Combining weighted category-aware contextual information in convolutional neural networks for text classification

Convolutional neural networks (CNNs) are widely used in many natural language processing tasks, which employ some convolutional filters to capture useful semantic features of a text. However, a small window size convolutional filter is short of the ability to capture contextual information, simply i...

Full description

Saved in:
Bibliographic Details
Published inWorld wide web (Bussum) Vol. 23; no. 5; pp. 2815 - 2834
Main Authors Wu, Xin, Cai, Yi, Li, Qing, Xu, Jingyun, Leung, Ho-fung
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Convolutional neural networks (CNNs) are widely used in many natural language processing tasks, which employ some convolutional filters to capture useful semantic features of a text. However, a small window size convolutional filter is short of the ability to capture contextual information, simply increasing the window size may bring the problems of data sparsity and enormous parameters. To capture the contextual information, we propose to use the weighted sum operation to obtain contextual word representation. We present one implicit weighting method and two explicit category-aware weighting methods to assign the weights of the contextual information. Experimental results on five text classification datasets show the effectiveness of our proposed methods.
AbstractList Convolutional neural networks (CNNs) are widely used in many natural language processing tasks, which employ some convolutional filters to capture useful semantic features of a text. However, a small window size convolutional filter is short of the ability to capture contextual information, simply increasing the window size may bring the problems of data sparsity and enormous parameters. To capture the contextual information, we propose to use the weighted sum operation to obtain contextual word representation. We present one implicit weighting method and two explicit category-aware weighting methods to assign the weights of the contextual information. Experimental results on five text classification datasets show the effectiveness of our proposed methods.
Author Wu, Xin
Li, Qing
Cai, Yi
Leung, Ho-fung
Xu, Jingyun
Author_xml – sequence: 1
  givenname: Xin
  surname: Wu
  fullname: Wu, Xin
  organization: School of Software Engineering, South China University of Technology
– sequence: 2
  givenname: Yi
  surname: Cai
  fullname: Cai, Yi
  email: ycai@scut.edu.cn
  organization: School of Software Engineering, South China University of Technology
– sequence: 3
  givenname: Qing
  surname: Li
  fullname: Li, Qing
  organization: Department of Computing, The Hong Kong Polytechnic University
– sequence: 4
  givenname: Jingyun
  surname: Xu
  fullname: Xu, Jingyun
  organization: School of Software Engineering, South China University of Technology
– sequence: 5
  givenname: Ho-fung
  surname: Leung
  fullname: Leung, Ho-fung
  organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong
BookMark eNp9kE9PxCAQxYnRxN3VL-CpiWcUSlvo0Wz8l2ziRRNvhLK0snZhF6hrv720NTHxsKd5k5kf83hzcGqsUQBcYXSDEaK3HuOUIYhwCWObU9ifgBnOKYE4w-Q0asKKqPP3czD3foMQKkiJZ2C_tNtKG22a5KB08xHUOpEiqMa6HoqDcCqR1gT1HTrRJtrU1m1F0NZEPUy-bNsNbRwa1bmxhIN1nz6Jq8kAJrIV3utayxG8AGe1aL26_K0L8PZw_7p8gquXx-fl3QpKgssAFWW4oKSscC4KldJUUikYFRljLEdlXUX7kmUFSXOsCKlVyjKyZpXAdVULVpAFuJ7e3Tm775QPfGM7F416nmYxFJZlZRa30mlLOuu9UzXfOb0VrucY8SFaPkXLY7R8jJb3EWL_IKnD-LnghG6Po2RCfbxjGuX-XB2hfgDmE5OG
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3071393
crossref_primary_10_1007_s11280_022_01102_6
Cites_doi 10.1109/TPAMI.2010.154
10.1023/A:1012491419635
10.18653/v1/D16-1053
10.1007/978-3-319-91452-7_56
10.3115/v1/D14-1167
10.3115/v1/P15-1010
10.3115/1072228.1072378
10.1609/aaai.v29i1.9513
10.18653/v1/P16-1228
10.3115/v1/N15-1140
10.18653/v1/D16-1244
10.1109/ICTAI.2015.57
10.18653/v1/P16-2034
10.3115/1118693.1118704
10.18653/v1/N16-1174
10.18653/v1/N16-1178
10.1038/323533a0
10.1145/1015330.1015435
10.1109/MIS.2019.2899142
10.18653/v1/D17-1201
10.1109/TPAMI.2008.110
10.1007/978-1-4614-3223-4_6
10.1007/s10579-005-7880-9
10.3115/v1/D14-1181
10.1108/eb026526
10.1007/978-3-540-45219-5_7
10.18653/v1/K15-1021
10.3115/v1/P14-2089
10.1016/j.eswa.2018.07.027
10.1109/TAFFC.2017.2716930
10.3115/1219840.1219855
10.24963/ijcai.2017/406
10.1007/978-3-030-02922-7_31
10.3115/1218955.1218990
10.1109/WI.2007.51
10.1016/j.im.2016.04.005
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11280-019-00757-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-1413
EndPage 2834
ExternalDocumentID 10_1007_s11280_019_00757_y
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1SB
203
29R
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LLZTM
M0N
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-e7816739b15a6e272c7ca87a4888509fb391c8463251e33fe2843d8ba1fbfa863
IEDL.DBID U2A
ISSN 1386-145X
IngestDate Fri Jul 25 05:28:23 EDT 2025
Tue Jul 01 04:26:44 EDT 2025
Thu Apr 24 22:49:13 EDT 2025
Fri Feb 21 02:34:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Convolutional neural networks
Word representation
Contextual information
Text classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e7816739b15a6e272c7ca87a4888509fb391c8463251e33fe2843d8ba1fbfa863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2441384494
PQPubID 2034525
PageCount 20
ParticipantIDs proquest_journals_2441384494
crossref_primary_10_1007_s11280_019_00757_y
crossref_citationtrail_10_1007_s11280_019_00757_y
springer_journals_10_1007_s11280_019_00757_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200900
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 9
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Internet and Web Information Systems
PublicationTitle World wide web (Bussum)
PublicationTitleAbbrev World Wide Web
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cotterell, R., Schütze, H.: Morphological word-embeddings. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1287–1292 (2015)
Irsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in language. In: Advances in Neural Information Processing Systems, pp. 2096–2104 (2014)
Li, S., Zhao, Z., Liu, T., Hu, R., Du, X.: Initializing convolutional filters with semantic features for text classification. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1884–1889 (2017)
QuanXWenyinLQiuBTerm weighting schemes for question categorizationIEEE Trans. Pattern Anal. Mach. Intell.20113351009102110.1109/TPAMI.2010.154
YangQRaoYXieHWangJWangFLChanWHCambriaECSegment-level joint topic-sentiment model for online review analysisIEEE Intell. Syst.2019341435010.1109/MIS.2019.2899142
Lan, M., Tan, C.L., Low, H.B.: Proposing a new term weighting scheme for text categorization. In: AAAI, vol. 6, pp. 763–768 (2006)
Wu, X., Cai, Y., Li, Q., Xu, J., Leung, H.f.: Combining contextual information by self-attention mechanism in convolutional neural networks for text classification. In: International Conference on Web Information Systems Engineering, pp. 453–467. Springer (2018)
Pang, B., Lee, L.: Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 115–124. Association for Computational Linguistics (2005)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsNature1986323608853310.1038/323533a0
Socher, R., Bauer, J., Manning, C.D., et al.: Parsing with compositional vector grammars. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 455–465 (2013)
Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., Xu, B.: Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 207–212 (2016)
CoverTMThomasJAElements of Information Theory2012New YorkWiley0762.94001
Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 129–136 (2011)
Wang, S., Manning, C.D.: Baselines and bigrams: Simple, good sentiment and topic classification. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers, vol. 2, pp. 90–94. Association for Computational Linguistics (2012)
Zhang, Y., Roller, S., Wallace, B.: Mgnc-cnn: a simple approach to exploiting multiple word embeddings for sentence classification. arXiv:1603.00968 (2016)
Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine reading, arXiv:1601.06733 (2016)
CollobertRWestonJBottouLKarlenMKavukcuogluKKuksaPNatural language processing (almost) from scratchJ. Mach. Learn. Res.201112Aug249325371280.68161
Hu, Z., Ma, X., Liu, Z., Hovy, E., Xing, E.: Harnessing deep neural networks with logic rules, arXiv:1603.06318 (2016)
Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: AAAI, vol. 333, pp. 2267–2273 (2015)
LiangWXieHRaoYLauRYWangFLUniversal affective model for readers’ emotion classification over short textsExpert Syst. Appl.201811432233310.1016/j.eswa.2018.07.027
Wang, J., Wang, Z., Zhang, D., Yan, J.: Combining knowledge with deep convolutional neural networks for short text classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 2915–2921. AAAI Press (2017)
Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. In: Advances in Neural Information Processing Systems, pp. 1081–1088 (2009)
Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 6000–6010 (2017)
Li, X., Roth, D.: Learning question classifiers. In: Proceedings of the 19th international conference on Computational linguistics, vol. 1, pp. 1–7. Association for Computational Linguistics (2002)
Ng, A.Y.: Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In: Proceedings of the twenty-first international conference on Machine learning, p 78. ACM (2004)
Yin, W., Schütze, H.: Multichannel variable-size convolution for sentence classification. arXiv:1603.04513 (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Post, M., Bergsma, S.: Explicit and implicit syntactic features for text classification. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 866–872 (2013)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate, arXiv:1409.0473 (2014)
Wang, T., Cai, Y., Leung, H.f., Cai, Z., Min, H.: Entropy-based term weighting schemes for text categorization in vsm. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 325–332 (2015)
LeCunYBengioYConvolutional networks for images, speech, and time seriesHandbook Brain Theory Neural Netw.19953361101995
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: Sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)
RaoYXieHLiJJinFWangFLLiQSocial emotion classification of short text via topic-level maximum entropy modelInform. Manag.201653897898610.1016/j.im.2016.04.005
Tang, D., Qin, B., Feng, X., Liu, T.: Target-dependent sentiment classification with long short term memory, arXiv:1512.01100 (2015)
Aggarwal, C.C., Zhai, C.: A survey of text classification algorithms. In: Mining Text Data, pp. 163–222. Springer (2012)
WiebeJWilsonTCardieCAnnotating expressions of opinions and emotions in languageLang. Resour. Eval.2005392–316521010.1007/s10579-005-7880-9
LanMTanCLSuJLuYSupervised and traditional term weighting methods for automatic text categorizationIEEE Trans. Pattern Anal. Mach. Intell.200931472173510.1109/TPAMI.2008.110
Zeiler, M.D.: Adadelta: An adaptive learning rate method. arXiv:1212.5701 (2012)
Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, pp. 649–657 (2015)
Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph and text jointly embedding. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1591–1601 (2014)
Li, Y., Cai, Y., Leung, H.F., Li, Q.: Improving short text modeling by two-level attention networks for sentiment classification. In: International Conference on Database Systems for Advanced Applications, pp. 878–890. Springer (2018)
Santos, C.D., Zadrozny, B.: Learning character-level representations for part-of-speech tagging. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1818–1826 (2014)
Kim, Y.: Convolutional neural networks for sentence classification, arXiv:1408.5882 (2014)
LiXRaoYXieHLauRYKYinJWangFLBootstrapping social emotion classification with semantically rich hybrid neural networksIEEE Trans. Affect. Comput.20178442844210.1109/TAFFC.2017.2716930
Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language inference, arXiv:1606.01933(2016)
Sparck JonesKA statistical interpretation of term specificity and its application in retrievalJ. Document.1972281112110.1108/eb026526
Yu, M., Dredze, M.: Improving lexical embeddings with semantic knowledge. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 545–550 (2014)
Turian, J., Ratinov, L., Bengio, Y.: Word representations: A simple and general method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 384–394. Association for Computational Linguistics (2010)
Chen, X., Xu, L., Liu, Z., Sun, M., Luan, H.: Joint learning of character and word embeddings. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)
Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd annual meeting on Association for Computational Linguistics, p 271. Association for Computational Linguistics (2004)
Yang, C., Lin, K.H.Y., Chen, H.H.: Emotion classification using Web blog corpora. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI’07), pp. 275–278 (2007)
Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)
Debole, F., Sebastiani, F.: Supervised term weighting for automated text
757_CR19
757_CR15
757_CR14
TM Cover (757_CR7) 2012
757_CR13
757_CR57
757_CR12
757_CR56
757_CR11
757_CR55
757_CR10
Q Yang (757_CR51) 2019; 34
757_CR54
757_CR53
757_CR52
Y Rao (757_CR33) 2016; 53
757_CR50
757_CR8
757_CR6
757_CR9
757_CR49
757_CR48
757_CR46
757_CR45
757_CR44
757_CR43
X Li (757_CR21) 2017; 8
757_CR42
757_CR41
757_CR40
Y LeCun (757_CR17) 1995; 3361
DE Rumelhart (757_CR34) 1986; 323
K Sparck Jones (757_CR39) 1972; 28
R Collobert (757_CR5) 2011; 12
757_CR38
757_CR37
J Wiebe (757_CR47) 2005; 39
757_CR36
757_CR35
757_CR31
757_CR30
W Liang (757_CR23) 2018; 114
E Leopold (757_CR18) 2002; 46
757_CR29
757_CR3
757_CR28
757_CR4
757_CR27
757_CR1
757_CR26
757_CR2
757_CR25
757_CR24
757_CR22
757_CR20
X Quan (757_CR32) 2011; 33
M Lan (757_CR16) 2009; 31
References_xml – reference: Chen, X., Xu, L., Liu, Z., Sun, M., Luan, H.: Joint learning of character and word embeddings. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)
– reference: Santos, C.D., Zadrozny, B.: Learning character-level representations for part-of-speech tagging. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1818–1826 (2014)
– reference: CoverTMThomasJAElements of Information Theory2012New YorkWiley0762.94001
– reference: Turian, J., Ratinov, L., Bengio, Y.: Word representations: A simple and general method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 384–394. Association for Computational Linguistics (2010)
– reference: Yang, C., Lin, K.H.Y., Chen, H.H.: Emotion classification using Web blog corpora. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI’07), pp. 275–278 (2007)
– reference: Yu, M., Dredze, M.: Improving lexical embeddings with semantic knowledge. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 545–550 (2014)
– reference: WiebeJWilsonTCardieCAnnotating expressions of opinions and emotions in languageLang. Resour. Eval.2005392–316521010.1007/s10579-005-7880-9
– reference: Post, M., Bergsma, S.: Explicit and implicit syntactic features for text classification. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 866–872 (2013)
– reference: Debole, F., Sebastiani, F.: Supervised term weighting for automated text categorization. In: Text Mining and its Applications, pp. 81–97. Springer (2004)
– reference: Wu, X., Cai, Y., Li, Q., Xu, J., Leung, H.f.: Combining contextual information by self-attention mechanism in convolutional neural networks for text classification. In: International Conference on Web Information Systems Engineering, pp. 453–467. Springer (2018)
– reference: Cotterell, R., Schütze, H.: Morphological word-embeddings. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1287–1292 (2015)
– reference: Zhang, Y., Roller, S., Wallace, B.: Mgnc-cnn: a simple approach to exploiting multiple word embeddings for sentence classification. arXiv:1603.00968 (2016)
– reference: Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., Xu, B.: Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 207–212 (2016)
– reference: Yin, W., Schütze, H.: Multichannel variable-size convolution for sentence classification. arXiv:1603.04513 (2016)
– reference: Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: AAAI, vol. 333, pp. 2267–2273 (2015)
– reference: Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd annual meeting on Association for Computational Linguistics, p 271. Association for Computational Linguistics (2004)
– reference: Irsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in language. In: Advances in Neural Information Processing Systems, pp. 2096–2104 (2014)
– reference: Zeiler, M.D.: Adadelta: An adaptive learning rate method. arXiv:1212.5701 (2012)
– reference: Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate, arXiv:1409.0473 (2014)
– reference: Sparck JonesKA statistical interpretation of term specificity and its application in retrievalJ. Document.1972281112110.1108/eb026526
– reference: Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)
– reference: CollobertRWestonJBottouLKarlenMKavukcuogluKKuksaPNatural language processing (almost) from scratchJ. Mach. Learn. Res.201112Aug249325371280.68161
– reference: Tang, D., Qin, B., Feng, X., Liu, T.: Target-dependent sentiment classification with long short term memory, arXiv:1512.01100 (2015)
– reference: Ng, A.Y.: Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In: Proceedings of the twenty-first international conference on Machine learning, p 78. ACM (2004)
– reference: LanMTanCLSuJLuYSupervised and traditional term weighting methods for automatic text categorizationIEEE Trans. Pattern Anal. Mach. Intell.200931472173510.1109/TPAMI.2008.110
– reference: Li, Y., Cai, Y., Leung, H.F., Li, Q.: Improving short text modeling by two-level attention networks for sentiment classification. In: International Conference on Database Systems for Advanced Applications, pp. 878–890. Springer (2018)
– reference: QuanXWenyinLQiuBTerm weighting schemes for question categorizationIEEE Trans. Pattern Anal. Mach. Intell.20113351009102110.1109/TPAMI.2010.154
– reference: Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)
– reference: Li, S., Zhao, Z., Liu, T., Hu, R., Du, X.: Initializing convolutional filters with semantic features for text classification. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1884–1889 (2017)
– reference: Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, pp. 649–657 (2015)
– reference: Wang, T., Cai, Y., Leung, H.f., Cai, Z., Min, H.: Entropy-based term weighting schemes for text categorization in vsm. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 325–332 (2015)
– reference: Hu, Z., Ma, X., Liu, Z., Hovy, E., Xing, E.: Harnessing deep neural networks with logic rules, arXiv:1603.06318 (2016)
– reference: LiXRaoYXieHLauRYKYinJWangFLBootstrapping social emotion classification with semantically rich hybrid neural networksIEEE Trans. Affect. Comput.20178442844210.1109/TAFFC.2017.2716930
– reference: Pang, B., Lee, L.: Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 115–124. Association for Computational Linguistics (2005)
– reference: RaoYXieHLiJJinFWangFLLiQSocial emotion classification of short text via topic-level maximum entropy modelInform. Manag.201653897898610.1016/j.im.2016.04.005
– reference: Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph and text jointly embedding. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1591–1601 (2014)
– reference: RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsNature1986323608853310.1038/323533a0
– reference: Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: Sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)
– reference: Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. In: Advances in Neural Information Processing Systems, pp. 1081–1088 (2009)
– reference: LeCunYBengioYConvolutional networks for images, speech, and time seriesHandbook Brain Theory Neural Netw.19953361101995
– reference: Aggarwal, C.C., Zhai, C.: A survey of text classification algorithms. In: Mining Text Data, pp. 163–222. Springer (2012)
– reference: Iacobacci, I., Pilehvar, M.T., Navigli, R.: Sensembed: learning sense embeddings for word and relational similarity. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), vol. 1, pp. 95–105 (2015)
– reference: Kim, Y.: Convolutional neural networks for sentence classification, arXiv:1408.5882 (2014)
– reference: Socher, R., Bauer, J., Manning, C.D., et al.: Parsing with compositional vector grammars. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 455–465 (2013)
– reference: YangQRaoYXieHWangJWangFLChanWHCambriaECSegment-level joint topic-sentiment model for online review analysisIEEE Intell. Syst.2019341435010.1109/MIS.2019.2899142
– reference: Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
– reference: Li, X., Roth, D.: Learning question classifiers. In: Proceedings of the 19th international conference on Computational linguistics, vol. 1, pp. 1–7. Association for Computational Linguistics (2002)
– reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 6000–6010 (2017)
– reference: Wang, S., Manning, C.D.: Baselines and bigrams: Simple, good sentiment and topic classification. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers, vol. 2, pp. 90–94. Association for Computational Linguistics (2012)
– reference: Lan, M., Tan, C.L., Low, H.B.: Proposing a new term weighting scheme for text categorization. In: AAAI, vol. 6, pp. 763–768 (2006)
– reference: LiangWXieHRaoYLauRYWangFLUniversal affective model for readers’ emotion classification over short textsExpert Syst. Appl.201811432233310.1016/j.eswa.2018.07.027
– reference: Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 129–136 (2011)
– reference: Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
– reference: Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine reading, arXiv:1601.06733 (2016)
– reference: Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language inference, arXiv:1606.01933(2016)
– reference: Wang, J., Wang, Z., Zhang, D., Yan, J.: Combining knowledge with deep convolutional neural networks for short text classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 2915–2921. AAAI Press (2017)
– reference: LeopoldEKindermannJText categorization with support vector machines. How to represent texts in input space?Mach. Learn.2002461-342344410.1023/A:1012491419635
– volume: 33
  start-page: 1009
  issue: 5
  year: 2011
  ident: 757_CR32
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.154
– ident: 757_CR11
– volume: 46
  start-page: 423
  issue: 1-3
  year: 2002
  ident: 757_CR18
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012491419635
– ident: 757_CR4
  doi: 10.18653/v1/D16-1053
– ident: 757_CR22
  doi: 10.1007/978-3-319-91452-7_56
– ident: 757_CR15
– ident: 757_CR44
  doi: 10.3115/v1/D14-1167
– ident: 757_CR10
  doi: 10.3115/v1/P15-1010
– ident: 757_CR38
– ident: 757_CR43
– ident: 757_CR19
  doi: 10.3115/1072228.1072378
– ident: 757_CR24
– ident: 757_CR14
  doi: 10.1609/aaai.v29i1.9513
– ident: 757_CR9
  doi: 10.18653/v1/P16-1228
– ident: 757_CR31
– volume: 12
  start-page: 2493
  issue: Aug
  year: 2011
  ident: 757_CR5
  publication-title: J. Mach. Learn. Res.
– ident: 757_CR6
  doi: 10.3115/v1/N15-1140
– ident: 757_CR30
  doi: 10.18653/v1/D16-1244
– ident: 757_CR35
– ident: 757_CR45
  doi: 10.1109/ICTAI.2015.57
– ident: 757_CR3
– ident: 757_CR57
  doi: 10.18653/v1/P16-2034
– ident: 757_CR25
– ident: 757_CR29
  doi: 10.3115/1118693.1118704
– ident: 757_CR50
  doi: 10.18653/v1/N16-1174
– ident: 757_CR56
  doi: 10.18653/v1/N16-1178
– ident: 757_CR42
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 757_CR34
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: 757_CR26
  doi: 10.1145/1015330.1015435
– volume: 34
  start-page: 43
  issue: 1
  year: 2019
  ident: 757_CR51
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2019.2899142
– ident: 757_CR20
  doi: 10.18653/v1/D17-1201
– ident: 757_CR13
– volume: 31
  start-page: 721
  issue: 4
  year: 2009
  ident: 757_CR16
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.110
– ident: 757_CR36
– ident: 757_CR2
– ident: 757_CR55
– volume: 3361
  start-page: 1995
  issue: 10
  year: 1995
  ident: 757_CR17
  publication-title: Handbook Brain Theory Neural Netw.
– ident: 757_CR1
  doi: 10.1007/978-1-4614-3223-4_6
– volume: 39
  start-page: 165
  issue: 2–3
  year: 2005
  ident: 757_CR47
  publication-title: Lang. Resour. Eval.
  doi: 10.1007/s10579-005-7880-9
– ident: 757_CR12
  doi: 10.3115/v1/D14-1181
– volume: 28
  start-page: 11
  issue: 1
  year: 1972
  ident: 757_CR39
  publication-title: J. Document.
  doi: 10.1108/eb026526
– ident: 757_CR8
  doi: 10.1007/978-3-540-45219-5_7
– ident: 757_CR41
– ident: 757_CR52
  doi: 10.18653/v1/K15-1021
– ident: 757_CR53
  doi: 10.3115/v1/P14-2089
– volume: 114
  start-page: 322
  year: 2018
  ident: 757_CR23
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.07.027
– volume: 8
  start-page: 428
  issue: 4
  year: 2017
  ident: 757_CR21
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2716930
– ident: 757_CR28
  doi: 10.3115/1219840.1219855
– ident: 757_CR46
  doi: 10.24963/ijcai.2017/406
– ident: 757_CR48
  doi: 10.1007/978-3-030-02922-7_31
– ident: 757_CR27
  doi: 10.3115/1218955.1218990
– ident: 757_CR37
– ident: 757_CR54
– ident: 757_CR49
  doi: 10.1109/WI.2007.51
– volume-title: Elements of Information Theory
  year: 2012
  ident: 757_CR7
– volume: 53
  start-page: 978
  issue: 8
  year: 2016
  ident: 757_CR33
  publication-title: Inform. Manag.
  doi: 10.1016/j.im.2016.04.005
– ident: 757_CR40
SSID ssj0006391
Score 2.2300117
Snippet Convolutional neural networks (CNNs) are widely used in many natural language processing tasks, which employ some convolutional filters to capture useful...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2815
SubjectTerms Artificial neural networks
Classification
Computer Science
Database Management
Information Systems Applications (incl.Internet)
Natural language processing
Neural networks
Operating Systems
Special Issue on Web Information Systems Engineering 2018
Weighting methods
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrFaZQ_eNNjsZjfZk6i0FMEiYqG3JclmT9J3Lf33zmSzrQr2tAvJ5DCTeSSZ-YaQm9AqniYqpwjEQrloCapToUHxWCQt00a7QtrXXtLt85dBPPAXbjOfVlnZRGeo85HBO_J7cENAzXnKH8YTil2j8HXVt9DYJXUwwVLWSP2p3Xt7X9ti8L_lkUsmlPF44MtmyuI5oMCkrJSi3xR09ds1beLNP0-kzvN0DsmBDxmDx1LGR2THDo_J_g8gwRMyAbXWrtVDsHR3nTYPMNUJy0-oWqqpDTAnHQzxAlbyYKkoEvjHkS-_AWEQAS7dx6WHzwKYGiBhYDDOxsQiR3hK-p32x3OX-mYK1ICWzakVkiUiSjWLVWJDERphlBQKFFhC0FBo4JSBYCSCgMdGUWHBb0W51IoVulAyic5IbTga2nMS6ChHEEUJyq65EmlqYyNYDqddXphWbBqEVXzMjEcax4YXn9kGIxl5nwHvM8f7bNUgt2uacYmzsXV2sxJP5nVulm12SIPcVSLbDP-_2sX21S7JXoiHbJdY1iS1-XRhryASmetrv92-AffD2-o
  priority: 102
  providerName: ProQuest
Title Combining weighted category-aware contextual information in convolutional neural networks for text classification
URI https://link.springer.com/article/10.1007/s11280-019-00757-y
https://www.proquest.com/docview/2441384494
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSiPygMbWCKJEztjQS0IBEKISmWKbMeZUIG2gPrvuXMdCgiQmBzJZw8-3yv-7g7gIHZa5JkuORVi4UIeS25yaVDwokS5yFjjE2mvrrPznrjop_2QFDaq0e71k6TX1LNkN1SlBKLKOdk5ySfzsJBi7E5Arl7c_tC_aHOnYZbKeCTSfkiV-XmPr-Zo5mN-exb11qa7CsvBTWTtKV_XYM4N1mGlbsHAgkSuw9KneoIb8IwExnd8YG_-l6crGSGeKAuF6zc9dIyg6aiPX3DzUDOVOIPfNPMa7iFOUp1LP3iU-IghKaOFzJK7Tfgiv3ATet3O3ek5Dz0VuEVhG3MnVZTJJDdRqjMXy9hKq5XUKMcKfYfK4OFZ9EkS9HtcklQOzVdSKqOjylRaZckWNAaPA7cNzCQl1VJUKPNGaJnnLrUyKjHoFZU9Tm0TovpoCxsKjlPfi4diViqZ2FEgOwrPjmLShMOPNU_Tcht_Uu_VHCuC6I0K9FeQ9ULkoglHNRdn07_vtvM_8l1YjCn29nizPWiMhy9uHx2UsWnBvOqetWChfXZ_2cHxpHN9c9vyt_QdaiXiVw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T-QwEB7xKIAC8RTL43ABFVjg2ImTAp1Od-wtx6MCabtgO06FdoFdWO2f4jcy4yQsIB0dVSLZ42L8eT4_5gGwF3mjssQUnBKxcKWPNbeZtrjwhEy9sM6GQNrLq6Rzo_514-4UvDSxMORW2djEYKiLvqM78iOkIZRWKlM_7x84VY2i19WmhEYFi3M_HuGRbXBy9gfndz-K2qfXvzu8rirAHcJtyL1ORaJlZkVsEh_pyGlnUm0QySmyZ2llJhyyskTm91KWHg24LFJrRGlLkyYSx52GWSWRySkyvf33zfIj21cHvDThQsXdOkinCtVDIiAXsIwTS2s-_kiEk93tpwfZwHPtJVisN6jsV4WoZZjyvRVYeJe2cBUe0IjYUFiCjcLNqi8YOVZRsAs3I_PoGXnAo9l_wpHq1KwEAPynluca7thI6TTDJzijDxh2ZSTIHO3qyY0pCK7BzbcoeR1mev2e3wBmZUEpG1M0LVYZnWU-dloUeLZWpTuOXQtEo8fc1XnNqbzGXT7JyEy6z1H3edB9Pm7BwZvMfZXV48ve28305PUKH-QTPLbgsJmySfP_R9v8erRdmOtcX17kF2dX51swH9HxPri0bcPM8PHJ7-AeaGh_BOAxuP1upL8Cf4wWUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIiF6QBSKugVaH9oTWODYiZMDqtrCCgpdIVSkvQXbcU7V8tiF1f41fh0zjsPSSuXGKZEc-zD-PN-MMw-Az4k3qshMxakQC1d6T3NbaIsHT8jcC-tsSKT91c-OLtTPQTqYg4c2F4bCKludGBR1deXojnwXaQhnK1Wo3TqGRZwd9L5e33DqIEV_Wtt2Gg1ETvx0gu7baP_4APf6S5L0Dn__OOKxwwB3CL0x9zoXmZaFFanJfKITp53JtUFU58iktZWFcMjQEq0AL2XtUZnLKrdG1LY2eSZx3XlY0OQVdWDh-2H_7PyJB5D7G3cvz7hQ6SCm7DSJe0gLFBBWcOJszad_0-LM1v3n92xgvd4KLEdzlX1r8PUW5vxwFd48K2K4BjeoUmxoM8Em4Z7VV4zCrCj1hZuJufWM4uFRkne4UizUSnDAdxq5j-DHQSquGR4hNH3E8FNGE5kjG5-CmsLEd3DxKmJeh87waujfA7OyogKOOSoaq4wuCp86LSr0tFXt9lLXBdHKsXSxyjk12_hTzuozk-xLlH0ZZF9Ou7D9NOe6qfHx4teb7faU8byPyhk6u7DTbtls-P-rfXh5tU-wiCgvT4_7JxuwlJCvH-LbNqEzvr3zW2gQje3HiDwGl68N9kchQRvl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+weighted+category-aware+contextual+information+in+convolutional+neural+networks+for+text+classification&rft.jtitle=World+wide+web+%28Bussum%29&rft.au=Wu%2C+Xin&rft.au=Cai%2C+Yi&rft.au=Li%2C+Qing&rft.au=Xu%2C+Jingyun&rft.date=2020-09-01&rft.pub=Springer+US&rft.issn=1386-145X&rft.eissn=1573-1413&rft.volume=23&rft.issue=5&rft.spage=2815&rft.epage=2834&rft_id=info:doi/10.1007%2Fs11280-019-00757-y&rft.externalDocID=10_1007_s11280_019_00757_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-145X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-145X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-145X&client=summon