surface nanomechanical behavior of ZrN and ZrCN films deposited on NiTi shape memory alloy by magnetron sputtering
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2011.4051
– volume: 8
  start-page: 36
  year: 2021
  ident: CR43
  article-title: Interband, surface plasmon and fano resonances in titanium carbide (MXene) nanoparticles in the visible to infrared range
  publication-title: Photonics
  doi: 10.3390/photonics8020036
– volume: 16
  start-page: 1800033
  year: 2018
  ident: CR2
  article-title: White paper on plasma for medicine and hygiene: future in plasma health sciences
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.201800033
– volume: 530
  start-page: 291
  year: 2013
  end-page: 320
  ident: CR1
  article-title: Plasmas for medicine
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2013.05.005
– volume: 261
  start-page: 749
  year: 2012
  end-page: 752
  ident: CR23
  article-title: Titanium nitride thin film as an adhesion layer for surface plasmon resonance sensor chips
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.08.093
– volume: 9
  start-page: 29857
  year: 2017
  end-page: 29862
  ident: CR33
  article-title: Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.7b07660
– year: 2017
  ident: CR50
  article-title: Plasmonic properties of refractory titanium nitride
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.115145
– volume: 451
  start-page: 241
  year: 2018
  end-page: 249
  ident: CR13
  article-title: Phosphonate monolayers on InAsSb and GaSb surfaces for mid-IR plasmonics
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.04.208
– volume: 505
  year: 2020
  ident: CR29
  article-title: Modulation of the plasmonic characteristics of Ti-Zr ternary nitride thin films by assisting ions
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144579
– volume: 108
  year: 2010
  ident: CR27
  article-title: Optical function evolution of ion-assisted ZrN films deposited by sputtering
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3493267
– volume: 6
  start-page: 15743
  year: 2014
  end-page: 15752
  ident: CR12
  article-title: ITO/Au/ITO sandwich structure for near-infrared plasmonics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5026165
– volume: 7
  start-page: 74
  year: 2017
  end-page: 82
  ident: CR6
  article-title: Wear resistant super-hard multilayer transition metal-nitride coatings
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2017.03.001
– volume: 109
  start-page: 8834
  year: 2012
  end-page: 8838
  ident: CR15
  article-title: Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1121517109
– volume: 359
  start-page: 258
  year: 2019
  end-page: 264
  ident: CR31
  article-title: Effects of substrate bias and temperature on the structure and dielectric properties of TiZrN ternary nitride thin films
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.12.023
– volume: 5
  year: 2021
  ident: CR34
  article-title: Plasmonic properties of nonstoichiometric zirconium nitride, oxynitride thin films, and their bilayer structures
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.5.065201
– volume: 10
  start-page: 1473
  year: 2015
  end-page: 1478
  ident: CR22
  article-title: Broadband perfect absorber with titanium nitride nano-disk array
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-9962-x
– volume: 9
  start-page: 205
  year: 2010
  end-page: 213
  ident: CR3
  article-title: Plasmonics for improved photovoltaic devices
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2629
– year: 2022
  ident: CR30
  article-title: Plasmonic and electronic characteristics of (Zr, Nb)Nx thin films with different metal content
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-022-05777-6
– volume: 15
  start-page: 567
  year: 1967
  end-page: 569
  ident: CR45
  article-title: Comments on papers resulting from Hume-Rothery’s Note-1965
  publication-title: Acta Metallur.
  doi: 10.1016/0001-6160%2867%2990091-0
– volume: 5
  start-page: 2415
  year: 2015
  end-page: 2430
  ident: CR48
  article-title: Wide tuning of the optical and structural properties of alternative plasmonic materials
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.5.002415
– volume: 537
  year: 2021
  ident: CR46
  article-title: Stoichiometry-modulated dual epsilon-near-zero characteristics of niobium nitride films
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147981
– volume: 25
  start-page: 3264
  year: 2013
  end-page: 3294
  ident: CR17
  article-title: Alternative plasmonic materials: beyond gold and silver
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201205076
– volume: 424
  start-page: 824
  issue: 6950
  year: 2003
  ident: 6713_CR8
  publication-title: Nature
  doi: 10.1038/nature01937
– volume: 204
  start-page: 1889
  year: 2010
  ident: 6713_CR36
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2009.11.012
– volume: 171
  start-page: 304
  year: 2016
  ident: 6713_CR20
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.02.100
– volume: 5
  year: 2021
  ident: 6713_CR34
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.5.065201
– volume: 202
  start-page: 5063
  year: 2008
  ident: 6713_CR7
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2008.05.038
– volume: 404
  start-page: 796
  year: 2009
  ident: 6713_CR41
  publication-title: Adv. Tribol.
  doi: 10.1007/978-3-642-03653-8_263
– volume: 25
  start-page: 3264
  year: 2013
  ident: 6713_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201205076
– volume: 451
  start-page: 241
  year: 2018
  ident: 6713_CR13
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.04.208
– volume: 505
  year: 2020
  ident: 6713_CR29
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144579
– volume: 10
  start-page: 1473
  year: 2015
  ident: 6713_CR22
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-9962-x
– volume: 8
  start-page: 36
  year: 2021
  ident: 6713_CR43
  publication-title: Photonics
  doi: 10.3390/photonics8020036
– volume: 9
  start-page: 205
  year: 2010
  ident: 6713_CR3
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2629
– volume: 530
  start-page: 291
  year: 2013
  ident: 6713_CR1
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2013.05.005
– volume: 23
  start-page: 25807
  year: 2021
  ident: 6713_CR42
  publication-title: Chem. Chem. Phys.
  doi: 10.1039/D1CP03960A
– volume: 6
  start-page: 15743
  year: 2014
  ident: 6713_CR12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5026165
– volume: 10
  start-page: 829
  year: 2020
  ident: 6713_CR28
  publication-title: Nanomaterials (Basel)
  doi: 10.3390/nano10050829
– volume: 14
  start-page: 407
  year: 2018
  ident: 6713_CR11
  publication-title: Plasmonics
  doi: 10.48550/arXiv.1806.10305
– volume: 261
  start-page: 749
  year: 2012
  ident: 6713_CR23
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.08.093
– volume: 4
  start-page: 1600430
  year: 2017
  ident: 6713_CR9
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600430
– volume: 185
  start-page: 295
  year: 2016
  ident: 6713_CR19
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.08.147
– volume: 31
  year: 2022
  ident: 6713_CR5
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2022.102074
– volume: 123
  start-page: 1
  year: 2018
  ident: 6713_CR18
  publication-title: Mater. Sci. Eng. R. Rep.
  doi: 10.1016/j.mser.2017.11.001
– volume: 451
  year: 2022
  ident: 6713_CR32
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2022.129050
– volume: 9
  start-page: 29857
  year: 2017
  ident: 6713_CR33
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.7b07660
– volume: 2
  start-page: 478
  year: 2012
  ident: 6713_CR16
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.2.000478
– volume: 54
  start-page: 1452
  year: 2018
  ident: 6713_CR35
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2923-y
– volume: 7
  start-page: 74
  year: 2017
  ident: 6713_CR6
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2017.03.001
– volume: 515
  start-page: 1486
  year: 2006
  ident: 6713_CR26
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.04.012
– volume: 15
  start-page: 567
  year: 1967
  ident: 6713_CR45
  publication-title: Acta Metallur.
  doi: 10.1016/0001-6160%2867%2990091-0
– volume: 16
  start-page: 1800033
  year: 2018
  ident: 6713_CR2
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.201800033
– volume: 87
  start-page: 1264
  year: 2000
  ident: 6713_CR49
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.372006
– volume: 52
  year: 2019
  ident: 6713_CR25
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/ab10fe
– volume: 108
  year: 2010
  ident: 6713_CR27
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3493267
– year: 2017
  ident: 6713_CR50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.115145
– volume: 537
  year: 2021
  ident: 6713_CR46
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147981
– volume: 117
  start-page: 1179
  year: 2014
  ident: 6713_CR24
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-014-8495-z
– volume: 109
  start-page: 8834
  year: 2012
  ident: 6713_CR15
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1121517109
– volume: 18
  start-page: 227
  year: 2015
  ident: 6713_CR14
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.10.039
– volume: 359
  start-page: 258
  year: 2019
  ident: 6713_CR31
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.12.023
– volume: 52
  start-page: 83
  year: 2020
  ident: 6713_CR44
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-020-2227-8
– volume: 12
  start-page: 564
  year: 2022
  ident: 6713_CR37
  publication-title: Coatings
  doi: 10.3390/coatings12050564
– volume: 11
  start-page: 11176
  year: 2011
  ident: 6713_CR39
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2011.4051
– volume: 5
  start-page: 2415
  year: 2015
  ident: 6713_CR48
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.5.002415
– year: 2022
  ident: 6713_CR30
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-022-05777-6
– volume: 33
  start-page: 2005900
  year: 2021
  ident: 6713_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005900
– volume: 115
  start-page: 294
  year: 2016
  ident: 6713_CR40
  publication-title: Adv. Appl. Ceram.
  doi: 10.1179/1743676115Y.0000000061
– volume: 2
  start-page: 16098
  year: 2017
  ident: 6713_CR4
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 6
  start-page: 1090
  year: 2011
  ident: 6713_CR47
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.1.001090
– volume: 126
  start-page: 818
  year: 2011
  ident: 6713_CR38
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2010.12.036
– volume: 111
  start-page: 7546
  year: 2014
  ident: 6713_CR21
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1319446111
SSID ssj0000422
Score 2.4138548
Snippet Metal carbonitride is a new type of tunable plasmonic materials and can be tuned by nitrogen and carbon content. In this work, zirconium carbonitride (ZrC x N...
Metal carbonitride is a new type of tunable plasmonic materials and can be tuned by nitrogen and carbon content. In this work, zirconium carbonitride (ZrCxNy)...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Carbon content
Carbon nitride
Carrier density
Characterization and Evaluation of Materials
Condensed Matter Physics
Crystal defects
Deposition
Electron states
Ion beams
Machines
Manufacturing
Materials science
Mathematical analysis
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Plasma frequencies
Plasmonics
Processes
Surfaces and Interfaces
Thin Films
Zirconium carbide
Title Structural, plasmonic and electronic properties of zirconium carbonitride thin films prepared by dual ion beam deposition
URI https://link.springer.com/article/10.1007/s00339-023-06713-y
https://www.proquest.com/docview/2821374380
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58IOhBtCrWF3vwpgt5bNLm2GqrKHpRQU9hdzPBQJuWth7qr3cmTVoVFTzlkM0e8s1rd2a-ATh1E9ToO6RISRRIZTCVGqNQeir1QoqP0YTcKHx3H14_qZvn4LlsChtX1e5VSrKw1PNmNx47FknyMZIsrOvL6TKsBnR250KuJ6-1sL9qljuIFNlfPwrLVpmf9_jqjhYx5re0aOFtuluwWYaJojXDdRuWMK_BxifywBqsFcWbdrwD04eCBJYJNM7FkMLhPvPdCp0nYjHlRgz52n3E_KlikIr3bEQn4eytL6weGVbsUZagmLxmuUizXn9M67GoThdmKrhhSxCCwqDuiwSrUq9deOx2Hi-uZTlSQVrStYlE8s5ow5TTr7bRtK5NLXPaKesay-zqqVVNo1SqLI-mMspzyAAqR2ET-Q5uD1byQY77IFAlYTPQgfIMTzEjgXS06zV00FDG14lXB7f6sbEt6cZ56kUvnhMlF2DEBEZcgBFP63A2_2Y4I9v4c_VRhVdcKt44phOk6zeYRr8O5xWGi9e_73bwv-WHsO7NxEg67hGsEM54TOHJxJzAaqt92e7y8-rltnNSSOcHu8jg-g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQ5ICigLhSYA5yopcRxssmhhwqotvRxYSv1ZtnORETqpqvdrarwd_ijHXuTXUCAxKHnOFbkb17OzHwD8C4uyVASsSKVRSqUpUoYKjIhVSUzjo_JZr5R-PQsG52rLxfpxQb86HthQrV7n5IMlnrV7ObHjhWCfYxgCxsnou1KKY-pveGL2nz_6BOj-l7Kw8_jjyPRzRIQjoVsIYjdErms8nlHN8xd7CrnydyUi63ztOKVU7lVqlLOz2SySkas-SpSlJP_-cTb3oP7HHvkXnXO5cHa3KtlqqJQbO6TIus6c_78yb96v3VI-1sWNji3wyfwuItK8WApRk9hg5ptePQTV-E2PAi1om7-DNqvgXPW83Xs4ZSj74mn10XTlLgeqoNT_5d_5ula8arC7_WML9719QSdmVlvR2Z1Sbj4VjdY1ZeTOa-nUAyPtkXfH4YsMGjJTLCkvrLsOYzv4tRfwGZz1dAOIKkyy1OTKmn90DSW_8jEcmjSobKJKeUA4v5gtevYzf2QjUu94mUOYGgGQwcwdDuAD6t3pktuj3-u3u3x0p2ezzVfWONk6Fn7B7DXY7h-_PfdXv7f8rfwcDQ-PdEnR2fHr2BLLkVKRPEubDLm9Jojo4V9EyQTQd-xJtwCa6YaEA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAcEBQQCwV8gBO1mjhOdnPgULWsWgoVEq3Um2U7YxGpm652t6rSP9W_yEweuwUBEoee41iR5-nMfN8AvIsLtJhEZEhFnkrtMEiLeSaVDiqj_BhdxkDhr0fZ_on-fJqersF1j4Vput37kmSLaWCWpmqxPS3C9hL4xiPIcknxRpK3jRNZd22Vh1hf0qVt_vFgjyT8Xqnxp-PdfdnNFZCeFG4hkUIU-ixwDdIPRz72wTOxm_ax80wxHrweOa2D9jyfyWkVkRfQkcYR8o8o2vYO3NUMPiYDOlE7K9ev27JFrsn1J3nWoXT-_Mm_RsJVevtbRbYJdOPH8KjLUMVOq1JPYA2rDXh4g7dwA-41faN-_hTq7w3_LHN3bIkpZeITptoVtirEasCOmPIf_xlTt4rzIK7KGZ12eTER3s4c-5RZWaBY_CgrEcqzyZzWY9MYL1wtGCsmSHmEQzsRBfZdZs_g-DZO_TmsV-cVvgCBushGqU21cjxAjWwhsrEa2nSoXWILNYC4P1jjO6ZzHrhxZpYczY0wDAnDNMIw9QA-LN-Ztjwf_1y92cvLdDY_N3R5jZMhM_gPYKuX4erx33d7-X_L38L9b3tj8-Xg6PAVPFCtRsko3oR1Ejm-piRp4d40iinA3LIh_ATK7h5D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural%2C+plasmonic+and+electronic+properties+of+zirconium+carbonitride+thin+films+prepared+by+dual+ion+beam+deposition&rft.jtitle=Applied+physics.+A%2C+Materials+science+%26+processing&rft.au=Liu%2C+Tingting&rft.au=Ran%2C+Yujing&rft.au=Wang%2C+Tianrun&rft.au=Yu%2C+Xiaoting&rft.date=2023-06-01&rft.issn=0947-8396&rft.eissn=1432-0630&rft.volume=129&rft.issue=6&rft_id=info:doi/10.1007%2Fs00339-023-06713-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00339_023_06713_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-8396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-8396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-8396&client=summon