LMNNB: Two-in-One imbalanced classification approach by combining metric learning and ensemble learning

In the real-world applications of machine learning and cybernetics, the data with imbalanced distribution of classes or skewed class proportions is very pervasive. When dealing with imbalanced data, traditional classification approaches might fail to learn a good classifier. In the phase of learning...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 52; no. 7; pp. 7870 - 7889
Main Authors Qiao, Shaojie, Han, Nan, Huang, Faliang, Yue, Kun, Wu, Tao, Yi, Yugen, Mao, Rui, Yuan, Chang-an
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the real-world applications of machine learning and cybernetics, the data with imbalanced distribution of classes or skewed class proportions is very pervasive. When dealing with imbalanced data, traditional classification approaches might fail to learn a good classifier. In the phase of learning, these algorithms are greatly impacted by the skewed distribution of data. Consequently, the performance of classification drops drastically. In this study, we propose a novel two-in-one algorithm for classifying the imbalanced data by integrating metric learning and ensemble learning algorithms. Firstly, we design a new metric learning algorithm for imbalanced data, which is called Large Margin Nearest Neighbors Balance (called LMNNB). This method can minimize the distance between one sample and its similar neighbors which belong to the same class, and maximize the distance from its dissimilar neighbors which belong to different classes as well. Essentially, this beneficial effect can also be achieved even if the distribution of data is imbalanced. Through metric learning, the imbalance data can be used to learn a better classifier. Secondly, we propose an ensemble learning algorithm to further improve the performance of classification. This method combines multiple sub-classifiers and makes decisions by applying a soft voting strategy. Extensive experiments are conducted on real benchmark imbalanced datasets to demonstrate the effectiveness of LMNNB with ensemble algorithm (called LMNNB-E) in several evaluation measurements. The results show that LMNNB and LMNNB-E outperform the state-of-the-art methods in classifying imbalance data.
AbstractList In the real-world applications of machine learning and cybernetics, the data with imbalanced distribution of classes or skewed class proportions is very pervasive. When dealing with imbalanced data, traditional classification approaches might fail to learn a good classifier. In the phase of learning, these algorithms are greatly impacted by the skewed distribution of data. Consequently, the performance of classification drops drastically. In this study, we propose a novel two-in-one algorithm for classifying the imbalanced data by integrating metric learning and ensemble learning algorithms. Firstly, we design a new metric learning algorithm for imbalanced data, which is called Large Margin Nearest Neighbors Balance (called LMNNB). This method can minimize the distance between one sample and its similar neighbors which belong to the same class, and maximize the distance from its dissimilar neighbors which belong to different classes as well. Essentially, this beneficial effect can also be achieved even if the distribution of data is imbalanced. Through metric learning, the imbalance data can be used to learn a better classifier. Secondly, we propose an ensemble learning algorithm to further improve the performance of classification. This method combines multiple sub-classifiers and makes decisions by applying a soft voting strategy. Extensive experiments are conducted on real benchmark imbalanced datasets to demonstrate the effectiveness of LMNNB with ensemble algorithm (called LMNNB-E) in several evaluation measurements. The results show that LMNNB and LMNNB-E outperform the state-of-the-art methods in classifying imbalance data.
Author Yi, Yugen
Yue, Kun
Wu, Tao
Han, Nan
Huang, Faliang
Qiao, Shaojie
Mao, Rui
Yuan, Chang-an
Author_xml – sequence: 1
  givenname: Shaojie
  orcidid: 0000-0002-4703-780X
  surname: Qiao
  fullname: Qiao, Shaojie
  organization: School of Software Engineering, Chengdu University of Information Technology
– sequence: 2
  givenname: Nan
  surname: Han
  fullname: Han, Nan
  email: hannan@cuit.edu.cn
  organization: School of Management, Chengdu University of Information Technology
– sequence: 3
  givenname: Faliang
  surname: Huang
  fullname: Huang, Faliang
  organization: School of Computer and Information Engineering, Nanning Normal University
– sequence: 4
  givenname: Kun
  surname: Yue
  fullname: Yue, Kun
  organization: School of Information Science and Engineering, Yunnan University
– sequence: 5
  givenname: Tao
  surname: Wu
  fullname: Wu, Tao
  organization: School of Cybersecurity and Information Law, Chongqing University of Posts and Telecommunications
– sequence: 6
  givenname: Yugen
  surname: Yi
  fullname: Yi, Yugen
  organization: School of Software, Jiangxi Normal University
– sequence: 7
  givenname: Rui
  surname: Mao
  fullname: Mao, Rui
  organization: Guangdong Province Key Laboratory of Popular High Performance Computers, Guangdong Province Engineering Center of China-made High Performance Data Computing System
– sequence: 8
  givenname: Chang-an
  surname: Yuan
  fullname: Yuan, Chang-an
  organization: Guangxi College of Education
BookMark eNp9kE1PwzAMhiMEEtvgD3CKxDmQNG3acIOJL2lslyFxi1InHZnadCSd0P49ZUUgcdjBsmz5sf2-Y3TsW28RumD0ilGaX0dG00ISmrA-JGVEHKERy3JO8lTmx2hEZZISIeTbKRrHuKaUck7ZCK1mL_P53Q1efrbEebLwFrum1LX2YA2GWsfoKge6c63HerMJrYZ3XO4wtE3pvPMr3NguOMC11WFfa2-w9dE2ZW1_u2fopNJ1tOc_eYJeH-6X0ycyWzw-T29nBDiTHbG5AQNlYqihlakyYwqRsVQD5JnIMjACJJiCGWlKWRlWpDblhgkOCYiyTPgEXQ57-08_tjZ2at1ug-9PqkRkskgy0SufoGKYgtDGGGylwHV7jV3QrlaMqm9b1WCr6m1Ve1uV6NHkH7oJrtFhdxjiAxT7Yb-y4e-rA9QXKyyORw
CitedBy_id crossref_primary_10_1016_j_isatra_2022_08_009
crossref_primary_10_1109_ACCESS_2023_3328535
crossref_primary_10_1007_s13042_024_02241_0
crossref_primary_10_1007_s10489_022_03494_4
crossref_primary_10_1007_s13369_023_08258_x
crossref_primary_10_1007_s10489_023_04642_0
Cites_doi 10.1002/widm.8
10.1016/j.ins.2017.12.030
10.1016/j.patcog.2011.01.015
10.1016/j.engappai.2020.103591
10.1007/s13042-019-00953-2
10.1080/03772063.2018.1462109
10.1016/j.ins.2017.10.017
10.1016/j.inffus.2019.07.006
10.1109/TSMCC.2011.2161285
10.1080/00220670209598786
10.1016/j.engappai.2018.07.010
10.1016/j.engappai.2019.103319
10.1016/j.engappai.2017.07.001
10.1007/s13042-020-01090-x
10.1007/s12083-017-0630-0
10.1109/TCYB.2016.2591583
10.1109/ACCESS.2020.2980157
10.1109/TGRS.2017.2783902
10.1007/s13042-019-01033-1
10.1109/TNNLS.2019.2920246
10.1109/TCSVT.2017.2703920
10.1109/TCYB.2016.2579658
10.1016/j.engappai.2016.02.011
10.1007/s10489-018-1300-5
10.1109/TSMC.1985.6313426
10.1613/jair.953
10.1023/A:1018628609742
10.1016/j.artmed.2019.101760
10.1016/j.cor.2018.03.005
10.1109/TSMCA.2009.2029559
10.1007/s13042-019-00960-3
10.1007/s13042-020-01136-0
10.1049/joe.2019.1178
10.1016/j.knosys.2019.03.001
10.1007/s13042-020-01129-z
10.1016/j.ins.2016.09.038
10.1109/TSMCB.2008.2007853
10.1016/j.knosys.2015.04.022
10.1109/CVPR.2016.434
10.1007/11538059_91
10.1007/978-3-540-39804-2_12
10.1109/CIDM.2009.4938667
10.1145/1143844.1143958
10.1109/ICIP.2018.8451297
10.1007/3-540-32390-2_38
10.1109/ICS.2016.0143
10.1145/1273496.1273523
10.1109/CVPR.2015.7298832
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-021-02901-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 7889
ExternalDocumentID 10_1007_s10489_021_02901_6
GrantInformation_xml – fundername: Guangxi Bagui Teams for Innovation and Research
  grantid: 201979
– fundername: Natural Science Foundation of Guangxi Province
  grantid: 2018GXNSFDA138005
  funderid: https://doi.org/10.13039/501100004607
– fundername: Chengdu Major Science and Technology Innovation Project
  grantid: 2021-YF08-00156-GX
– fundername: CCF-Huawei Database System Innovation Research Plan
  grantid: CCF-HuaweiDBIR2020004A
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2020B15151200
– fundername: digital media art, key laboratory of sichuan province, sichuan conservatory of music, chengdu, china
  grantid: 21DMAKL02
– fundername: National Natural Science Foundation of China
  grantid: 61772091; 61802035; 61962006; 61962038; U1802271; U2001212; 62072311
  funderid: https://doi.org/10.13039/501100001809
– fundername: Sichuan Science and Technology Program
  grantid: 2021JDJQ0021; 22ZDYF2680; 2020YFG0153; 2020YJ0481; 2020YFS0466; 2020YJ0430
– fundername: Chengdu Technology Innovation and Research and Development Project
  grantid: 2021-YF05-00491-SN
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-e7dcdcb2d0d0fdf5dd86514acc75655cd6c9cd81d9db9fd184e43d163c2c6bb23
IEDL.DBID U2A
ISSN 0924-669X
IngestDate Fri Jul 25 18:55:23 EDT 2025
Tue Jul 01 03:31:47 EDT 2025
Thu Apr 24 23:04:12 EDT 2025
Fri Feb 21 02:45:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Imbalanced data
Large margin nearest neighbors
Ensemble learning
Metric learning
Machine learning
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e7dcdcb2d0d0fdf5dd86514acc75655cd6c9cd81d9db9fd184e43d163c2c6bb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4703-780X
PQID 2659825603
PQPubID 326365
PageCount 20
ParticipantIDs proquest_journals_2659825603
crossref_citationtrail_10_1007_s10489_021_02901_6
crossref_primary_10_1007_s10489_021_02901_6
springer_journals_10_1007_s10489_021_02901_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Han, Qiao, Yuan, Huang, Liu, Yue (CR7) 2019; 101
Soda (CR38) 2011; 44
Liu, Wu, Zhou (CR55) 2009; 39
CR37
CR36
CR35
CR34
Hsiao, Su, Fu (CR3) 2020; 11
Chawla, Bowyer, Hall, Kegelmeyer (CR32) 2002; 16
Huang, Chiang, Chang (CR11) 2018; 75
CR31
Lim, Keong Goh, Chen Tan (CR19) 2017; 47
Sun, Lang, Fujita, Li (CR42) 2018; 425
Joanne Peng, Lee, Ingersoll (CR51) 2002; 96
Ri, Tian, Liu, Wei-Hua, Lou (CR2) 2020; 11
Díez-Pastor, Diez, García-Osorio, Kuncheva (CR33) 2015; 85
Sultana, Chilamkurti, Peng, Alhadad (CR8) 2019; 12
CR46
Zhai, Zhou, Zhang, Wang (CR12) 2019; 10
Liu, Wang, Yin, Liu (CR39) 2020; 11
Fiore, De Santis, Perla, Zanetti, Palmieri (CR9) 2019; 479
Patel, Thakur (CR57) 2019; 65
Jun, Yang, Gao, Tao (CR29) 2017; 47
Wang, Wan, Yuan (CR45) 2018; 28
Kumar, Halder (CR30) 2020; 91
Cheng, Yang, Yao, Guo, Han (CR26) 2018; 56
Suykens, Vandewalle (CR47) 1999; 9
Bach, Werner, Zywiec, Pluskiewicz (CR10) 2017; 384
Benítez-Peña, Blanquero, Carrizosa, Ramírez-Cobo (CR15) 2019; 106
CR14
Weinberger, Saul (CR21) 2009; 10
Xu, Cui, Lan, Kang, Deng, Jia (CR6) 2019; 10
CR54
CR52
CR50
Roshan, Asadi (CR13) 2020; 87
Xu, Yang, Zhou, Zheng, Liu, He (CR1) 2020; 11
Seiffert, Khoshgoftaar, Van Hulse, Napolitano (CR56) 2010; 40
Yang, Yu, Wen, Cao, Chen, Wong, You (CR18) 2020; 31
Loh (CR49) 2011; 1
Galar, Fernández, Tartas, Sola, Herrera (CR4) 2012; 42
CR28
Bae, Oh, Pedrycz, Fu (CR53) 2019; 49
CR27
CR25
CR24
Siddappa, Kampalappa (CR41) 2020; 1
CR23
CR22
CR20
Sun, Li, Fujita, Fu, Ai (CR44) 2020; 54
Keller, Gray, Givens (CR48) 1985; 15
Furundzic, Stankovic, Jovicic, Punisic, Subotic (CR16) 2017; 64
Liu, Qiao, Han, Wu, Mao, Zhang, Yuan, Xiao (CR5) 2020; 8
Zhang, Han, Qiao, Zhang, Huang, Peng, Zhou, Yuan, Xiao (CR40) 2020; 2020
Zhang, Bi, Xu, Ramentol, Fan, Qiao, Fujita (CR43) 2019; 174
Fan, Wang, Gao (CR17) 2016; 53
2901_CR52
2901_CR50
2901_CR54
2901_CR14
Y Jun (2901_CR29) 2017; 47
W-Y Loh (2901_CR49) 2011; 1
S Xu (2901_CR1) 2020; 11
M Galar (2901_CR4) 2012; 42
H Xu (2901_CR6) 2019; 10
C Seiffert (2901_CR56) 2010; 40
J-S Bae (2901_CR53) 2019; 49
U Fiore (2901_CR9) 2019; 479
2901_CR46
D Liu (2901_CR5) 2020; 8
G Cheng (2901_CR26) 2018; 56
C Zhang (2901_CR43) 2019; 174
JM Keller (2901_CR48) 1985; 15
Q Wang (2901_CR45) 2018; 28
D Furundzic (2901_CR16) 2017; 64
Q Fan (2901_CR17) 2016; 53
P Lim (2901_CR19) 2017; 47
2901_CR34
JH Ri (2901_CR2) 2020; 11
2901_CR31
NV Chawla (2901_CR32) 2002; 16
2901_CR37
2901_CR36
2901_CR35
SE Roshan (2901_CR13) 2020; 87
J Zhai (2901_CR12) 2019; 10
M Bach (2901_CR10) 2017; 384
N Han (2901_CR7) 2019; 101
X Zhang (2901_CR40) 2020; 2020
A Kumar (2901_CR30) 2020; 91
X-Y Liu (2901_CR55) 2009; 39
Y-H Hsiao (2901_CR3) 2020; 11
K Yang (2901_CR18) 2020; 31
2901_CR23
KQ Weinberger (2901_CR21) 2009; 10
2901_CR22
2901_CR20
2901_CR27
N Sultana (2901_CR8) 2019; 12
S Benítez-Peña (2901_CR15) 2019; 106
2901_CR25
2901_CR24
P Liu (2901_CR39) 2020; 11
J-F Díez-Pastor (2901_CR33) 2015; 85
J Sun (2901_CR44) 2020; 54
J-W Huang (2901_CR11) 2018; 75
2901_CR28
JAK Suykens (2901_CR47) 1999; 9
NG Siddappa (2901_CR41) 2020; 1
P Soda (2901_CR38) 2011; 44
J Sun (2901_CR42) 2018; 425
Chao-Ying Joanne Peng (2901_CR51) 2002; 96
H Patel (2901_CR57) 2019; 65
References_xml – volume: 1
  start-page: 14
  issue: 1
  year: 2011
  end-page: 23
  ident: CR49
  article-title: Classification and regression trees. Wiley Interdiscip
  publication-title: Rev Data Min Knowl Discov
  doi: 10.1002/widm.8
– ident: CR22
– volume: 479
  start-page: 448
  year: 2019
  end-page: 455
  ident: CR9
  article-title: Using generative adversarial networks for improving classification effectiveness in credit card fraud detection
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.12.030
– volume: 44
  start-page: 1801
  issue: 8
  year: 2011
  end-page: 1810
  ident: CR38
  article-title: A multi-objective optimisation approach for class imbalance learning
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.01.015
– volume: 91
  start-page: 103591
  year: 2020
  ident: CR30
  article-title: Ensemble-based active learning using fuzzy-rough approach for cancer sample classification
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103591
– volume: 10
  start-page: 3687
  issue: 12
  year: 2019
  end-page: 3699
  ident: CR6
  article-title: A gaussian mixture model based combined resampling algorithm for classification of imbalanced credit data sets
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-019-00953-2
– volume: 65
  start-page: 780
  issue: 6
  year: 2019
  end-page: 789
  ident: CR57
  article-title: An improved fuzzy k-nearest neighbor algorithm for imbalanced data using adaptive approach
  publication-title: IETE J Res
  doi: 10.1080/03772063.2018.1462109
– volume: 425
  start-page: 76
  year: 2018
  end-page: 91
  ident: CR42
  article-title: Imbalanced enterprise credit evaluation with DTE-SBD: decision tree ensemble based on SMOTE and bagging with differentiated sampling rates
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.10.017
– volume: 54
  start-page: 128
  year: 2020
  end-page: 144
  ident: CR44
  article-title: Class-imbalanced dynamic financial distress prediction based on adaboost-svm ensemble combined with SMOTE and time weighting
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.07.006
– ident: CR35
– ident: CR54
– ident: CR25
– volume: 42
  start-page: 463
  issue: 4
  year: 2012
  end-page: 484
  ident: CR4
  article-title: A review on ensembles for the class imbalance problem Bagging-boosting-, and hybrid-based approaches
  publication-title: IEEE Trans Syst Man Cybern Part C
  doi: 10.1109/TSMCC.2011.2161285
– ident: CR46
– volume: 96
  start-page: 3
  issue: 1
  year: 2002
  end-page: 14
  ident: CR51
  article-title: An introduction to logistic regression analysis and reporting
  publication-title: J Educ Res
  doi: 10.1080/00220670209598786
– volume: 75
  start-page: 11
  year: 2018
  end-page: 21
  ident: CR11
  article-title: Email security level classification of imbalanced data using artificial neural network: The real case in a world-leading enterprise
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.07.010
– ident: CR50
– volume: 87
  start-page: 103319
  year: 2020
  ident: CR13
  article-title: Improvement of bagging performance for classification of imbalanced datasets using evolutionary multi-objective optimization
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.103319
– ident: CR36
– volume: 64
  start-page: 440
  year: 2017
  end-page: 461
  ident: CR16
  article-title: Distance based resampling of imbalanced classes: With an application example of speech quality assessment
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.07.001
– volume: 11
  start-page: 2007
  issue: 9
  year: 2020
  end-page: 2020
  ident: CR2
  article-title: Extreme learning machine with hybrid cost function of g-mean and probability for imbalance learning
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01090-x
– volume: 12
  start-page: 493
  issue: 2
  year: 2019
  end-page: 501
  ident: CR8
  article-title: Survey on SDN based network intrusion detection system using machine learning approaches
  publication-title: Peer-to-Peer Netw Appl
  doi: 10.1007/s12083-017-0630-0
– volume: 47
  start-page: 4014
  issue: 12
  year: 2017
  end-page: 4024
  ident: CR29
  article-title: Deep multimodal distance metric learning using click constraints for image ranking
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2016.2591583
– volume: 10
  start-page: 207
  year: 2009
  end-page: 244
  ident: CR21
  article-title: Distance metric learning for large margin nearest neighbor classification
  publication-title: J Mach Learn Res
– volume: 8
  start-page: 50180
  year: 2020
  end-page: 50189
  ident: CR5
  article-title: SOTB: Semi-Supervised oversampling approach based on trigonal barycenter theory
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980157
– volume: 56
  start-page: 2811
  issue: 5
  year: 2018
  end-page: 2821
  ident: CR26
  article-title: When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative cnns
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2783902
– volume: 11
  start-page: 1217
  issue: 6
  year: 2020
  end-page: 1230
  ident: CR3
  article-title: Integrating MTS with bagging strategy for class imbalance problems
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-019-01033-1
– ident: CR14
– ident: CR37
– volume: 31
  start-page: 1387
  issue: 4
  year: 2020
  end-page: 1400
  ident: CR18
  article-title: Hybrid classifier ensemble for imbalanced data
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2920246
– volume: 28
  start-page: 2633
  issue: 10
  year: 2018
  end-page: 2643
  ident: CR45
  article-title: Deep metric learning for crowdedness regression
  publication-title: IEEE Trans Circuits Syst Video Techn
  doi: 10.1109/TCSVT.2017.2703920
– volume: 47
  start-page: 2850
  issue: 9
  year: 2017
  end-page: 2861
  ident: CR19
  article-title: Evolutionary cluster-based synthetic oversampling ensemble (eco-ensemble) for imbalance learning
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2016.2579658
– volume: 53
  start-page: 62
  year: 2016
  end-page: 73
  ident: CR17
  article-title: One-sided dynamic undersampling no-propagation neural networks for imbalance problem
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.02.011
– volume: 49
  start-page: 929
  issue: 3
  year: 2019
  end-page: 949
  ident: CR53
  article-title: Design of fuzzy radial basis function neural network classifier based on information data preprocessing for recycling black plastic wastes: comparative studies of ATR FT-IR and raman spectroscopy
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1300-5
– ident: CR27
– volume: 15
  start-page: 580
  issue: 4
  year: 1985
  end-page: 585
  ident: CR48
  article-title: A fuzzy k-nearest neighbor algorithm
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1985.6313426
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: CR32
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– ident: CR23
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  ident: CR47
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– volume: 101
  start-page: 101760
  year: 2019
  ident: CR7
  article-title: A novel chinese herbal medicine clustering algorithm via artificial bee colony optimization
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.101760
– volume: 1
  start-page: 76
  issue: 2
  year: 2020
  ident: CR41
  article-title: Imbalance data classification using local mahalanobis distance learning based on nearest neighbor SN
  publication-title: Comput Sci
– volume: 106
  start-page: 169
  year: 2019
  end-page: 178
  ident: CR15
  article-title: Cost-sensitive feature selection for support vector machines
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2018.03.005
– volume: 40
  start-page: 185
  issue: 1
  year: 2010
  end-page: 197
  ident: CR56
  article-title: RUSBoost: A hybrid approach to alleviating class imbalance
  publication-title: IEEE Trans syst Man Cybern Part A
  doi: 10.1109/TSMCA.2009.2029559
– volume: 10
  start-page: 3327
  issue: 11
  year: 2019
  end-page: 3337
  ident: CR12
  article-title: Ensemble rbm-based classifier using fuzzy integral for big data classification
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-019-00960-3
– volume: 11
  start-page: 2501
  issue: 11
  year: 2020
  end-page: 2513
  ident: CR39
  article-title: Flat random forest: a new ensemble learning method towards better training efficiency and adaptive model size to deep forest
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01136-0
– volume: 2020
  start-page: 316
  issue: 13
  year: 2020
  end-page: 321
  ident: CR40
  article-title: Balancing large margin nearest neighbours for imbalanced data
  publication-title: J Eng
  doi: 10.1049/joe.2019.1178
– ident: CR52
– ident: CR31
– volume: 174
  start-page: 137
  year: 2019
  end-page: 143
  ident: CR43
  article-title: Multi-imbalance: An open-source software for multi-class imbalance learning
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.03.001
– volume: 11
  start-page: 2453
  issue: 11
  year: 2020
  end-page: 2460
  ident: CR1
  article-title: Partial label metric learning by collapsing classes
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01129-z
– ident: CR34
– volume: 384
  start-page: 174
  year: 2017
  end-page: 190
  ident: CR10
  article-title: The study of under- and over-sampling methods’ utility in analysis of highly imbalanced data on osteoporosis
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.09.038
– ident: CR28
– ident: CR24
– volume: 39
  start-page: 539
  issue: 2
  year: 2009
  end-page: 550
  ident: CR55
  article-title: Exploratory undersampling for class-imbalance learning
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2008.2007853
– ident: CR20
– volume: 85
  start-page: 96
  year: 2015
  end-page: 111
  ident: CR33
  article-title: Random balance: Ensembles of variable priors classifiers for imbalanced data
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.04.022
– volume: 47
  start-page: 4014
  issue: 12
  year: 2017
  ident: 2901_CR29
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2016.2591583
– volume: 10
  start-page: 207
  year: 2009
  ident: 2901_CR21
  publication-title: J Mach Learn Res
– ident: 2901_CR46
  doi: 10.1109/CVPR.2016.434
– volume: 479
  start-page: 448
  year: 2019
  ident: 2901_CR9
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.12.030
– volume: 8
  start-page: 50180
  year: 2020
  ident: 2901_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980157
– ident: 2901_CR34
– volume: 1
  start-page: 76
  issue: 2
  year: 2020
  ident: 2901_CR41
  publication-title: Comput Sci
– volume: 384
  start-page: 174
  year: 2017
  ident: 2901_CR10
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.09.038
– volume: 11
  start-page: 1217
  issue: 6
  year: 2020
  ident: 2901_CR3
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-019-01033-1
– volume: 54
  start-page: 128
  year: 2020
  ident: 2901_CR44
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.07.006
– volume: 49
  start-page: 929
  issue: 3
  year: 2019
  ident: 2901_CR53
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1300-5
– volume: 10
  start-page: 3327
  issue: 11
  year: 2019
  ident: 2901_CR12
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-019-00960-3
– ident: 2901_CR25
– volume: 28
  start-page: 2633
  issue: 10
  year: 2018
  ident: 2901_CR45
  publication-title: IEEE Trans Circuits Syst Video Techn
  doi: 10.1109/TCSVT.2017.2703920
– volume: 85
  start-page: 96
  year: 2015
  ident: 2901_CR33
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.04.022
– volume: 75
  start-page: 11
  year: 2018
  ident: 2901_CR11
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.07.010
– volume: 106
  start-page: 169
  year: 2019
  ident: 2901_CR15
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2018.03.005
– ident: 2901_CR36
  doi: 10.1007/11538059_91
– volume: 11
  start-page: 2007
  issue: 9
  year: 2020
  ident: 2901_CR2
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01090-x
– volume: 101
  start-page: 101760
  year: 2019
  ident: 2901_CR7
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.101760
– ident: 2901_CR35
– volume: 56
  start-page: 2811
  issue: 5
  year: 2018
  ident: 2901_CR26
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2783902
– volume: 15
  start-page: 580
  issue: 4
  year: 1985
  ident: 2901_CR48
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1985.6313426
– ident: 2901_CR52
– volume: 12
  start-page: 493
  issue: 2
  year: 2019
  ident: 2901_CR8
  publication-title: Peer-to-Peer Netw Appl
  doi: 10.1007/s12083-017-0630-0
– ident: 2901_CR37
  doi: 10.1007/978-3-540-39804-2_12
– volume: 174
  start-page: 137
  year: 2019
  ident: 2901_CR43
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.03.001
– ident: 2901_CR31
  doi: 10.1109/CIDM.2009.4938667
– volume: 39
  start-page: 539
  issue: 2
  year: 2009
  ident: 2901_CR55
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2008.2007853
– volume: 40
  start-page: 185
  issue: 1
  year: 2010
  ident: 2901_CR56
  publication-title: IEEE Trans syst Man Cybern Part A
  doi: 10.1109/TSMCA.2009.2029559
– volume: 31
  start-page: 1387
  issue: 4
  year: 2020
  ident: 2901_CR18
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2920246
– volume: 16
  start-page: 321
  year: 2002
  ident: 2901_CR32
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 2901_CR47
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– volume: 42
  start-page: 463
  issue: 4
  year: 2012
  ident: 2901_CR4
  publication-title: IEEE Trans Syst Man Cybern Part C
  doi: 10.1109/TSMCC.2011.2161285
– volume: 53
  start-page: 62
  year: 2016
  ident: 2901_CR17
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.02.011
– volume: 11
  start-page: 2501
  issue: 11
  year: 2020
  ident: 2901_CR39
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01136-0
– ident: 2901_CR20
  doi: 10.1145/1143844.1143958
– volume: 2020
  start-page: 316
  issue: 13
  year: 2020
  ident: 2901_CR40
  publication-title: J Eng
  doi: 10.1049/joe.2019.1178
– volume: 10
  start-page: 3687
  issue: 12
  year: 2019
  ident: 2901_CR6
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-019-00953-2
– volume: 96
  start-page: 3
  issue: 1
  year: 2002
  ident: 2901_CR51
  publication-title: J Educ Res
  doi: 10.1080/00220670209598786
– ident: 2901_CR23
– volume: 44
  start-page: 1801
  issue: 8
  year: 2011
  ident: 2901_CR38
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.01.015
– ident: 2901_CR28
  doi: 10.1109/ICIP.2018.8451297
– volume: 64
  start-page: 440
  year: 2017
  ident: 2901_CR16
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.07.001
– volume: 87
  start-page: 103319
  year: 2020
  ident: 2901_CR13
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.103319
– volume: 47
  start-page: 2850
  issue: 9
  year: 2017
  ident: 2901_CR19
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2016.2579658
– volume: 425
  start-page: 76
  year: 2018
  ident: 2901_CR42
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.10.017
– ident: 2901_CR50
  doi: 10.1007/3-540-32390-2_38
– ident: 2901_CR14
  doi: 10.1109/ICS.2016.0143
– volume: 1
  start-page: 14
  issue: 1
  year: 2011
  ident: 2901_CR49
  publication-title: Rev Data Min Knowl Discov
  doi: 10.1002/widm.8
– ident: 2901_CR24
  doi: 10.1145/1273496.1273523
– ident: 2901_CR27
  doi: 10.1109/CVPR.2015.7298832
– volume: 11
  start-page: 2453
  issue: 11
  year: 2020
  ident: 2901_CR1
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01129-z
– ident: 2901_CR54
– ident: 2901_CR22
– volume: 91
  start-page: 103591
  year: 2020
  ident: 2901_CR30
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103591
– volume: 65
  start-page: 780
  issue: 6
  year: 2019
  ident: 2901_CR57
  publication-title: IETE J Res
  doi: 10.1080/03772063.2018.1462109
SSID ssj0003301
Score 2.3220563
Snippet In the real-world applications of machine learning and cybernetics, the data with imbalanced distribution of classes or skewed class proportions is very...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7870
SubjectTerms Algorithms
Artificial Intelligence
Classification
Classifiers
Computer Science
Cybernetics
Ensemble learning
Machine learning
Machines
Manufacturing
Mechanical Engineering
Performance enhancement
Processes
Skewed distributions
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI54XLjwRgwGyoEbRIy0TVcuiCHQhGAgBNJuVW2naNLWDTaE-Pc4Jd0EErv2kYOdON-X2P6EOIrRJgFEoIDJgQo1aAUUxSrOGqgjsBFm7rzjvmPaL-FtN-r6A7exT6usYmIZqGmI7oz8VBvXao735-Bi9KacapS7XfUSGotimUNwk8nXcuu68_g0jcXM1kvNPGYZypik68tmfPFc6NKFNNNpd5mozO-taYY3_1yRljvPzbpY9ZBRXv74eEMs2GJTrFVyDNKvzi3xenff6bTO5fPnUPUK9VBY2RuAS11ESxIdTHZ5QaUrZNVLXMKXZANAqRMhB05fC6WXkniVWUGSea4dQN9On26Ll5vr56u28joKCnmBTZSNCQlBU4MaOeURUdMwTsoQY4ZzEZLBBImBa0KQ5MScz4YBMVBDjQZABztiqRgWdlfIJGA-hToPMmIe2cggsBYQAHjYuJnkNXFWmTBF32TcaV3001l7ZGf2lM2elmZPTU0cT_8Z_bTYmPt1vfJM6pfbOJ1Njpo4qbw1e_3_aHvzR9sXK9qVO5QJjnWxNHn_sAcMQiZw6GfaN0Bu2i4
  priority: 102
  providerName: ProQuest
Title LMNNB: Two-in-One imbalanced classification approach by combining metric learning and ensemble learning
URI https://link.springer.com/article/10.1007/s10489-021-02901-6
https://www.proquest.com/docview/2659825603
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6sXrz4Fuuj7MGbLtRNs2m8tdIHPqJIC_UUMrMbEWwUrYj_3tmYtCoqeFpINguZfX3f7sx8APsB2dBDHyUyOZANhUqi8QMZJHVSPlqfEnfecRHp_rBxOvJHRVDYc-ntXl5J5iv1p2C3hnPvUUx_3eWf1BVY8B1351E8VK3p-ssMPdfJY2YhtQ5HRajMz2183Y5mGPPbtWi-23RXYKmAiaL10a-rMGezNVguJRhEMSPX4fb8Iorax2Lw-iDvMnmZWXE3RueuSNYIctDY-QLl5hdl_nCBb4L_GXNtCDF2mlokCvmIW5FkRjC3tWO8t9OnGzDsdgYnfVloJ0jiSTWRNjBkCJWpm3pqUt-YpmZslBAFDOF8MppCMgxWQ4Nhapjn2YZnGJyRIo2ovE2Yzx4yuwUi9JhDkUq9xDB3rCfoWYuEiNxs0AzTKhyVJoypSCzu9C3u41lKZGf2mM0e52aPdRUOpt88fqTV-LP2btkzcTHFnmOlXe5BBmxeFQ7L3pq9_r217f9V34FF5UIecifHXZifPL3YPQYiE6xBpdnt1WCh1W23I1f2bs46XLY70dV1LR-V79ht2zc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V5QAXoAVESlv2ACdYYXbtdYyEEI-GlCbhkkq5Gc_suqrUOH0EVf1T_MbOOHYiKrW3Xv3Yw-zs7PftzswH8CalkFlMUCOTAx0bNBp9kuq0iMgkGBIq5LxjOHL9w_jXJJmswb-2FkbSKtuYWAdqPyM5I_9gnLSa4_3Zfjk906IaJberrYTGwi0OwtUlU7aLz_s_eH7fGtPbG3_v60ZVQBO721yH1JMnND7yUenLxPuuY9RQEKUMbhLyjjLyDOMyj1npmQGF2HqGLWTIIUqjAw75D2JrM1lR3d7PZeS3tpZbjpjTaOeySVOk05TqxZKcZJi8y9Wldv9vhCt0e-NCtt7nek_hcQNQ1deFR23AWqg24Ukr_qCaWPAMjgbD0ejbJzW-nOnjSv-ugjqeoiRKUvCKBJRLFlI98artXK7wSrG5sValUFNR8yLVCFccqaLyill1mOJJWD59Dof3Yt8XsF7NqvASVGaZvZEpbeGZtUYF2hCQEJGHTbtZ2YGPrQlzalqai7LGSb5qxixmz9nseW323HXg3fKf00VDjzu_3m5nJm8W90W-csUOvG9na_X69tG27h7tNTzsj4eDfLA_OngFj4wUWtSplduwPj__G3YY_sxxt_Y5BX_u28mvAU1JGIs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9xADLbQIlW99AVVt6VlDu0JRqSTzYRUqhCvFRRIUQXS3tLYniAkNkvLVoi_xq_Dk53sCqRy45rHHDyO_X0Z2x_A55RcFmOCGoUc6J5Bo5GTVKdlRCZBl1Dp_3cc5XbvtPdjkAzm4LbthfFllW1MbAI1j8j_I18z1o-ak_wcr1WhLOJ4p79x-Ud7BSl_0trKaUxc5MDdXAt9u_q-vyN7_cWY_u7J9p4OCgOaxPXG2qVMTGg44qjiKmFet4IgSqJUgE5CbCkjFkiXMWYVCxtyvZgFwpAhi-iHHkj4n0-FFUUdmN_azY9_TfNAHDfiy5EwHG1tNggtO6Fxr-dLlYxQeX-Qqe39tDjDug-OZ5us138FLwJcVZsT_3oNc65-Ay9bKQgVIsMCnB0e5fnWN3VyPdLntf5ZO3U-RF82SY4VeYjua5IaN1DtHHOFN0qMj41GhRp6bS9SQcbiTJU1K-HYbogXbnp1EU6fxMJvoVOPavcOVBYLlyNTxSULh41KjJ1DQkRZNl3Pqi58bU1YUBhw7nU2LorZaGZv9kLMXjRmL2wXVqbvXE7Gezz69FK7M0X41K-KmWN2YbXdrdnt_6_2_vHVluGZOHhxuJ8ffIDnxnddNHWWS9AZ__3nPgoWGuOn4HQKfj-1n98B4u8eHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LMNNB%3A+Two-in-One+imbalanced+classification+approach+by+combining+metric+learning+and+ensemble+learning&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Qiao%2C+Shaojie&rft.au=Han%2C+Nan&rft.au=Huang%2C+Faliang&rft.au=Yue%2C+Kun&rft.date=2022-05-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=7&rft.spage=7870&rft.epage=7889&rft_id=info:doi/10.1007%2Fs10489-021-02901-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_021_02901_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon