Particle swarm optimization performance improvement using deep learning techniques

Deep learning is widely used to automate processes, improve performance, detect patterns, and solve problems. Thus, applications of deep learning are limitless. Particle swarm optimization is a computational method that optimizes a problem by trying to improve a candidate solution. Although many res...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 81; no. 19; pp. 27949 - 27968
Main Authors Pawan, Y.V.R. Naga, Prakash, Kolla Bhanu, Chowdhury, Subrata, Hu, Yu-Chen
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning is widely used to automate processes, improve performance, detect patterns, and solve problems. Thus, applications of deep learning are limitless. Particle swarm optimization is a computational method that optimizes a problem by trying to improve a candidate solution. Although many researchers proposed particle swarm optimization variants, each variant is unique and superior to the existing ones. Among them, inertia weight-based particle swarm optimization has its own identity. By adjusting the inertia weight, the performance of the swarm can be improved. This paper proposes two new particle swarm optimization models using the convolutional neural network and long short-term memory to predict the inertia weight in moving the swarm for improving the swarm performance. The performance of the two new inertia weight models is compared in terms of mean absolute error and standard deviation, with the existing inertia weight based particle swarm optimizations like constant inertia weight, random inertia weight, and linearly decreasing inertia weight particle swarm optimizations. Experiments are conducted with swarm sizes 50, 75, and 100 with dimensions 10, 15, and 25 using the five most commonly used benchmark functions. The results show that the new models have significant performance gain over existing constant, random and linearly decreasing inertia weight particle swarm optimization models.
AbstractList Deep learning is widely used to automate processes, improve performance, detect patterns, and solve problems. Thus, applications of deep learning are limitless. Particle swarm optimization is a computational method that optimizes a problem by trying to improve a candidate solution. Although many researchers proposed particle swarm optimization variants, each variant is unique and superior to the existing ones. Among them, inertia weight-based particle swarm optimization has its own identity. By adjusting the inertia weight, the performance of the swarm can be improved. This paper proposes two new particle swarm optimization models using the convolutional neural network and long short-term memory to predict the inertia weight in moving the swarm for improving the swarm performance. The performance of the two new inertia weight models is compared in terms of mean absolute error and standard deviation, with the existing inertia weight based particle swarm optimizations like constant inertia weight, random inertia weight, and linearly decreasing inertia weight particle swarm optimizations. Experiments are conducted with swarm sizes 50, 75, and 100 with dimensions 10, 15, and 25 using the five most commonly used benchmark functions. The results show that the new models have significant performance gain over existing constant, random and linearly decreasing inertia weight particle swarm optimization models.
Author Hu, Yu-Chen
Prakash, Kolla Bhanu
Pawan, Y.V.R. Naga
Chowdhury, Subrata
Author_xml – sequence: 1
  givenname: Y.V.R. Naga
  surname: Pawan
  fullname: Pawan, Y.V.R. Naga
  organization: Department of Computer Science & Engineering, Anurag Engineering College, Ananthagiri (V&M)
– sequence: 2
  givenname: Kolla Bhanu
  surname: Prakash
  fullname: Prakash, Kolla Bhanu
  organization: Department of Computer Science & Engineering, Koneru Lakshmaiah Education Foundation
– sequence: 3
  givenname: Subrata
  surname: Chowdhury
  fullname: Chowdhury, Subrata
  organization: Department of Computer Science & Applications, SVCET Engineering College
– sequence: 4
  givenname: Yu-Chen
  orcidid: 0000-0002-5055-3645
  surname: Hu
  fullname: Hu, Yu-Chen
  email: ychu@pu.edu.tw
  organization: Department of Computer Science & Information Management, Providence University
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOZfOxujlL8goIieg5pmq0pu9k1SRX99aatIHjoaWaY95mPd4JGvvcWoXMgl0BIdRUBCKeYUIqByrLEcITGICqGq4rCKOesJrgSBE7QJMY1IVAKysfo-UmH5Exri_ipQ1f0Q3Kd-9bJ9b4YbGj60GlvbOG6IfQftrM-FZvo_KpYWjsUrdXBb6tkzZt37xsbT9Fxo9toz37jFL3e3rzM7vH88e5hdj3HhoFM2JZcECpYSUuy5MxwCozxilrCGs6aelEvJBOV5IIyACYXLLdFY5agmag5ZVN0sZ-bD9vuTWrdb4LPKxUtJQgphayzqt6rTOhjDLZRxqXdeylo1yogauug2juosoNq56CCjNJ_6BBcp8PXYYjtoZjFfmXD31UHqB_K1YSJ
CitedBy_id crossref_primary_10_53759_7669_jmc202404003
crossref_primary_10_32604_cmes_2023_045170
crossref_primary_10_1016_j_eswa_2023_121281
crossref_primary_10_1007_s10462_023_10587_0
crossref_primary_10_3390_app15031005
crossref_primary_10_1007_s10489_023_05180_5
crossref_primary_10_1007_s11042_024_19872_8
crossref_primary_10_1016_j_optlastec_2023_110541
crossref_primary_10_1016_j_enconman_2024_118844
crossref_primary_10_3389_fmech_2024_1378175
crossref_primary_10_1007_s12239_024_00119_2
crossref_primary_10_1007_s12083_024_01811_x
crossref_primary_10_26866_jees_2024_6_r_271
crossref_primary_10_1016_j_asoc_2024_112601
crossref_primary_10_1016_j_jfoodeng_2024_112162
crossref_primary_10_32604_cmc_2024_048787
crossref_primary_10_1039_D3AN01042B
crossref_primary_10_1016_j_ress_2023_109752
crossref_primary_10_1016_j_swevo_2024_101760
crossref_primary_10_3390_en17092072
Cites_doi 10.30534/ijatcse/2020/132922020
10.30534/ijatcse/2020/66922020
10.1016/j.asoc.2016.08.028
10.1504/IJICA.2009.031778
10.30534/ijatcse/2020/114932020
10.1007/978-3-030-57077-4_10
10.1016/j.chemolab.2015.08.020
10.30534/ijatcse/2020/351942020
10.1007/978-3-030-57077-4_2
10.1007/978-3-030-57077-4_12
10.1109/LGRS.2020.2992633
10.1162/neco.1997.9.8.1735
10.1155/2008/685175
10.1007/s11042-019-08015-z
10.1007/s11042-016-3776-5
10.1007/978-3-642-03156-4_34
10.1145/37401.37406
10.1007/978-3-030-57077-4_8
10.1016/j.swevo.2020.100718
10.1007/s11042-016-3486-z
10.1109/NaBIC.2011.6089659
10.1109/SSCI.2017.8280887
10.1155/2015/931256
10.3390/pr6120236
10.3390/e22030362
10.1007/s11042-018-6324-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-022-12966-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Collection
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 27968
ExternalDocumentID 10_1007_s11042_022_12966_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-e64502536260d43c42133472e03f43f8b8b9357945231139b33345fcd1a358423
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 22:55:07 EDT 2025
Tue Jul 01 04:13:14 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Fri Feb 21 02:45:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Long short-term memory
Inertia weight
Particle swarm optimization
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e64502536260d43c42133472e03f43f8b8b9357945231139b33345fcd1a358423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5055-3645
PQID 2691599598
PQPubID 54626
PageCount 20
ParticipantIDs proquest_journals_2691599598
crossref_citationtrail_10_1007_s11042_022_12966_1
crossref_primary_10_1007_s11042_022_12966_1
springer_journals_10_1007_s11042_022_12966_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220800
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 8
  year: 2022
  text: 20220800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Amidi A, Amidi S. Recurrent Neural Network Cheatsheet/ https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks#architecture, Last Accessed on Apr 07 2021.
RuwaliAKumarAJSPrakashKBSivavaraprasadGRatnamDVImplementation of hybrid deep learning model (LSTM-CNN) for ionospheric TEC forecasting using GPS dataIEEE Geosci Remote Sens Lett20211861004100810.1109/LGRS.2020.2992633
Shi Y, Eberhart R (2009) A modified particle swarm optimizer. IEEE World Congr on Computational Intell, 66–69
FreitasDLopesLGMorgado-DiasFParticle Swarm Optimisation: A Historical Review Up to the Current DevelopmentsEntropy2020223136422369010.3390/e22030362Article No 362
MariniFWalczakBParticle swarm optimization (PSO). A tutorialChemom Intell Lab Syst2015149Part B15316510.1016/j.chemolab.2015.08.020
TejasriKSrinivasMPrakashKBPavan KumarTHeart disease diagnosis using ANN, RNN and CNNInt J of Adv Sci and Tech20202922322239
KumarASinghBKPatroBDKParticle swarm optimization: a study of variants and their applicationsInt J Comput Appl201613552430
LinYHHuYCElectrical energy management based on a hybrid artificial neural network-particle swarm optimization-integrated two-stage non-intrusive load monitoring process in smart homesProcesses201861223610.3390/pr6120236
HammerBOn the approximation capability of recurrent neural networksNeuro Comput2000311–4107123
SeraniALeotardiCIemmaUCampanaEFasanoGDiezMParameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problemsAppl Soft Comput20164931333410.1016/j.asoc.2016.08.028
Zhang Y, Wang S, Ji G (2015) A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications. Mathematical Problems in Engineering 2015, Article No. 931256, 38 pages, https://doi.org/10.1155/2015/931256.
Imambi S, Prakash KB, Kanagachidambaresan GR (2021) PyTorch. In: Prakash K.B., Kanagachidambaresan G.R. (eds) programming with TensorFlow. EAI/springer innovations in communication and computing. Springer, Cham., pp. 87-104, DOI: https://doi.org/10.1007/978-3-030-57077-4_10.
Poli R (2008) Analysis of the Publications on the Applications of Particle Swarm Optimisation. J of Artif Evolution and Appl 2008, Article No. 685175., 10 pages, https://doi.org/10.1155/2008/685175
Oldewage ET, Engelbrecht AP, Cleghorn CW (2017) The merits of velocity clamping particle swarm optimization in high dimensional spaces. IEEE Symposium Series on Computational Intell. (SSCI), Honolulu, HI, pp. 1–8
KushwahaNPantMModified particle swarm optimization for multimodal functions and its applicationMultimed Tools Appl201978239172394710.1007/s11042-018-6324-7
CuiZShiZBoid particle swarm optimisationInt J Innov Comput Appl200922778510.1504/IJICA.2009.031778
van den Bergh F (2006) An Analysis of Particle Swarm Optimizers, PhD thesis, Department of Computer Science., University of Pretoria, Pretoria, South Africa.
YellapragadaBharadwajRajaramPSriramVPSenganSKollaBEffective Handwritten Digit Recognition using Deep Convolution Neural NetworkInt J of Adv Trends in Comput Sci and Eng202091335133910.30534/ijatcse/2020/66922020
Kanagachidambaresan G.R., Prakash K.B., Mahima V. (2021) Programming tensor flow with single board computers. In: Prakash K.B., Kanagachidambaresan G.R. (eds) programming with TensorFlow. EAI/springer innovations in communication and computing. Springer, Cham., pp. 145-157, https://doi.org/10.1007/978-3-030-57077-4_12
PanFChenDLuLImproved PSO based clustering fusion algorithm for multimedia image data projectionMultimed Tools Appl2020799509952210.1007/s11042-019-08015-z
PrakashKBAccurate hand gesture recognition using CNN and RNN approachesInt J of Adv Trends in Comput Sci and Eng202093216322210.30534/ijatcse/2020/114932020
Kennedy J, Eberhart R (1995) Particle Swarm Optimization, in Proc. of IEEE Int Conf on Neural Networks, pp. 1942–1948.
PrakashKBPredicting CryptoCurrency prices using machine learning and deep learning techniquesInt J of Adv Trends in Comput Sci and Eng202096603660810.30534/ijatcse/2020/351942020
Liu T, Yin S (2017) An improved particle swarm optimization algorithm used for BP neural network and multimedia course-ware evaluation. Multimed. Tools Appl 76, 11961–11974.
Engelbrecht AP (2007) Computational Intelligence: An Introduction, John Wiley and Sons, 2007, ch. 16, 289–358.
Jha AK, Ruwali A, Prakash KB, Kanagachidambaresan GR (2021) Tensorflow basics. In: Prakash K.B., Kanagachidambaresan G.R. (eds) programming with TensorFlow. EAI/springer innovations in communication and computing. Springer, Cham., pp. 5-15, https://doi.org/10.1007/978-3-030-57077-4_2
Shahzad F, Baig AR, Masood S, Kamran M, Naveed N (2009) Opposition-based particle swarm optimization with velocity clamping (OVCPSO). In: Yu W, Sanchez EN (eds) Advances in Intell and Soft Comput 116, 339–348.
BonyadiMRMichalewiczZImpacts of coefficients on movement patterns in the particle swarm optimization algorithmIEEE Trans Evol Comput2017213378390
HochreiterSSchmidhuberJLong Short-term MemoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
Piotrowski AP, Napiorkowski JJ, Piotrowska AE (2020) Population size in particle swarm optimization. Swarm and Evol Comput 58, Article No. 100718, pages 18, https://doi.org/10.1016/j.swevo.2020.100718.
Chowdhury, Subrata, G, Ramya, Kolla, Bhanu, Donepudi, Babitha, Ismail, Mohammed, (2020), “Automated road safety surveillance system using hybrid CNN-LSTM approach,” Int J of Adv Trends in Comput Sci and Eng, Vol. 9, pp. 1767–1773.
Reynolds CW (1987) Flocks, herds and schools: A distributed behavioural model, in Proc. of the 14th ACM Annu. Conf. on Compu Graph and Interact Techn (SIGGRAPH '87), pp. 25–34. 10.1145/37401.37406.
Parsopoulos KE, Vrahatis MN (2002) Initialising the particle swarm optimizer using the nonlinear simplex method, Advances in Intell Syst, Fuzzy Syst, Evol Comput WSEAS Press, pp. 216–221
Vamsidhar E, Kanagachidambaresan GR, Prakash KB (2021) Application of machine learning and deep learning. In: Prakash K.B., Kanagachidambaresan G.R. (eds) programming with TensorFlow. EAI/springer innovations in communication and computing. Springer, Cham. 63-74, https://doi.org/10.1007/978-3-030-57077-4_8
ZhuHZhuangZZhouJZhangFWangXWuYSegmentation of liver cyst in ultrasound image based on adaptive threshold algorithm and particle swarm optimizationMultimed Tools Appl2017768951896810.1007/s11042-016-3486-z
Bansal JC, Singh PK, Saraswat M, Verma A, Jadon SS, Abraham A (2011) Inertia weight strategies in particle swarm optimization, Third World Congr. on Nature and Biologically Inspired Comput, Salamanca, 633–640
12966_CR6
12966_CR29
Yellapragada (12966_CR34) 2020; 9
12966_CR26
MR Bonyadi (12966_CR3) 2017; 21
12966_CR23
12966_CR22
12966_CR21
B Hammer (12966_CR8) 2000; 31
F Marini (12966_CR18) 2015; 149
S Hochreiter (12966_CR9) 1997; 9
N Kushwaha (12966_CR15) 2019; 78
H Zhu (12966_CR36) 2017; 76
YH Lin (12966_CR16) 2018; 6
Z Cui (12966_CR5) 2009; 2
K Tejasri (12966_CR31) 2020; 29
12966_CR19
12966_CR17
KB Prakash (12966_CR24) 2020; 9
12966_CR13
12966_CR35
12966_CR12
12966_CR11
A Kumar (12966_CR14) 2016; 135
12966_CR33
12966_CR10
12966_CR32
12966_CR30
F Pan (12966_CR20) 2020; 79
KB Prakash (12966_CR25) 2020; 9
A Serani (12966_CR28) 2016; 49
12966_CR1
A Ruwali (12966_CR27) 2021; 18
12966_CR4
12966_CR2
D Freitas (12966_CR7) 2020; 22
References_xml – reference: HammerBOn the approximation capability of recurrent neural networksNeuro Comput2000311–4107123
– reference: Kennedy J, Eberhart R (1995) Particle Swarm Optimization, in Proc. of IEEE Int Conf on Neural Networks, pp. 1942–1948.
– reference: Poli R (2008) Analysis of the Publications on the Applications of Particle Swarm Optimisation. J of Artif Evolution and Appl 2008, Article No. 685175., 10 pages, https://doi.org/10.1155/2008/685175
– reference: Bansal JC, Singh PK, Saraswat M, Verma A, Jadon SS, Abraham A (2011) Inertia weight strategies in particle swarm optimization, Third World Congr. on Nature and Biologically Inspired Comput, Salamanca, 633–640
– reference: CuiZShiZBoid particle swarm optimisationInt J Innov Comput Appl200922778510.1504/IJICA.2009.031778
– reference: SeraniALeotardiCIemmaUCampanaEFasanoGDiezMParameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problemsAppl Soft Comput20164931333410.1016/j.asoc.2016.08.028
– reference: YellapragadaBharadwajRajaramPSriramVPSenganSKollaBEffective Handwritten Digit Recognition using Deep Convolution Neural NetworkInt J of Adv Trends in Comput Sci and Eng202091335133910.30534/ijatcse/2020/66922020
– reference: HochreiterSSchmidhuberJLong Short-term MemoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
– reference: ZhuHZhuangZZhouJZhangFWangXWuYSegmentation of liver cyst in ultrasound image based on adaptive threshold algorithm and particle swarm optimizationMultimed Tools Appl2017768951896810.1007/s11042-016-3486-z
– reference: PanFChenDLuLImproved PSO based clustering fusion algorithm for multimedia image data projectionMultimed Tools Appl2020799509952210.1007/s11042-019-08015-z
– reference: MariniFWalczakBParticle swarm optimization (PSO). A tutorialChemom Intell Lab Syst2015149Part B15316510.1016/j.chemolab.2015.08.020
– reference: Parsopoulos KE, Vrahatis MN (2002) Initialising the particle swarm optimizer using the nonlinear simplex method, Advances in Intell Syst, Fuzzy Syst, Evol Comput WSEAS Press, pp. 216–221
– reference: Liu T, Yin S (2017) An improved particle swarm optimization algorithm used for BP neural network and multimedia course-ware evaluation. Multimed. Tools Appl 76, 11961–11974.
– reference: Jha AK, Ruwali A, Prakash KB, Kanagachidambaresan GR (2021) Tensorflow basics. In: Prakash K.B., Kanagachidambaresan G.R. (eds) programming with TensorFlow. EAI/springer innovations in communication and computing. Springer, Cham., pp. 5-15, https://doi.org/10.1007/978-3-030-57077-4_2
– reference: Oldewage ET, Engelbrecht AP, Cleghorn CW (2017) The merits of velocity clamping particle swarm optimization in high dimensional spaces. IEEE Symposium Series on Computational Intell. (SSCI), Honolulu, HI, pp. 1–8
– reference: BonyadiMRMichalewiczZImpacts of coefficients on movement patterns in the particle swarm optimization algorithmIEEE Trans Evol Comput2017213378390
– reference: Chowdhury, Subrata, G, Ramya, Kolla, Bhanu, Donepudi, Babitha, Ismail, Mohammed, (2020), “Automated road safety surveillance system using hybrid CNN-LSTM approach,” Int J of Adv Trends in Comput Sci and Eng, Vol. 9, pp. 1767–1773.
– reference: Shi Y, Eberhart R (2009) A modified particle swarm optimizer. IEEE World Congr on Computational Intell, 66–69
– reference: FreitasDLopesLGMorgado-DiasFParticle Swarm Optimisation: A Historical Review Up to the Current DevelopmentsEntropy2020223136422369010.3390/e22030362Article No 362
– reference: PrakashKBAccurate hand gesture recognition using CNN and RNN approachesInt J of Adv Trends in Comput Sci and Eng202093216322210.30534/ijatcse/2020/114932020
– reference: RuwaliAKumarAJSPrakashKBSivavaraprasadGRatnamDVImplementation of hybrid deep learning model (LSTM-CNN) for ionospheric TEC forecasting using GPS dataIEEE Geosci Remote Sens Lett20211861004100810.1109/LGRS.2020.2992633
– reference: van den Bergh F (2006) An Analysis of Particle Swarm Optimizers, PhD thesis, Department of Computer Science., University of Pretoria, Pretoria, South Africa.
– reference: Zhang Y, Wang S, Ji G (2015) A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications. Mathematical Problems in Engineering 2015, Article No. 931256, 38 pages, https://doi.org/10.1155/2015/931256.
– reference: Engelbrecht AP (2007) Computational Intelligence: An Introduction, John Wiley and Sons, 2007, ch. 16, 289–358.
– reference: TejasriKSrinivasMPrakashKBPavan KumarTHeart disease diagnosis using ANN, RNN and CNNInt J of Adv Sci and Tech20202922322239
– reference: Reynolds CW (1987) Flocks, herds and schools: A distributed behavioural model, in Proc. of the 14th ACM Annu. Conf. on Compu Graph and Interact Techn (SIGGRAPH '87), pp. 25–34. 10.1145/37401.37406.
– reference: Imambi S, Prakash KB, Kanagachidambaresan GR (2021) PyTorch. In: Prakash K.B., Kanagachidambaresan G.R. (eds) programming with TensorFlow. EAI/springer innovations in communication and computing. Springer, Cham., pp. 87-104, DOI: https://doi.org/10.1007/978-3-030-57077-4_10.
– reference: PrakashKBPredicting CryptoCurrency prices using machine learning and deep learning techniquesInt J of Adv Trends in Comput Sci and Eng202096603660810.30534/ijatcse/2020/351942020
– reference: Shahzad F, Baig AR, Masood S, Kamran M, Naveed N (2009) Opposition-based particle swarm optimization with velocity clamping (OVCPSO). In: Yu W, Sanchez EN (eds) Advances in Intell and Soft Comput 116, 339–348.
– reference: Kanagachidambaresan G.R., Prakash K.B., Mahima V. (2021) Programming tensor flow with single board computers. In: Prakash K.B., Kanagachidambaresan G.R. (eds) programming with TensorFlow. EAI/springer innovations in communication and computing. Springer, Cham., pp. 145-157, https://doi.org/10.1007/978-3-030-57077-4_12
– reference: Vamsidhar E, Kanagachidambaresan GR, Prakash KB (2021) Application of machine learning and deep learning. In: Prakash K.B., Kanagachidambaresan G.R. (eds) programming with TensorFlow. EAI/springer innovations in communication and computing. Springer, Cham. 63-74, https://doi.org/10.1007/978-3-030-57077-4_8
– reference: Amidi A, Amidi S. Recurrent Neural Network Cheatsheet/ https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks#architecture, Last Accessed on Apr 07 2021.
– reference: KushwahaNPantMModified particle swarm optimization for multimodal functions and its applicationMultimed Tools Appl201978239172394710.1007/s11042-018-6324-7
– reference: KumarASinghBKPatroBDKParticle swarm optimization: a study of variants and their applicationsInt J Comput Appl201613552430
– reference: LinYHHuYCElectrical energy management based on a hybrid artificial neural network-particle swarm optimization-integrated two-stage non-intrusive load monitoring process in smart homesProcesses201861223610.3390/pr6120236
– reference: Piotrowski AP, Napiorkowski JJ, Piotrowska AE (2020) Population size in particle swarm optimization. Swarm and Evol Comput 58, Article No. 100718, pages 18, https://doi.org/10.1016/j.swevo.2020.100718.
– ident: 12966_CR4
  doi: 10.30534/ijatcse/2020/132922020
– volume: 9
  start-page: 1335
  year: 2020
  ident: 12966_CR34
  publication-title: Int J of Adv Trends in Comput Sci and Eng
  doi: 10.30534/ijatcse/2020/66922020
– volume: 49
  start-page: 313
  year: 2016
  ident: 12966_CR28
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.08.028
– volume: 135
  start-page: 24
  issue: 5
  year: 2016
  ident: 12966_CR14
  publication-title: Int J Comput Appl
– volume: 2
  start-page: 77
  issue: 2
  year: 2009
  ident: 12966_CR5
  publication-title: Int J Innov Comput Appl
  doi: 10.1504/IJICA.2009.031778
– ident: 12966_CR6
– volume: 9
  start-page: 3216
  year: 2020
  ident: 12966_CR24
  publication-title: Int J of Adv Trends in Comput Sci and Eng
  doi: 10.30534/ijatcse/2020/114932020
– volume: 29
  start-page: 2232
  year: 2020
  ident: 12966_CR31
  publication-title: Int J of Adv Sci and Tech
– ident: 12966_CR10
  doi: 10.1007/978-3-030-57077-4_10
– volume: 149
  start-page: 153
  issue: Part B
  year: 2015
  ident: 12966_CR18
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2015.08.020
– ident: 12966_CR33
– volume: 9
  start-page: 6603
  year: 2020
  ident: 12966_CR25
  publication-title: Int J of Adv Trends in Comput Sci and Eng
  doi: 10.30534/ijatcse/2020/351942020
– ident: 12966_CR11
  doi: 10.1007/978-3-030-57077-4_2
– ident: 12966_CR12
  doi: 10.1007/978-3-030-57077-4_12
– volume: 31
  start-page: 107
  issue: 1–4
  year: 2000
  ident: 12966_CR8
  publication-title: Neuro Comput
– volume: 18
  start-page: 1004
  issue: 6
  year: 2021
  ident: 12966_CR27
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2020.2992633
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 12966_CR9
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 12966_CR23
  doi: 10.1155/2008/685175
– ident: 12966_CR1
– volume: 79
  start-page: 9509
  year: 2020
  ident: 12966_CR20
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-08015-z
– ident: 12966_CR17
  doi: 10.1007/s11042-016-3776-5
– ident: 12966_CR29
  doi: 10.1007/978-3-642-03156-4_34
– ident: 12966_CR26
  doi: 10.1145/37401.37406
– ident: 12966_CR21
– ident: 12966_CR32
  doi: 10.1007/978-3-030-57077-4_8
– ident: 12966_CR22
  doi: 10.1016/j.swevo.2020.100718
– volume: 76
  start-page: 8951
  year: 2017
  ident: 12966_CR36
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-016-3486-z
– ident: 12966_CR2
  doi: 10.1109/NaBIC.2011.6089659
– ident: 12966_CR13
– ident: 12966_CR19
  doi: 10.1109/SSCI.2017.8280887
– ident: 12966_CR35
  doi: 10.1155/2015/931256
– volume: 21
  start-page: 378
  issue: 3
  year: 2017
  ident: 12966_CR3
  publication-title: IEEE Trans Evol Comput
– volume: 6
  start-page: 236
  issue: 12
  year: 2018
  ident: 12966_CR16
  publication-title: Processes
  doi: 10.3390/pr6120236
– ident: 12966_CR30
– volume: 22
  start-page: 1
  issue: 3
  year: 2020
  ident: 12966_CR7
  publication-title: Entropy
  doi: 10.3390/e22030362
– volume: 78
  start-page: 23917
  year: 2019
  ident: 12966_CR15
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6324-7
SSID ssj0016524
Score 2.5315003
Snippet Deep learning is widely used to automate processes, improve performance, detect patterns, and solve problems. Thus, applications of deep learning are...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 27949
SubjectTerms Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Inertia
Multimedia Information Systems
Optimization
Optimization models
Particle swarm optimization
Performance enhancement
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_odtGDH1NxOiUHbxps2jRLT6KyMQTHGA52K02aDsF9uE78933p0lUFPafN4X2_l_feD-BKRAm6NR7RNjceJigso1LYHvcsTLVWluW2DvncF70RfxqHY1dwy11bZWkTC0OdzrWtkd_6ImLFcix5t3inFjXKvq46CI1tqKMJlrIG9YdOfzDcvCOI0MHaSo-ib2RubGY9PMfsaIrtZkefJwRlP11TFW_-eiItPE_3APZcyEju1zw-hC0za8B-CcdAnHY2YPfbbsEjGA6cUJD8M1lOyRxtw9QNXZJFNS5AXouyQlElJLYLfkJSYxbEwUlMyGbLa34Mo27n5bFHHYAC1ahZK2oEDzGmsRtnvJQHmvuYkfK2b7wg40EmlVRREKJGYjbKMBRUAR6HmU5ZEiAH_eAEarP5zJwCSRWTmNnpJJWK-0pgmpYmflsL6UWaqaQJrKRdrN12cQty8RZXe5EtvWOkd1zQO2ZNuN78s1jv1vj361bJktjpWR5XUtGEm5JN1fHft539f9s57PhWMopOvxbUVssPc4HRx0pdOhH7AnRH06E
  priority: 102
  providerName: ProQuest
Title Particle swarm optimization performance improvement using deep learning techniques
URI https://link.springer.com/article/10.1007/s11042-022-12966-1
https://www.proquest.com/docview/2691599598
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8CBxwAxGFMO3KBS06ZZetzQugnENE1MGqeqSdsJiT20DvH3cbp0BQRInHJIm4Mdx_4S-zPANfcjdGvMt1ossRGg0NQSXOe4p16slNQq1_eQjwPeH7P7iTcxRWFZke1ePEnmJ3VZ7EZ1KYnOPkcfxbmFmKfqIXbXiVxjp719O-CeaWUrbAv9ITWlMj-v8dUdlTHmt2fR3NsER3BgwkTS3uj1GHaSeQ0OixYMxFhkDfY_8QmewGhoNgLJ3qPVjCzwPJiZQkuyLEsEyEt-lZDfDBKd-T4lcZIsiWkhMSVbZtfsFMZB9-mub5mmCZZCa1pbCWcexjGaZcaOmauYgyiUtZzEdlPmpkIK6bseWiEiUIrhn3Rx2ktVTCMXtea4Z1CZL-bJOZBYUoFoTkWxkMyRHKFZHDktxYXtKyqjOtBCdqEyjOK6scVrWHIha3mHKO8wl3dI63Cz_We54dP48-tGoZLQ2FYWOtynOU2aqMNtoaZy-vfVLv73-SXsOXqn5Nl-DaisV2_JFUYga9mEXRH0mlBtB53OQI-954cujp3uYDhq5tvxA-n61Hw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1V5QAc2BGFAj7ACSLixHGTA0IIKGUVQq3UW4gdp0KiC21RxU_xjYxTpwEkeuvZiaWMX2bzzBuAAx5EaNZYYFWYsjFAoYnlc13jnnixlEIfuc5DPjzyWoPdNr1mAb6yXhhdVpnpxFRRx12pc-QnDg9oSo7ln_XeLT01St-uZiM0xrC4U58jDNkGpzeXeL6HjlO9ql_ULDNVwJIIt6GlOPPQ0GsaFjtmrmQOhmms4ijbTZib-MIXgeshTDFEo-gfCReXvUTGNHLxszTRAar8OeaiJded6dXrya0F98wQXd-20BJT06QzbtWjuhFG186jheXcor8NYe7d_rmQTe1cdQWWjINKzseIWoWC6qzBcjb8gRhdsAaLP5gM1-H5yUCQDEZRv026qInapsWT9PLmBPKaJjHSnCTRNfctEivVI2Z4RYtMOGUHG9CYiWA3odjpdtQWkFhQH-NIGcW-YI7gGBTGkVOR3LcDSUVUAprJLpSGy1yP1HgLcxZmLe8Q5R2m8g5pCY4m7_TGTB5Tny5nRxKav3oQ5hgswXF2TPny_7ttT99tH-Zr9Yf78P7m8W4HFhyNkrTGsAzFYf9D7aLfMxR7KdgIvMwa3d_PzArA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5KC6IHH1WxWnUPetJgNtlsk4OIj5ZqtRRR8Bazm40I2ta2Uvxr_jpn002jgr153mQhs1_mtTPfAOzxIEKzxgKrxpSNAQpNLJ_rGvfEi6UU-sh1HvKmzZv37OrBeyjAZ9YLo8sqM52YKuq4J3WO_MjhAU3JsfyjxJRFdC4aJ_03S0-Q0jet2TiNCURa6mOM4dvw-PICz3rfcRr1u_OmZSYMWBKhN7IUZx4afU3JYsfMlczBkI3VHGW7CXMTX_gicD2ELIZrFH0l4eKyl8iYRi5-oiY9QPVfqumoqAils3q7czu9w-CeGanr2xbaZWpadiaNe1S3xehKerS3nFv0p1nMfd1f17Op1Wssw6JxV8npBF8rUFDdMixloyCI0QxlWPjGa7gKtx0DSDIcR4NX0kO99GoaPkk_b1Ugz2lKI81QEl2B_0RipfrEjLJ4IlOG2eEa3P-LaNeh2O111QaQWFAfo0oZxb5gjuAYIsaRU5PctwNJRVQBmskulIbZXA_YeAlzTmYt7xDlHabyDmkFDqbv9Ce8HjOfrmZHEpp_fBjmiKzAYXZM-fLfu23O3m0X5hDZ4fVlu7UF844GSVpwWIXiaPCuttEJGokdgzYCj_8N8C8i5BBS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+swarm+optimization+performance+improvement+using+deep+learning+techniques&rft.jtitle=Multimedia+tools+and+applications&rft.au=Pawan%2C+Y.V.R.+Naga&rft.au=Prakash%2C+Kolla+Bhanu&rft.au=Chowdhury%2C+Subrata&rft.au=Hu%2C+Yu-Chen&rft.date=2022-08-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=19&rft.spage=27949&rft.epage=27968&rft_id=info:doi/10.1007%2Fs11042-022-12966-1&rft.externalDocID=10_1007_s11042_022_12966_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon