N-soliton solutions and nonlinear dynamics for two generalized Broer–Kaup systems

Under consideration in this paper are two nonlinear evolution models: One is the (1 + 1)-dimensional generalized Broer–Kaup (gBK) system derived by Zhang et al. (Appl Math Comput 219:5837–5848, 2013), and the other is the (2 + 1)-dimensional gBK system reported for the first time. Based on the bilin...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 107; no. 1; pp. 1179 - 1193
Main Authors Zhang, Sheng, Zheng, Xiaowei
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Under consideration in this paper are two nonlinear evolution models: One is the (1 + 1)-dimensional generalized Broer–Kaup (gBK) system derived by Zhang et al. (Appl Math Comput 219:5837–5848, 2013), and the other is the (2 + 1)-dimensional gBK system reported for the first time. Based on the bilinear forms given in this paper, novel N -soliton solutions of these two gBK systems are obtained by using Hirota’s bilinear method. As a comparison, the obtained two-soliton solutions of the (1 + 1)-dimensional gBK system are taken to demonstrate the difference from the known ones constructed by Darboux transformation. In order to understand the nonlinear dynamics localized in the gBK systems, local structures of the obtained one-, two-, three- and four-soliton solutions are shown. This paper reveals that each pair of the obtained N -soliton solutions of the gBK systems couple bell and kink soliton dynamics.
AbstractList Under consideration in this paper are two nonlinear evolution models: One is the (1 + 1)-dimensional generalized Broer–Kaup (gBK) system derived by Zhang et al. (Appl Math Comput 219:5837–5848, 2013), and the other is the (2 + 1)-dimensional gBK system reported for the first time. Based on the bilinear forms given in this paper, novel N-soliton solutions of these two gBK systems are obtained by using Hirota’s bilinear method. As a comparison, the obtained two-soliton solutions of the (1 + 1)-dimensional gBK system are taken to demonstrate the difference from the known ones constructed by Darboux transformation. In order to understand the nonlinear dynamics localized in the gBK systems, local structures of the obtained one-, two-, three- and four-soliton solutions are shown. This paper reveals that each pair of the obtained N-soliton solutions of the gBK systems couple bell and kink soliton dynamics.
Under consideration in this paper are two nonlinear evolution models: One is the (1 + 1)-dimensional generalized Broer–Kaup (gBK) system derived by Zhang et al. (Appl Math Comput 219:5837–5848, 2013), and the other is the (2 + 1)-dimensional gBK system reported for the first time. Based on the bilinear forms given in this paper, novel N -soliton solutions of these two gBK systems are obtained by using Hirota’s bilinear method. As a comparison, the obtained two-soliton solutions of the (1 + 1)-dimensional gBK system are taken to demonstrate the difference from the known ones constructed by Darboux transformation. In order to understand the nonlinear dynamics localized in the gBK systems, local structures of the obtained one-, two-, three- and four-soliton solutions are shown. This paper reveals that each pair of the obtained N -soliton solutions of the gBK systems couple bell and kink soliton dynamics.
Author Zhang, Sheng
Zheng, Xiaowei
Author_xml – sequence: 1
  givenname: Sheng
  orcidid: 0000-0002-4631-7033
  surname: Zhang
  fullname: Zhang, Sheng
  email: szhangchina@126.com
  organization: School of Mathematical Sciences, Bohai University
– sequence: 2
  givenname: Xiaowei
  surname: Zheng
  fullname: Zheng, Xiaowei
  organization: School of Mathematical Sciences, Bohai University
BookMark eNp9kM1KAzEUhYNUsK2-gKuA69GbZH4ySy3-YdGFCt2FzCQpU6ZJTWYodeU7-IY-iakVBBddXM7mfPeee0ZoYJ3VCJ0SOCcAxUUgBAqSAI1TAINkfYCGJCtYQvNyNkBDKGmaQAmzIzQKYQEAjAIfoufHJLi26ZzFUfuucTZgaRWOB9rGaumx2li5bOqAjfO4Wzs811Z72TbvWuEr77T_-vh8kP0Kh03o9DIco0Mj26BPfnWMXm-uXyZ3yfTp9n5yOU1qRsou0UUpaWlSqUxMn6laKZWlPJeyMFpmVUVozmnFjeEmxq1z4EwbXTFQBa8ywsbobLd35d1br0MnFq73Np4UNCd5yiGnWxffuWrvQvDaiLrp5PbRzsumFQTEtkKxq1DECsVPhWIdUfoPXflmKf1mP8R2UIhmO9f-L9Ue6htcf4k0
CitedBy_id crossref_primary_10_1007_s11071_022_07656_4
crossref_primary_10_1007_s11071_023_08299_9
crossref_primary_10_1007_s11071_023_08539_y
crossref_primary_10_1007_s11071_023_08756_5
crossref_primary_10_1155_2022_8144911
crossref_primary_10_3390_math10030486
crossref_primary_10_1177_14613484221095280
crossref_primary_10_1007_s11071_023_08528_1
crossref_primary_10_1155_2022_9942267
crossref_primary_10_1140_epjp_s13360_022_03301_6
crossref_primary_10_1016_j_physleta_2025_130367
crossref_primary_10_3390_math10224171
crossref_primary_10_1155_2022_3240918
crossref_primary_10_2298_TSCI23S1077X
crossref_primary_10_1016_j_physleta_2024_130203
crossref_primary_10_1007_s11071_023_08438_2
crossref_primary_10_1007_s11071_023_08467_x
crossref_primary_10_1016_j_chaos_2024_114604
crossref_primary_10_1142_S0217984922501160
crossref_primary_10_1016_j_rinp_2022_105435
Cites_doi 10.1017/CBO9780511543043
10.1016/j.chaos.2006.03.020
10.1016/j.aml.2015.07.007
10.1007/s11071-020-05985-w
10.1103/PhysRevLett.98.074102
10.1007/s11071-010-9857-5
10.1016/0375-9601(96)00103-X
10.1007/978-3-662-00922-2
10.1111/sapm.12028
10.1016/S0375-9601(01)00161-X
10.1007/s11071-020-05716-1
10.1155/2021/6664039
10.1016/j.camwa.2010.07.042
10.1103/PhysRevLett.85.4502
10.1016/j.chaos.2009.03.043
10.1142/S0217984919503779
10.1063/1.1666399
10.1007/s11071-011-0272-3
10.1143/JPSJ.41.2141
10.1007/BF02820607
10.1139/cjp-2013-0341
10.3906/fiz-1411-9
10.1007/s11071-016-3143-0
10.1007/s11071-018-4686-z
10.1016/j.chaos.2012.12.004
10.1007/s11071-013-0803-1
10.1007/s11071-017-3429-x
10.1007/s11071-015-2386-5
10.1016/j.camwa.2009.03.020
10.1007/s12043-015-1173-7
10.1016/j.aml.2021.107383
10.1103/PhysRevLett.19.1095
10.1515/ijnsns-2016-0191
10.1016/j.cjph.2020.09.004
10.7498/aps.52.262
10.1007/s11071-013-0980-y
10.1017/CBO9780511623998
10.1142/S0217984912501266
10.1103/PhysRevLett.31.125
10.1007/s11071-016-3144-z
10.1103/PhysRevLett.37.693
10.1063/1.525721
10.1016/S0375-9601(02)00776-4
10.1088/1751-8113/40/2/003
10.1016/j.cnsns.2010.02.011
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-021-07030-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 1193
ExternalDocumentID 10_1007_s11071_021_07030_w
GrantInformation_xml – fundername: liaoning baiqianwan talents program of china
  grantid: 2019year
– fundername: national science foundation of china
  grantid: 11547005
– fundername: natural science foundation of education department of liaoning province of china
  grantid: LJ2020002
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-e79a29f4adf1105dcddd5486aa7fea5bb12682b8ff8f003c6083efeb30d78b513
IEDL.DBID U2A
ISSN 0924-090X
IngestDate Fri Jul 25 11:22:11 EDT 2025
Thu Apr 24 22:53:15 EDT 2025
Tue Jul 01 01:52:09 EDT 2025
Fri Feb 21 02:46:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hirota’s bilinear method
Nonlinear dynamics
soliton solution
Bilinear form
gBK equations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e79a29f4adf1105dcddd5486aa7fea5bb12682b8ff8f003c6083efeb30d78b513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4631-7033
PQID 2616480621
PQPubID 2043746
PageCount 15
ParticipantIDs proquest_journals_2616480621
crossref_citationtrail_10_1007_s11071_021_07030_w
crossref_primary_10_1007_s11071_021_07030_w
springer_journals_10_1007_s11071_021_07030_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Ablowitz, Clarkson (CR8) 1991
Zhao (CR45) 2021; 121
Wazwaz, Kaur (CR47) 2019; 95
Serkin, Hasegawa, Belyaeva (CR17) 2007; 98
Zhang, Han, Tam (CR35) 2013; 219
Wazwaz (CR48) 2017; 87
Ablowitz, Newell (CR2) 1973; 31
Hirota (CR14) 2004
Yan (CR23) 2014; 132
Zhang, Liu (CR24) 2014; 92
Wazwaz, El-Tantawy (CR46) 2017; 88
Gardner, Greene, Kruskal, Miura (CR1) 1967; 19
Zhang, Liu (CR33) 2015; 39
Wang (CR37) 2019; 33
Wang, Dai (CR40) 2013; 74
Wang, Wei (CR25) 2016; 51
Zhang, Zhang (CR34) 2011; 61
Xu, Zhang (CR42) 2013; 73
Calogero, Degasperis (CR6) 1978; 22
Zhang, Gao (CR27) 2016; 83
Lin, Gao, Gai, Meng (CR41) 2011; 64
Wang (CR10) 1996; 213
Wazwaz (CR38) 2012; 26
Meng, Gao, Wang, Xu (CR43) 2012; 69
Serkin, Hasegawa (CR11) 2000; 85
Chen, Liu (CR4) 1976; 37
Weiss, Tabor, Carnevale (CR7) 1983; 24
Zhang, Xia (CR16) 2006; 183
Xu, Zhang, Zhang (CR31) 2021; 2021
Fan (CR13) 2002; 300
Zhang, Hong (CR29) 2018; 19
Zhang, Tong, Wang (CR20) 2009; 58
Lan, Guo (CR44) 2020; 100
Rizvia, Younis, Baleanuc, Iqbal (CR39) 2020; 68
Hirota (CR3) 1973; 14
Wazwaz (CR19) 2008; 200
Matveev, Salle (CR9) 1991
Fan (CR12) 2001; 282
He, Wu (CR15) 2006; 30
Ma, Lee (CR21) 2009; 42
Zhang, Tian, Qian (CR26) 2016; 86
Zhou, Li (CR36) 2003; 52
Zhang, Xia (CR18) 2007; 40
Dai, Wang (CR30) 2020; 102
Hirota, Satsuma (CR5) 1976; 41
Tian, Zhang (CR22) 2013; 47
Dai, Chen, Wang, Fan (CR28) 2017; 87
Li, Ma (CR32) 2011; 16
EG Fan (7030_CR13) 2002; 300
AM Wazwaz (7030_CR19) 2008; 200
BQ Li (7030_CR32) 2011; 16
AM Wazwaz (7030_CR48) 2017; 87
R Hirota (7030_CR14) 2004
F Calogero (7030_CR6) 1978; 22
S Zhang (7030_CR26) 2016; 86
JH He (7030_CR15) 2006; 30
AM Wazwaz (7030_CR46) 2017; 88
MJ Ablowitz (7030_CR2) 1973; 31
DS Wang (7030_CR25) 2016; 51
S Zhang (7030_CR16) 2006; 183
VN Serkin (7030_CR11) 2000; 85
DX Meng (7030_CR43) 2012; 69
CQ Dai (7030_CR30) 2020; 102
GD Lin (7030_CR41) 2011; 64
YF Zhang (7030_CR35) 2013; 219
CS Gardner (7030_CR1) 1967; 19
CQ Dai (7030_CR28) 2017; 87
S Zhang (7030_CR33) 2015; 39
S Zhang (7030_CR34) 2011; 61
YH Wang (7030_CR37) 2019; 33
S Zhang (7030_CR24) 2014; 92
S Zhang (7030_CR18) 2007; 40
ZZ Lan (7030_CR44) 2020; 100
AM Wazwaz (7030_CR38) 2012; 26
J Weiss (7030_CR7) 1983; 24
VN Serkin (7030_CR17) 2007; 98
S Zhang (7030_CR29) 2018; 19
EG Fan (7030_CR12) 2001; 282
S Zhang (7030_CR20) 2009; 58
R Hirota (7030_CR5) 1976; 41
WX Ma (7030_CR21) 2009; 42
B Xu (7030_CR31) 2021; 2021
T Xu (7030_CR42) 2013; 73
AM Wazwaz (7030_CR47) 2019; 95
S Zhang (7030_CR27) 2016; 83
SF Tian (7030_CR22) 2013; 47
XH Zhao (7030_CR45) 2021; 121
VB Matveev (7030_CR9) 1991
ML Wang (7030_CR10) 1996; 213
ZJ Zhou (7030_CR36) 2003; 52
HH Chen (7030_CR4) 1976; 37
R Hirota (7030_CR3) 1973; 14
YY Wang (7030_CR40) 2013; 74
ZY Yan (7030_CR23) 2014; 132
STR Rizvia (7030_CR39) 2020; 68
MJ Ablowitz (7030_CR8) 1991
References_xml – volume: 19
  start-page: 1095
  year: 1967
  end-page: 1097
  ident: CR1
  article-title: Method for solving the Korteweg-de Vries equation
  publication-title: Phys. Rev. Lett.
– volume: 73
  start-page: 485
  year: 2013
  end-page: 498
  ident: CR42
  article-title: Fully resonant soliton interactions in the Whitham-Broer-Kaup system based on the double Wronskian solutions
  publication-title: Nonlinear Dyn.
– volume: 69
  start-page: 391
  year: 2012
  end-page: 398
  ident: CR43
  article-title: Elastic and inelastic interactions of solitons for a variable-coefficient generalized dispersive water-wave system
  publication-title: Nonlinear Dyn.
– volume: 87
  start-page: 1685
  year: 2017
  end-page: 1691
  ident: CR48
  article-title: Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist
  publication-title: Nonlinear Dyn.
– volume: 183
  start-page: 1190
  year: 2006
  end-page: 1200
  ident: CR16
  article-title: A generalized F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equations
  publication-title: Appl. Math. Comput.
– volume: 42
  start-page: 1356
  year: 2009
  end-page: 1363
  ident: CR21
  article-title: A transformed rational function method and exact solutions to 3+1 dimensional Jimbo-Miwa equation
  publication-title: Chaos Soliton. Fract.
– volume: 86
  start-page: 1259
  year: 2016
  end-page: 1267
  ident: CR26
  article-title: Bilinearization and new multi-soliton solutions for the (4+1)-dimensional Fokas equation
  publication-title: Pramana-J. Phys.
– volume: 31
  start-page: 125
  year: 1973
  end-page: 127
  ident: CR2
  article-title: Nonlinear evolution equations of physical significance
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 522
  year: 1983
  end-page: 526
  ident: CR7
  article-title: The Painlevé property for partial differential equations
  publication-title: J. Math. Phys.
– volume: 40
  start-page: 227
  year: 2007
  end-page: 248
  ident: CR18
  article-title: A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations
  publication-title: Phys. A Math. Theor.
– volume: 39
  start-page: 165
  year: 2015
  end-page: 177
  ident: CR33
  article-title: The third kind of Darboux transformation and multisoliton solutions for generalized Broer-Kaup equations
  publication-title: Turk. J. Phys.
– volume: 2021
  start-page: 6664039
  year: 2021
  ident: CR31
  article-title: Line soliton interactions for shallow ocean-waves and novel solutions with peakon, ring, conical, columnar and lump structures based on fractional KP equation
  publication-title: Adv. Math. Phys.
– volume: 26
  start-page: 1250126
  year: 2012
  ident: CR38
  article-title: Multiple soliton solutions for three systems of Broer-Kaup- Kupershmidt equations describing nonlinear and dispersive long gravity waves
  publication-title: Mod. Phys. Lett. B
– volume: 51
  start-page: 60
  year: 2016
  end-page: 67
  ident: CR25
  article-title: Integrability and exact soluions of a two-component Korteweg-de Vries system
  publication-title: Appl. Math. Lett.
– volume: 47
  start-page: 27
  year: 2013
  end-page: 41
  ident: CR22
  article-title: Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation
  publication-title: Chaos Soliton. Fract.
– volume: 88
  start-page: 3017
  year: 2017
  end-page: 3021
  ident: CR46
  article-title: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method
  publication-title: Nonlinear Dyn.
– year: 1991
  ident: CR9
  publication-title: Darboux Transformation and Soliton
– volume: 213
  start-page: 279
  year: 1996
  end-page: 287
  ident: CR10
  article-title: Exact solutions for a compound KdV-Burgers equation
  publication-title: Phys. Lett. A
– volume: 98
  start-page: 074102
  year: 2007
  ident: CR17
  article-title: Nonautonomous solitons in external potentials
  publication-title: Phys. Rev. Lett.
– volume: 92
  start-page: 184
  year: 2014
  end-page: 190
  ident: CR24
  article-title: Multisoliton solutions of a (2+1)-dimensional variable-coefficient Toda lattice equation via Hirota’s bilinear method
  publication-title: Can. J. Phys.
– volume: 87
  start-page: 1675
  year: 2017
  end-page: 1683
  ident: CR28
  article-title: Dynamics of light bullets in inhomogeneous cubic-quintic-septimal nonlinear media with PT-symmetric potentials
  publication-title: Nonlinear Dyn.
– volume: 19
  start-page: 251
  year: 2018
  end-page: 262
  ident: CR29
  article-title: Lax integrability and exact solutions of a variable-coefficient and nonisospectral AKNS hierarchy
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
– volume: 16
  start-page: 144
  year: 2011
  end-page: 149
  ident: CR32
  article-title: The non-traveling wave solutions and novel fractal soliton for the (2+1)-dimensional Broer-Kaup equations with variable coefficients
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 83
  start-page: 1043
  year: 2016
  end-page: 1052
  ident: CR27
  article-title: Exact -soliton solutions and dynamics of a new AKNS equations with time-dependent coefficients
  publication-title: Nonlinear Dyn.
– volume: 68
  start-page: 19
  year: 2020
  end-page: 27
  ident: CR39
  article-title: Lump and rogue wave solutions for the Broer-Kaup-Kupershmidt system
  publication-title: Chin. J. Phys.
– volume: 58
  start-page: 2294
  year: 2009
  end-page: 2299
  ident: CR20
  article-title: Exp-function method for a nonlinear ordinary differential equation and new exact solutions of the dispersive long wave equations
  publication-title: Comput. Math. Appl.
– volume: 64
  start-page: 197
  year: 2011
  end-page: 206
  ident: CR41
  article-title: Extended double Wronskian solutions to the Whitham-Broer-Kaup equations in shallow water
  publication-title: Nonlinear Dyn.
– volume: 37
  start-page: 693
  year: 1976
  end-page: 697
  ident: CR4
  article-title: Solitons in nonuniform media
  publication-title: Phys. Rev. Lett.
– year: 1991
  ident: CR8
  publication-title: Solitons, Nonlinear Evolution Equations and Inverse Scattering
– volume: 132
  start-page: 266
  year: 2014
  end-page: 284
  ident: CR23
  article-title: Localized analytical solutions and parameters analysis in the nonlinear dispersive Gross-Pitaevskii mean-field GP(m, n) model with space-modulated nonlinearity and potential
  publication-title: Stud. Appl. Math.
– volume: 14
  start-page: 805
  year: 1973
  end-page: 809
  ident: CR3
  article-title: Exact envelope-soliton solutions of a nonlinear wave equation
  publication-title: J. Math. Phys.
– volume: 52
  start-page: 262
  year: 2003
  end-page: 266
  ident: CR36
  article-title: A Darboux transformation and new exact solutions for Broer-Kaup system
  publication-title: Acta Phys. Sin.
– volume: 121
  start-page: 107383
  year: 2021
  ident: CR45
  article-title: Dark soliton solutions for a coupled nonlinear Schrödinger system
  publication-title: Appl. Math. Lett.
– volume: 300
  start-page: 243
  year: 2002
  end-page: 249
  ident: CR13
  article-title: Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems
  publication-title: Phys. Lett. A
– volume: 30
  start-page: 700
  year: 2006
  end-page: 708
  ident: CR15
  article-title: Exp-function method for nonlinear wave equations
  publication-title: Chaos Soliton. Fract.
– volume: 74
  start-page: 429
  year: 2013
  end-page: 438
  ident: CR40
  article-title: Elastic interactions between multi-valued foldons and anti-foldons for the (2+1)-dimensional variable coefficient Broer-Kaup system in water waves
  publication-title: Nonlinear Dyn.
– volume: 102
  start-page: 1733
  year: 2020
  end-page: 1741
  ident: CR30
  article-title: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals
  publication-title: Nonlinear Dyn.
– volume: 100
  start-page: 3771
  year: 2020
  end-page: 3784
  ident: CR44
  article-title: Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger-Boussinesq system in a homogeneous magnetized plasma
  publication-title: Nonlinear Dyn.
– year: 2004
  ident: CR14
  publication-title: The Direct Method in Soliton Theory
– volume: 200
  start-page: 160
  year: 2008
  end-page: 166
  ident: CR19
  article-title: The Hirota’s bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation
  publication-title: Appl. Math. Comput.
– volume: 33
  start-page: 1950377
  year: 2019
  ident: CR37
  article-title: Construction of rational solutions for the (2+1)-dimensional Broer-Kaup system
  publication-title: Mod. Phys. Lett. B
– volume: 41
  start-page: 2141
  year: 1976
  end-page: 2142
  ident: CR5
  article-title: -soliton solutions of the KdV equation with loss and nonuniformity terms
  publication-title: J. Phys. Soc. Jpn.
– volume: 219
  start-page: 5837
  year: 2013
  end-page: 5848
  ident: CR35
  article-title: An integrable hierachy and Darboux transformations, bilinear Bäcklund transformations of a reduced equation
  publication-title: Appl. Math. Comput.
– volume: 95
  start-page: 2209
  year: 2019
  end-page: 2215
  ident: CR47
  article-title: Complex simplified Hirota's forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-sine-Gordon equation
  publication-title: Nonlinear Dyn.
– volume: 61
  start-page: 1923
  year: 2011
  end-page: 1930
  ident: CR34
  article-title: An exp-function method for new -soliton solutions with arbitrary functions of a (2+1)-dimensional vcBK system
  publication-title: Comput. Math. Appl.
– volume: 85
  start-page: 4502
  year: 2000
  end-page: 4505
  ident: CR11
  article-title: Novel soliton solutions of the nonlinear Schrödinger equation model
  publication-title: Phys. Rev. Lett.
– volume: 22
  start-page: 270
  year: 1978
  end-page: 273
  ident: CR6
  article-title: Exact solution via the spectral transform of a generalization with linearly -dependent coefficients of the modified Korteweg-de Vries equation
  publication-title: Lett. Nuovo Cim.
– volume: 282
  start-page: 18
  year: 2001
  end-page: 22
  ident: CR12
  article-title: Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MKdV equation
  publication-title: Phys. Lett. A
– volume-title: The Direct Method in Soliton Theory
  year: 2004
  ident: 7030_CR14
  doi: 10.1017/CBO9780511543043
– volume: 30
  start-page: 700
  year: 2006
  ident: 7030_CR15
  publication-title: Chaos Soliton. Fract.
  doi: 10.1016/j.chaos.2006.03.020
– volume: 51
  start-page: 60
  year: 2016
  ident: 7030_CR25
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2015.07.007
– volume: 102
  start-page: 1733
  year: 2020
  ident: 7030_CR30
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05985-w
– volume: 98
  start-page: 074102
  year: 2007
  ident: 7030_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.074102
– volume: 219
  start-page: 5837
  year: 2013
  ident: 7030_CR35
  publication-title: Appl. Math. Comput.
– volume: 64
  start-page: 197
  year: 2011
  ident: 7030_CR41
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-010-9857-5
– volume: 213
  start-page: 279
  year: 1996
  ident: 7030_CR10
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(96)00103-X
– volume-title: Darboux Transformation and Soliton
  year: 1991
  ident: 7030_CR9
  doi: 10.1007/978-3-662-00922-2
– volume: 200
  start-page: 160
  year: 2008
  ident: 7030_CR19
  publication-title: Appl. Math. Comput.
– volume: 132
  start-page: 266
  year: 2014
  ident: 7030_CR23
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12028
– volume: 282
  start-page: 18
  year: 2001
  ident: 7030_CR12
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00161-X
– volume: 100
  start-page: 3771
  year: 2020
  ident: 7030_CR44
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05716-1
– volume: 2021
  start-page: 6664039
  year: 2021
  ident: 7030_CR31
  publication-title: Adv. Math. Phys.
  doi: 10.1155/2021/6664039
– volume: 61
  start-page: 1923
  year: 2011
  ident: 7030_CR34
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.07.042
– volume: 85
  start-page: 4502
  year: 2000
  ident: 7030_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.4502
– volume: 42
  start-page: 1356
  year: 2009
  ident: 7030_CR21
  publication-title: Chaos Soliton. Fract.
  doi: 10.1016/j.chaos.2009.03.043
– volume: 33
  start-page: 1950377
  year: 2019
  ident: 7030_CR37
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984919503779
– volume: 14
  start-page: 805
  year: 1973
  ident: 7030_CR3
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1666399
– volume: 69
  start-page: 391
  year: 2012
  ident: 7030_CR43
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-011-0272-3
– volume: 41
  start-page: 2141
  year: 1976
  ident: 7030_CR5
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.41.2141
– volume: 22
  start-page: 270
  year: 1978
  ident: 7030_CR6
  publication-title: Lett. Nuovo Cim.
  doi: 10.1007/BF02820607
– volume: 92
  start-page: 184
  year: 2014
  ident: 7030_CR24
  publication-title: Can. J. Phys.
  doi: 10.1139/cjp-2013-0341
– volume: 39
  start-page: 165
  year: 2015
  ident: 7030_CR33
  publication-title: Turk. J. Phys.
  doi: 10.3906/fiz-1411-9
– volume: 87
  start-page: 1675
  year: 2017
  ident: 7030_CR28
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-3143-0
– volume: 95
  start-page: 2209
  year: 2019
  ident: 7030_CR47
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4686-z
– volume: 47
  start-page: 27
  year: 2013
  ident: 7030_CR22
  publication-title: Chaos Soliton. Fract.
  doi: 10.1016/j.chaos.2012.12.004
– volume: 73
  start-page: 485
  year: 2013
  ident: 7030_CR42
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-0803-1
– volume: 88
  start-page: 3017
  year: 2017
  ident: 7030_CR46
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3429-x
– volume: 83
  start-page: 1043
  year: 2016
  ident: 7030_CR27
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-2386-5
– volume: 58
  start-page: 2294
  year: 2009
  ident: 7030_CR20
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.03.020
– volume: 86
  start-page: 1259
  year: 2016
  ident: 7030_CR26
  publication-title: Pramana-J. Phys.
  doi: 10.1007/s12043-015-1173-7
– volume: 121
  start-page: 107383
  year: 2021
  ident: 7030_CR45
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2021.107383
– volume: 19
  start-page: 1095
  year: 1967
  ident: 7030_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.19.1095
– volume: 19
  start-page: 251
  year: 2018
  ident: 7030_CR29
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/ijnsns-2016-0191
– volume: 68
  start-page: 19
  year: 2020
  ident: 7030_CR39
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2020.09.004
– volume: 52
  start-page: 262
  year: 2003
  ident: 7030_CR36
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.52.262
– volume: 74
  start-page: 429
  year: 2013
  ident: 7030_CR40
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-0980-y
– volume-title: Solitons, Nonlinear Evolution Equations and Inverse Scattering
  year: 1991
  ident: 7030_CR8
  doi: 10.1017/CBO9780511623998
– volume: 26
  start-page: 1250126
  year: 2012
  ident: 7030_CR38
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984912501266
– volume: 183
  start-page: 1190
  year: 2006
  ident: 7030_CR16
  publication-title: Appl. Math. Comput.
– volume: 31
  start-page: 125
  year: 1973
  ident: 7030_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.31.125
– volume: 87
  start-page: 1685
  year: 2017
  ident: 7030_CR48
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-3144-z
– volume: 37
  start-page: 693
  year: 1976
  ident: 7030_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.37.693
– volume: 24
  start-page: 522
  year: 1983
  ident: 7030_CR7
  publication-title: J. Math. Phys.
  doi: 10.1063/1.525721
– volume: 300
  start-page: 243
  year: 2002
  ident: 7030_CR13
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)00776-4
– volume: 40
  start-page: 227
  year: 2007
  ident: 7030_CR18
  publication-title: Phys. A Math. Theor.
  doi: 10.1088/1751-8113/40/2/003
– volume: 16
  start-page: 144
  year: 2011
  ident: 7030_CR32
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.02.011
SSID ssj0003208
Score 2.4382732
Snippet Under consideration in this paper are two nonlinear evolution models: One is the (1 + 1)-dimensional generalized Broer–Kaup (gBK) system derived by Zhang et...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1179
SubjectTerms Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Engineering
Mechanical Engineering
Nonlinear dynamics
Original Paper
Solitary waves
Vibration
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vejBR1WsVtmDN13Mc7M9iUpLUSyiFnoLm32IIGltUgqe_A_-Q3-Js8m2UcEeckqyJLMzs9_M7nyD0IkLIERLsDTAqpQE4BsJTxglnEbtUIQR1wUD312f9gbBzTAc2oRbZo9Vzn1i4ajlSJgc-TkgfRowh3ruxfiNmK5RZnfVttBYRXVwwQyCr_pVp3__sPDFvlf0pHMgyjAZiaEtmymL5yDygVDag8uoPZn9XpoqvPlni7RYebpbaMNCRnxZzvE2WlFpA21a-IitcWYNtP6DW3AHPfZJZs62jVK8UC_MU4nTkhyDT7Asu9FnGIArzmcj_FxyUL-8w7gQn6vJ18fnLZ-Occn3nO2iQbfzdN0jtoMCEWBaOVFRm3ttHXCp4W9DKaSUEKJQziOteJgkrkeZlzCtmQZhCQqATGmIrx0ZsSR0_T1Ug69S-wj7gcMUdxwlFQu4ZlxonfiSA-IUzNVRE7lz4cXC0oubLhevcUWMbAQeg8DjQuDxrIlOF--MS3KNpU-35nMSW0PL4kotmuhsPk_V7f9HO1g-2iFa80yhQ5FsaaFaPpmqI4AfeXJsdewbNOjYLw
  priority: 102
  providerName: ProQuest
Title N-soliton solutions and nonlinear dynamics for two generalized Broer–Kaup systems
URI https://link.springer.com/article/10.1007/s11071-021-07030-w
https://www.proquest.com/docview/2616480621
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7odtGDP6bidI4cvGmh7do0O07ZDxwOUQfzVNImEUG6sXYMPPk_-B_6l_japquKCh5KD01D-_Je8n1J3heAUwtBiBIYaYhVqeFg32jwgFGDU6_thq7HVabAdz2ig7FzNXEnOiksLna7F0uSWU9dJrshU0Hqa-OVuqmxXIeqm3J39OKx3Vn1vy07O4fORGaRzkJMdKrMz3V8HY5KjPltWTQbbXo7sKVhIunk7boLazKqwbaGjEQHZFyDzU96gntwNzLidD_bNCIrlyI8EiTKBTH4nIj8BPqYIFglyXJKHnPd6acXrBc5uZy_v74N-WJGco3neB_Gve795cDQpyYYIYZTYkivze22crhQ-LeuCIUQSEso556S3A0Cy6bMDphSTKGxQoogTCrk1KbwWOBarQOo4FfJQyAtx2SSm6YUkjlcMR4qFbQER5QZMkt5dbAK4_mhlhRPT7Z49ksx5NTgPhrczwzuL-twtnpnlgtq_Fm6UbSJr4Mr9pH0UYeZ1LbqcF60U_n499qO_lf8GDbsNNkhm3BpQCWZL-QJQpAkaMI66_WbUO30H4ZdvF90Rze3zcwPPwCaxtg2
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB5ReqAc2kKpSAtlD3CiK-y1vd4cKgRtQyCQCyDl5q73p0JqnTROFIUT79D34KH6JMz6J4FKcOPgk-2VNfvN7De7nm8Atn0kIVajpyFX5TTE2EhlKjiVPG5GKoqlLRT4zrq8fRme9KLeAtzWtTDut8o6JhaBWveV2yPfQ6bPQ-Fx5u8P_lDXNcqdrtYtNEpYdMx0gilb_uX4G87vDmOt7xdf27TqKkAVwm1ETdyUrGlDqS0ufZFWWmuk7VzK2BoZpanPuGCpsFZYhLziSFKMxZzT07FIIz_AcV_AyzAIms6jROtoFvkDVnTA8zCncfsfvapIpyzVwzwLE3eGl3MyOnm4EM7Z7X8HssU613oLryuCSg5KRK3AgslW4U1FVkkVCvJVWL6nZPgOzrs0d3_S9TMyAzORmSZZKcUhh0RPM_n7SuUEaTIZTfrkZ6l4fXWN4x4O-2b47-ZvR44HpFSXztfg8lks-x4W8avMOpAg9ISRnme0EaG0Qipr00BL5LdK-DZugF8bL1GVmLnrqfErmcswO4MnaPCkMHgyacDu7J1BKeXx5NMb9ZwklVvnyRyEDfhcz9P89uOjfXh6tC1Yal-cnSanx93OR3jFXIlFsc2zAYuj4dhsIvEZpZ8KtBH48dzwvgNDjRVi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL1oBdGFj6pYrZqFOx06z0y6LGqpVoughe5CZpKIINPSmVJw5T_4h36Jdx7tVFHBxawmCTM3N8k5Se65AKcWghAtcaQhVqWGi3OjIQJGDUH9phd6vtCZAt9dj3b67s3AGyxE8We33WdHknlMQ6rSFCWNkdSNMvANWQvSYBuf1GWN6TKs4HRspX7dt1vzudixs5x0JrKMdEdiUITN_NzG16WpxJvfjkizlae9BRsFZCStvI-3YUlFVdgs4CMpBmdchfUFbcEdeOgZcXq3bRiRuXsREUkS5eIYYkxkno0-JghcSTIdkqdcg_r5FdtFfq7GH2_vXTEZkVzvOd6Ffvvq8aJjFBkUjBBtkRjKbwq7qV0hNf6tJ0MpJVIUKoSvlfCCwLIpswOmNdNorJAiIFMa-bUpfRZ4lrMHFfwqtQ_EcU2mhGkqqZgrNBOh1oEjBSLOkFnar4E1Mx4PC3nxNMvFCy-FkVODczQ4zwzOpzU4m9cZ5eIaf5auz_qEFwMt5kgAqctMals1OJ_1U_n699YO_lf8BFbvL9v89rrXPYQ1O42ByPZh6lBJxhN1hMgkCY4z5_sEzRHbUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-soliton+solutions+and+nonlinear+dynamics+for+two+generalized+Broer%E2%80%93Kaup+systems&rft.jtitle=Nonlinear+dynamics&rft.au=Zhang%2C+Sheng&rft.au=Zheng%2C+Xiaowei&rft.date=2022-01-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=107&rft.issue=1&rft.spage=1179&rft.epage=1193&rft_id=info:doi/10.1007%2Fs11071-021-07030-w&rft.externalDocID=10_1007_s11071_021_07030_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon