Gender recognition using four statistical feature techniques: a comparative study of performance

Nowadays, many applications use biometric systems as a security purpose. These systems use fingerprints, iris, retina, hand geometry, etc. that have unique patterns from person to another. The human face is one of the most important organs that has many physiological characteristics such as the subj...

Full description

Saved in:
Bibliographic Details
Published inEvolutionary intelligence Vol. 12; no. 4; pp. 633 - 646
Main Authors Al-wajih, Ebrahim, Ghouti, Lahouari
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1864-5909
1864-5917
DOI10.1007/s12065-019-00264-z

Cover

Abstract Nowadays, many applications use biometric systems as a security purpose. These systems use fingerprints, iris, retina, hand geometry, etc. that have unique patterns from person to another. The human face is one of the most important organs that has many physiological characteristics such as the subject gender, race, age, and mood. Determining the gender of the face can reduce the processing time of large-scale face-based systems and may improve the performance. Many studies were proposed for gender recognition, but several were evaluated using the accuracy as a performance metric which is improper for unbalanced data. Further, they used a grayscale color; and extracted features either from the whole image or equally divided blocks, as a grid. In this paper, novel methods are proposed based on statistical features that have the ability to represent the face landmarks. These features are GIST, pyramid histogram of oriented gradients, GIST based on discrete cosine transform and principal component analysis that are extracted using face local regions. The performances are evaluated using area-under-the-curve that is computed from the receiver operating characteristic or ROC curve. At the end, the acquired performance has been compared by two state-of-the-art techniques that shows that the proposed approaches enhance the performance between 1 and 3%, but the number of features is increased.
AbstractList Nowadays, many applications use biometric systems as a security purpose. These systems use fingerprints, iris, retina, hand geometry, etc. that have unique patterns from person to another. The human face is one of the most important organs that has many physiological characteristics such as the subject gender, race, age, and mood. Determining the gender of the face can reduce the processing time of large-scale face-based systems and may improve the performance. Many studies were proposed for gender recognition, but several were evaluated using the accuracy as a performance metric which is improper for unbalanced data. Further, they used a grayscale color; and extracted features either from the whole image or equally divided blocks, as a grid. In this paper, novel methods are proposed based on statistical features that have the ability to represent the face landmarks. These features are GIST, pyramid histogram of oriented gradients, GIST based on discrete cosine transform and principal component analysis that are extracted using face local regions. The performances are evaluated using area-under-the-curve that is computed from the receiver operating characteristic or ROC curve. At the end, the acquired performance has been compared by two state-of-the-art techniques that shows that the proposed approaches enhance the performance between 1 and 3%, but the number of features is increased.
Author Ghouti, Lahouari
Al-wajih, Ebrahim
Author_xml – sequence: 1
  givenname: Ebrahim
  orcidid: 0000-0002-8418-688X
  surname: Al-wajih
  fullname: Al-wajih, Ebrahim
  email: ebrahim.q.alwajih@gmail.com
  organization: Department of Information and Computer Science, King Fahd University of Petroleum and Minerals, Computer Science Department, Hodeidah University
– sequence: 2
  givenname: Lahouari
  surname: Ghouti
  fullname: Ghouti, Lahouari
  organization: Department of Information and Computer Science, King Fahd University of Petroleum and Minerals
BookMark eNp9kLtOwzAUhi1UJNrCCzBZYg74ksQJG6qgIFVigdk47klx1drBdpDap8clCCSGTucM338u3wSNrLOA0CUl15QQcRMoI2WREVpnhLAyz_YnaEyr1BQ1FaPfntRnaBLCmpCSEZGP0dsc7BI89qDdypponMV9MHaFW9d7HKKKJkSj1Qa3oGLvAUfQ79Z89BBuscLabTvlE_UJie6XO-xa3IFvnd8qq-EcnbZqE-Dip07R68P9y-wxWzzPn2Z3i0xzWscMBCG04BVUmnLe0CqvGDRNw5QSmijFC6qqoqjFkoHgRZlzrfM2F6RUuRAN41N0NcztvDvcFuU6PWDTSsk4ZTxpETRR1UBp70Lw0EptDi86G70yG0mJPPiUg0-ZfMpvn3KfouxftPNmq_zueIgPoZBguwL_d9WR1BdDp4vj
CitedBy_id crossref_primary_10_1007_s11042_021_10762_x
crossref_primary_10_1016_j_jclepro_2024_143463
crossref_primary_10_1016_j_ejrh_2024_102138
crossref_primary_10_1007_s12065_020_00560_z
Cites_doi 10.1016/S0262-8856(97)00070-X
10.1023/A:1011139631724
10.1068/p110337
10.1109/TIFS.2013.2242063
10.1016/j.jvcir.2016.11.002
10.1109/TPAMI.2007.70800
10.1016/j.ins.2012.09.008
10.1007/978-3-642-72201-1_4
10.1016/j.patrec.2015.11.015
10.1016/j.imavis.2012.01.004
10.1007/s00371-013-0774-8
10.1109/TPAMI.2008.233
10.1007/978-3-642-40246-3_55
10.1007/978-3-319-07353-8_13
10.1007/978-0-387-73003-5_92
10.1016/j.patcog.2012.08.003
10.1177/1059712311417737
10.1016/j.patrec.2005.10.010
10.1007/3-540-48762-X_63
10.1007/BF00202386
10.1109/CVPR.2005.388
10.1109/CVPR.2005.177
10.1109/ICITSI.2014.7048244
10.1109/IROS.2009.5354204
10.1037/e530362013-001
10.34028/iajit/17/2/5
10.1109/CEIT.2015.7233141
10.1109/ICME.2005.1521613
10.1109/ICCOINS.2014.6868361
10.1145/1282280.1282340
10.1109/ICPR.2010.297
10.1109/ICPR.2006.173
10.1109/ICIINFS.2014.7036569
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s12065-019-00264-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1864-5917
EndPage 646
ExternalDocumentID 10_1007_s12065_019_00264_z
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
06D
0R~
0VY
1N0
203
29G
29~
2JN
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
5GY
5VS
67Z
6NX
875
8TC
8UJ
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PT4
QOS
R89
RLLFE
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-e7001538e8c133b18482ebbb2aa7c0aa351a85597d2e735643cc4f4706a477b23
IEDL.DBID AGYKE
ISSN 1864-5909
IngestDate Wed Sep 10 05:16:33 EDT 2025
Tue Jul 01 04:03:01 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Fri Feb 21 02:33:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Gender recognition
Pyramid histogram of oriented gradients
Biometric system
Gabor filters
Statistical features
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e7001538e8c133b18482ebbb2aa7c0aa351a85597d2e735643cc4f4706a477b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8418-688X
PQID 2312300271
PQPubID 2043920
PageCount 14
ParticipantIDs proquest_journals_2312300271
crossref_citationtrail_10_1007_s12065_019_00264_z
crossref_primary_10_1007_s12065_019_00264_z
springer_journals_10_1007_s12065_019_00264_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Evolutionary intelligence
PublicationTitleAbbrev Evol. Intel
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Jaswante, Khan, Gour (CR16) 2014; 14
Fawcett (CR31) 2006; 27
JafariBarani, Faez, Jalili (CR5) 2014; 4
Pennebaker, Mitchell (CR39) 1992
CR18
Carson, Thomas, Belongie, Hellerstein, Malik (CR37) 1999
Biswas, Sil, Kumar Kundu, Mohapatra, Konar, Chakraborty (CR8) 2014
Shih (CR19) 2013; 46
Morgan, Ross, Hayes (CR36) 1991; 65
CR15
Oliva, Torralba (CR27) 2001; 42
CR13
Maccoby, Jacklin (CR22) 1974
CR33
CR10
Berbar (CR11) 2014; 30
CR30
Piotrowski, Campbell (CR35) 1982; 11
Mansanet, Albiol, Paredes (CR17) 2016; 70
Mäkinen, Raisamo (CR21) 2008; 30
Abe (CR44) 2005
Moeini, Mozaffari (CR26) 2017; 42
CR2
Tapia, Pérez Flores (CR4) 2013; 8
Haghighat, Zonouz, Abdel-Mottaleb, Wilson, Hancock, Bors, Smith (CR34) 2013
CR3
Zhao, Krishnaswamy, Chellappa, Swets, Weng, Wechsler, Phillips, Bruce, Soulié, Huang (CR42) 1998
Jain (CR38) 1989
CR7
Toews, Arbel (CR14) 2009; 31
CR9
CR24
CR23
Shah, Shah, Shah (CR1) 2014; 3
Ullah, Aboalsamh, Hussain, Muhammad, Bebis (CR6) 2014; 15
CR20
Khan, Nazir, Riaz, Khan (CR29) 2015; 12
CR41
CR40
Vapnik, Vapnik (CR43) 1998
Chu, Huang, Chen (CR12) 2013; 221
Phillips, Beveridge, Draper, Givens, O’Toole, Bolme, Dunlop, Lui, Sahibzada, Weimer (CR28) 2012; 30
Da Rold, Petrosino, Parisi (CR25) 2011; 19
Wolf, Li, Jain (CR32) 2009
Phillips, Wechsler, Huang, Rauss (CR45) 1998; 16
H-C Shih (264_CR19) 2013; 46
EE Maccoby (264_CR22) 1974
264_CR24
T Fawcett (264_CR31) 2006; 27
L Wolf (264_CR32) 2009
VN Vapnik (264_CR43) 1998
S Biswas (264_CR8) 2014
WB Pennebaker (264_CR39) 1992
F Da Rold (264_CR25) 2011; 19
AK Jain (264_CR38) 1989
S Khan (264_CR29) 2015; 12
W Zhao (264_CR42) 1998
LN Piotrowski (264_CR35) 1982; 11
264_CR30
C Carson (264_CR37) 1999
JE Tapia (264_CR4) 2013; 8
M JafariBarani (264_CR5) 2014; 4
I Ullah (264_CR6) 2014; 15
264_CR10
J Mansanet (264_CR17) 2016; 70
A Oliva (264_CR27) 2001; 42
264_CR33
PJ Phillips (264_CR45) 1998; 16
264_CR13
S Abe (264_CR44) 2005
264_CR15
264_CR18
M Toews (264_CR14) 2009; 31
H Moeini (264_CR26) 2017; 42
MA Berbar (264_CR11) 2014; 30
E Mäkinen (264_CR21) 2008; 30
PJ Phillips (264_CR28) 2012; 30
DH Shah (264_CR1) 2014; 3
A Jaswante (264_CR16) 2014; 14
264_CR2
264_CR3
W-S Chu (264_CR12) 2013; 221
M Haghighat (264_CR34) 2013
264_CR41
MJ Morgan (264_CR36) 1991; 65
264_CR40
264_CR9
264_CR20
264_CR23
264_CR7
References_xml – volume: 16
  start-page: 295
  year: 1998
  end-page: 306
  ident: CR45
  article-title: The FERET database and evaluation procedure for face-recognition algorithms
  publication-title: Image Vis Comput
  doi: 10.1016/S0262-8856(97)00070-X
– ident: CR18
– year: 1974
  ident: CR22
  publication-title: The psychology of sex differences
– volume: 42
  start-page: 145
  year: 2001
  end-page: 175
  ident: CR27
  article-title: Modeling the shape of the scene: a holistic representation of the spatial envelope
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1011139631724
– volume: 11
  start-page: 337
  year: 1982
  ident: CR35
  article-title: A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase
  publication-title: Perception
  doi: 10.1068/p110337
– ident: CR2
– volume: 8
  start-page: 488
  year: 2013
  end-page: 499
  ident: CR4
  article-title: Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of LBP, intensity, and shape
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2013.2242063
– ident: CR30
– volume: 3
  start-page: 238
  year: 2014
  end-page: 246
  ident: CR1
  article-title: The exploration of face recognition techniques
  publication-title: Int J Appl Innov Eng Manag (IJAIEM)
– ident: CR10
– volume: 42
  start-page: 1
  year: 2017
  end-page: 13
  ident: CR26
  article-title: Gender dictionary learning for gender classification
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2016.11.002
– ident: CR33
– volume: 30
  start-page: 541
  year: 2008
  end-page: 547
  ident: CR21
  article-title: Evaluation of gender classification methods with automatically detected and aligned faces
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.70800
– volume: 15
  start-page: 801
  year: 2014
  end-page: 811
  ident: CR6
  article-title: Gender classification from facial images using texture descriptors
  publication-title: J Internet Technol
– volume: 221
  start-page: 98
  year: 2013
  end-page: 109
  ident: CR12
  article-title: Gender classification from unaligned facial images using support subspaces
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.09.008
– start-page: 73
  year: 1998
  end-page: 85
  ident: CR42
  article-title: Discriminant analysis of principal components for face recognition
  publication-title: Face recognition
  doi: 10.1007/978-3-642-72201-1_4
– year: 2005
  ident: CR44
  publication-title: Support vector machines for pattern classification
– ident: CR40
– ident: CR23
– volume: 70
  start-page: 80
  year: 2016
  end-page: 86
  ident: CR17
  article-title: Local deep neural networks for gender recognition
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2015.11.015
– volume: 12
  start-page: 182
  year: 2015
  end-page: 189
  ident: CR29
  article-title: Optimized Features selection using hybrid PSO-GA for multi-view gender classification
  publication-title: Int Arab J Inf Technol (IAJIT).
– year: 1989
  ident: CR38
  publication-title: Fundamentals of digital image processing
– volume: 30
  start-page: 177
  year: 2012
  end-page: 185
  ident: CR28
  article-title: The good, the bad, and the ugly face challenge problem
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2012.01.004
– ident: CR3
– ident: CR15
– volume: 30
  start-page: 19
  year: 2014
  end-page: 31
  ident: CR11
  article-title: Three robust features extraction approaches for facial gender classification
  publication-title: Vis Comput
  doi: 10.1007/s00371-013-0774-8
– volume: 14
  start-page: 91
  year: 2014
  end-page: 96
  ident: CR16
  article-title: Back propagation neural network based gender classification technique based on facial features
  publication-title: Int J Comput Sci Netw Secur (IJCSNS)
– volume: 4
  start-page: 108
  year: 2014
  end-page: 115
  ident: CR5
  article-title: Implementation of gabor filters combined with binary features for gender recognition
  publication-title: Int J Electr Comput Eng (IJECE)
– ident: CR13
– ident: CR9
– volume: 31
  start-page: 1567
  year: 2009
  end-page: 1581
  ident: CR14
  article-title: Detection, localization, and sex classification of faces from arbitrary viewpoints and under occlusion
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.233
– start-page: 440
  year: 2013
  end-page: 448
  ident: CR34
  article-title: Identification using encrypted biometrics
  publication-title: Computer analysis of images and patterns
  doi: 10.1007/978-3-642-40246-3_55
– year: 1998
  ident: CR43
  publication-title: Statistical learning theory
– start-page: 109
  year: 2014
  end-page: 116
  ident: CR8
  article-title: Gender recognition using fusion of spatial and temporal features
  publication-title: Advanced computing, networking and informatics-volume 1
  doi: 10.1007/978-3-319-07353-8_13
– start-page: 347
  year: 2009
  end-page: 352
  ident: CR32
  article-title: Face recognition, geometric vs. appearance-based
  publication-title: Encyclopedia of biometrics
  doi: 10.1007/978-0-387-73003-5_92
– ident: CR7
– volume: 46
  start-page: 519
  year: 2013
  end-page: 528
  ident: CR19
  article-title: Robust gender classification using a precise patch histogram
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.08.003
– volume: 19
  start-page: 317
  year: 2011
  end-page: 334
  ident: CR25
  article-title: Male and female robots
  publication-title: Adapt Behav
  doi: 10.1177/1059712311417737
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: CR31
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– start-page: 509
  year: 1999
  end-page: 517
  ident: CR37
  article-title: Blobworld: a system for region-based image indexing and retrieval
  publication-title: International conference on advances in visual information systems
  doi: 10.1007/3-540-48762-X_63
– year: 1992
  ident: CR39
  publication-title: JPEG: still image data compression standard
– volume: 65
  start-page: 113
  year: 1991
  end-page: 119
  ident: CR36
  article-title: The relative importance of local phase and local amplitude in patchwise image reconstruction
  publication-title: Biol Cybern
  doi: 10.1007/BF00202386
– ident: CR41
– ident: CR24
– ident: CR20
– ident: 264_CR7
  doi: 10.1109/CVPR.2005.388
– volume: 4
  start-page: 108
  year: 2014
  ident: 264_CR5
  publication-title: Int J Electr Comput Eng (IJECE)
– volume: 19
  start-page: 317
  year: 2011
  ident: 264_CR25
  publication-title: Adapt Behav
  doi: 10.1177/1059712311417737
– volume-title: JPEG: still image data compression standard
  year: 1992
  ident: 264_CR39
– volume: 27
  start-page: 861
  year: 2006
  ident: 264_CR31
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 16
  start-page: 295
  year: 1998
  ident: 264_CR45
  publication-title: Image Vis Comput
  doi: 10.1016/S0262-8856(97)00070-X
– volume: 65
  start-page: 113
  year: 1991
  ident: 264_CR36
  publication-title: Biol Cybern
  doi: 10.1007/BF00202386
– ident: 264_CR41
  doi: 10.1109/CVPR.2005.177
– ident: 264_CR3
– volume: 30
  start-page: 177
  year: 2012
  ident: 264_CR28
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2012.01.004
– volume-title: Statistical learning theory
  year: 1998
  ident: 264_CR43
– ident: 264_CR15
  doi: 10.1109/ICITSI.2014.7048244
– volume-title: The psychology of sex differences
  year: 1974
  ident: 264_CR22
– volume-title: Support vector machines for pattern classification
  year: 2005
  ident: 264_CR44
– ident: 264_CR24
  doi: 10.1109/IROS.2009.5354204
– volume: 15
  start-page: 801
  year: 2014
  ident: 264_CR6
  publication-title: J Internet Technol
– volume: 3
  start-page: 238
  year: 2014
  ident: 264_CR1
  publication-title: Int J Appl Innov Eng Manag (IJAIEM)
– start-page: 109
  volume-title: Advanced computing, networking and informatics-volume 1
  year: 2014
  ident: 264_CR8
  doi: 10.1007/978-3-319-07353-8_13
– volume: 14
  start-page: 91
  year: 2014
  ident: 264_CR16
  publication-title: Int J Comput Sci Netw Secur (IJCSNS)
– ident: 264_CR23
  doi: 10.1037/e530362013-001
– volume: 70
  start-page: 80
  year: 2016
  ident: 264_CR17
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2015.11.015
– ident: 264_CR33
  doi: 10.34028/iajit/17/2/5
– ident: 264_CR20
  doi: 10.1109/CEIT.2015.7233141
– volume: 42
  start-page: 145
  year: 2001
  ident: 264_CR27
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1011139631724
– volume: 221
  start-page: 98
  year: 2013
  ident: 264_CR12
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.09.008
– volume-title: Fundamentals of digital image processing
  year: 1989
  ident: 264_CR38
– ident: 264_CR10
  doi: 10.1109/ICME.2005.1521613
– start-page: 440
  volume-title: Computer analysis of images and patterns
  year: 2013
  ident: 264_CR34
  doi: 10.1007/978-3-642-40246-3_55
– volume: 8
  start-page: 488
  year: 2013
  ident: 264_CR4
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2013.2242063
– start-page: 73
  volume-title: Face recognition
  year: 1998
  ident: 264_CR42
  doi: 10.1007/978-3-642-72201-1_4
– ident: 264_CR2
  doi: 10.1109/ICCOINS.2014.6868361
– ident: 264_CR30
– volume: 30
  start-page: 541
  year: 2008
  ident: 264_CR21
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.70800
– volume: 12
  start-page: 182
  year: 2015
  ident: 264_CR29
  publication-title: Int Arab J Inf Technol (IAJIT).
– start-page: 509
  volume-title: International conference on advances in visual information systems
  year: 1999
  ident: 264_CR37
  doi: 10.1007/3-540-48762-X_63
– ident: 264_CR40
  doi: 10.1145/1282280.1282340
– ident: 264_CR18
  doi: 10.1109/ICPR.2010.297
– volume: 42
  start-page: 1
  year: 2017
  ident: 264_CR26
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2016.11.002
– ident: 264_CR13
  doi: 10.1109/ICPR.2006.173
– ident: 264_CR9
  doi: 10.1109/ICIINFS.2014.7036569
– volume: 31
  start-page: 1567
  year: 2009
  ident: 264_CR14
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.233
– volume: 11
  start-page: 337
  year: 1982
  ident: 264_CR35
  publication-title: Perception
  doi: 10.1068/p110337
– volume: 46
  start-page: 519
  year: 2013
  ident: 264_CR19
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.08.003
– start-page: 347
  volume-title: Encyclopedia of biometrics
  year: 2009
  ident: 264_CR32
  doi: 10.1007/978-0-387-73003-5_92
– volume: 30
  start-page: 19
  year: 2014
  ident: 264_CR11
  publication-title: Vis Comput
  doi: 10.1007/s00371-013-0774-8
SSID ssj0062074
Score 2.167659
Snippet Nowadays, many applications use biometric systems as a security purpose. These systems use fingerprints, iris, retina, hand geometry, etc. that have unique...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 633
SubjectTerms Applications of Mathematics
Artificial Intelligence
Bioinformatics
Chronology
Comparative studies
Control
Discrete cosine transform
Engineering
Feature extraction
Feature recognition
Gender
Histograms
Mathematical and Computational Engineering
Mechatronics
Organs
Performance enhancement
Principal components analysis
Research Paper
Robotics
Statistical Physics and Dynamical Systems
Title Gender recognition using four statistical feature techniques: a comparative study of performance
URI https://link.springer.com/article/10.1007/s12065-019-00264-z
https://www.proquest.com/docview/2312300271
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0IXPQgihpRJD1405Ju6X55IwYkGj1Jgqe17XY9aBYicOHXO112WSVqwnlnJ7uddmZeOvMG4NJILxAYxykPYk6FzxMaxnFMXYz1imnDYmYbhR-fvOFI3I_dcd4UNiuq3YsrycxTl81uHMMlQt-QWuAg6LICNdcJwqAKtd7dy0O_8MAeZxn7shOglBuyMG-W-V3Lz4BUZpkbF6NZvBnUYVR86arM5L2zmKuOXm6QOG77KwewnyegpLfaMYewY9IG1IvhDiQ_6w3Y-8ZUeASvq5FzZF1vNEmJLZl_IwkqJLYtKWN8Rs2JybhCyZoddnZDJNElyzjJKG3JJCHTsmvhGEaD_vPtkObDGajGUzunxl5Yo7c0gUaYqxAoBtwopbiUvmZSdl1HBhauxNz4XRcTH61FInzmSeH7indPoJpOUnMKRBnj6SRMfEuVk8RCMs90QyV9JrQMPdEEp7BQpHPmcjtA4yMqOZftgka4oFG2oNGyCVfrd6Yr3o5_pVuF4aP8DM8izHwRnyFsd5pwXdixfPy3trPtxM9hl9utkNXItKA6_1yYC8x05qqdb-w2VEa89wWjSvXM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADjwFiMCAHbhApTdMXtwmBBmw7bdJuJUlTLqib2Ljs1-Nk7QoIkDg39cGOY3-y_Rng0sgwFhjHKY8zTkXEc5pkWUYDjPWKacMyZgeF-4OwOxKP42BcDoXNqm73qiTpXup62I1juETom1ALHARdrMMGJgOx3Vsw4p3q_Q05c9zLXoxngoQl5ajMzzK-hqM6x_xWFnXR5n4Pdso0kXSWdt2HNVM0YbdawUBKj2zC9ic-wQN4Xi6GI6uuoElBbGP7C8lRILHDQ46XGSXnxjF6khWH6-yGSKJrLnDiiGfJJCfTerbgEEb3d8PbLi1XKFCNvjWnxpaV8U0zsUYwqhDOxdwopbiUkWZS-oEnYwsqMm4iP8D0RGuRi4iFUkSR4v4RNIpJYY6BKGNCnSd5ZAlt8kxIFho_UTJiQsskFC3wKk2muuQXt2suXtOaGdlqP0Xtp0776aIFV6t_pkt2jT9PtysDpaWnzVLMTxFFIbj2WnBdGa3-_Lu0k_8dv4DN7rDfS3sPg6dT2OL2DrmuljY05m_v5gxzk7k6d1fxAzlA2oo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqI8vTABhaO67zYKqAqr4qBSt2C7dgsKK2gLPx6zm7SAAIk5jg3nH2---T7vgM4MjJKBOZxypOcUxFzS9M8z2mIuV4xbVjOHFH4rh_1BuJ6GA4_sfh9t3v1JDnlNDiVpmJyOs7taU1845g6EQan1IEIQd_nYQGv48Cd9AHvVHdxxJnXYQ4SXBOmLC1pMz_b-Jqa6nrz2xOpzzzdNVgpS0bSme7xOsyZogmr1TgGUkZnE5Y_aQtuwON0SByZdQiNCuKa3J-IRYPEEYm8RjNatsare5KZnuvrGZFE17rgxIvQkpEl45pnsAmD7uXDeY-W4xSoxjibUOOemPF-M4lGYKoQ2iXcKKW4lLFmUrbDQCYOYOTcxO0QSxWthRUxi6SIY8XbW9AoRoXZBqKMibRNbezEbWwuJItMO1UyZkLLNBItCCpPZrrUGncjL56zWiXZeT9D72fe-9l7C45n_4ynSht_rt6rNigro-41w1oVERUC7aAFJ9Wm1Z9_t7bzv-WHsHh_0c1ur_o3u7DE3RHyDS570Ji8vJl9LFMm6sCfxA_pVd7G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gender+recognition+using+four+statistical+feature+techniques%3A+a+comparative+study+of+performance&rft.jtitle=Evolutionary+intelligence&rft.au=Al-wajih%2C+Ebrahim&rft.au=Ghouti%2C+Lahouari&rft.date=2019-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=12&rft.issue=4&rft.spage=633&rft.epage=646&rft_id=info:doi/10.1007%2Fs12065-019-00264-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon