Explainable Ensemble Trees

Ensemble methods are supervised learning algorithms that provide highly accurate solutions by training many models. Random forest is probably the most widely used in regression and classification problems. It builds decision trees on different samples and takes their majority vote for classification...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics Vol. 39; no. 1; pp. 3 - 19
Main Authors Aria, Massimo, Gnasso, Agostino, Iorio, Carmela, Pandolfo, Giuseppe
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0943-4062
1613-9658
DOI10.1007/s00180-022-01312-6

Cover

Abstract Ensemble methods are supervised learning algorithms that provide highly accurate solutions by training many models. Random forest is probably the most widely used in regression and classification problems. It builds decision trees on different samples and takes their majority vote for classification and average in case of regression. However, such an algorithm suffers from a lack of explainability and thus does not allow users to understand how particular decisions are made. To improve on that, we propose a new way of interpreting an ensemble tree structure. Starting from a random forest model, our approach is able to explain graphically the relationship structure between the response variable and predictors. The proposed method appears to be useful in all real-world cases where model interpretation for predictive purposes is crucial. The proposal is evaluated by means of real data sets.
AbstractList Ensemble methods are supervised learning algorithms that provide highly accurate solutions by training many models. Random forest is probably the most widely used in regression and classification problems. It builds decision trees on different samples and takes their majority vote for classification and average in case of regression. However, such an algorithm suffers from a lack of explainability and thus does not allow users to understand how particular decisions are made. To improve on that, we propose a new way of interpreting an ensemble tree structure. Starting from a random forest model, our approach is able to explain graphically the relationship structure between the response variable and predictors. The proposed method appears to be useful in all real-world cases where model interpretation for predictive purposes is crucial. The proposal is evaluated by means of real data sets.
Author Aria, Massimo
Gnasso, Agostino
Iorio, Carmela
Pandolfo, Giuseppe
Author_xml – sequence: 1
  givenname: Massimo
  orcidid: 0000-0002-8517-9411
  surname: Aria
  fullname: Aria, Massimo
  email: massimo.aria@unina.it
  organization: Department of Economics and Statistics, University of Naples Federico II
– sequence: 2
  givenname: Agostino
  surname: Gnasso
  fullname: Gnasso, Agostino
  organization: Department of Economics and Statistics, University of Naples Federico II
– sequence: 3
  givenname: Carmela
  surname: Iorio
  fullname: Iorio, Carmela
  organization: Department of Economics and Statistics, University of Naples Federico II
– sequence: 4
  givenname: Giuseppe
  surname: Pandolfo
  fullname: Pandolfo, Giuseppe
  organization: Department of Economics and Statistics, University of Naples Federico II
BookMark eNp9kEFLAzEQhYNUsK3-gZ4Ez9GZSZrNHqVUKxS81HNId2dlyzZbky3ov3frCoKHnmYO75v35k3EKLSBhZgh3CNA9pAA0IIEIgmokKS5EGM0qGRu5nYkxpBrJTUYuhKTlHbQKzPCsZgtPw-Nr4PfNny7DIn3p2UTmdO1uKx8k_jmd07F29Nys1jJ9evzy-JxLQuFeSd5bksmXVZkqszj1uuCs5wKBs-lt0pra6zhPiazJWRVsspKDbTNtDeEairuhruH2H4cOXVu1x5j6C0d5YREam5PKhpURWxTily5Q6z3Pn45BHfqwA0duP4z99OBMz1k_0FF3fmubkMXfd2cR9WApt4nvHP8S3WG-gYRE3A6
CitedBy_id crossref_primary_10_1016_j_cie_2024_110765
crossref_primary_10_1088_2053_1591_ada41c
crossref_primary_10_1109_JIOT_2023_3303429
Cites_doi 10.1109/TVCG.2018.2864475
10.1214/10-STS330
10.1016/j.eswa.2019.03.018
10.1145/3236009
10.4310/SII.2009.v2.n3.a11
10.1111/j.1469-1809.1936.tb02137.x
10.1613/jair.1.12228
10.1007/s00180-019-00867-1
10.1198/tast.2009.08199
10.1023/A:1010933404324
10.1007/BF00058655
10.1145/3236386.3241340
10.1007/s10115-009-0244-9
10.1145/3289402.3289549
10.1109/ICSSD47982.2019.9002770
10.1145/1390156.1390169
10.1145/1143844.1143865
10.1109/DSAA.2018.00018
10.1145/3412815.3416893
10.1007/978-3-319-03200-9_2
10.1155/2015/703514
10.1145/2939672.2939778
10.1007/978-3-030-65965-3_28
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8C1
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00180-022-01312-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Proquest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library (Proquest)
Science Database
Engineering Database (Proquest)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1613-9658
EndPage 19
ExternalDocumentID 10_1007_s00180_022_01312_6
GrantInformation_xml – fundername: Ministero dell’Istruzione, dell’Università e della Ricerca
  grantid: PRIN 2017, ID: 2017KZZLYP
  funderid: http://dx.doi.org/10.13039/501100003407
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7WY
88I
8C1
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c319t-e58de24df26f7a1ba4ce792ce0aeda83448686e100ee821e3de37d402b74a6213
IEDL.DBID 8FG
ISSN 0943-4062
IngestDate Sat Aug 23 13:12:17 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Tue Jul 01 04:23:19 EDT 2025
Fri Feb 21 02:40:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Random forest
Explainability
Machine learning
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e58de24df26f7a1ba4ce792ce0aeda83448686e100ee821e3de37d402b74a6213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8517-9411
PQID 2921223581
PQPubID 54096
PageCount 17
ParticipantIDs proquest_journals_2921223581
crossref_primary_10_1007_s00180_022_01312_6
crossref_citationtrail_10_1007_s00180_022_01312_6
springer_journals_10_1007_s00180_022_01312_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240200
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 2
  year: 2024
  text: 20240200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational statistics
PublicationTitleAbbrev Comput Stat
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Friedman, Hastie, Tibshirani (CR13) 2001
Lipton (CR22) 2018; 16
CR19
CR18
Breiman (CR2) 1996; 24
CR17
Breiman (CR3) 2001; 45
CR14
CR11
CR31
Aria, Cuccurullo, Gnasso (CR1) 2021; 6
Dvořák (CR10) 2019; 34
Liaw, Wiener (CR21) 2002; 2
Zhao, Wu, Lee, Cui (CR33) 2018; 25
Iorio, Aria, D’Ambrosio, Siciliano (CR20) 2019; 127
CR6
CR8
CR7
Fisher (CR12) 1936; 7
CR28
CR9
CR27
CR26
CR25
CR24
CR23
Guidotti, Monreale, Ruggieri, Turini, Giannotti, Pedreschi (CR16) 2018; 51
Grömping (CR15) 2009; 63
Shmueli (CR29) 2010; 25
Burkart, Huber (CR5) 2021; 70
Wang, Zhang (CR32) 2009; 2
Štrumbelj, Bosnić, Kononenko, Zakotnik, Grašič Kuhar (CR30) 2010; 24
Breiman, Friedman, Olshen, Stone (CR4) 1984; 432
J Friedman (1312_CR13) 2001
1312_CR28
1312_CR27
M Wang (1312_CR32) 2009; 2
U Grömping (1312_CR15) 2009; 63
R Guidotti (1312_CR16) 2018; 51
G Shmueli (1312_CR29) 2010; 25
L Breiman (1312_CR4) 1984; 432
L Breiman (1312_CR2) 1996; 24
J Dvořák (1312_CR10) 2019; 34
M Aria (1312_CR1) 2021; 6
N Burkart (1312_CR5) 2021; 70
C Iorio (1312_CR20) 2019; 127
1312_CR26
1312_CR25
1312_CR24
1312_CR23
1312_CR19
1312_CR18
1312_CR17
L Breiman (1312_CR3) 2001; 45
A Liaw (1312_CR21) 2002; 2
X Zhao (1312_CR33) 2018; 25
1312_CR6
1312_CR8
1312_CR7
1312_CR9
E Štrumbelj (1312_CR30) 2010; 24
1312_CR11
ZC Lipton (1312_CR22) 2018; 16
1312_CR31
1312_CR14
RA Fisher (1312_CR12) 1936; 7
References_xml – ident: CR18
– volume: 6
  year: 2021
  ident: CR1
  article-title: A comparison among interpretative proposals for random forests
  publication-title: Mach Learn Appl
– volume: 25
  start-page: 407
  issue: 1
  year: 2018
  end-page: 416
  ident: CR33
  article-title: iforest: Interpreting random forests via visual analytics
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2018.2864475
– volume: 25
  start-page: 289
  issue: 3
  year: 2010
  end-page: 310
  ident: CR29
  article-title: To explain or to predict?
  publication-title: Stat Sci
  doi: 10.1214/10-STS330
– volume: 127
  start-page: 228
  year: 2019
  end-page: 240
  ident: CR20
  article-title: Informative trees by visual pruning
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.03.018
– ident: CR14
– volume: 51
  start-page: 1
  issue: 5
  year: 2018
  end-page: 42
  ident: CR16
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3236009
– ident: CR6
– year: 2001
  ident: CR13
  publication-title: The elements of statistical learning
– ident: CR8
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  end-page: 22
  ident: CR21
  article-title: Classification and regression by randomforest
  publication-title: R News
– volume: 2
  start-page: 381
  issue: 3
  year: 2009
  end-page: 388
  ident: CR32
  article-title: Search for the smallest random forest
  publication-title: Stat Interface
  doi: 10.4310/SII.2009.v2.n3.a11
– ident: CR25
– ident: CR27
– ident: CR23
– volume: 7
  start-page: 179
  issue: 2
  year: 1936
  end-page: 188
  ident: CR12
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann Eugen
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 70
  start-page: 245
  year: 2021
  end-page: 317
  ident: CR5
  article-title: A survey on the explainability of supervised machine learning
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.1.12228
– ident: CR19
– volume: 432
  start-page: 151
  year: 1984
  end-page: 166
  ident: CR4
  article-title: Classification and regression trees. Belmont, CA: Wadsworth
  publication-title: Int Group
– volume: 34
  start-page: 763
  issue: 2
  year: 2019
  end-page: 786
  ident: CR10
  article-title: Classification trees with soft splits optimized for ranking
  publication-title: Comput Stat
  doi: 10.1007/s00180-019-00867-1
– volume: 63
  start-page: 308
  issue: 4
  year: 2009
  end-page: 319
  ident: CR15
  article-title: Variable importance assessment in regression: linear regression versus random forest
  publication-title: Am Stat
  doi: 10.1198/tast.2009.08199
– ident: CR17
– ident: CR31
– ident: CR11
– ident: CR9
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR3
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: CR7
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  end-page: 140
  ident: CR2
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
– volume: 16
  start-page: 31
  issue: 3
  year: 2018
  end-page: 57
  ident: CR22
  article-title: The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery
  publication-title: Queue
  doi: 10.1145/3236386.3241340
– ident: CR28
– volume: 24
  start-page: 305
  issue: 2
  year: 2010
  end-page: 324
  ident: CR30
  article-title: Explanation and reliability of prediction models: the case of breast cancer recurrence
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-009-0244-9
– ident: CR26
– ident: CR24
– volume: 6
  year: 2021
  ident: 1312_CR1
  publication-title: Mach Learn Appl
– volume: 432
  start-page: 151
  year: 1984
  ident: 1312_CR4
  publication-title: Int Group
– volume: 63
  start-page: 308
  issue: 4
  year: 2009
  ident: 1312_CR15
  publication-title: Am Stat
  doi: 10.1198/tast.2009.08199
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 1312_CR3
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 1312_CR8
– ident: 1312_CR17
– volume: 24
  start-page: 305
  issue: 2
  year: 2010
  ident: 1312_CR30
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-009-0244-9
– ident: 1312_CR18
  doi: 10.1145/3289402.3289549
– ident: 1312_CR19
  doi: 10.1109/ICSSD47982.2019.9002770
– ident: 1312_CR6
  doi: 10.1145/1390156.1390169
– ident: 1312_CR7
  doi: 10.1145/1143844.1143865
– volume: 34
  start-page: 763
  issue: 2
  year: 2019
  ident: 1312_CR10
  publication-title: Comput Stat
  doi: 10.1007/s00180-019-00867-1
– volume: 51
  start-page: 1
  issue: 5
  year: 2018
  ident: 1312_CR16
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3236009
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 1312_CR21
  publication-title: R News
– volume: 25
  start-page: 289
  issue: 3
  year: 2010
  ident: 1312_CR29
  publication-title: Stat Sci
  doi: 10.1214/10-STS330
– ident: 1312_CR9
– volume: 127
  start-page: 228
  year: 2019
  ident: 1312_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.03.018
– ident: 1312_CR14
  doi: 10.1109/DSAA.2018.00018
– ident: 1312_CR25
– ident: 1312_CR27
– volume: 70
  start-page: 245
  year: 2021
  ident: 1312_CR5
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.1.12228
– ident: 1312_CR31
  doi: 10.1145/3412815.3416893
– ident: 1312_CR24
– volume: 2
  start-page: 381
  issue: 3
  year: 2009
  ident: 1312_CR32
  publication-title: Stat Interface
  doi: 10.4310/SII.2009.v2.n3.a11
– ident: 1312_CR23
  doi: 10.1007/978-3-319-03200-9_2
– ident: 1312_CR11
  doi: 10.1155/2015/703514
– volume: 16
  start-page: 31
  issue: 3
  year: 2018
  ident: 1312_CR22
  publication-title: Queue
  doi: 10.1145/3236386.3241340
– ident: 1312_CR28
  doi: 10.1145/2939672.2939778
– ident: 1312_CR26
  doi: 10.1007/978-3-030-65965-3_28
– volume: 7
  start-page: 179
  issue: 2
  year: 1936
  ident: 1312_CR12
  publication-title: Ann Eugen
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 1312_CR2
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
– volume-title: The elements of statistical learning
  year: 2001
  ident: 1312_CR13
– volume: 25
  start-page: 407
  issue: 1
  year: 2018
  ident: 1312_CR33
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2018.2864475
SSID ssj0022721
Score 2.3653722
Snippet Ensemble methods are supervised learning algorithms that provide highly accurate solutions by training many models. Random forest is probably the most widely...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Algorithms
Classification
Datasets
Decision making
Decision trees
Economic Theory/Quantitative Economics/Mathematical Methods
Machine learning
Mathematics and Statistics
Original Paper
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Statistics
Supervised learning
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7ovMyD6FTcnLKDNw00WX50xyEbQ9DTBruVNHk9aZV1_v9L0rRDUcFboWkgr3l97zXf9z2AOy-y5qK28zQhDOETKogubEGULKjB1P91CADZF7lY8ae1WEdSWNWg3ZsjyfClbsluvn9cQjz63GvEMCIP4Ui42t2744pN2zKLqcC28pA5Vx1JFqkyP8_xNRztc8xvx6Ih2sxP4SSmiaNp_V7P4ADLHhw_txqrVQ-6Pk-sZZbPYeCxdJEINZqVFb75i-UGsbqA1Xy2fFyQ2PaAGOcPW4Iitci4LZgslKa55gbVhBlMNFrt-2KkMpXoFoSYMopji2NlXR2YK64lo-NL6JTvJV7BiCqbJ24WZXLKtXLlCjNJyjUXwrrUJukDbVafmagJ7ltTvGatmnGwWOYslgWLZbIP9-0zH7Uixp-jh41Rs-gdVcYmLmB6ji7tw0Nj6P3t32cb_G_4NXTd_uA1yHoIne3mE29cDrHNb8OW2QH_K7ea
  priority: 102
  providerName: Springer Nature
Title Explainable Ensemble Trees
URI https://link.springer.com/article/10.1007/s00180-022-01312-6
https://www.proquest.com/docview/2921223581
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1NT8IwtFG46MH4GUEkHLxp41q6dpwMkgHRSIyBBE_L1r6ddCDD_-_r6EY0kdOWfbykr--774OQG9tkDbU2cprvayp6zKdxalKqZMo0BDbqUCTITuR4Jp7m_twF3HKXVlnKxEJQm4W2MfJ73kMha-s62cPyi9qpUfZ01Y3Q2Cd1hprG0nkwHFUOF1dF3ZVNnkM_SXJXNFOUztlpdB61uey24wyn8rdi2lqbfw5IC70zPCZHzmDs9Dc7fEL2IDslhy9Vt9X8jDRtIp2rguqEWQ6f9ma6AsjPyWwYTgdj6mYeUI3MsKbgBwa4MCmXqYpZEgsNqsc1eDGY2A7FCGQgAdcAEHAGXQNdZdAJTJSIJWfdC1LLFhlckg5TJvEQitIJE7FCX4VrLxCx8H2Ddo3XIKxccKRdQ3A7l-IjqloZF0iKEElRgaRINsht9c9y0w5j59etEo-RY4082m5kg9yVuN2-_h9acze0K3LA0eDYZFS3SG29-oZrNBjWSRupYsDaBW20Sb0_en8O8foYTl7f8OmM938AASi7ZQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4oHNSD8RlBVA560o3dZbtbDsb4gIA8Ygwk3mq7Oz0pIMUY_5S_0d3SQjSRG7cmbSfpdHYeu983A3Bqm6yZqG1WmusqwqvUJUGkIyJFRBV6dtchAch2RaPPH57d5xX4zrgwFlaZ-cTEUeuhsnvkl6xqnKzlddLr0TuxU6Ps6Wo2QmNqFi38-jQlW3zVvDf_94yxeq131yDpVAGijLlNCLqeRsZ1xEQkAxoGXKGsMoVOgDqwYyc84QmkjoPoMYoVjRWpTZkVSh4IRitG7irkuWW05iB_W-s-Ps1KPCYTppeF65nKTLCUppOQ9ez8O4dY9LztccOI-B0K5_ntnyPZJNLVt2AzTVHLN1Ob2oYVHOzARmfW3zXehaKF7qW8q3JtEOObveiNEeM96C9FH_uQGwwHeABlKnXoGClShZQH0lRHTDkeD7jrapNJOQWg2Qf7Km1BbidhvPqz5smJknyjJD9Rki8KcD57ZzRtwLHw6VKmRz9djLE_N50CXGS6nd_-X1pxsbQTWGv0Om2_3ey2DmGdmXRniucuQW4y_sAjk65MwuPURsrwsmyz_AF8AfVK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gJkYPxmcEUXvQk27oLu1uORhjBARR4gESbrXdnZ4UkGKMf81f524fEE3kxq1J20k6_XYeu9_MAJybJmvaa-uV5rqSOHXqkiBSERE8ohI9s-uQEGR7vD1wHobusADfeS2MoVXmNjEx1GoszR55ldW1kTV1nbQaZbSI50brZvJOzAQpc9Kaj9NIIdLFr0-dvsXXnYb-1xeMtZr9uzbJJgwQqaE3I-h6CpmjIsYjEdAwcCSKOpNoB6gCM4LC4x5HatuIHqNYU1gTSqdcoXACzmhNy12DdVETdZP4ea37ebLHRFLzZYh7OkfjLCvYScr2zCQ8mxgevel2wwj_7RQXke6fw9nE57V2YDsLVq3bFF27UMDRHmw9zTu9xvtQNiS-rALLao5ifDMX_SlifACDlWjjEIqj8QiPwKJChbaWImRInUDoPIlJ23MCx3WVjqnsEtD8g32ZNSM3MzFe_Xkb5URJvlaSnyjJ5yW4nL8zSVtxLH26kuvRz5Zl7C9AVIKrXLeL2_9LKy-XdgYbGoz-Y6fXPYZNpuOelNhdgeJs-oEnOm6ZhacJQCx4WTUifwCsffga
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+Ensemble+Trees&rft.jtitle=Computational+statistics&rft.au=Aria%2C+Massimo&rft.au=Gnasso%2C+Agostino&rft.au=Iorio%2C+Carmela&rft.au=Pandolfo%2C+Giuseppe&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=39&rft.issue=1&rft.spage=3&rft.epage=19&rft_id=info:doi/10.1007%2Fs00180-022-01312-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon