Explainable Ensemble Trees
Ensemble methods are supervised learning algorithms that provide highly accurate solutions by training many models. Random forest is probably the most widely used in regression and classification problems. It builds decision trees on different samples and takes their majority vote for classification...
Saved in:
Published in | Computational statistics Vol. 39; no. 1; pp. 3 - 19 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0943-4062 1613-9658 |
DOI | 10.1007/s00180-022-01312-6 |
Cover
Abstract | Ensemble methods are supervised learning algorithms that provide highly accurate solutions by training many models. Random forest is probably the most widely used in regression and classification problems. It builds decision trees on different samples and takes their majority vote for classification and average in case of regression. However, such an algorithm suffers from a lack of explainability and thus does not allow users to understand how particular decisions are made. To improve on that, we propose a new way of interpreting an ensemble tree structure. Starting from a random forest model, our approach is able to explain graphically the relationship structure between the response variable and predictors. The proposed method appears to be useful in all real-world cases where model interpretation for predictive purposes is crucial. The proposal is evaluated by means of real data sets. |
---|---|
AbstractList | Ensemble methods are supervised learning algorithms that provide highly accurate solutions by training many models. Random forest is probably the most widely used in regression and classification problems. It builds decision trees on different samples and takes their majority vote for classification and average in case of regression. However, such an algorithm suffers from a lack of explainability and thus does not allow users to understand how particular decisions are made. To improve on that, we propose a new way of interpreting an ensemble tree structure. Starting from a random forest model, our approach is able to explain graphically the relationship structure between the response variable and predictors. The proposed method appears to be useful in all real-world cases where model interpretation for predictive purposes is crucial. The proposal is evaluated by means of real data sets. |
Author | Aria, Massimo Gnasso, Agostino Iorio, Carmela Pandolfo, Giuseppe |
Author_xml | – sequence: 1 givenname: Massimo orcidid: 0000-0002-8517-9411 surname: Aria fullname: Aria, Massimo email: massimo.aria@unina.it organization: Department of Economics and Statistics, University of Naples Federico II – sequence: 2 givenname: Agostino surname: Gnasso fullname: Gnasso, Agostino organization: Department of Economics and Statistics, University of Naples Federico II – sequence: 3 givenname: Carmela surname: Iorio fullname: Iorio, Carmela organization: Department of Economics and Statistics, University of Naples Federico II – sequence: 4 givenname: Giuseppe surname: Pandolfo fullname: Pandolfo, Giuseppe organization: Department of Economics and Statistics, University of Naples Federico II |
BookMark | eNp9kEFLAzEQhYNUsK3-gZ4Ez9GZSZrNHqVUKxS81HNId2dlyzZbky3ov3frCoKHnmYO75v35k3EKLSBhZgh3CNA9pAA0IIEIgmokKS5EGM0qGRu5nYkxpBrJTUYuhKTlHbQKzPCsZgtPw-Nr4PfNny7DIn3p2UTmdO1uKx8k_jmd07F29Nys1jJ9evzy-JxLQuFeSd5bksmXVZkqszj1uuCs5wKBs-lt0pra6zhPiazJWRVsspKDbTNtDeEairuhruH2H4cOXVu1x5j6C0d5YREam5PKhpURWxTily5Q6z3Pn45BHfqwA0duP4z99OBMz1k_0FF3fmubkMXfd2cR9WApt4nvHP8S3WG-gYRE3A6 |
CitedBy_id | crossref_primary_10_1016_j_cie_2024_110765 crossref_primary_10_1088_2053_1591_ada41c crossref_primary_10_1109_JIOT_2023_3303429 |
Cites_doi | 10.1109/TVCG.2018.2864475 10.1214/10-STS330 10.1016/j.eswa.2019.03.018 10.1145/3236009 10.4310/SII.2009.v2.n3.a11 10.1111/j.1469-1809.1936.tb02137.x 10.1613/jair.1.12228 10.1007/s00180-019-00867-1 10.1198/tast.2009.08199 10.1023/A:1010933404324 10.1007/BF00058655 10.1145/3236386.3241340 10.1007/s10115-009-0244-9 10.1145/3289402.3289549 10.1109/ICSSD47982.2019.9002770 10.1145/1390156.1390169 10.1145/1143844.1143865 10.1109/DSAA.2018.00018 10.1145/3412815.3416893 10.1007/978-3-319-03200-9_2 10.1155/2015/703514 10.1145/2939672.2939778 10.1007/978-3-030-65965-3_28 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8C1 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s00180-022-01312-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Proquest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection (Proquest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library (Proquest) Science Database Engineering Database (Proquest) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1613-9658 |
EndPage | 19 |
ExternalDocumentID | 10_1007_s00180_022_01312_6 |
GrantInformation_xml | – fundername: Ministero dell’Istruzione, dell’Università e della Ricerca grantid: PRIN 2017, ID: 2017KZZLYP funderid: http://dx.doi.org/10.13039/501100003407 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7WY 88I 8C1 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- MK~ N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Y Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PUEGO Q9U |
ID | FETCH-LOGICAL-c319t-e58de24df26f7a1ba4ce792ce0aeda83448686e100ee821e3de37d402b74a6213 |
IEDL.DBID | 8FG |
ISSN | 0943-4062 |
IngestDate | Sat Aug 23 13:12:17 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Tue Jul 01 04:23:19 EDT 2025 Fri Feb 21 02:40:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Random forest Explainability Machine learning Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e58de24df26f7a1ba4ce792ce0aeda83448686e100ee821e3de37d402b74a6213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8517-9411 |
PQID | 2921223581 |
PQPubID | 54096 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2921223581 crossref_primary_10_1007_s00180_022_01312_6 crossref_citationtrail_10_1007_s00180_022_01312_6 springer_journals_10_1007_s00180_022_01312_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240200 2024-02-00 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 2 year: 2024 text: 20240200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Computational statistics |
PublicationTitleAbbrev | Comput Stat |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Friedman, Hastie, Tibshirani (CR13) 2001 Lipton (CR22) 2018; 16 CR19 CR18 Breiman (CR2) 1996; 24 CR17 Breiman (CR3) 2001; 45 CR14 CR11 CR31 Aria, Cuccurullo, Gnasso (CR1) 2021; 6 Dvořák (CR10) 2019; 34 Liaw, Wiener (CR21) 2002; 2 Zhao, Wu, Lee, Cui (CR33) 2018; 25 Iorio, Aria, D’Ambrosio, Siciliano (CR20) 2019; 127 CR6 CR8 CR7 Fisher (CR12) 1936; 7 CR28 CR9 CR27 CR26 CR25 CR24 CR23 Guidotti, Monreale, Ruggieri, Turini, Giannotti, Pedreschi (CR16) 2018; 51 Grömping (CR15) 2009; 63 Shmueli (CR29) 2010; 25 Burkart, Huber (CR5) 2021; 70 Wang, Zhang (CR32) 2009; 2 Štrumbelj, Bosnić, Kononenko, Zakotnik, Grašič Kuhar (CR30) 2010; 24 Breiman, Friedman, Olshen, Stone (CR4) 1984; 432 J Friedman (1312_CR13) 2001 1312_CR28 1312_CR27 M Wang (1312_CR32) 2009; 2 U Grömping (1312_CR15) 2009; 63 R Guidotti (1312_CR16) 2018; 51 G Shmueli (1312_CR29) 2010; 25 L Breiman (1312_CR4) 1984; 432 L Breiman (1312_CR2) 1996; 24 J Dvořák (1312_CR10) 2019; 34 M Aria (1312_CR1) 2021; 6 N Burkart (1312_CR5) 2021; 70 C Iorio (1312_CR20) 2019; 127 1312_CR26 1312_CR25 1312_CR24 1312_CR23 1312_CR19 1312_CR18 1312_CR17 L Breiman (1312_CR3) 2001; 45 A Liaw (1312_CR21) 2002; 2 X Zhao (1312_CR33) 2018; 25 1312_CR6 1312_CR8 1312_CR7 1312_CR9 E Štrumbelj (1312_CR30) 2010; 24 1312_CR11 ZC Lipton (1312_CR22) 2018; 16 1312_CR31 1312_CR14 RA Fisher (1312_CR12) 1936; 7 |
References_xml | – ident: CR18 – volume: 6 year: 2021 ident: CR1 article-title: A comparison among interpretative proposals for random forests publication-title: Mach Learn Appl – volume: 25 start-page: 407 issue: 1 year: 2018 end-page: 416 ident: CR33 article-title: iforest: Interpreting random forests via visual analytics publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2018.2864475 – volume: 25 start-page: 289 issue: 3 year: 2010 end-page: 310 ident: CR29 article-title: To explain or to predict? publication-title: Stat Sci doi: 10.1214/10-STS330 – volume: 127 start-page: 228 year: 2019 end-page: 240 ident: CR20 article-title: Informative trees by visual pruning publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.03.018 – ident: CR14 – volume: 51 start-page: 1 issue: 5 year: 2018 end-page: 42 ident: CR16 article-title: A survey of methods for explaining black box models publication-title: ACM Comput Surv (CSUR) doi: 10.1145/3236009 – ident: CR6 – year: 2001 ident: CR13 publication-title: The elements of statistical learning – ident: CR8 – volume: 2 start-page: 18 issue: 3 year: 2002 end-page: 22 ident: CR21 article-title: Classification and regression by randomforest publication-title: R News – volume: 2 start-page: 381 issue: 3 year: 2009 end-page: 388 ident: CR32 article-title: Search for the smallest random forest publication-title: Stat Interface doi: 10.4310/SII.2009.v2.n3.a11 – ident: CR25 – ident: CR27 – ident: CR23 – volume: 7 start-page: 179 issue: 2 year: 1936 end-page: 188 ident: CR12 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann Eugen doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 70 start-page: 245 year: 2021 end-page: 317 ident: CR5 article-title: A survey on the explainability of supervised machine learning publication-title: J Artif Intell Res doi: 10.1613/jair.1.12228 – ident: CR19 – volume: 432 start-page: 151 year: 1984 end-page: 166 ident: CR4 article-title: Classification and regression trees. Belmont, CA: Wadsworth publication-title: Int Group – volume: 34 start-page: 763 issue: 2 year: 2019 end-page: 786 ident: CR10 article-title: Classification trees with soft splits optimized for ranking publication-title: Comput Stat doi: 10.1007/s00180-019-00867-1 – volume: 63 start-page: 308 issue: 4 year: 2009 end-page: 319 ident: CR15 article-title: Variable importance assessment in regression: linear regression versus random forest publication-title: Am Stat doi: 10.1198/tast.2009.08199 – ident: CR17 – ident: CR31 – ident: CR11 – ident: CR9 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR3 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: CR7 – volume: 24 start-page: 123 issue: 2 year: 1996 end-page: 140 ident: CR2 article-title: Bagging predictors publication-title: Mach Learn doi: 10.1007/BF00058655 – volume: 16 start-page: 31 issue: 3 year: 2018 end-page: 57 ident: CR22 article-title: The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery publication-title: Queue doi: 10.1145/3236386.3241340 – ident: CR28 – volume: 24 start-page: 305 issue: 2 year: 2010 end-page: 324 ident: CR30 article-title: Explanation and reliability of prediction models: the case of breast cancer recurrence publication-title: Knowl Inf Syst doi: 10.1007/s10115-009-0244-9 – ident: CR26 – ident: CR24 – volume: 6 year: 2021 ident: 1312_CR1 publication-title: Mach Learn Appl – volume: 432 start-page: 151 year: 1984 ident: 1312_CR4 publication-title: Int Group – volume: 63 start-page: 308 issue: 4 year: 2009 ident: 1312_CR15 publication-title: Am Stat doi: 10.1198/tast.2009.08199 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 1312_CR3 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: 1312_CR8 – ident: 1312_CR17 – volume: 24 start-page: 305 issue: 2 year: 2010 ident: 1312_CR30 publication-title: Knowl Inf Syst doi: 10.1007/s10115-009-0244-9 – ident: 1312_CR18 doi: 10.1145/3289402.3289549 – ident: 1312_CR19 doi: 10.1109/ICSSD47982.2019.9002770 – ident: 1312_CR6 doi: 10.1145/1390156.1390169 – ident: 1312_CR7 doi: 10.1145/1143844.1143865 – volume: 34 start-page: 763 issue: 2 year: 2019 ident: 1312_CR10 publication-title: Comput Stat doi: 10.1007/s00180-019-00867-1 – volume: 51 start-page: 1 issue: 5 year: 2018 ident: 1312_CR16 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/3236009 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 1312_CR21 publication-title: R News – volume: 25 start-page: 289 issue: 3 year: 2010 ident: 1312_CR29 publication-title: Stat Sci doi: 10.1214/10-STS330 – ident: 1312_CR9 – volume: 127 start-page: 228 year: 2019 ident: 1312_CR20 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.03.018 – ident: 1312_CR14 doi: 10.1109/DSAA.2018.00018 – ident: 1312_CR25 – ident: 1312_CR27 – volume: 70 start-page: 245 year: 2021 ident: 1312_CR5 publication-title: J Artif Intell Res doi: 10.1613/jair.1.12228 – ident: 1312_CR31 doi: 10.1145/3412815.3416893 – ident: 1312_CR24 – volume: 2 start-page: 381 issue: 3 year: 2009 ident: 1312_CR32 publication-title: Stat Interface doi: 10.4310/SII.2009.v2.n3.a11 – ident: 1312_CR23 doi: 10.1007/978-3-319-03200-9_2 – ident: 1312_CR11 doi: 10.1155/2015/703514 – volume: 16 start-page: 31 issue: 3 year: 2018 ident: 1312_CR22 publication-title: Queue doi: 10.1145/3236386.3241340 – ident: 1312_CR28 doi: 10.1145/2939672.2939778 – ident: 1312_CR26 doi: 10.1007/978-3-030-65965-3_28 – volume: 7 start-page: 179 issue: 2 year: 1936 ident: 1312_CR12 publication-title: Ann Eugen doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 1312_CR2 publication-title: Mach Learn doi: 10.1007/BF00058655 – volume-title: The elements of statistical learning year: 2001 ident: 1312_CR13 – volume: 25 start-page: 407 issue: 1 year: 2018 ident: 1312_CR33 publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2018.2864475 |
SSID | ssj0022721 |
Score | 2.3653722 |
Snippet | Ensemble methods are supervised learning algorithms that provide highly accurate solutions by training many models. Random forest is probably the most widely... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3 |
SubjectTerms | Algorithms Classification Datasets Decision making Decision trees Economic Theory/Quantitative Economics/Mathematical Methods Machine learning Mathematics and Statistics Original Paper Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Statistics Supervised learning |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7ovMyD6FTcnLKDNw00WX50xyEbQ9DTBruVNHk9aZV1_v9L0rRDUcFboWkgr3l97zXf9z2AOy-y5qK28zQhDOETKogubEGULKjB1P91CADZF7lY8ae1WEdSWNWg3ZsjyfClbsluvn9cQjz63GvEMCIP4Ui42t2744pN2zKLqcC28pA5Vx1JFqkyP8_xNRztc8xvx6Ih2sxP4SSmiaNp_V7P4ADLHhw_txqrVQ-6Pk-sZZbPYeCxdJEINZqVFb75i-UGsbqA1Xy2fFyQ2PaAGOcPW4Iitci4LZgslKa55gbVhBlMNFrt-2KkMpXoFoSYMopji2NlXR2YK64lo-NL6JTvJV7BiCqbJ24WZXLKtXLlCjNJyjUXwrrUJukDbVafmagJ7ltTvGatmnGwWOYslgWLZbIP9-0zH7Uixp-jh41Rs-gdVcYmLmB6ji7tw0Nj6P3t32cb_G_4NXTd_uA1yHoIne3mE29cDrHNb8OW2QH_K7ea priority: 102 providerName: Springer Nature |
Title | Explainable Ensemble Trees |
URI | https://link.springer.com/article/10.1007/s00180-022-01312-6 https://www.proquest.com/docview/2921223581 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1NT8IwtFG46MH4GUEkHLxp41q6dpwMkgHRSIyBBE_L1r6ddCDD_-_r6EY0kdOWfbykr--774OQG9tkDbU2cprvayp6zKdxalKqZMo0BDbqUCTITuR4Jp7m_twF3HKXVlnKxEJQm4W2MfJ73kMha-s62cPyi9qpUfZ01Y3Q2Cd1hprG0nkwHFUOF1dF3ZVNnkM_SXJXNFOUztlpdB61uey24wyn8rdi2lqbfw5IC70zPCZHzmDs9Dc7fEL2IDslhy9Vt9X8jDRtIp2rguqEWQ6f9ma6AsjPyWwYTgdj6mYeUI3MsKbgBwa4MCmXqYpZEgsNqsc1eDGY2A7FCGQgAdcAEHAGXQNdZdAJTJSIJWfdC1LLFhlckg5TJvEQitIJE7FCX4VrLxCx8H2Ddo3XIKxccKRdQ3A7l-IjqloZF0iKEElRgaRINsht9c9y0w5j59etEo-RY4082m5kg9yVuN2-_h9acze0K3LA0eDYZFS3SG29-oZrNBjWSRupYsDaBW20Sb0_en8O8foYTl7f8OmM938AASi7ZQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4oHNSD8RlBVA560o3dZbtbDsb4gIA8Ygwk3mq7Oz0pIMUY_5S_0d3SQjSRG7cmbSfpdHYeu983A3Bqm6yZqG1WmusqwqvUJUGkIyJFRBV6dtchAch2RaPPH57d5xX4zrgwFlaZ-cTEUeuhsnvkl6xqnKzlddLr0TuxU6Ps6Wo2QmNqFi38-jQlW3zVvDf_94yxeq131yDpVAGijLlNCLqeRsZ1xEQkAxoGXKGsMoVOgDqwYyc84QmkjoPoMYoVjRWpTZkVSh4IRitG7irkuWW05iB_W-s-Ps1KPCYTppeF65nKTLCUppOQ9ez8O4dY9LztccOI-B0K5_ntnyPZJNLVt2AzTVHLN1Ob2oYVHOzARmfW3zXehaKF7qW8q3JtEOObveiNEeM96C9FH_uQGwwHeABlKnXoGClShZQH0lRHTDkeD7jrapNJOQWg2Qf7Km1BbidhvPqz5smJknyjJD9Rki8KcD57ZzRtwLHw6VKmRz9djLE_N50CXGS6nd_-X1pxsbQTWGv0Om2_3ey2DmGdmXRniucuQW4y_sAjk65MwuPURsrwsmyz_AF8AfVK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gJkYPxmcEUXvQk27oLu1uORhjBARR4gESbrXdnZ4UkGKMf81f524fEE3kxq1J20k6_XYeu9_MAJybJmvaa-uV5rqSOHXqkiBSERE8ohI9s-uQEGR7vD1wHobusADfeS2MoVXmNjEx1GoszR55ldW1kTV1nbQaZbSI50brZvJOzAQpc9Kaj9NIIdLFr0-dvsXXnYb-1xeMtZr9uzbJJgwQqaE3I-h6CpmjIsYjEdAwcCSKOpNoB6gCM4LC4x5HatuIHqNYU1gTSqdcoXACzmhNy12DdVETdZP4ea37ebLHRFLzZYh7OkfjLCvYScr2zCQ8mxgevel2wwj_7RQXke6fw9nE57V2YDsLVq3bFF27UMDRHmw9zTu9xvtQNiS-rALLao5ifDMX_SlifACDlWjjEIqj8QiPwKJChbaWImRInUDoPIlJ23MCx3WVjqnsEtD8g32ZNSM3MzFe_Xkb5URJvlaSnyjJ5yW4nL8zSVtxLH26kuvRz5Zl7C9AVIKrXLeL2_9LKy-XdgYbGoz-Y6fXPYZNpuOelNhdgeJs-oEnOm6ZhacJQCx4WTUifwCsffga |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+Ensemble+Trees&rft.jtitle=Computational+statistics&rft.au=Aria%2C+Massimo&rft.au=Gnasso%2C+Agostino&rft.au=Iorio%2C+Carmela&rft.au=Pandolfo%2C+Giuseppe&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=39&rft.issue=1&rft.spage=3&rft.epage=19&rft_id=info:doi/10.1007%2Fs00180-022-01312-6&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon |