LMNNB: Two-in-One imbalanced classification approach by combining metric learning and ensemble learning
In the real-world applications of machine learning and cybernetics, the data with imbalanced distribution of classes or skewed class proportions is very pervasive. When dealing with imbalanced data, traditional classification approaches might fail to learn a good classifier. In the phase of learning...
Saved in:
Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 52; no. 7; pp. 7870 - 7889 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the real-world applications of machine learning and cybernetics, the data with imbalanced distribution of classes or skewed class proportions is very pervasive. When dealing with imbalanced data, traditional classification approaches might fail to learn a good classifier. In the phase of learning, these algorithms are greatly impacted by the skewed distribution of data. Consequently, the performance of classification drops drastically. In this study, we propose a novel two-in-one algorithm for classifying the imbalanced data by integrating metric learning and ensemble learning algorithms. Firstly, we design a new metric learning algorithm for imbalanced data, which is called Large Margin Nearest Neighbors Balance (called LMNNB). This method can minimize the distance between one sample and its similar neighbors which belong to the same class, and maximize the distance from its dissimilar neighbors which belong to different classes as well. Essentially, this beneficial effect can also be achieved even if the distribution of data is imbalanced. Through metric learning, the imbalance data can be used to learn a better classifier. Secondly, we propose an ensemble learning algorithm to further improve the performance of classification. This method combines multiple sub-classifiers and makes decisions by applying a soft voting strategy. Extensive experiments are conducted on real benchmark imbalanced datasets to demonstrate the effectiveness of LMNNB with ensemble algorithm (called LMNNB-E) in several evaluation measurements. The results show that LMNNB and LMNNB-E outperform the state-of-the-art methods in classifying imbalance data. |
---|---|
AbstractList | In the real-world applications of machine learning and cybernetics, the data with imbalanced distribution of classes or skewed class proportions is very pervasive. When dealing with imbalanced data, traditional classification approaches might fail to learn a good classifier. In the phase of learning, these algorithms are greatly impacted by the skewed distribution of data. Consequently, the performance of classification drops drastically. In this study, we propose a novel two-in-one algorithm for classifying the imbalanced data by integrating metric learning and ensemble learning algorithms. Firstly, we design a new metric learning algorithm for imbalanced data, which is called Large Margin Nearest Neighbors Balance (called LMNNB). This method can minimize the distance between one sample and its similar neighbors which belong to the same class, and maximize the distance from its dissimilar neighbors which belong to different classes as well. Essentially, this beneficial effect can also be achieved even if the distribution of data is imbalanced. Through metric learning, the imbalance data can be used to learn a better classifier. Secondly, we propose an ensemble learning algorithm to further improve the performance of classification. This method combines multiple sub-classifiers and makes decisions by applying a soft voting strategy. Extensive experiments are conducted on real benchmark imbalanced datasets to demonstrate the effectiveness of LMNNB with ensemble algorithm (called LMNNB-E) in several evaluation measurements. The results show that LMNNB and LMNNB-E outperform the state-of-the-art methods in classifying imbalance data. |
Author | Yi, Yugen Yue, Kun Wu, Tao Han, Nan Huang, Faliang Qiao, Shaojie Mao, Rui Yuan, Chang-an |
Author_xml | – sequence: 1 givenname: Shaojie orcidid: 0000-0002-4703-780X surname: Qiao fullname: Qiao, Shaojie organization: School of Software Engineering, Chengdu University of Information Technology – sequence: 2 givenname: Nan surname: Han fullname: Han, Nan email: hannan@cuit.edu.cn organization: School of Management, Chengdu University of Information Technology – sequence: 3 givenname: Faliang surname: Huang fullname: Huang, Faliang organization: School of Computer and Information Engineering, Nanning Normal University – sequence: 4 givenname: Kun surname: Yue fullname: Yue, Kun organization: School of Information Science and Engineering, Yunnan University – sequence: 5 givenname: Tao surname: Wu fullname: Wu, Tao organization: School of Cybersecurity and Information Law, Chongqing University of Posts and Telecommunications – sequence: 6 givenname: Yugen surname: Yi fullname: Yi, Yugen organization: School of Software, Jiangxi Normal University – sequence: 7 givenname: Rui surname: Mao fullname: Mao, Rui organization: Guangdong Province Key Laboratory of Popular High Performance Computers, Guangdong Province Engineering Center of China-made High Performance Data Computing System – sequence: 8 givenname: Chang-an surname: Yuan fullname: Yuan, Chang-an organization: Guangxi College of Education |
BookMark | eNp9kE1PwzAMhiMEEtvgD3CKxDmQNG3acIOJL2lslyFxi1InHZnadCSd0P49ZUUgcdjBsmz5sf2-Y3TsW28RumD0ilGaX0dG00ISmrA-JGVEHKERy3JO8lTmx2hEZZISIeTbKRrHuKaUck7ZCK1mL_P53Q1efrbEebLwFrum1LX2YA2GWsfoKge6c63HerMJrYZ3XO4wtE3pvPMr3NguOMC11WFfa2-w9dE2ZW1_u2fopNJ1tOc_eYJeH-6X0ycyWzw-T29nBDiTHbG5AQNlYqihlakyYwqRsVQD5JnIMjACJJiCGWlKWRlWpDblhgkOCYiyTPgEXQ57-08_tjZ2at1ug-9PqkRkskgy0SufoGKYgtDGGGylwHV7jV3QrlaMqm9b1WCr6m1Ve1uV6NHkH7oJrtFhdxjiAxT7Yb-y4e-rA9QXKyyORw |
CitedBy_id | crossref_primary_10_1016_j_isatra_2022_08_009 crossref_primary_10_1109_ACCESS_2023_3328535 crossref_primary_10_1007_s13042_024_02241_0 crossref_primary_10_1007_s10489_022_03494_4 crossref_primary_10_1007_s13369_023_08258_x crossref_primary_10_1007_s10489_023_04642_0 |
Cites_doi | 10.1002/widm.8 10.1016/j.ins.2017.12.030 10.1016/j.patcog.2011.01.015 10.1016/j.engappai.2020.103591 10.1007/s13042-019-00953-2 10.1080/03772063.2018.1462109 10.1016/j.ins.2017.10.017 10.1016/j.inffus.2019.07.006 10.1109/TSMCC.2011.2161285 10.1080/00220670209598786 10.1016/j.engappai.2018.07.010 10.1016/j.engappai.2019.103319 10.1016/j.engappai.2017.07.001 10.1007/s13042-020-01090-x 10.1007/s12083-017-0630-0 10.1109/TCYB.2016.2591583 10.1109/ACCESS.2020.2980157 10.1109/TGRS.2017.2783902 10.1007/s13042-019-01033-1 10.1109/TNNLS.2019.2920246 10.1109/TCSVT.2017.2703920 10.1109/TCYB.2016.2579658 10.1016/j.engappai.2016.02.011 10.1007/s10489-018-1300-5 10.1109/TSMC.1985.6313426 10.1613/jair.953 10.1023/A:1018628609742 10.1016/j.artmed.2019.101760 10.1016/j.cor.2018.03.005 10.1109/TSMCA.2009.2029559 10.1007/s13042-019-00960-3 10.1007/s13042-020-01136-0 10.1049/joe.2019.1178 10.1016/j.knosys.2019.03.001 10.1007/s13042-020-01129-z 10.1016/j.ins.2016.09.038 10.1109/TSMCB.2008.2007853 10.1016/j.knosys.2015.04.022 10.1109/CVPR.2016.434 10.1007/11538059_91 10.1007/978-3-540-39804-2_12 10.1109/CIDM.2009.4938667 10.1145/1143844.1143958 10.1109/ICIP.2018.8451297 10.1007/3-540-32390-2_38 10.1109/ICS.2016.0143 10.1145/1273496.1273523 10.1109/CVPR.2015.7298832 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS Q9U |
DOI | 10.1007/s10489-021-02901-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7497 |
EndPage | 7889 |
ExternalDocumentID | 10_1007_s10489_021_02901_6 |
GrantInformation_xml | – fundername: Guangxi Bagui Teams for Innovation and Research grantid: 201979 – fundername: Natural Science Foundation of Guangxi Province grantid: 2018GXNSFDA138005 funderid: https://doi.org/10.13039/501100004607 – fundername: Chengdu Major Science and Technology Innovation Project grantid: 2021-YF08-00156-GX – fundername: CCF-Huawei Database System Innovation Research Plan grantid: CCF-HuaweiDBIR2020004A – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2020B15151200 – fundername: digital media art, key laboratory of sichuan province, sichuan conservatory of music, chengdu, china grantid: 21DMAKL02 – fundername: National Natural Science Foundation of China grantid: 61772091; 61802035; 61962006; 61962038; U1802271; U2001212; 62072311 funderid: https://doi.org/10.13039/501100001809 – fundername: Sichuan Science and Technology Program grantid: 2021JDJQ0021; 22ZDYF2680; 2020YFG0153; 2020YJ0481; 2020YFS0466; 2020YJ0430 – fundername: Chengdu Technology Innovation and Research and Development Project grantid: 2021-YF05-00491-SN |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-e7dcdcb2d0d0fdf5dd86514acc75655cd6c9cd81d9db9fd184e43d163c2c6bb23 |
IEDL.DBID | U2A |
ISSN | 0924-669X |
IngestDate | Fri Jul 25 18:55:23 EDT 2025 Tue Jul 01 03:31:47 EDT 2025 Thu Apr 24 23:04:12 EDT 2025 Fri Feb 21 02:45:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Imbalanced data Large margin nearest neighbors Ensemble learning Metric learning Machine learning Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e7dcdcb2d0d0fdf5dd86514acc75655cd6c9cd81d9db9fd184e43d163c2c6bb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4703-780X |
PQID | 2659825603 |
PQPubID | 326365 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2659825603 crossref_citationtrail_10_1007_s10489_021_02901_6 crossref_primary_10_1007_s10489_021_02901_6 springer_journals_10_1007_s10489_021_02901_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220500 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220500 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Boston |
PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
PublicationTitleAbbrev | Appl Intell |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Han, Qiao, Yuan, Huang, Liu, Yue (CR7) 2019; 101 Soda (CR38) 2011; 44 Liu, Wu, Zhou (CR55) 2009; 39 CR37 CR36 CR35 CR34 Hsiao, Su, Fu (CR3) 2020; 11 Chawla, Bowyer, Hall, Kegelmeyer (CR32) 2002; 16 Huang, Chiang, Chang (CR11) 2018; 75 CR31 Lim, Keong Goh, Chen Tan (CR19) 2017; 47 Sun, Lang, Fujita, Li (CR42) 2018; 425 Joanne Peng, Lee, Ingersoll (CR51) 2002; 96 Ri, Tian, Liu, Wei-Hua, Lou (CR2) 2020; 11 Díez-Pastor, Diez, García-Osorio, Kuncheva (CR33) 2015; 85 Sultana, Chilamkurti, Peng, Alhadad (CR8) 2019; 12 CR46 Zhai, Zhou, Zhang, Wang (CR12) 2019; 10 Liu, Wang, Yin, Liu (CR39) 2020; 11 Fiore, De Santis, Perla, Zanetti, Palmieri (CR9) 2019; 479 Patel, Thakur (CR57) 2019; 65 Jun, Yang, Gao, Tao (CR29) 2017; 47 Wang, Wan, Yuan (CR45) 2018; 28 Kumar, Halder (CR30) 2020; 91 Cheng, Yang, Yao, Guo, Han (CR26) 2018; 56 Suykens, Vandewalle (CR47) 1999; 9 Bach, Werner, Zywiec, Pluskiewicz (CR10) 2017; 384 Benítez-Peña, Blanquero, Carrizosa, Ramírez-Cobo (CR15) 2019; 106 CR14 Weinberger, Saul (CR21) 2009; 10 Xu, Cui, Lan, Kang, Deng, Jia (CR6) 2019; 10 CR54 CR52 CR50 Roshan, Asadi (CR13) 2020; 87 Xu, Yang, Zhou, Zheng, Liu, He (CR1) 2020; 11 Seiffert, Khoshgoftaar, Van Hulse, Napolitano (CR56) 2010; 40 Yang, Yu, Wen, Cao, Chen, Wong, You (CR18) 2020; 31 Loh (CR49) 2011; 1 Galar, Fernández, Tartas, Sola, Herrera (CR4) 2012; 42 CR28 Bae, Oh, Pedrycz, Fu (CR53) 2019; 49 CR27 CR25 CR24 Siddappa, Kampalappa (CR41) 2020; 1 CR23 CR22 CR20 Sun, Li, Fujita, Fu, Ai (CR44) 2020; 54 Keller, Gray, Givens (CR48) 1985; 15 Furundzic, Stankovic, Jovicic, Punisic, Subotic (CR16) 2017; 64 Liu, Qiao, Han, Wu, Mao, Zhang, Yuan, Xiao (CR5) 2020; 8 Zhang, Han, Qiao, Zhang, Huang, Peng, Zhou, Yuan, Xiao (CR40) 2020; 2020 Zhang, Bi, Xu, Ramentol, Fan, Qiao, Fujita (CR43) 2019; 174 Fan, Wang, Gao (CR17) 2016; 53 2901_CR52 2901_CR50 2901_CR54 2901_CR14 Y Jun (2901_CR29) 2017; 47 W-Y Loh (2901_CR49) 2011; 1 S Xu (2901_CR1) 2020; 11 M Galar (2901_CR4) 2012; 42 H Xu (2901_CR6) 2019; 10 C Seiffert (2901_CR56) 2010; 40 J-S Bae (2901_CR53) 2019; 49 U Fiore (2901_CR9) 2019; 479 2901_CR46 D Liu (2901_CR5) 2020; 8 G Cheng (2901_CR26) 2018; 56 C Zhang (2901_CR43) 2019; 174 JM Keller (2901_CR48) 1985; 15 Q Wang (2901_CR45) 2018; 28 D Furundzic (2901_CR16) 2017; 64 Q Fan (2901_CR17) 2016; 53 P Lim (2901_CR19) 2017; 47 2901_CR34 JH Ri (2901_CR2) 2020; 11 2901_CR31 NV Chawla (2901_CR32) 2002; 16 2901_CR37 2901_CR36 2901_CR35 SE Roshan (2901_CR13) 2020; 87 J Zhai (2901_CR12) 2019; 10 M Bach (2901_CR10) 2017; 384 N Han (2901_CR7) 2019; 101 X Zhang (2901_CR40) 2020; 2020 A Kumar (2901_CR30) 2020; 91 X-Y Liu (2901_CR55) 2009; 39 Y-H Hsiao (2901_CR3) 2020; 11 K Yang (2901_CR18) 2020; 31 2901_CR23 KQ Weinberger (2901_CR21) 2009; 10 2901_CR22 2901_CR20 2901_CR27 N Sultana (2901_CR8) 2019; 12 S Benítez-Peña (2901_CR15) 2019; 106 2901_CR25 2901_CR24 P Liu (2901_CR39) 2020; 11 J-F Díez-Pastor (2901_CR33) 2015; 85 J Sun (2901_CR44) 2020; 54 J-W Huang (2901_CR11) 2018; 75 2901_CR28 JAK Suykens (2901_CR47) 1999; 9 NG Siddappa (2901_CR41) 2020; 1 P Soda (2901_CR38) 2011; 44 J Sun (2901_CR42) 2018; 425 Chao-Ying Joanne Peng (2901_CR51) 2002; 96 H Patel (2901_CR57) 2019; 65 |
References_xml | – volume: 1 start-page: 14 issue: 1 year: 2011 end-page: 23 ident: CR49 article-title: Classification and regression trees. Wiley Interdiscip publication-title: Rev Data Min Knowl Discov doi: 10.1002/widm.8 – ident: CR22 – volume: 479 start-page: 448 year: 2019 end-page: 455 ident: CR9 article-title: Using generative adversarial networks for improving classification effectiveness in credit card fraud detection publication-title: Inf Sci doi: 10.1016/j.ins.2017.12.030 – volume: 44 start-page: 1801 issue: 8 year: 2011 end-page: 1810 ident: CR38 article-title: A multi-objective optimisation approach for class imbalance learning publication-title: Pattern Recognit doi: 10.1016/j.patcog.2011.01.015 – volume: 91 start-page: 103591 year: 2020 ident: CR30 article-title: Ensemble-based active learning using fuzzy-rough approach for cancer sample classification publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103591 – volume: 10 start-page: 3687 issue: 12 year: 2019 end-page: 3699 ident: CR6 article-title: A gaussian mixture model based combined resampling algorithm for classification of imbalanced credit data sets publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-019-00953-2 – volume: 65 start-page: 780 issue: 6 year: 2019 end-page: 789 ident: CR57 article-title: An improved fuzzy k-nearest neighbor algorithm for imbalanced data using adaptive approach publication-title: IETE J Res doi: 10.1080/03772063.2018.1462109 – volume: 425 start-page: 76 year: 2018 end-page: 91 ident: CR42 article-title: Imbalanced enterprise credit evaluation with DTE-SBD: decision tree ensemble based on SMOTE and bagging with differentiated sampling rates publication-title: Inf Sci doi: 10.1016/j.ins.2017.10.017 – volume: 54 start-page: 128 year: 2020 end-page: 144 ident: CR44 article-title: Class-imbalanced dynamic financial distress prediction based on adaboost-svm ensemble combined with SMOTE and time weighting publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.07.006 – ident: CR35 – ident: CR54 – ident: CR25 – volume: 42 start-page: 463 issue: 4 year: 2012 end-page: 484 ident: CR4 article-title: A review on ensembles for the class imbalance problem Bagging-boosting-, and hybrid-based approaches publication-title: IEEE Trans Syst Man Cybern Part C doi: 10.1109/TSMCC.2011.2161285 – ident: CR46 – volume: 96 start-page: 3 issue: 1 year: 2002 end-page: 14 ident: CR51 article-title: An introduction to logistic regression analysis and reporting publication-title: J Educ Res doi: 10.1080/00220670209598786 – volume: 75 start-page: 11 year: 2018 end-page: 21 ident: CR11 article-title: Email security level classification of imbalanced data using artificial neural network: The real case in a world-leading enterprise publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.07.010 – ident: CR50 – volume: 87 start-page: 103319 year: 2020 ident: CR13 article-title: Improvement of bagging performance for classification of imbalanced datasets using evolutionary multi-objective optimization publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.103319 – ident: CR36 – volume: 64 start-page: 440 year: 2017 end-page: 461 ident: CR16 article-title: Distance based resampling of imbalanced classes: With an application example of speech quality assessment publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2017.07.001 – volume: 11 start-page: 2007 issue: 9 year: 2020 end-page: 2020 ident: CR2 article-title: Extreme learning machine with hybrid cost function of g-mean and probability for imbalance learning publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01090-x – volume: 12 start-page: 493 issue: 2 year: 2019 end-page: 501 ident: CR8 article-title: Survey on SDN based network intrusion detection system using machine learning approaches publication-title: Peer-to-Peer Netw Appl doi: 10.1007/s12083-017-0630-0 – volume: 47 start-page: 4014 issue: 12 year: 2017 end-page: 4024 ident: CR29 article-title: Deep multimodal distance metric learning using click constraints for image ranking publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2016.2591583 – volume: 10 start-page: 207 year: 2009 end-page: 244 ident: CR21 article-title: Distance metric learning for large margin nearest neighbor classification publication-title: J Mach Learn Res – volume: 8 start-page: 50180 year: 2020 end-page: 50189 ident: CR5 article-title: SOTB: Semi-Supervised oversampling approach based on trigonal barycenter theory publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980157 – volume: 56 start-page: 2811 issue: 5 year: 2018 end-page: 2821 ident: CR26 article-title: When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative cnns publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2017.2783902 – volume: 11 start-page: 1217 issue: 6 year: 2020 end-page: 1230 ident: CR3 article-title: Integrating MTS with bagging strategy for class imbalance problems publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-019-01033-1 – ident: CR14 – ident: CR37 – volume: 31 start-page: 1387 issue: 4 year: 2020 end-page: 1400 ident: CR18 article-title: Hybrid classifier ensemble for imbalanced data publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2920246 – volume: 28 start-page: 2633 issue: 10 year: 2018 end-page: 2643 ident: CR45 article-title: Deep metric learning for crowdedness regression publication-title: IEEE Trans Circuits Syst Video Techn doi: 10.1109/TCSVT.2017.2703920 – volume: 47 start-page: 2850 issue: 9 year: 2017 end-page: 2861 ident: CR19 article-title: Evolutionary cluster-based synthetic oversampling ensemble (eco-ensemble) for imbalance learning publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2016.2579658 – volume: 53 start-page: 62 year: 2016 end-page: 73 ident: CR17 article-title: One-sided dynamic undersampling no-propagation neural networks for imbalance problem publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.02.011 – volume: 49 start-page: 929 issue: 3 year: 2019 end-page: 949 ident: CR53 article-title: Design of fuzzy radial basis function neural network classifier based on information data preprocessing for recycling black plastic wastes: comparative studies of ATR FT-IR and raman spectroscopy publication-title: Appl Intell doi: 10.1007/s10489-018-1300-5 – ident: CR27 – volume: 15 start-page: 580 issue: 4 year: 1985 end-page: 585 ident: CR48 article-title: A fuzzy k-nearest neighbor algorithm publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1985.6313426 – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: CR32 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J Artif Intell Res doi: 10.1613/jair.953 – ident: CR23 – volume: 9 start-page: 293 issue: 3 year: 1999 end-page: 300 ident: CR47 article-title: Least squares support vector machine classifiers publication-title: Neural Process Lett doi: 10.1023/A:1018628609742 – volume: 101 start-page: 101760 year: 2019 ident: CR7 article-title: A novel chinese herbal medicine clustering algorithm via artificial bee colony optimization publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.101760 – volume: 1 start-page: 76 issue: 2 year: 2020 ident: CR41 article-title: Imbalance data classification using local mahalanobis distance learning based on nearest neighbor SN publication-title: Comput Sci – volume: 106 start-page: 169 year: 2019 end-page: 178 ident: CR15 article-title: Cost-sensitive feature selection for support vector machines publication-title: Comput Oper Res doi: 10.1016/j.cor.2018.03.005 – volume: 40 start-page: 185 issue: 1 year: 2010 end-page: 197 ident: CR56 article-title: RUSBoost: A hybrid approach to alleviating class imbalance publication-title: IEEE Trans syst Man Cybern Part A doi: 10.1109/TSMCA.2009.2029559 – volume: 10 start-page: 3327 issue: 11 year: 2019 end-page: 3337 ident: CR12 article-title: Ensemble rbm-based classifier using fuzzy integral for big data classification publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-019-00960-3 – volume: 11 start-page: 2501 issue: 11 year: 2020 end-page: 2513 ident: CR39 article-title: Flat random forest: a new ensemble learning method towards better training efficiency and adaptive model size to deep forest publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01136-0 – volume: 2020 start-page: 316 issue: 13 year: 2020 end-page: 321 ident: CR40 article-title: Balancing large margin nearest neighbours for imbalanced data publication-title: J Eng doi: 10.1049/joe.2019.1178 – ident: CR52 – ident: CR31 – volume: 174 start-page: 137 year: 2019 end-page: 143 ident: CR43 article-title: Multi-imbalance: An open-source software for multi-class imbalance learning publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.03.001 – volume: 11 start-page: 2453 issue: 11 year: 2020 end-page: 2460 ident: CR1 article-title: Partial label metric learning by collapsing classes publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01129-z – ident: CR34 – volume: 384 start-page: 174 year: 2017 end-page: 190 ident: CR10 article-title: The study of under- and over-sampling methods’ utility in analysis of highly imbalanced data on osteoporosis publication-title: Inf Sci doi: 10.1016/j.ins.2016.09.038 – ident: CR28 – ident: CR24 – volume: 39 start-page: 539 issue: 2 year: 2009 end-page: 550 ident: CR55 article-title: Exploratory undersampling for class-imbalance learning publication-title: IEEE Trans Syst Man Cybern Part B doi: 10.1109/TSMCB.2008.2007853 – ident: CR20 – volume: 85 start-page: 96 year: 2015 end-page: 111 ident: CR33 article-title: Random balance: Ensembles of variable priors classifiers for imbalanced data publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.04.022 – volume: 47 start-page: 4014 issue: 12 year: 2017 ident: 2901_CR29 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2016.2591583 – volume: 10 start-page: 207 year: 2009 ident: 2901_CR21 publication-title: J Mach Learn Res – ident: 2901_CR46 doi: 10.1109/CVPR.2016.434 – volume: 479 start-page: 448 year: 2019 ident: 2901_CR9 publication-title: Inf Sci doi: 10.1016/j.ins.2017.12.030 – volume: 8 start-page: 50180 year: 2020 ident: 2901_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980157 – ident: 2901_CR34 – volume: 1 start-page: 76 issue: 2 year: 2020 ident: 2901_CR41 publication-title: Comput Sci – volume: 384 start-page: 174 year: 2017 ident: 2901_CR10 publication-title: Inf Sci doi: 10.1016/j.ins.2016.09.038 – volume: 11 start-page: 1217 issue: 6 year: 2020 ident: 2901_CR3 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-019-01033-1 – volume: 54 start-page: 128 year: 2020 ident: 2901_CR44 publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.07.006 – volume: 49 start-page: 929 issue: 3 year: 2019 ident: 2901_CR53 publication-title: Appl Intell doi: 10.1007/s10489-018-1300-5 – volume: 10 start-page: 3327 issue: 11 year: 2019 ident: 2901_CR12 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-019-00960-3 – ident: 2901_CR25 – volume: 28 start-page: 2633 issue: 10 year: 2018 ident: 2901_CR45 publication-title: IEEE Trans Circuits Syst Video Techn doi: 10.1109/TCSVT.2017.2703920 – volume: 85 start-page: 96 year: 2015 ident: 2901_CR33 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.04.022 – volume: 75 start-page: 11 year: 2018 ident: 2901_CR11 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.07.010 – volume: 106 start-page: 169 year: 2019 ident: 2901_CR15 publication-title: Comput Oper Res doi: 10.1016/j.cor.2018.03.005 – ident: 2901_CR36 doi: 10.1007/11538059_91 – volume: 11 start-page: 2007 issue: 9 year: 2020 ident: 2901_CR2 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01090-x – volume: 101 start-page: 101760 year: 2019 ident: 2901_CR7 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.101760 – ident: 2901_CR35 – volume: 56 start-page: 2811 issue: 5 year: 2018 ident: 2901_CR26 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2017.2783902 – volume: 15 start-page: 580 issue: 4 year: 1985 ident: 2901_CR48 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1985.6313426 – ident: 2901_CR52 – volume: 12 start-page: 493 issue: 2 year: 2019 ident: 2901_CR8 publication-title: Peer-to-Peer Netw Appl doi: 10.1007/s12083-017-0630-0 – ident: 2901_CR37 doi: 10.1007/978-3-540-39804-2_12 – volume: 174 start-page: 137 year: 2019 ident: 2901_CR43 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.03.001 – ident: 2901_CR31 doi: 10.1109/CIDM.2009.4938667 – volume: 39 start-page: 539 issue: 2 year: 2009 ident: 2901_CR55 publication-title: IEEE Trans Syst Man Cybern Part B doi: 10.1109/TSMCB.2008.2007853 – volume: 40 start-page: 185 issue: 1 year: 2010 ident: 2901_CR56 publication-title: IEEE Trans syst Man Cybern Part A doi: 10.1109/TSMCA.2009.2029559 – volume: 31 start-page: 1387 issue: 4 year: 2020 ident: 2901_CR18 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2920246 – volume: 16 start-page: 321 year: 2002 ident: 2901_CR32 publication-title: J Artif Intell Res doi: 10.1613/jair.953 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 2901_CR47 publication-title: Neural Process Lett doi: 10.1023/A:1018628609742 – volume: 42 start-page: 463 issue: 4 year: 2012 ident: 2901_CR4 publication-title: IEEE Trans Syst Man Cybern Part C doi: 10.1109/TSMCC.2011.2161285 – volume: 53 start-page: 62 year: 2016 ident: 2901_CR17 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.02.011 – volume: 11 start-page: 2501 issue: 11 year: 2020 ident: 2901_CR39 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01136-0 – ident: 2901_CR20 doi: 10.1145/1143844.1143958 – volume: 2020 start-page: 316 issue: 13 year: 2020 ident: 2901_CR40 publication-title: J Eng doi: 10.1049/joe.2019.1178 – volume: 10 start-page: 3687 issue: 12 year: 2019 ident: 2901_CR6 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-019-00953-2 – volume: 96 start-page: 3 issue: 1 year: 2002 ident: 2901_CR51 publication-title: J Educ Res doi: 10.1080/00220670209598786 – ident: 2901_CR23 – volume: 44 start-page: 1801 issue: 8 year: 2011 ident: 2901_CR38 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2011.01.015 – ident: 2901_CR28 doi: 10.1109/ICIP.2018.8451297 – volume: 64 start-page: 440 year: 2017 ident: 2901_CR16 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2017.07.001 – volume: 87 start-page: 103319 year: 2020 ident: 2901_CR13 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.103319 – volume: 47 start-page: 2850 issue: 9 year: 2017 ident: 2901_CR19 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2016.2579658 – volume: 425 start-page: 76 year: 2018 ident: 2901_CR42 publication-title: Inf Sci doi: 10.1016/j.ins.2017.10.017 – ident: 2901_CR50 doi: 10.1007/3-540-32390-2_38 – ident: 2901_CR14 doi: 10.1109/ICS.2016.0143 – volume: 1 start-page: 14 issue: 1 year: 2011 ident: 2901_CR49 publication-title: Rev Data Min Knowl Discov doi: 10.1002/widm.8 – ident: 2901_CR24 doi: 10.1145/1273496.1273523 – ident: 2901_CR27 doi: 10.1109/CVPR.2015.7298832 – volume: 11 start-page: 2453 issue: 11 year: 2020 ident: 2901_CR1 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-020-01129-z – ident: 2901_CR54 – ident: 2901_CR22 – volume: 91 start-page: 103591 year: 2020 ident: 2901_CR30 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103591 – volume: 65 start-page: 780 issue: 6 year: 2019 ident: 2901_CR57 publication-title: IETE J Res doi: 10.1080/03772063.2018.1462109 |
SSID | ssj0003301 |
Score | 2.3220563 |
Snippet | In the real-world applications of machine learning and cybernetics, the data with imbalanced distribution of classes or skewed class proportions is very... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7870 |
SubjectTerms | Algorithms Artificial Intelligence Classification Classifiers Computer Science Cybernetics Ensemble learning Machine learning Machines Manufacturing Mechanical Engineering Performance enhancement Processes Skewed distributions |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI54XLjwRgwGyoEbRIy0TVcuiCHQhGAgBNJuVW2naNLWDTaE-Pc4Jd0EErv2kYOdON-X2P6EOIrRJgFEoIDJgQo1aAUUxSrOGqgjsBFm7rzjvmPaL-FtN-r6A7exT6usYmIZqGmI7oz8VBvXao735-Bi9KacapS7XfUSGotimUNwk8nXcuu68_g0jcXM1kvNPGYZypik68tmfPFc6NKFNNNpd5mozO-taYY3_1yRljvPzbpY9ZBRXv74eEMs2GJTrFVyDNKvzi3xenff6bTO5fPnUPUK9VBY2RuAS11ESxIdTHZ5QaUrZNVLXMKXZANAqRMhB05fC6WXkniVWUGSea4dQN9On26Ll5vr56u28joKCnmBTZSNCQlBU4MaOeURUdMwTsoQY4ZzEZLBBImBa0KQ5MScz4YBMVBDjQZABztiqRgWdlfIJGA-hToPMmIe2cggsBYQAHjYuJnkNXFWmTBF32TcaV3001l7ZGf2lM2elmZPTU0cT_8Z_bTYmPt1vfJM6pfbOJ1Njpo4qbw1e_3_aHvzR9sXK9qVO5QJjnWxNHn_sAcMQiZw6GfaN0Bu2i4 priority: 102 providerName: ProQuest |
Title | LMNNB: Two-in-One imbalanced classification approach by combining metric learning and ensemble learning |
URI | https://link.springer.com/article/10.1007/s10489-021-02901-6 https://www.proquest.com/docview/2659825603 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6sXrz4Fuuj7MGbLtRNs2m8tdIHPqJIC_UUMrMbEWwUrYj_3tmYtCoqeFpINguZfX3f7sx8APsB2dBDHyUyOZANhUqi8QMZJHVSPlqfEnfecRHp_rBxOvJHRVDYc-ntXl5J5iv1p2C3hnPvUUx_3eWf1BVY8B1351E8VK3p-ssMPdfJY2YhtQ5HRajMz2183Y5mGPPbtWi-23RXYKmAiaL10a-rMGezNVguJRhEMSPX4fb8Iorax2Lw-iDvMnmZWXE3RueuSNYIctDY-QLl5hdl_nCBb4L_GXNtCDF2mlokCvmIW5FkRjC3tWO8t9OnGzDsdgYnfVloJ0jiSTWRNjBkCJWpm3pqUt-YpmZslBAFDOF8MppCMgxWQ4Nhapjn2YZnGJyRIo2ovE2Yzx4yuwUi9JhDkUq9xDB3rCfoWYuEiNxs0AzTKhyVJoypSCzu9C3u41lKZGf2mM0e52aPdRUOpt88fqTV-LP2btkzcTHFnmOlXe5BBmxeFQ7L3pq9_r217f9V34FF5UIecifHXZifPL3YPQYiE6xBpdnt1WCh1W23I1f2bs46XLY70dV1LR-V79ht2zc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V5QAXoAVESlv2ACdYYXbtdYyEEI-GlCbhkkq5Gc_suqrUOH0EVf1T_MbOOHYiKrW3Xv3Yw-zs7PftzswH8CalkFlMUCOTAx0bNBp9kuq0iMgkGBIq5LxjOHL9w_jXJJmswb-2FkbSKtuYWAdqPyM5I_9gnLSa4_3Zfjk906IaJberrYTGwi0OwtUlU7aLz_s_eH7fGtPbG3_v60ZVQBO721yH1JMnND7yUenLxPuuY9RQEKUMbhLyjjLyDOMyj1npmQGF2HqGLWTIIUqjAw75D2JrM1lR3d7PZeS3tpZbjpjTaOeySVOk05TqxZKcZJi8y9Wldv9vhCt0e-NCtt7nek_hcQNQ1deFR23AWqg24Ukr_qCaWPAMjgbD0ejbJzW-nOnjSv-ugjqeoiRKUvCKBJRLFlI98artXK7wSrG5sValUFNR8yLVCFccqaLyill1mOJJWD59Dof3Yt8XsF7NqvASVGaZvZEpbeGZtUYF2hCQEJGHTbtZ2YGPrQlzalqai7LGSb5qxixmz9nseW323HXg3fKf00VDjzu_3m5nJm8W90W-csUOvG9na_X69tG27h7tNTzsj4eDfLA_OngFj4wUWtSplduwPj__G3YY_sxxt_Y5BX_u28mvAU1JGIs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9xADLbQIlW99AVVt6VlDu0JRqSTzYRUqhCvFRRIUQXS3tLYniAkNkvLVoi_xq_Dk53sCqRy45rHHDyO_X0Z2x_A55RcFmOCGoUc6J5Bo5GTVKdlRCZBl1Dp_3cc5XbvtPdjkAzm4LbthfFllW1MbAI1j8j_I18z1o-ak_wcr1WhLOJ4p79x-Ud7BSl_0trKaUxc5MDdXAt9u_q-vyN7_cWY_u7J9p4OCgOaxPXG2qVMTGg44qjiKmFet4IgSqJUgE5CbCkjFkiXMWYVCxtyvZgFwpAhi-iHHkj4n0-FFUUdmN_azY9_TfNAHDfiy5EwHG1tNggtO6Fxr-dLlYxQeX-Qqe39tDjDug-OZ5us138FLwJcVZsT_3oNc65-Ay9bKQgVIsMCnB0e5fnWN3VyPdLntf5ZO3U-RF82SY4VeYjua5IaN1DtHHOFN0qMj41GhRp6bS9SQcbiTJU1K-HYbogXbnp1EU6fxMJvoVOPavcOVBYLlyNTxSULh41KjJ1DQkRZNl3Pqi58bU1YUBhw7nU2LorZaGZv9kLMXjRmL2wXVqbvXE7Gezz69FK7M0X41K-KmWN2YbXdrdnt_6_2_vHVluGZOHhxuJ8ffIDnxnddNHWWS9AZ__3nPgoWGuOn4HQKfj-1n98B4u8eHQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LMNNB%3A+Two-in-One+imbalanced+classification+approach+by+combining+metric+learning+and+ensemble+learning&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Qiao%2C+Shaojie&rft.au=Han%2C+Nan&rft.au=Huang%2C+Faliang&rft.au=Yue%2C+Kun&rft.date=2022-05-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=7&rft.spage=7870&rft.epage=7889&rft_id=info:doi/10.1007%2Fs10489-021-02901-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_021_02901_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |