Gender recognition using four statistical feature techniques: a comparative study of performance
Nowadays, many applications use biometric systems as a security purpose. These systems use fingerprints, iris, retina, hand geometry, etc. that have unique patterns from person to another. The human face is one of the most important organs that has many physiological characteristics such as the subj...
Saved in:
Published in | Evolutionary intelligence Vol. 12; no. 4; pp. 633 - 646 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1864-5909 1864-5917 |
DOI | 10.1007/s12065-019-00264-z |
Cover
Abstract | Nowadays, many applications use biometric systems as a security purpose. These systems use fingerprints, iris, retina, hand geometry, etc. that have unique patterns from person to another. The human face is one of the most important organs that has many physiological characteristics such as the subject gender, race, age, and mood. Determining the gender of the face can reduce the processing time of large-scale face-based systems and may improve the performance. Many studies were proposed for gender recognition, but several were evaluated using the accuracy as a performance metric which is improper for unbalanced data. Further, they used a grayscale color; and extracted features either from the whole image or equally divided blocks, as a grid. In this paper, novel methods are proposed based on statistical features that have the ability to represent the face landmarks. These features are GIST, pyramid histogram of oriented gradients, GIST based on discrete cosine transform and principal component analysis that are extracted using face local regions. The performances are evaluated using area-under-the-curve that is computed from the receiver operating characteristic or ROC curve. At the end, the acquired performance has been compared by two state-of-the-art techniques that shows that the proposed approaches enhance the performance between 1 and 3%, but the number of features is increased. |
---|---|
AbstractList | Nowadays, many applications use biometric systems as a security purpose. These systems use fingerprints, iris, retina, hand geometry, etc. that have unique patterns from person to another. The human face is one of the most important organs that has many physiological characteristics such as the subject gender, race, age, and mood. Determining the gender of the face can reduce the processing time of large-scale face-based systems and may improve the performance. Many studies were proposed for gender recognition, but several were evaluated using the accuracy as a performance metric which is improper for unbalanced data. Further, they used a grayscale color; and extracted features either from the whole image or equally divided blocks, as a grid. In this paper, novel methods are proposed based on statistical features that have the ability to represent the face landmarks. These features are GIST, pyramid histogram of oriented gradients, GIST based on discrete cosine transform and principal component analysis that are extracted using face local regions. The performances are evaluated using area-under-the-curve that is computed from the receiver operating characteristic or ROC curve. At the end, the acquired performance has been compared by two state-of-the-art techniques that shows that the proposed approaches enhance the performance between 1 and 3%, but the number of features is increased. |
Author | Ghouti, Lahouari Al-wajih, Ebrahim |
Author_xml | – sequence: 1 givenname: Ebrahim orcidid: 0000-0002-8418-688X surname: Al-wajih fullname: Al-wajih, Ebrahim email: ebrahim.q.alwajih@gmail.com organization: Department of Information and Computer Science, King Fahd University of Petroleum and Minerals, Computer Science Department, Hodeidah University – sequence: 2 givenname: Lahouari surname: Ghouti fullname: Ghouti, Lahouari organization: Department of Information and Computer Science, King Fahd University of Petroleum and Minerals |
BookMark | eNp9kLtOwzAUhi1UJNrCCzBZYg74ksQJG6qgIFVigdk47klx1drBdpDap8clCCSGTucM338u3wSNrLOA0CUl15QQcRMoI2WREVpnhLAyz_YnaEyr1BQ1FaPfntRnaBLCmpCSEZGP0dsc7BI89qDdypponMV9MHaFW9d7HKKKJkSj1Qa3oGLvAUfQ79Z89BBuscLabTvlE_UJie6XO-xa3IFvnd8qq-EcnbZqE-Dip07R68P9y-wxWzzPn2Z3i0xzWscMBCG04BVUmnLe0CqvGDRNw5QSmijFC6qqoqjFkoHgRZlzrfM2F6RUuRAN41N0NcztvDvcFuU6PWDTSsk4ZTxpETRR1UBp70Lw0EptDi86G70yG0mJPPiUg0-ZfMpvn3KfouxftPNmq_zueIgPoZBguwL_d9WR1BdDp4vj |
CitedBy_id | crossref_primary_10_1007_s11042_021_10762_x crossref_primary_10_1016_j_jclepro_2024_143463 crossref_primary_10_1016_j_ejrh_2024_102138 crossref_primary_10_1007_s12065_020_00560_z |
Cites_doi | 10.1016/S0262-8856(97)00070-X 10.1023/A:1011139631724 10.1068/p110337 10.1109/TIFS.2013.2242063 10.1016/j.jvcir.2016.11.002 10.1109/TPAMI.2007.70800 10.1016/j.ins.2012.09.008 10.1007/978-3-642-72201-1_4 10.1016/j.patrec.2015.11.015 10.1016/j.imavis.2012.01.004 10.1007/s00371-013-0774-8 10.1109/TPAMI.2008.233 10.1007/978-3-642-40246-3_55 10.1007/978-3-319-07353-8_13 10.1007/978-0-387-73003-5_92 10.1016/j.patcog.2012.08.003 10.1177/1059712311417737 10.1016/j.patrec.2005.10.010 10.1007/3-540-48762-X_63 10.1007/BF00202386 10.1109/CVPR.2005.388 10.1109/CVPR.2005.177 10.1109/ICITSI.2014.7048244 10.1109/IROS.2009.5354204 10.1037/e530362013-001 10.34028/iajit/17/2/5 10.1109/CEIT.2015.7233141 10.1109/ICME.2005.1521613 10.1109/ICCOINS.2014.6868361 10.1145/1282280.1282340 10.1109/ICPR.2010.297 10.1109/ICPR.2006.173 10.1109/ICIINFS.2014.7036569 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s12065-019-00264-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1864-5917 |
EndPage | 646 |
ExternalDocumentID | 10_1007_s12065_019_00264_z |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 06D 0R~ 0VY 1N0 203 29G 29~ 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 67Z 6NX 875 8TC 8UJ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PT4 QOS R89 RLLFE ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-e7001538e8c133b18482ebbb2aa7c0aa351a85597d2e735643cc4f4706a477b23 |
IEDL.DBID | AGYKE |
ISSN | 1864-5909 |
IngestDate | Wed Sep 10 05:16:33 EDT 2025 Tue Jul 01 04:03:01 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Fri Feb 21 02:33:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Gender recognition Pyramid histogram of oriented gradients Biometric system Gabor filters Statistical features |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e7001538e8c133b18482ebbb2aa7c0aa351a85597d2e735643cc4f4706a477b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8418-688X |
PQID | 2312300271 |
PQPubID | 2043920 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2312300271 crossref_citationtrail_10_1007_s12065_019_00264_z crossref_primary_10_1007_s12065_019_00264_z springer_journals_10_1007_s12065_019_00264_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Evolutionary intelligence |
PublicationTitleAbbrev | Evol. Intel |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Jaswante, Khan, Gour (CR16) 2014; 14 Fawcett (CR31) 2006; 27 JafariBarani, Faez, Jalili (CR5) 2014; 4 Pennebaker, Mitchell (CR39) 1992 CR18 Carson, Thomas, Belongie, Hellerstein, Malik (CR37) 1999 Biswas, Sil, Kumar Kundu, Mohapatra, Konar, Chakraborty (CR8) 2014 Shih (CR19) 2013; 46 Morgan, Ross, Hayes (CR36) 1991; 65 CR15 Oliva, Torralba (CR27) 2001; 42 CR13 Maccoby, Jacklin (CR22) 1974 CR33 CR10 Berbar (CR11) 2014; 30 CR30 Piotrowski, Campbell (CR35) 1982; 11 Mansanet, Albiol, Paredes (CR17) 2016; 70 Mäkinen, Raisamo (CR21) 2008; 30 Abe (CR44) 2005 Moeini, Mozaffari (CR26) 2017; 42 CR2 Tapia, Pérez Flores (CR4) 2013; 8 Haghighat, Zonouz, Abdel-Mottaleb, Wilson, Hancock, Bors, Smith (CR34) 2013 CR3 Zhao, Krishnaswamy, Chellappa, Swets, Weng, Wechsler, Phillips, Bruce, Soulié, Huang (CR42) 1998 Jain (CR38) 1989 CR7 Toews, Arbel (CR14) 2009; 31 CR9 CR24 CR23 Shah, Shah, Shah (CR1) 2014; 3 Ullah, Aboalsamh, Hussain, Muhammad, Bebis (CR6) 2014; 15 CR20 Khan, Nazir, Riaz, Khan (CR29) 2015; 12 CR41 CR40 Vapnik, Vapnik (CR43) 1998 Chu, Huang, Chen (CR12) 2013; 221 Phillips, Beveridge, Draper, Givens, O’Toole, Bolme, Dunlop, Lui, Sahibzada, Weimer (CR28) 2012; 30 Da Rold, Petrosino, Parisi (CR25) 2011; 19 Wolf, Li, Jain (CR32) 2009 Phillips, Wechsler, Huang, Rauss (CR45) 1998; 16 H-C Shih (264_CR19) 2013; 46 EE Maccoby (264_CR22) 1974 264_CR24 T Fawcett (264_CR31) 2006; 27 L Wolf (264_CR32) 2009 VN Vapnik (264_CR43) 1998 S Biswas (264_CR8) 2014 WB Pennebaker (264_CR39) 1992 F Da Rold (264_CR25) 2011; 19 AK Jain (264_CR38) 1989 S Khan (264_CR29) 2015; 12 W Zhao (264_CR42) 1998 LN Piotrowski (264_CR35) 1982; 11 264_CR30 C Carson (264_CR37) 1999 JE Tapia (264_CR4) 2013; 8 M JafariBarani (264_CR5) 2014; 4 I Ullah (264_CR6) 2014; 15 264_CR10 J Mansanet (264_CR17) 2016; 70 A Oliva (264_CR27) 2001; 42 264_CR33 PJ Phillips (264_CR45) 1998; 16 264_CR13 S Abe (264_CR44) 2005 264_CR15 264_CR18 M Toews (264_CR14) 2009; 31 H Moeini (264_CR26) 2017; 42 MA Berbar (264_CR11) 2014; 30 E Mäkinen (264_CR21) 2008; 30 PJ Phillips (264_CR28) 2012; 30 DH Shah (264_CR1) 2014; 3 A Jaswante (264_CR16) 2014; 14 264_CR2 264_CR3 W-S Chu (264_CR12) 2013; 221 M Haghighat (264_CR34) 2013 264_CR41 MJ Morgan (264_CR36) 1991; 65 264_CR40 264_CR9 264_CR20 264_CR23 264_CR7 |
References_xml | – volume: 16 start-page: 295 year: 1998 end-page: 306 ident: CR45 article-title: The FERET database and evaluation procedure for face-recognition algorithms publication-title: Image Vis Comput doi: 10.1016/S0262-8856(97)00070-X – ident: CR18 – year: 1974 ident: CR22 publication-title: The psychology of sex differences – volume: 42 start-page: 145 year: 2001 end-page: 175 ident: CR27 article-title: Modeling the shape of the scene: a holistic representation of the spatial envelope publication-title: Int J Comput Vis doi: 10.1023/A:1011139631724 – volume: 11 start-page: 337 year: 1982 ident: CR35 article-title: A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase publication-title: Perception doi: 10.1068/p110337 – ident: CR2 – volume: 8 start-page: 488 year: 2013 end-page: 499 ident: CR4 article-title: Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of LBP, intensity, and shape publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2013.2242063 – ident: CR30 – volume: 3 start-page: 238 year: 2014 end-page: 246 ident: CR1 article-title: The exploration of face recognition techniques publication-title: Int J Appl Innov Eng Manag (IJAIEM) – ident: CR10 – volume: 42 start-page: 1 year: 2017 end-page: 13 ident: CR26 article-title: Gender dictionary learning for gender classification publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2016.11.002 – ident: CR33 – volume: 30 start-page: 541 year: 2008 end-page: 547 ident: CR21 article-title: Evaluation of gender classification methods with automatically detected and aligned faces publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.70800 – volume: 15 start-page: 801 year: 2014 end-page: 811 ident: CR6 article-title: Gender classification from facial images using texture descriptors publication-title: J Internet Technol – volume: 221 start-page: 98 year: 2013 end-page: 109 ident: CR12 article-title: Gender classification from unaligned facial images using support subspaces publication-title: Inf Sci doi: 10.1016/j.ins.2012.09.008 – start-page: 73 year: 1998 end-page: 85 ident: CR42 article-title: Discriminant analysis of principal components for face recognition publication-title: Face recognition doi: 10.1007/978-3-642-72201-1_4 – year: 2005 ident: CR44 publication-title: Support vector machines for pattern classification – ident: CR40 – ident: CR23 – volume: 70 start-page: 80 year: 2016 end-page: 86 ident: CR17 article-title: Local deep neural networks for gender recognition publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2015.11.015 – volume: 12 start-page: 182 year: 2015 end-page: 189 ident: CR29 article-title: Optimized Features selection using hybrid PSO-GA for multi-view gender classification publication-title: Int Arab J Inf Technol (IAJIT). – year: 1989 ident: CR38 publication-title: Fundamentals of digital image processing – volume: 30 start-page: 177 year: 2012 end-page: 185 ident: CR28 article-title: The good, the bad, and the ugly face challenge problem publication-title: Image Vis Comput doi: 10.1016/j.imavis.2012.01.004 – ident: CR3 – ident: CR15 – volume: 30 start-page: 19 year: 2014 end-page: 31 ident: CR11 article-title: Three robust features extraction approaches for facial gender classification publication-title: Vis Comput doi: 10.1007/s00371-013-0774-8 – volume: 14 start-page: 91 year: 2014 end-page: 96 ident: CR16 article-title: Back propagation neural network based gender classification technique based on facial features publication-title: Int J Comput Sci Netw Secur (IJCSNS) – volume: 4 start-page: 108 year: 2014 end-page: 115 ident: CR5 article-title: Implementation of gabor filters combined with binary features for gender recognition publication-title: Int J Electr Comput Eng (IJECE) – ident: CR13 – ident: CR9 – volume: 31 start-page: 1567 year: 2009 end-page: 1581 ident: CR14 article-title: Detection, localization, and sex classification of faces from arbitrary viewpoints and under occlusion publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.233 – start-page: 440 year: 2013 end-page: 448 ident: CR34 article-title: Identification using encrypted biometrics publication-title: Computer analysis of images and patterns doi: 10.1007/978-3-642-40246-3_55 – year: 1998 ident: CR43 publication-title: Statistical learning theory – start-page: 109 year: 2014 end-page: 116 ident: CR8 article-title: Gender recognition using fusion of spatial and temporal features publication-title: Advanced computing, networking and informatics-volume 1 doi: 10.1007/978-3-319-07353-8_13 – start-page: 347 year: 2009 end-page: 352 ident: CR32 article-title: Face recognition, geometric vs. appearance-based publication-title: Encyclopedia of biometrics doi: 10.1007/978-0-387-73003-5_92 – ident: CR7 – volume: 46 start-page: 519 year: 2013 end-page: 528 ident: CR19 article-title: Robust gender classification using a precise patch histogram publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.08.003 – volume: 19 start-page: 317 year: 2011 end-page: 334 ident: CR25 article-title: Male and female robots publication-title: Adapt Behav doi: 10.1177/1059712311417737 – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: CR31 article-title: An introduction to ROC analysis publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.10.010 – start-page: 509 year: 1999 end-page: 517 ident: CR37 article-title: Blobworld: a system for region-based image indexing and retrieval publication-title: International conference on advances in visual information systems doi: 10.1007/3-540-48762-X_63 – year: 1992 ident: CR39 publication-title: JPEG: still image data compression standard – volume: 65 start-page: 113 year: 1991 end-page: 119 ident: CR36 article-title: The relative importance of local phase and local amplitude in patchwise image reconstruction publication-title: Biol Cybern doi: 10.1007/BF00202386 – ident: CR41 – ident: CR24 – ident: CR20 – ident: 264_CR7 doi: 10.1109/CVPR.2005.388 – volume: 4 start-page: 108 year: 2014 ident: 264_CR5 publication-title: Int J Electr Comput Eng (IJECE) – volume: 19 start-page: 317 year: 2011 ident: 264_CR25 publication-title: Adapt Behav doi: 10.1177/1059712311417737 – volume-title: JPEG: still image data compression standard year: 1992 ident: 264_CR39 – volume: 27 start-page: 861 year: 2006 ident: 264_CR31 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.10.010 – volume: 16 start-page: 295 year: 1998 ident: 264_CR45 publication-title: Image Vis Comput doi: 10.1016/S0262-8856(97)00070-X – volume: 65 start-page: 113 year: 1991 ident: 264_CR36 publication-title: Biol Cybern doi: 10.1007/BF00202386 – ident: 264_CR41 doi: 10.1109/CVPR.2005.177 – ident: 264_CR3 – volume: 30 start-page: 177 year: 2012 ident: 264_CR28 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2012.01.004 – volume-title: Statistical learning theory year: 1998 ident: 264_CR43 – ident: 264_CR15 doi: 10.1109/ICITSI.2014.7048244 – volume-title: The psychology of sex differences year: 1974 ident: 264_CR22 – volume-title: Support vector machines for pattern classification year: 2005 ident: 264_CR44 – ident: 264_CR24 doi: 10.1109/IROS.2009.5354204 – volume: 15 start-page: 801 year: 2014 ident: 264_CR6 publication-title: J Internet Technol – volume: 3 start-page: 238 year: 2014 ident: 264_CR1 publication-title: Int J Appl Innov Eng Manag (IJAIEM) – start-page: 109 volume-title: Advanced computing, networking and informatics-volume 1 year: 2014 ident: 264_CR8 doi: 10.1007/978-3-319-07353-8_13 – volume: 14 start-page: 91 year: 2014 ident: 264_CR16 publication-title: Int J Comput Sci Netw Secur (IJCSNS) – ident: 264_CR23 doi: 10.1037/e530362013-001 – volume: 70 start-page: 80 year: 2016 ident: 264_CR17 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2015.11.015 – ident: 264_CR33 doi: 10.34028/iajit/17/2/5 – ident: 264_CR20 doi: 10.1109/CEIT.2015.7233141 – volume: 42 start-page: 145 year: 2001 ident: 264_CR27 publication-title: Int J Comput Vis doi: 10.1023/A:1011139631724 – volume: 221 start-page: 98 year: 2013 ident: 264_CR12 publication-title: Inf Sci doi: 10.1016/j.ins.2012.09.008 – volume-title: Fundamentals of digital image processing year: 1989 ident: 264_CR38 – ident: 264_CR10 doi: 10.1109/ICME.2005.1521613 – start-page: 440 volume-title: Computer analysis of images and patterns year: 2013 ident: 264_CR34 doi: 10.1007/978-3-642-40246-3_55 – volume: 8 start-page: 488 year: 2013 ident: 264_CR4 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2013.2242063 – start-page: 73 volume-title: Face recognition year: 1998 ident: 264_CR42 doi: 10.1007/978-3-642-72201-1_4 – ident: 264_CR2 doi: 10.1109/ICCOINS.2014.6868361 – ident: 264_CR30 – volume: 30 start-page: 541 year: 2008 ident: 264_CR21 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.70800 – volume: 12 start-page: 182 year: 2015 ident: 264_CR29 publication-title: Int Arab J Inf Technol (IAJIT). – start-page: 509 volume-title: International conference on advances in visual information systems year: 1999 ident: 264_CR37 doi: 10.1007/3-540-48762-X_63 – ident: 264_CR40 doi: 10.1145/1282280.1282340 – ident: 264_CR18 doi: 10.1109/ICPR.2010.297 – volume: 42 start-page: 1 year: 2017 ident: 264_CR26 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2016.11.002 – ident: 264_CR13 doi: 10.1109/ICPR.2006.173 – ident: 264_CR9 doi: 10.1109/ICIINFS.2014.7036569 – volume: 31 start-page: 1567 year: 2009 ident: 264_CR14 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.233 – volume: 11 start-page: 337 year: 1982 ident: 264_CR35 publication-title: Perception doi: 10.1068/p110337 – volume: 46 start-page: 519 year: 2013 ident: 264_CR19 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.08.003 – start-page: 347 volume-title: Encyclopedia of biometrics year: 2009 ident: 264_CR32 doi: 10.1007/978-0-387-73003-5_92 – volume: 30 start-page: 19 year: 2014 ident: 264_CR11 publication-title: Vis Comput doi: 10.1007/s00371-013-0774-8 |
SSID | ssj0062074 |
Score | 2.167659 |
Snippet | Nowadays, many applications use biometric systems as a security purpose. These systems use fingerprints, iris, retina, hand geometry, etc. that have unique... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 633 |
SubjectTerms | Applications of Mathematics Artificial Intelligence Bioinformatics Chronology Comparative studies Control Discrete cosine transform Engineering Feature extraction Feature recognition Gender Histograms Mathematical and Computational Engineering Mechatronics Organs Performance enhancement Principal components analysis Research Paper Robotics Statistical Physics and Dynamical Systems |
Title | Gender recognition using four statistical feature techniques: a comparative study of performance |
URI | https://link.springer.com/article/10.1007/s12065-019-00264-z https://www.proquest.com/docview/2312300271 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0IXPQgihpRJD1405Ju6X55IwYkGj1Jgqe17XY9aBYicOHXO112WSVqwnlnJ7uddmZeOvMG4NJILxAYxykPYk6FzxMaxnFMXYz1imnDYmYbhR-fvOFI3I_dcd4UNiuq3YsrycxTl81uHMMlQt-QWuAg6LICNdcJwqAKtd7dy0O_8MAeZxn7shOglBuyMG-W-V3Lz4BUZpkbF6NZvBnUYVR86arM5L2zmKuOXm6QOG77KwewnyegpLfaMYewY9IG1IvhDiQ_6w3Y-8ZUeASvq5FzZF1vNEmJLZl_IwkqJLYtKWN8Rs2JybhCyZoddnZDJNElyzjJKG3JJCHTsmvhGEaD_vPtkObDGajGUzunxl5Yo7c0gUaYqxAoBtwopbiUvmZSdl1HBhauxNz4XRcTH61FInzmSeH7indPoJpOUnMKRBnj6SRMfEuVk8RCMs90QyV9JrQMPdEEp7BQpHPmcjtA4yMqOZftgka4oFG2oNGyCVfrd6Yr3o5_pVuF4aP8DM8izHwRnyFsd5pwXdixfPy3trPtxM9hl9utkNXItKA6_1yYC8x05qqdb-w2VEa89wWjSvXM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADjwFiMCAHbhApTdMXtwmBBmw7bdJuJUlTLqib2Ljs1-Nk7QoIkDg39cGOY3-y_Rng0sgwFhjHKY8zTkXEc5pkWUYDjPWKacMyZgeF-4OwOxKP42BcDoXNqm73qiTpXup62I1juETom1ALHARdrMMGJgOx3Vsw4p3q_Q05c9zLXoxngoQl5ajMzzK-hqM6x_xWFnXR5n4Pdso0kXSWdt2HNVM0YbdawUBKj2zC9ic-wQN4Xi6GI6uuoElBbGP7C8lRILHDQ46XGSXnxjF6khWH6-yGSKJrLnDiiGfJJCfTerbgEEb3d8PbLi1XKFCNvjWnxpaV8U0zsUYwqhDOxdwopbiUkWZS-oEnYwsqMm4iP8D0RGuRi4iFUkSR4v4RNIpJYY6BKGNCnSd5ZAlt8kxIFho_UTJiQsskFC3wKk2muuQXt2suXtOaGdlqP0Xtp0776aIFV6t_pkt2jT9PtysDpaWnzVLMTxFFIbj2WnBdGa3-_Lu0k_8dv4DN7rDfS3sPg6dT2OL2DrmuljY05m_v5gxzk7k6d1fxAzlA2oo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqI8vTABhaO67zYKqAqr4qBSt2C7dgsKK2gLPx6zm7SAAIk5jg3nH2---T7vgM4MjJKBOZxypOcUxFzS9M8z2mIuV4xbVjOHFH4rh_1BuJ6GA4_sfh9t3v1JDnlNDiVpmJyOs7taU1845g6EQan1IEIQd_nYQGv48Cd9AHvVHdxxJnXYQ4SXBOmLC1pMz_b-Jqa6nrz2xOpzzzdNVgpS0bSme7xOsyZogmr1TgGUkZnE5Y_aQtuwON0SByZdQiNCuKa3J-IRYPEEYm8RjNatsare5KZnuvrGZFE17rgxIvQkpEl45pnsAmD7uXDeY-W4xSoxjibUOOemPF-M4lGYKoQ2iXcKKW4lLFmUrbDQCYOYOTcxO0QSxWthRUxi6SIY8XbW9AoRoXZBqKMibRNbezEbWwuJItMO1UyZkLLNBItCCpPZrrUGncjL56zWiXZeT9D72fe-9l7C45n_4ynSht_rt6rNigro-41w1oVERUC7aAFJ9Wm1Z9_t7bzv-WHsHh_0c1ur_o3u7DE3RHyDS570Ji8vJl9LFMm6sCfxA_pVd7G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gender+recognition+using+four+statistical+feature+techniques%3A+a+comparative+study+of+performance&rft.jtitle=Evolutionary+intelligence&rft.au=Al-wajih%2C+Ebrahim&rft.au=Ghouti%2C+Lahouari&rft.date=2019-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=12&rft.issue=4&rft.spage=633&rft.epage=646&rft_id=info:doi/10.1007%2Fs12065-019-00264-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon |