N-soliton solutions and nonlinear dynamics for two generalized Broer–Kaup systems
Under consideration in this paper are two nonlinear evolution models: One is the (1 + 1)-dimensional generalized Broer–Kaup (gBK) system derived by Zhang et al. (Appl Math Comput 219:5837–5848, 2013), and the other is the (2 + 1)-dimensional gBK system reported for the first time. Based on the bilin...
Saved in:
Published in | Nonlinear dynamics Vol. 107; no. 1; pp. 1179 - 1193 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.01.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Under consideration in this paper are two nonlinear evolution models: One is the (1 + 1)-dimensional generalized Broer–Kaup (gBK) system derived by Zhang et al. (Appl Math Comput 219:5837–5848, 2013), and the other is the (2 + 1)-dimensional gBK system reported for the first time. Based on the bilinear forms given in this paper, novel
N
-soliton solutions of these two gBK systems are obtained by using Hirota’s bilinear method. As a comparison, the obtained two-soliton solutions of the (1 + 1)-dimensional gBK system are taken to demonstrate the difference from the known ones constructed by Darboux transformation. In order to understand the nonlinear dynamics localized in the gBK systems, local structures of the obtained one-, two-, three- and four-soliton solutions are shown. This paper reveals that each pair of the obtained
N
-soliton solutions of the gBK systems couple bell and kink soliton dynamics. |
---|---|
AbstractList | Under consideration in this paper are two nonlinear evolution models: One is the (1 + 1)-dimensional generalized Broer–Kaup (gBK) system derived by Zhang et al. (Appl Math Comput 219:5837–5848, 2013), and the other is the (2 + 1)-dimensional gBK system reported for the first time. Based on the bilinear forms given in this paper, novel N-soliton solutions of these two gBK systems are obtained by using Hirota’s bilinear method. As a comparison, the obtained two-soliton solutions of the (1 + 1)-dimensional gBK system are taken to demonstrate the difference from the known ones constructed by Darboux transformation. In order to understand the nonlinear dynamics localized in the gBK systems, local structures of the obtained one-, two-, three- and four-soliton solutions are shown. This paper reveals that each pair of the obtained N-soliton solutions of the gBK systems couple bell and kink soliton dynamics. Under consideration in this paper are two nonlinear evolution models: One is the (1 + 1)-dimensional generalized Broer–Kaup (gBK) system derived by Zhang et al. (Appl Math Comput 219:5837–5848, 2013), and the other is the (2 + 1)-dimensional gBK system reported for the first time. Based on the bilinear forms given in this paper, novel N -soliton solutions of these two gBK systems are obtained by using Hirota’s bilinear method. As a comparison, the obtained two-soliton solutions of the (1 + 1)-dimensional gBK system are taken to demonstrate the difference from the known ones constructed by Darboux transformation. In order to understand the nonlinear dynamics localized in the gBK systems, local structures of the obtained one-, two-, three- and four-soliton solutions are shown. This paper reveals that each pair of the obtained N -soliton solutions of the gBK systems couple bell and kink soliton dynamics. |
Author | Zhang, Sheng Zheng, Xiaowei |
Author_xml | – sequence: 1 givenname: Sheng orcidid: 0000-0002-4631-7033 surname: Zhang fullname: Zhang, Sheng email: szhangchina@126.com organization: School of Mathematical Sciences, Bohai University – sequence: 2 givenname: Xiaowei surname: Zheng fullname: Zheng, Xiaowei organization: School of Mathematical Sciences, Bohai University |
BookMark | eNp9kM1KAzEUhYNUsK2-gKuA69GbZH4ySy3-YdGFCt2FzCQpU6ZJTWYodeU7-IY-iakVBBddXM7mfPeee0ZoYJ3VCJ0SOCcAxUUgBAqSAI1TAINkfYCGJCtYQvNyNkBDKGmaQAmzIzQKYQEAjAIfoufHJLi26ZzFUfuucTZgaRWOB9rGaumx2li5bOqAjfO4Wzs811Z72TbvWuEr77T_-vh8kP0Kh03o9DIco0Mj26BPfnWMXm-uXyZ3yfTp9n5yOU1qRsou0UUpaWlSqUxMn6laKZWlPJeyMFpmVUVozmnFjeEmxq1z4EwbXTFQBa8ywsbobLd35d1br0MnFq73Np4UNCd5yiGnWxffuWrvQvDaiLrp5PbRzsumFQTEtkKxq1DECsVPhWIdUfoPXflmKf1mP8R2UIhmO9f-L9Ue6htcf4k0 |
CitedBy_id | crossref_primary_10_1007_s11071_022_07656_4 crossref_primary_10_1007_s11071_023_08299_9 crossref_primary_10_1007_s11071_023_08539_y crossref_primary_10_1007_s11071_023_08756_5 crossref_primary_10_1155_2022_8144911 crossref_primary_10_3390_math10030486 crossref_primary_10_1177_14613484221095280 crossref_primary_10_1007_s11071_023_08528_1 crossref_primary_10_1155_2022_9942267 crossref_primary_10_1140_epjp_s13360_022_03301_6 crossref_primary_10_1016_j_physleta_2025_130367 crossref_primary_10_3390_math10224171 crossref_primary_10_1155_2022_3240918 crossref_primary_10_2298_TSCI23S1077X crossref_primary_10_1016_j_physleta_2024_130203 crossref_primary_10_1007_s11071_023_08438_2 crossref_primary_10_1007_s11071_023_08467_x crossref_primary_10_1016_j_chaos_2024_114604 crossref_primary_10_1142_S0217984922501160 crossref_primary_10_1016_j_rinp_2022_105435 |
Cites_doi | 10.1017/CBO9780511543043 10.1016/j.chaos.2006.03.020 10.1016/j.aml.2015.07.007 10.1007/s11071-020-05985-w 10.1103/PhysRevLett.98.074102 10.1007/s11071-010-9857-5 10.1016/0375-9601(96)00103-X 10.1007/978-3-662-00922-2 10.1111/sapm.12028 10.1016/S0375-9601(01)00161-X 10.1007/s11071-020-05716-1 10.1155/2021/6664039 10.1016/j.camwa.2010.07.042 10.1103/PhysRevLett.85.4502 10.1016/j.chaos.2009.03.043 10.1142/S0217984919503779 10.1063/1.1666399 10.1007/s11071-011-0272-3 10.1143/JPSJ.41.2141 10.1007/BF02820607 10.1139/cjp-2013-0341 10.3906/fiz-1411-9 10.1007/s11071-016-3143-0 10.1007/s11071-018-4686-z 10.1016/j.chaos.2012.12.004 10.1007/s11071-013-0803-1 10.1007/s11071-017-3429-x 10.1007/s11071-015-2386-5 10.1016/j.camwa.2009.03.020 10.1007/s12043-015-1173-7 10.1016/j.aml.2021.107383 10.1103/PhysRevLett.19.1095 10.1515/ijnsns-2016-0191 10.1016/j.cjph.2020.09.004 10.7498/aps.52.262 10.1007/s11071-013-0980-y 10.1017/CBO9780511623998 10.1142/S0217984912501266 10.1103/PhysRevLett.31.125 10.1007/s11071-016-3144-z 10.1103/PhysRevLett.37.693 10.1063/1.525721 10.1016/S0375-9601(02)00776-4 10.1088/1751-8113/40/2/003 10.1016/j.cnsns.2010.02.011 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s11071-021-07030-w |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-269X |
EndPage | 1193 |
ExternalDocumentID | 10_1007_s11071_021_07030_w |
GrantInformation_xml | – fundername: liaoning baiqianwan talents program of china grantid: 2019year – fundername: national science foundation of china grantid: 11547005 – fundername: natural science foundation of education department of liaoning province of china grantid: LJ2020002 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-e79a29f4adf1105dcddd5486aa7fea5bb12682b8ff8f003c6083efeb30d78b513 |
IEDL.DBID | U2A |
ISSN | 0924-090X |
IngestDate | Fri Jul 25 11:22:11 EDT 2025 Thu Apr 24 22:53:15 EDT 2025 Tue Jul 01 01:52:09 EDT 2025 Fri Feb 21 02:46:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hirota’s bilinear method Nonlinear dynamics soliton solution Bilinear form gBK equations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e79a29f4adf1105dcddd5486aa7fea5bb12682b8ff8f003c6083efeb30d78b513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4631-7033 |
PQID | 2616480621 |
PQPubID | 2043746 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2616480621 crossref_citationtrail_10_1007_s11071_021_07030_w crossref_primary_10_1007_s11071_021_07030_w springer_journals_10_1007_s11071_021_07030_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
PublicationTitle | Nonlinear dynamics |
PublicationTitleAbbrev | Nonlinear Dyn |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Ablowitz, Clarkson (CR8) 1991 Zhao (CR45) 2021; 121 Wazwaz, Kaur (CR47) 2019; 95 Serkin, Hasegawa, Belyaeva (CR17) 2007; 98 Zhang, Han, Tam (CR35) 2013; 219 Wazwaz (CR48) 2017; 87 Ablowitz, Newell (CR2) 1973; 31 Hirota (CR14) 2004 Yan (CR23) 2014; 132 Zhang, Liu (CR24) 2014; 92 Wazwaz, El-Tantawy (CR46) 2017; 88 Gardner, Greene, Kruskal, Miura (CR1) 1967; 19 Zhang, Liu (CR33) 2015; 39 Wang (CR37) 2019; 33 Wang, Dai (CR40) 2013; 74 Wang, Wei (CR25) 2016; 51 Zhang, Zhang (CR34) 2011; 61 Xu, Zhang (CR42) 2013; 73 Calogero, Degasperis (CR6) 1978; 22 Zhang, Gao (CR27) 2016; 83 Lin, Gao, Gai, Meng (CR41) 2011; 64 Wang (CR10) 1996; 213 Wazwaz (CR38) 2012; 26 Meng, Gao, Wang, Xu (CR43) 2012; 69 Serkin, Hasegawa (CR11) 2000; 85 Chen, Liu (CR4) 1976; 37 Weiss, Tabor, Carnevale (CR7) 1983; 24 Zhang, Xia (CR16) 2006; 183 Xu, Zhang, Zhang (CR31) 2021; 2021 Fan (CR13) 2002; 300 Zhang, Hong (CR29) 2018; 19 Zhang, Tong, Wang (CR20) 2009; 58 Lan, Guo (CR44) 2020; 100 Rizvia, Younis, Baleanuc, Iqbal (CR39) 2020; 68 Hirota (CR3) 1973; 14 Wazwaz (CR19) 2008; 200 Matveev, Salle (CR9) 1991 Fan (CR12) 2001; 282 He, Wu (CR15) 2006; 30 Ma, Lee (CR21) 2009; 42 Zhang, Tian, Qian (CR26) 2016; 86 Zhou, Li (CR36) 2003; 52 Zhang, Xia (CR18) 2007; 40 Dai, Wang (CR30) 2020; 102 Hirota, Satsuma (CR5) 1976; 41 Tian, Zhang (CR22) 2013; 47 Dai, Chen, Wang, Fan (CR28) 2017; 87 Li, Ma (CR32) 2011; 16 EG Fan (7030_CR13) 2002; 300 AM Wazwaz (7030_CR19) 2008; 200 BQ Li (7030_CR32) 2011; 16 AM Wazwaz (7030_CR48) 2017; 87 R Hirota (7030_CR14) 2004 F Calogero (7030_CR6) 1978; 22 S Zhang (7030_CR26) 2016; 86 JH He (7030_CR15) 2006; 30 AM Wazwaz (7030_CR46) 2017; 88 MJ Ablowitz (7030_CR2) 1973; 31 DS Wang (7030_CR25) 2016; 51 S Zhang (7030_CR16) 2006; 183 VN Serkin (7030_CR11) 2000; 85 DX Meng (7030_CR43) 2012; 69 CQ Dai (7030_CR30) 2020; 102 GD Lin (7030_CR41) 2011; 64 YF Zhang (7030_CR35) 2013; 219 CS Gardner (7030_CR1) 1967; 19 CQ Dai (7030_CR28) 2017; 87 S Zhang (7030_CR33) 2015; 39 S Zhang (7030_CR34) 2011; 61 YH Wang (7030_CR37) 2019; 33 S Zhang (7030_CR24) 2014; 92 S Zhang (7030_CR18) 2007; 40 ZZ Lan (7030_CR44) 2020; 100 AM Wazwaz (7030_CR38) 2012; 26 J Weiss (7030_CR7) 1983; 24 VN Serkin (7030_CR17) 2007; 98 S Zhang (7030_CR29) 2018; 19 EG Fan (7030_CR12) 2001; 282 S Zhang (7030_CR20) 2009; 58 R Hirota (7030_CR5) 1976; 41 WX Ma (7030_CR21) 2009; 42 B Xu (7030_CR31) 2021; 2021 T Xu (7030_CR42) 2013; 73 AM Wazwaz (7030_CR47) 2019; 95 S Zhang (7030_CR27) 2016; 83 SF Tian (7030_CR22) 2013; 47 XH Zhao (7030_CR45) 2021; 121 VB Matveev (7030_CR9) 1991 ML Wang (7030_CR10) 1996; 213 ZJ Zhou (7030_CR36) 2003; 52 HH Chen (7030_CR4) 1976; 37 R Hirota (7030_CR3) 1973; 14 YY Wang (7030_CR40) 2013; 74 ZY Yan (7030_CR23) 2014; 132 STR Rizvia (7030_CR39) 2020; 68 MJ Ablowitz (7030_CR8) 1991 |
References_xml | – volume: 19 start-page: 1095 year: 1967 end-page: 1097 ident: CR1 article-title: Method for solving the Korteweg-de Vries equation publication-title: Phys. Rev. Lett. – volume: 73 start-page: 485 year: 2013 end-page: 498 ident: CR42 article-title: Fully resonant soliton interactions in the Whitham-Broer-Kaup system based on the double Wronskian solutions publication-title: Nonlinear Dyn. – volume: 69 start-page: 391 year: 2012 end-page: 398 ident: CR43 article-title: Elastic and inelastic interactions of solitons for a variable-coefficient generalized dispersive water-wave system publication-title: Nonlinear Dyn. – volume: 87 start-page: 1685 year: 2017 end-page: 1691 ident: CR48 article-title: Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist publication-title: Nonlinear Dyn. – volume: 183 start-page: 1190 year: 2006 end-page: 1200 ident: CR16 article-title: A generalized F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equations publication-title: Appl. Math. Comput. – volume: 42 start-page: 1356 year: 2009 end-page: 1363 ident: CR21 article-title: A transformed rational function method and exact solutions to 3+1 dimensional Jimbo-Miwa equation publication-title: Chaos Soliton. Fract. – volume: 86 start-page: 1259 year: 2016 end-page: 1267 ident: CR26 article-title: Bilinearization and new multi-soliton solutions for the (4+1)-dimensional Fokas equation publication-title: Pramana-J. Phys. – volume: 31 start-page: 125 year: 1973 end-page: 127 ident: CR2 article-title: Nonlinear evolution equations of physical significance publication-title: Phys. Rev. Lett. – volume: 24 start-page: 522 year: 1983 end-page: 526 ident: CR7 article-title: The Painlevé property for partial differential equations publication-title: J. Math. Phys. – volume: 40 start-page: 227 year: 2007 end-page: 248 ident: CR18 article-title: A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations publication-title: Phys. A Math. Theor. – volume: 39 start-page: 165 year: 2015 end-page: 177 ident: CR33 article-title: The third kind of Darboux transformation and multisoliton solutions for generalized Broer-Kaup equations publication-title: Turk. J. Phys. – volume: 2021 start-page: 6664039 year: 2021 ident: CR31 article-title: Line soliton interactions for shallow ocean-waves and novel solutions with peakon, ring, conical, columnar and lump structures based on fractional KP equation publication-title: Adv. Math. Phys. – volume: 26 start-page: 1250126 year: 2012 ident: CR38 article-title: Multiple soliton solutions for three systems of Broer-Kaup- Kupershmidt equations describing nonlinear and dispersive long gravity waves publication-title: Mod. Phys. Lett. B – volume: 51 start-page: 60 year: 2016 end-page: 67 ident: CR25 article-title: Integrability and exact soluions of a two-component Korteweg-de Vries system publication-title: Appl. Math. Lett. – volume: 47 start-page: 27 year: 2013 end-page: 41 ident: CR22 article-title: Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation publication-title: Chaos Soliton. Fract. – volume: 88 start-page: 3017 year: 2017 end-page: 3021 ident: CR46 article-title: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method publication-title: Nonlinear Dyn. – year: 1991 ident: CR9 publication-title: Darboux Transformation and Soliton – volume: 213 start-page: 279 year: 1996 end-page: 287 ident: CR10 article-title: Exact solutions for a compound KdV-Burgers equation publication-title: Phys. Lett. A – volume: 98 start-page: 074102 year: 2007 ident: CR17 article-title: Nonautonomous solitons in external potentials publication-title: Phys. Rev. Lett. – volume: 92 start-page: 184 year: 2014 end-page: 190 ident: CR24 article-title: Multisoliton solutions of a (2+1)-dimensional variable-coefficient Toda lattice equation via Hirota’s bilinear method publication-title: Can. J. Phys. – volume: 87 start-page: 1675 year: 2017 end-page: 1683 ident: CR28 article-title: Dynamics of light bullets in inhomogeneous cubic-quintic-septimal nonlinear media with PT-symmetric potentials publication-title: Nonlinear Dyn. – volume: 19 start-page: 251 year: 2018 end-page: 262 ident: CR29 article-title: Lax integrability and exact solutions of a variable-coefficient and nonisospectral AKNS hierarchy publication-title: Int. J. Nonlinear Sci. Numer. Simul. – volume: 16 start-page: 144 year: 2011 end-page: 149 ident: CR32 article-title: The non-traveling wave solutions and novel fractal soliton for the (2+1)-dimensional Broer-Kaup equations with variable coefficients publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 83 start-page: 1043 year: 2016 end-page: 1052 ident: CR27 article-title: Exact -soliton solutions and dynamics of a new AKNS equations with time-dependent coefficients publication-title: Nonlinear Dyn. – volume: 68 start-page: 19 year: 2020 end-page: 27 ident: CR39 article-title: Lump and rogue wave solutions for the Broer-Kaup-Kupershmidt system publication-title: Chin. J. Phys. – volume: 58 start-page: 2294 year: 2009 end-page: 2299 ident: CR20 article-title: Exp-function method for a nonlinear ordinary differential equation and new exact solutions of the dispersive long wave equations publication-title: Comput. Math. Appl. – volume: 64 start-page: 197 year: 2011 end-page: 206 ident: CR41 article-title: Extended double Wronskian solutions to the Whitham-Broer-Kaup equations in shallow water publication-title: Nonlinear Dyn. – volume: 37 start-page: 693 year: 1976 end-page: 697 ident: CR4 article-title: Solitons in nonuniform media publication-title: Phys. Rev. Lett. – year: 1991 ident: CR8 publication-title: Solitons, Nonlinear Evolution Equations and Inverse Scattering – volume: 132 start-page: 266 year: 2014 end-page: 284 ident: CR23 article-title: Localized analytical solutions and parameters analysis in the nonlinear dispersive Gross-Pitaevskii mean-field GP(m, n) model with space-modulated nonlinearity and potential publication-title: Stud. Appl. Math. – volume: 14 start-page: 805 year: 1973 end-page: 809 ident: CR3 article-title: Exact envelope-soliton solutions of a nonlinear wave equation publication-title: J. Math. Phys. – volume: 52 start-page: 262 year: 2003 end-page: 266 ident: CR36 article-title: A Darboux transformation and new exact solutions for Broer-Kaup system publication-title: Acta Phys. Sin. – volume: 121 start-page: 107383 year: 2021 ident: CR45 article-title: Dark soliton solutions for a coupled nonlinear Schrödinger system publication-title: Appl. Math. Lett. – volume: 300 start-page: 243 year: 2002 end-page: 249 ident: CR13 article-title: Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems publication-title: Phys. Lett. A – volume: 30 start-page: 700 year: 2006 end-page: 708 ident: CR15 article-title: Exp-function method for nonlinear wave equations publication-title: Chaos Soliton. Fract. – volume: 74 start-page: 429 year: 2013 end-page: 438 ident: CR40 article-title: Elastic interactions between multi-valued foldons and anti-foldons for the (2+1)-dimensional variable coefficient Broer-Kaup system in water waves publication-title: Nonlinear Dyn. – volume: 102 start-page: 1733 year: 2020 end-page: 1741 ident: CR30 article-title: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals publication-title: Nonlinear Dyn. – volume: 100 start-page: 3771 year: 2020 end-page: 3784 ident: CR44 article-title: Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger-Boussinesq system in a homogeneous magnetized plasma publication-title: Nonlinear Dyn. – year: 2004 ident: CR14 publication-title: The Direct Method in Soliton Theory – volume: 200 start-page: 160 year: 2008 end-page: 166 ident: CR19 article-title: The Hirota’s bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation publication-title: Appl. Math. Comput. – volume: 33 start-page: 1950377 year: 2019 ident: CR37 article-title: Construction of rational solutions for the (2+1)-dimensional Broer-Kaup system publication-title: Mod. Phys. Lett. B – volume: 41 start-page: 2141 year: 1976 end-page: 2142 ident: CR5 article-title: -soliton solutions of the KdV equation with loss and nonuniformity terms publication-title: J. Phys. Soc. Jpn. – volume: 219 start-page: 5837 year: 2013 end-page: 5848 ident: CR35 article-title: An integrable hierachy and Darboux transformations, bilinear Bäcklund transformations of a reduced equation publication-title: Appl. Math. Comput. – volume: 95 start-page: 2209 year: 2019 end-page: 2215 ident: CR47 article-title: Complex simplified Hirota's forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-sine-Gordon equation publication-title: Nonlinear Dyn. – volume: 61 start-page: 1923 year: 2011 end-page: 1930 ident: CR34 article-title: An exp-function method for new -soliton solutions with arbitrary functions of a (2+1)-dimensional vcBK system publication-title: Comput. Math. Appl. – volume: 85 start-page: 4502 year: 2000 end-page: 4505 ident: CR11 article-title: Novel soliton solutions of the nonlinear Schrödinger equation model publication-title: Phys. Rev. Lett. – volume: 22 start-page: 270 year: 1978 end-page: 273 ident: CR6 article-title: Exact solution via the spectral transform of a generalization with linearly -dependent coefficients of the modified Korteweg-de Vries equation publication-title: Lett. Nuovo Cim. – volume: 282 start-page: 18 year: 2001 end-page: 22 ident: CR12 article-title: Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MKdV equation publication-title: Phys. Lett. A – volume-title: The Direct Method in Soliton Theory year: 2004 ident: 7030_CR14 doi: 10.1017/CBO9780511543043 – volume: 30 start-page: 700 year: 2006 ident: 7030_CR15 publication-title: Chaos Soliton. Fract. doi: 10.1016/j.chaos.2006.03.020 – volume: 51 start-page: 60 year: 2016 ident: 7030_CR25 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2015.07.007 – volume: 102 start-page: 1733 year: 2020 ident: 7030_CR30 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05985-w – volume: 98 start-page: 074102 year: 2007 ident: 7030_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.074102 – volume: 219 start-page: 5837 year: 2013 ident: 7030_CR35 publication-title: Appl. Math. Comput. – volume: 64 start-page: 197 year: 2011 ident: 7030_CR41 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-010-9857-5 – volume: 213 start-page: 279 year: 1996 ident: 7030_CR10 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(96)00103-X – volume-title: Darboux Transformation and Soliton year: 1991 ident: 7030_CR9 doi: 10.1007/978-3-662-00922-2 – volume: 200 start-page: 160 year: 2008 ident: 7030_CR19 publication-title: Appl. Math. Comput. – volume: 132 start-page: 266 year: 2014 ident: 7030_CR23 publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12028 – volume: 282 start-page: 18 year: 2001 ident: 7030_CR12 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00161-X – volume: 100 start-page: 3771 year: 2020 ident: 7030_CR44 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05716-1 – volume: 2021 start-page: 6664039 year: 2021 ident: 7030_CR31 publication-title: Adv. Math. Phys. doi: 10.1155/2021/6664039 – volume: 61 start-page: 1923 year: 2011 ident: 7030_CR34 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.07.042 – volume: 85 start-page: 4502 year: 2000 ident: 7030_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.4502 – volume: 42 start-page: 1356 year: 2009 ident: 7030_CR21 publication-title: Chaos Soliton. Fract. doi: 10.1016/j.chaos.2009.03.043 – volume: 33 start-page: 1950377 year: 2019 ident: 7030_CR37 publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984919503779 – volume: 14 start-page: 805 year: 1973 ident: 7030_CR3 publication-title: J. Math. Phys. doi: 10.1063/1.1666399 – volume: 69 start-page: 391 year: 2012 ident: 7030_CR43 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-011-0272-3 – volume: 41 start-page: 2141 year: 1976 ident: 7030_CR5 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.41.2141 – volume: 22 start-page: 270 year: 1978 ident: 7030_CR6 publication-title: Lett. Nuovo Cim. doi: 10.1007/BF02820607 – volume: 92 start-page: 184 year: 2014 ident: 7030_CR24 publication-title: Can. J. Phys. doi: 10.1139/cjp-2013-0341 – volume: 39 start-page: 165 year: 2015 ident: 7030_CR33 publication-title: Turk. J. Phys. doi: 10.3906/fiz-1411-9 – volume: 87 start-page: 1675 year: 2017 ident: 7030_CR28 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-3143-0 – volume: 95 start-page: 2209 year: 2019 ident: 7030_CR47 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4686-z – volume: 47 start-page: 27 year: 2013 ident: 7030_CR22 publication-title: Chaos Soliton. Fract. doi: 10.1016/j.chaos.2012.12.004 – volume: 73 start-page: 485 year: 2013 ident: 7030_CR42 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-0803-1 – volume: 88 start-page: 3017 year: 2017 ident: 7030_CR46 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3429-x – volume: 83 start-page: 1043 year: 2016 ident: 7030_CR27 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-2386-5 – volume: 58 start-page: 2294 year: 2009 ident: 7030_CR20 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.03.020 – volume: 86 start-page: 1259 year: 2016 ident: 7030_CR26 publication-title: Pramana-J. Phys. doi: 10.1007/s12043-015-1173-7 – volume: 121 start-page: 107383 year: 2021 ident: 7030_CR45 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2021.107383 – volume: 19 start-page: 1095 year: 1967 ident: 7030_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.19.1095 – volume: 19 start-page: 251 year: 2018 ident: 7030_CR29 publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/ijnsns-2016-0191 – volume: 68 start-page: 19 year: 2020 ident: 7030_CR39 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.09.004 – volume: 52 start-page: 262 year: 2003 ident: 7030_CR36 publication-title: Acta Phys. Sin. doi: 10.7498/aps.52.262 – volume: 74 start-page: 429 year: 2013 ident: 7030_CR40 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-0980-y – volume-title: Solitons, Nonlinear Evolution Equations and Inverse Scattering year: 1991 ident: 7030_CR8 doi: 10.1017/CBO9780511623998 – volume: 26 start-page: 1250126 year: 2012 ident: 7030_CR38 publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984912501266 – volume: 183 start-page: 1190 year: 2006 ident: 7030_CR16 publication-title: Appl. Math. Comput. – volume: 31 start-page: 125 year: 1973 ident: 7030_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.31.125 – volume: 87 start-page: 1685 year: 2017 ident: 7030_CR48 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-3144-z – volume: 37 start-page: 693 year: 1976 ident: 7030_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.37.693 – volume: 24 start-page: 522 year: 1983 ident: 7030_CR7 publication-title: J. Math. Phys. doi: 10.1063/1.525721 – volume: 300 start-page: 243 year: 2002 ident: 7030_CR13 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(02)00776-4 – volume: 40 start-page: 227 year: 2007 ident: 7030_CR18 publication-title: Phys. A Math. Theor. doi: 10.1088/1751-8113/40/2/003 – volume: 16 start-page: 144 year: 2011 ident: 7030_CR32 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.02.011 |
SSID | ssj0003208 |
Score | 2.4382732 |
Snippet | Under consideration in this paper are two nonlinear evolution models: One is the (1 + 1)-dimensional generalized Broer–Kaup (gBK) system derived by Zhang et... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1179 |
SubjectTerms | Automotive Engineering Classical Mechanics Control Dynamical Systems Engineering Mechanical Engineering Nonlinear dynamics Original Paper Solitary waves Vibration |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vejBR1WsVtmDN13Mc7M9iUpLUSyiFnoLm32IIGltUgqe_A_-Q3-Js8m2UcEeckqyJLMzs9_M7nyD0IkLIERLsDTAqpQE4BsJTxglnEbtUIQR1wUD312f9gbBzTAc2oRbZo9Vzn1i4ajlSJgc-TkgfRowh3ruxfiNmK5RZnfVttBYRXVwwQyCr_pVp3__sPDFvlf0pHMgyjAZiaEtmymL5yDygVDag8uoPZn9XpoqvPlni7RYebpbaMNCRnxZzvE2WlFpA21a-IitcWYNtP6DW3AHPfZJZs62jVK8UC_MU4nTkhyDT7Asu9FnGIArzmcj_FxyUL-8w7gQn6vJ18fnLZ-Occn3nO2iQbfzdN0jtoMCEWBaOVFRm3ttHXCp4W9DKaSUEKJQziOteJgkrkeZlzCtmQZhCQqATGmIrx0ZsSR0_T1Ug69S-wj7gcMUdxwlFQu4ZlxonfiSA-IUzNVRE7lz4cXC0oubLhevcUWMbAQeg8DjQuDxrIlOF--MS3KNpU-35nMSW0PL4kotmuhsPk_V7f9HO1g-2iFa80yhQ5FsaaFaPpmqI4AfeXJsdewbNOjYLw priority: 102 providerName: ProQuest |
Title | N-soliton solutions and nonlinear dynamics for two generalized Broer–Kaup systems |
URI | https://link.springer.com/article/10.1007/s11071-021-07030-w https://www.proquest.com/docview/2616480621 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7odtGDP6bidI4cvGmh7do0O07ZDxwOUQfzVNImEUG6sXYMPPk_-B_6l_japquKCh5KD01D-_Je8n1J3heAUwtBiBIYaYhVqeFg32jwgFGDU6_thq7HVabAdz2ig7FzNXEnOiksLna7F0uSWU9dJrshU0Hqa-OVuqmxXIeqm3J39OKx3Vn1vy07O4fORGaRzkJMdKrMz3V8HY5KjPltWTQbbXo7sKVhIunk7boLazKqwbaGjEQHZFyDzU96gntwNzLidD_bNCIrlyI8EiTKBTH4nIj8BPqYIFglyXJKHnPd6acXrBc5uZy_v74N-WJGco3neB_Gve795cDQpyYYIYZTYkivze22crhQ-LeuCIUQSEso556S3A0Cy6bMDphSTKGxQoogTCrk1KbwWOBarQOo4FfJQyAtx2SSm6YUkjlcMR4qFbQER5QZMkt5dbAK4_mhlhRPT7Z49ksx5NTgPhrczwzuL-twtnpnlgtq_Fm6UbSJr4Mr9pH0UYeZ1LbqcF60U_n499qO_lf8GDbsNNkhm3BpQCWZL-QJQpAkaMI66_WbUO30H4ZdvF90Rze3zcwPPwCaxtg2 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB5ReqAc2kKpSAtlD3CiK-y1vd4cKgRtQyCQCyDl5q73p0JqnTROFIUT79D34KH6JMz6J4FKcOPgk-2VNfvN7De7nm8Atn0kIVajpyFX5TTE2EhlKjiVPG5GKoqlLRT4zrq8fRme9KLeAtzWtTDut8o6JhaBWveV2yPfQ6bPQ-Fx5u8P_lDXNcqdrtYtNEpYdMx0gilb_uX4G87vDmOt7xdf27TqKkAVwm1ETdyUrGlDqS0ufZFWWmuk7VzK2BoZpanPuGCpsFZYhLziSFKMxZzT07FIIz_AcV_AyzAIms6jROtoFvkDVnTA8zCncfsfvapIpyzVwzwLE3eGl3MyOnm4EM7Z7X8HssU613oLryuCSg5KRK3AgslW4U1FVkkVCvJVWL6nZPgOzrs0d3_S9TMyAzORmSZZKcUhh0RPM_n7SuUEaTIZTfrkZ6l4fXWN4x4O-2b47-ZvR44HpFSXztfg8lks-x4W8avMOpAg9ISRnme0EaG0Qipr00BL5LdK-DZugF8bL1GVmLnrqfErmcswO4MnaPCkMHgyacDu7J1BKeXx5NMb9ZwklVvnyRyEDfhcz9P89uOjfXh6tC1Yal-cnSanx93OR3jFXIlFsc2zAYuj4dhsIvEZpZ8KtBH48dzwvgNDjRVi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL1oBdGFj6pYrZqFOx06z0y6LGqpVoughe5CZpKIINPSmVJw5T_4h36Jdx7tVFHBxawmCTM3N8k5Se65AKcWghAtcaQhVqWGi3OjIQJGDUH9phd6vtCZAt9dj3b67s3AGyxE8We33WdHknlMQ6rSFCWNkdSNMvANWQvSYBuf1GWN6TKs4HRspX7dt1vzudixs5x0JrKMdEdiUITN_NzG16WpxJvfjkizlae9BRsFZCStvI-3YUlFVdgs4CMpBmdchfUFbcEdeOgZcXq3bRiRuXsREUkS5eIYYkxkno0-JghcSTIdkqdcg_r5FdtFfq7GH2_vXTEZkVzvOd6Ffvvq8aJjFBkUjBBtkRjKbwq7qV0hNf6tJ0MpJVIUKoSvlfCCwLIpswOmNdNorJAiIFMa-bUpfRZ4lrMHFfwqtQ_EcU2mhGkqqZgrNBOh1oEjBSLOkFnar4E1Mx4PC3nxNMvFCy-FkVODczQ4zwzOpzU4m9cZ5eIaf5auz_qEFwMt5kgAqctMals1OJ_1U_n699YO_lf8BFbvL9v89rrXPYQ1O42ByPZh6lBJxhN1hMgkCY4z5_sEzRHbUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-soliton+solutions+and+nonlinear+dynamics+for+two+generalized+Broer%E2%80%93Kaup+systems&rft.jtitle=Nonlinear+dynamics&rft.au=Zhang%2C+Sheng&rft.au=Zheng%2C+Xiaowei&rft.date=2022-01-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=107&rft.issue=1&rft.spage=1179&rft.epage=1193&rft_id=info:doi/10.1007%2Fs11071-021-07030-w&rft.externalDocID=10_1007_s11071_021_07030_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |