The post-determined block universe

A series of reasons to take quantum unitary evolution seriously and explain the projection of the state vector as unitary and not discontinuous are presented, including some from General Relativity. This leads to an interpretation of Quantum Mechanics which is unitary at the level of a single world....

Full description

Saved in:
Bibliographic Details
Published inQuantum Studies : Mathematics and Foundations Vol. 8; no. 1; pp. 69 - 101
Main Author Stoica, Ovidiu Cristinel
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A series of reasons to take quantum unitary evolution seriously and explain the projection of the state vector as unitary and not discontinuous are presented, including some from General Relativity. This leads to an interpretation of Quantum Mechanics which is unitary at the level of a single world. I argue that unitary evolution is consistent with both quantum measurements and the apparent classicality at the macroscopic level. This allows us to take the wavefunction as ontic (but holistic), but a global consistency condition has to be introduced to ensure this compatibility. I justify this by appealing to sheaf cohomology on the block universe. As a consequence, Quantum Theory turns out to be consistent with a definite four-dimensional spacetime, even if this may consist of superpositions of different geometries. But the block universe subject to global consistency gains a new flavor, which for an observer experiencing the flow of time appears as “superdeterministic” or “retrocausal”, although this does not manifest itself in observations in a way which would allow the violation of causality. However, the block universe view offers another interpretation of this behavior, which makes more sense, and removes the tension with causality. Such a block universe subject to global consistency appears thus as being post-determined. Here “post-determined” means that for an observer the block universe appears as not being completely determined from the beginning, but each new quantum observation eliminates some of the possible block universe solutions consistent with the previous observations. I compare the post-determined block universe with other proposals: the presentist view, the block universe, the splitting block universe, and the growing block universe, and explain how it combines their major advantages in a qualitatively different picture.
AbstractList A series of reasons to take quantum unitary evolution seriously and explain the projection of the state vector as unitary and not discontinuous are presented, including some from General Relativity. This leads to an interpretation of Quantum Mechanics which is unitary at the level of a single world. I argue that unitary evolution is consistent with both quantum measurements and the apparent classicality at the macroscopic level. This allows us to take the wavefunction as ontic (but holistic), but a global consistency condition has to be introduced to ensure this compatibility. I justify this by appealing to sheaf cohomology on the block universe. As a consequence, Quantum Theory turns out to be consistent with a definite four-dimensional spacetime, even if this may consist of superpositions of different geometries. But the block universe subject to global consistency gains a new flavor, which for an observer experiencing the flow of time appears as “superdeterministic” or “retrocausal”, although this does not manifest itself in observations in a way which would allow the violation of causality. However, the block universe view offers another interpretation of this behavior, which makes more sense, and removes the tension with causality. Such a block universe subject to global consistency appears thus as being post-determined. Here “post-determined” means that for an observer the block universe appears as not being completely determined from the beginning, but each new quantum observation eliminates some of the possible block universe solutions consistent with the previous observations. I compare the post-determined block universe with other proposals: the presentist view, the block universe, the splitting block universe, and the growing block universe, and explain how it combines their major advantages in a qualitatively different picture.
Author Stoica, Ovidiu Cristinel
Author_xml – sequence: 1
  givenname: Ovidiu Cristinel
  orcidid: 0000-0002-2765-1562
  surname: Stoica
  fullname: Stoica, Ovidiu Cristinel
  email: cristi.stoica@theory.nipne.ro, holotronix@gmail.com
  organization: Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering, Horia Hulubei
BookMark eNp9kE1LAzEQhoNUsNb-AU9Fz9F8bjZHKVqFgpd6Dkl2VqNtUpOt4L9364qCh55mDu8z7_CcolFMERA6p-SKEqKuiyCSaEwYwYQwVmNxhMaM6grLiqrR7070CZqWEhzhVAlKaT1GF6sXmG1T6XADHeRNiNDM3Dr5t9kuhg_IBc7QcWvXBaY_c4Ke7m5X83u8fFw8zG-W2HOqOwxScAWt8lTWysqm8dYrXhGQ1tnWCe84b6yvLCfO28YDV1ry1jFvhQcm-ARdDne3Ob3voHTmNe1y7CsNE5oLzXQPTFA9pHxOpWRojQ-d7UKKXbZhbSgxeylmkGJ6KeZbitkXsH_oNoeNzZ-HIT5ApQ_HZ8h_Xx2gvgCeaHYE
CitedBy_id crossref_primary_10_3390_quantum5010008
crossref_primary_10_1007_s10701_024_00802_5
crossref_primary_10_1088_1742_6596_2533_1_012027
crossref_primary_10_3390_e26050411
crossref_primary_10_1007_s40509_024_00358_z
Cites_doi 10.1016/j.physletb.2019.03.015
10.1103/PhysRev.134.B1410
10.1103/PhysRevLett.119.240401
10.1038/ncomms1416
10.1103/PhysRevLett.49.91
10.1038/s41534-016-0002-2
10.1155/2018/4130417
10.1103/PhysRevA.49.1473
10.1086/392923
10.1063/1.3062686
10.1088/0034-4885/71/2/022001
10.1002/andp.19263851302
10.1103/PhysRevD.102.023537
10.1007/978-94-010-0385-8_7
10.1142/S0219887814500418
10.1093/acprof:oso/9780199790807.003.0004
10.1038/ncomms3374
10.1103/PhysRevLett.108.150402
10.1088/0034-4885/77/1/016001
10.1017/CBO9780511675768
10.1119/1.15540
10.1103/PhysRevLett.119.240402
10.1103/PhysRevA.71.052108
10.1007/978-3-319-12946-4_5
10.1007/BF02055756
10.1007/s10701-006-9089-1
10.1016/0029-5582(63)90279-7
10.1016/0375-9601(84)91063-6
10.1007/978-94-015-8715-0_2
10.1007/BF01491914
10.1007/s10701-016-0031-x
10.1038/18296
10.1103/PhysRevLett.70.1895
10.1088/1742-6596/626/1/012028
10.1007/978-3-319-41285-6
10.1103/PhysRev.28.1049
10.4236/jmp.2010.12019
10.1142/9781786341419_0012
10.1103/PhysRev.40.749
10.1088/0953-8984/14/15/201
10.2307/1969831
10.1038/nphys2309
10.1103/PhysRevD.84.025007
10.1142/S0217979213450124
10.1103/PhysRevLett.14.57
10.1103/PhysRevD.95.103504
10.1007/BF00276801
10.1088/1361-6382/aaea20
10.1017/S0305004100000487
10.1103/PhysRevD.7.2333
10.12743/quanta.v5i1.40
10.1007/978-1-4612-0647-7
10.3390/e14040665
10.3390/e17117752
10.1016/B978-0-12-473250-6.50006-6
10.1051/epjconf/20135801017
10.1103/PhysRevLett.47.979
10.1103/RevModPhys.38.447
10.1103/PhysRev.85.166
10.1007/BF01883487
10.1017/S1358246100010572
10.1103/PhysRev.47.777
10.1007/BF00670751
10.1093/mind/XVII.4.457
10.1103/PhysRevLett.54.857
10.1007/978-1-4684-8771-8_6
10.1007/BF01336768
10.12743/quanta.v2i1.14
10.1088/1742-6596/701/1/012020
10.1038/nphys3233
10.1007/BF00715241
10.1103/PhysRevD.102.124027
10.3390/e19070343
10.1103/PhysRevLett.111.120502
10.1111/nyas.12559
10.1017/CBO9780511622878
10.1103/PhysRevD.34.470
10.1088/0305-4470/24/10/018
10.1103/RevModPhys.29.454
10.1007/978-94-015-7877-6
10.1103/PhysRevD.14.2460
10.1007/BF02302261
10.1103/PhysRevA.80.043801
10.1103/PhysicsPhysiqueFizika.1.195
10.1103/RevModPhys.58.647
10.1103/PhysRevD.73.064025
10.1016/j.aop.2014.04.027
10.1103/PhysRevA.100.042115
10.1007/s40509-017-0130-1
10.1007/s10701-009-9347-0
10.1103/PhysRev.120.622
10.1103/PhysRevA.97.052109
10.1007/BF00717585
10.1126/science.1202218
10.1007/BF01455871
10.1007/BF01645742
10.1007/BF02906749
10.1038/37539
10.1007/s10701-016-0025-8
10.1007/s10714-006-0332-z
10.1007/BF02345020
10.1007/978-94-017-6065-2
10.1103/PhysRevD.78.064051
10.1007/BF01948686
10.1098/rspa.1970.0021
10.3390/e20010041
10.1063/1.4982765
10.1103/RevModPhys.92.021002
10.1016/j.aop.2015.02.020
10.4324/9780203201107
10.2307/1968551
10.1017/CBO9780511815676
ContentType Journal Article
Copyright Chapman University 2020
Chapman University 2020.
Copyright_xml – notice: Chapman University 2020
– notice: Chapman University 2020.
DBID AAYXX
CITATION
DOI 10.1007/s40509-020-00228-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 2196-5617
EndPage 101
ExternalDocumentID 10_1007_s40509_020_00228_4
GroupedDBID -EM
0R~
203
4.4
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
IXD
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9G
O9J
PT4
RIG
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-e5437ef7c1587a5ddcac7360e5abafb4cb33dac6a30bcadce37953fb2ca4ce243
IEDL.DBID AGYKE
ISSN 2196-5609
IngestDate Wed Aug 27 05:26:00 EDT 2025
Tue Jul 01 02:55:49 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
Fri Feb 21 02:49:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Semi-classical gravity
Foundations of quantum mechanics
Determinism
Interpretation of quantum mechanics
Quantum gravity
Block universe
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e5437ef7c1587a5ddcac7360e5abafb4cb33dac6a30bcadce37953fb2ca4ce243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2765-1562
PQID 2493492995
PQPubID 2044442
PageCount 33
ParticipantIDs proquest_journals_2493492995
crossref_citationtrail_10_1007_s40509_020_00228_4
crossref_primary_10_1007_s40509_020_00228_4
springer_journals_10_1007_s40509_020_00228_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Quantum Studies : Mathematics and Foundations
PublicationTitleAbbrev Quantum Stud.: Math. Found
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Stoica, O.C.: Flowing with a frozen river. Foundational Questions Institute, “The nature of time” essay contest (2008). http://fqxi.org/community/forum/topic/322. Accessed 18 May 2020
Stoica, O.C.: Quantum measurement and initial conditions. Int. J. Theor. Phys. 1–15 (2015). arXiv:1212.2601
Vaidman, L.: Many-worlds interpretation of quantum mechanics. In: E.N. Zalta (ed) The Stanford Encyclopedia of Philosophy, spring 2015 edition. Stanford (2015). http://plato.stanford.edu/archives/spr2015/entries/qm-manyworlds
DaumerMDürrDGoldsteinSZanghìNNaive realism about operatorsErkenntnis1996452–337939714533840912.47044
RingbauerMDuffusBBranciardCCavalcantiEGWhiteAGFedrizziAMeasurements on the reality of the wavefunctionNat. Phys.2015113249
Born, M.: Zur Quantenmechanik der Stoßvorgänge. In: Reprinted and translated in Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement. Princeton University Press, Princeton, p. 52 (1926)
SchrödingerEQuantisierung als EigenwertproblemAnn. Phys.19263851343749052.0966.02
Wheeler, J.A.: Information, physics, quantum: the search for links. In: W.H. Zurek (ed) Complexity, entropy, and the physics of information, vol. 8 (1990)
Kent, A.: Semi-quantum gravity and testing gravitational Bell non-locality. Preprint arXiv:1808.06084 (2018)
Tegmark, M.: Our Mathematical Universe: My Quest for the Ultimate Nature of Reality. Knopf Doubleday Publishing Group, New York (2014)
Przibram, K.:(ed), Klein, M.J. (trans). Letters on Wave Mechanics: Schrödinger, Plank, Einstein, Lorentz. Philosophical Library, New York (1967)
Stoica, O.C.: Revisiting the black hole entropy and the information paradox. AHEP (2018)
Friederich, S., Evans, P.W.: Retrocausality in quantum mechanics. In: E.N. Zalta (ed.) The Stanford encyclopedia of philosophy, summer 2019 edn. Metaphysics Research Lab, Stanford University (2019)
EinsteinAPodolskyBRosenNCan quantum-mechanical description of physical reality be considered complete?Phys. Rev.193547107770012.04201
StoicaOCOn the wavefunction collapseQuanta2016511933352164610.12743/quanta.v5i1.40
Stoica, O.C.: The universe remembers no wavefunction collapse. Quantum Stud. Math. Found. (2017). arXiv:1607.02076
WeisskopfVFWignerEPCalculation of the natural brightness of spectral lines on the basis of Dirac’s theoryZ. Phys.1930635473
BurgosMEContradiction between conservation laws and orthodox quantum mechanicsJ. Mod. Phys.201012137
CramerJGThe transactional interpretation of quantum mechanicsRev. Mod. Phys.1986583647854444
Howl, R., Vedral, V., Christodoulou, M., Rovelli, C., Naik, D., Iyer, A.: Testing quantum gravity with a single quantum system. Preprint arXiv:2004.01189 (2020)
AharonovYBergmannPGLebowitzJLTime symmetry in the quantum process of measurementPhys. Rev.1964134141014161636140127.43703
Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedanken experiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. (49) (1982)
t Hooft, G.: The cellular automaton interpretation of quantum mechanics, vol. 185. Springer, New York (2016)
Stoica, O.C.: Singular general relativity—Ph.D. Thesis. Minkowski Institute Press (2013). arXiv:1301.2231
HarriganNSpekkensRWEinstein, incompleteness, and the epistemic view of quantum statesFound. Phys.201040212515725858521184.81006
BardeenJMCarterBHawkingSWThe four laws of black hole mechanicsCommun. Math. Phys.19733121611703347981125.83309
LloydSMacconeLGarcia-PatronRGiovannettiVShikanoYQuantum mechanics of time travel through post-selected teleportationPhys. Rev. D2011842025007
ChristodoulouMRovelliCOn the possibility of laboratory evidence for quantum superposition of geometriesPhys. Lett. B201979264683927926
LeggettAJGargAQuantum mechanics versus macroscopic realism: Is the flux there when nobody looks?Phys. Rev. Lett.1985549857860778316
StoicaOCRepresentation of the wave function on the three-dimensional spacePhys. Rev. A20191000421154028855
BellJSOn the Problem of Hidden Variables in Quantum MechanicsRev. Mod. Phys.19663834474522089270152.23605
HestenesDSpace-Time Algebra1966New YorkGordon & Breach0183.28901
PenroseRGravitational collapse and space-time singularitiesPhys. Rev. Lett.196514357591726780125.21206
Stoica, O.C.: Global and local aspects of causality in quantum mechanics. In: EPJ Web of Conferences, TM 2012— the time machine factory (unspeakable, speakable) on time travel in Turin, vol. 58, p. 01017. EPJ Web of Conferences (2013). Open access
RietdijkCWProof of a retroactive influenceFound. Phys.197887–8615628
Schrödinger, E.: Collected papers on wave mechanics, vol. 302. American Mathematical Society, New York (2003)
Dürr, D., Goldstein, S., Zanghì, N.: Bohmian mechanics as the foundation of quantum mechanics. In: Cushing, J.T., Fine, A., Goldstein, S. (eds) Bohmian mechanics and quantum theory: an appraisal, pp. 21–44. Springer, New York (1996). arXiv:quant-ph/9511016
CramerJGAn overview of the transactional interpretation of quantum mechanicsInt. J. Theor. Phys.1988272227236942058
BargmannVOn unitary ray representations of continuous groupsAnn. Math.195459146586010055.10304
BouwmeesterDPanJ-WMattleKEiblMWeinfurterHZeilingerAExperimental quantum teleportationNature199739066605755791369.81006
KocsisSBravermanBRavetsSStevensMJMirinRPShalmLKSteinbergAMObserving the average trajectories of single photons in a two-slit interferometerScience20113326034117011731355.81025
BroadCDScientific thought1923LondonRoutledge & Kegan Paul49.0033.10
EllisGFRThe evolving block universe and the meshing together of timesAnn. N. Y. Acad. Sci.2014132612641
SchrödingerEAn undulatory theory of the mechanics of atoms and moleculesPhys. Rev.192628610491070
AharonovYCohenEGrossmanDElitzurACCan a future choice affect a past measurement’s outcome?Ann. Phys.201535525826833269611343.81014
BredonGESheaf theory1997New YorkSpringer0874.55001
KolesovRXiaKReuterRJamaliMStöhrRInalTSiyushevPWrachtrupJMapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization statePhys. Rev. Lett.201311112120502
Lichnerowicz, A., Tonnelat, A.: Les théories relativistes de la gravitation, Number 91 in Colloques Internationaux, Paris. Centre National de la Recherche Scientifique. In: Proceedings of a conference held at Royaumont in June (1959)
Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic: a first introduction to topos theory. Springer, New York (1992)
Stoica, O.C.: The tao of it and bit. In: It from bit or bit from it? On physics and information, pp. 51–64. Springer, New York (2015). arXiv:1311.0765
PriceHWhartonKDisentangling the quantum worldEntropy2015171177527767
HawkingSWPenroseRWThe singularities of gravitational collapse and cosmologyProc. R. Soc. Lond. Ser. A197031415195295482649590954.83012
Stoica, O.C.: The geometry of singularities and the black hole information paradox. J. Phys. Conf. Ser. 626 (012028) (2015)
GhirardiGCRiminiAWeberTUnified dynamics of microscopic and macroscopic systemsPhys. Rev. D1986344704918480841222.82047
DeutschDVindication of quantum localityProc. R. Soc. Lond. Ser. A2011468213853154428740491364.81025
KentASimple refutation of the Eppley-Hannah argumentClass. Quant. Grav.201835242450083891429
DiracPAMThe Principles of Quantum Mechanics1958OxfordOxford University Press0080.22005
RothmayerMTierneyDFrinsEDultzWSchmitzerHIrregular spin angular momentum transfer from light to small birefringent particlesPhys. Rev. A2009804043801
Vaidman, L.: All is ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}. J. Phys. Conf. Ser. 701 (2016)
WangQZhuZUnruhWGHow the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the universePhys. Rev. D201795101035043817404
Cohen, E., Cortês, M., Elitzur, A.C., Smolin, L.: Realism and causality I: Pilot wave and retrocausal models as possible facilitators. arXiv:1902.05108 (2019)
Cohen, E., Aharonov, Y.: Quantum to classical transitions via weak measurements and post-selection. In: Quantum Structural Studies: Classical Emergence from the Quantum Level. World Scientific Publishing Co., Singapore (2016). arXiv:1602.05083
EllisGFRRothmanTTime and spacetime: the crystallizing block universeIJTP2010495988100326101111190.83115
Marletto, C., Vedral, V.: Answers to a few questions regarding the BMV experiment. Preprint arXiv:1907.08994, (2019)
HawkingSWThe occurrence of singularities in cosmology. III. Causality and singularitiesP. R. Soc. A Math. Phys.196730014611872010163.23903
AharonovYVaidmanLComplete description of a quantum system at a given timeJ. Phys. A19912423151118534
PageDNGeilkerCDIndirect evidence for quantum gravityPhys. Rev. Lett.19814714979629372
StoicaOCEinstein equation at singularitiesCent. Eur. J. Phys201412123131
Wheeler, J.A.: The ’past’ and the ’delayed-choice’ experiment. In: A.R. Marlow (ed) Mathematical Foundations of Quantum Theory, p. 30 (1978)
de BroglieLUne tentative d’interprétation causale et non linéaire de la mécanique ondulatoire: La théorie de la double solution1956ParisGauthier-Villars0074.44003
Ellis, G.F.R.: On the flow of time. Preprint arXiv:0812.0240 (2008)
MarlettoCVedralVWhy we need to quantise everything, including gravityNPJ Quant. Inf.20173115
McTaggart, J.M.E.: The unreality of time. Mind 457–474 (1908)
Bohm, D.: Wholeness and the Implicate Order (1995)
TamirBCohenEIntroduction to weak measurements and weak valuesQuanta2013217171351.81030
WignerEPOn the quantum correction for thermodynamic equilibriumPhys. Rev.19324074975958.0948.07
MarlettoCVedralVGravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravityPhys. Rev. Lett.201711924240402
AritaYMaziluMDholakiaKLaser-induced rotation and cooling of a trapped microgyroscope in vacuumNat. Commun.20134117
EllisGFRPhysics in the real universe: Time and spacetimeGen. Relat. Grav.200638121797182422890641157.83355
LeggettAJRealism
R Kolesov (228_CR83) 2013; 111
228_CR29
GE Bredon (228_CR26) 1997
C Marletto (228_CR90) 2017; 119
228_CR20
RI Sutherland (228_CR138) 2008; 39
228_CR22
M Christodoulou (228_CR31) 2019; 792
228_CR23
M Ringbauer (228_CR106) 2015; 11
L Rosenfeld (228_CR107) 1963; 40
J von Neumann (228_CR146) 1955
SW Hawking (228_CR65) 1966; 295
L Hardy (228_CR62) 2013; 27
WC Myrvold (228_CR97) 2018; 97
JS Bell (228_CR17) 2004
JE Moyal (228_CR96) 1949; 45
228_CR155
228_CR154
OC Stoica (228_CR128) 2014; 12
228_CR153
C Marletto (228_CR91) 2017; 3
KB Wharton (228_CR152) 2007; 37
228_CR139
Y Arita (228_CR8) 2013; 4
228_CR38
GC Ghirardi (228_CR58) 1986; 34
228_CR32
SW Hawking (228_CR68) 1976; 14
228_CR33
HJ Groenewold (228_CR61) 1946
S Lloyd (228_CR88) 2011; 84
E Schrödinger (228_CR112) 1926; 28
C Chevalley (228_CR30) 1997
228_CR140
Y Aharonov (228_CR4) 1991; 24
EP Wigner (228_CR158) 1932; 40
228_CR148
228_CR145
228_CR144
PAM Dirac (228_CR44) 1958
228_CR142
J Mattingly (228_CR93) 2006; 73
Q Wang (228_CR149) 2017; 95
228_CR87
JG Cramer (228_CR37) 1988; 27
A Fine (228_CR55) 1988; 56
228_CR89
MF Pusey (228_CR104) 2012; 8
H Araki (228_CR6) 1960; 120
H Weyl (228_CR151) 1927; 46
OC Stoica (228_CR134) 2016; 5
B Tamir (228_CR141) 2013; 2
228_CR1
VF Weisskopf (228_CR150) 1930; 63
S Bose (228_CR24) 2017; 119
JS Bell (228_CR15) 1964; 1
CD Broad (228_CR27) 1923
D Deutsch (228_CR43) 2011; 468
H Price (228_CR100) 2008; 39
A Kent (228_CR80) 2018; 35
EP Wigner (228_CR157) 1939; 1
K Eppley (228_CR52) 1977; 7
C Hoefer (228_CR73) 2002; 50
D Hestenes (228_CR72) 1966
AM Gleason (228_CR59) 1957; 6
228_CR9
228_CR10
228_CR7
228_CR11
R Colbeck (228_CR35) 2012; 108
SW Hawking (228_CR70) 1996
228_CR94
OC Stoica (228_CR130) 2014; 11
228_CR92
LS Schulman (228_CR115) 1984; 102
DN Page (228_CR98) 1981; 47
M Rothmayer (228_CR108) 2009; 80
L Vaidman (228_CR143) 1994; 49
G Ghirardi (228_CR57) 1990; 20
V Bargmann (228_CR13) 1954; 59
R Penrose (228_CR99) 1965; 14
JA Wheeler (228_CR156) 2000
OC Stoica (228_CR137) 2019; 100
JM Bardeen (228_CR12) 1973; 31
C Emary (228_CR51) 2013; 77
LS Schulman (228_CR118) 2016; 46
M Daumer (228_CR39) 1996; 45
228_CR60
D Bouwmeester (228_CR25) 1997; 390
H Price (228_CR101) 2015; 17
228_CR114
EP Wigner (228_CR160) 1962
N Harrigan (228_CR63) 2010; 40
R Colbeck (228_CR34) 2011; 2
228_CR79
228_CR75
228_CR76
SW Hawking (228_CR69) 1970; 314
228_CR77
C Rovelli (228_CR109) 1996; 35
EP Wigner (228_CR159) 1952; 133
JG Cramer (228_CR36) 1986; 58
228_CR71
GFR Ellis (228_CR47) 2006; 38
S Kocsis (228_CR82) 2011; 332
GFR Ellis (228_CR50) 2010; 49
228_CR74
OC de Beauregard (228_CR40) 1977; 42
OC Stoica (228_CR129) 2014; 347
E Schrödinger (228_CR113) 1935; 23
H Minkowski (228_CR95) 1910; 68
GFR Ellis (228_CR49) 2014; 1326
228_CR103
228_CR102
AJ Leggett (228_CR84) 2002; 14
RM Wald (228_CR147) 1994
JD Bekenstein (228_CR14) 1973; 7
E Schrödinger (228_CR111) 1926; 28
LS Schulman (228_CR116) 1997
LS Schulman (228_CR120) 2016; 46
228_CR48
228_CR127
228_CR45
RW Spekkens (228_CR121) 2005; 71
L de Broglie (228_CR42) 1956
Y Aharonov (228_CR3) 2015; 355
D Bohm (228_CR19) 1952; 85
ME Burgos (228_CR28) 2010; 1
E Schrödinger (228_CR110) 1926; 385
228_CR136
228_CR135
JS Bell (228_CR16) 1966; 38
SW Hawking (228_CR66) 1967; 300
228_CR133
228_CR132
228_CR131
SW Hawking (228_CR64) 1966; 294
A Einstein (228_CR46) 1935; 47
CW Rietdijk (228_CR105) 1978; 8
AJ Leggett (228_CR85) 2008; 71
228_CR54
M Albers (228_CR5) 2008; 78
228_CR56
LS Schulman (228_CR119) 2017; 19
Y Aharonov (228_CR2) 1964; 134
L de Broglie (228_CR41) 1956
AJ Leggett (228_CR86) 1985; 54
LS Schulman (228_CR117) 2012; 14
CH Bennett (228_CR18) 1993; 70
H Everett (228_CR53) 1957; 29
S Kochen (228_CR81) 1967; 17
228_CR126
RE Kastner (228_CR78) 2012
228_CR125
D Bohm (228_CR21) 2004
SW Hawking (228_CR67) 1975; 43
228_CR124
228_CR123
228_CR122
References_xml – reference: Stoica, O.C.: World theory. PhilSci Archive (2008). philsci-archive:00004355/
– reference: EmaryCLambertNNoriFLeggett-Garg inequalitiesRep. Progr. Phys.20137710160013158415
– reference: AharonovYBergmannPGLebowitzJLTime symmetry in the quantum process of measurementPhys. Rev.1964134141014161636140127.43703
– reference: HawkingSWParticle creation by black holesCommun. Math. Phys.19754331992203816251378.83040
– reference: HawkingSWBreakdown of predictability in gravitational collapsePhys. Rev. D197614102460469093
– reference: BennettCHBrassardGCrépeauCJozsaRPeresAWoottersWKTeleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channelsPhys. Rev. Lett.19937013189512082471051.81505
– reference: RovelliCRelational quantum mechanicsInt. J. Theor. Phys.19963581637167814095020885.94012
– reference: BargmannVOn unitary ray representations of continuous groupsAnn. Math.195459146586010055.10304
– reference: Stoica, O.C.: Singular general relativity—Ph.D. Thesis. Minkowski Institute Press (2013). arXiv:1301.2231
– reference: KolesovRXiaKReuterRJamaliMStöhrRInalTSiyushevPWrachtrupJMapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization statePhys. Rev. Lett.201311112120502
– reference: Sutherland, R.I.: How retrocausality helps. In: AIP Conference Proceedings, vol. 1841, p. 020001. AIP Publishing, New York (2017)
– reference: SpekkensRWContextuality for preparations, transformations, and unsharp measurementsPhys. Rev. A20057150521082109591
– reference: EinsteinAPodolskyBRosenNCan quantum-mechanical description of physical reality be considered complete?Phys. Rev.193547107770012.04201
– reference: LeggettAJTesting the limits of quantum mechanics: motivation, state of play, prospectsJ. Phys. Condens. Matter20021415R415
– reference: BellJSOn the Einstein-Podolsky-Rosen paradoxPhysics1964131952003790629
– reference: ArakiHYanaseMMMeasurement of quantum mechanical operatorsPhys. Rev.196012026221223770095.42502
– reference: Vaidman, L.: Many-worlds interpretation of quantum mechanics. In: E.N. Zalta (ed) The Stanford Encyclopedia of Philosophy, spring 2015 edition. Stanford (2015). http://plato.stanford.edu/archives/spr2015/entries/qm-manyworlds/
– reference: KocsisSBravermanBRavetsSStevensMJMirinRPShalmLKSteinbergAMObserving the average trajectories of single photons in a two-slit interferometerScience20113326034117011731355.81025
– reference: MyrvoldWCψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-ontology result without the Cartesian product assumptionPhys. Rev. A2018975052109
– reference: SchulmanLSTime’s arrows and quantum measurement1997CambridgeCambridge University Press
– reference: HawkingSWPenroseRWThe Nature of Space and Time1996Princeton and OxfordPrinceton University Press0962.83500
– reference: MoyalJEQuantum mechanics as a statistical theoryMath. Proc. Camb. Philos. Soc.194945199124293300031.33601
– reference: Crumeyrolle, A.: Orthogonal and symplectic Clifford algebras. Spinor structures. Kluwer Academic Publishers, Dordrecht/Boston (1990)
– reference: Przibram, K.:(ed), Klein, M.J. (trans). Letters on Wave Mechanics: Schrödinger, Plank, Einstein, Lorentz. Philosophical Library, New York (1967)
– reference: WignerEPRemarks on the mind-body question1962LondonHeinmann
– reference: MinkowskiHThe fundamental equations for electromagnetic processes in moving bodiesMath. Ann191068472525151157341.0948.03
– reference: Lichnerowicz, A., Tonnelat, A.: Les théories relativistes de la gravitation, Number 91 in Colloques Internationaux, Paris. Centre National de la Recherche Scientifique. In: Proceedings of a conference held at Royaumont in June (1959)
– reference: Bacciagaluppi, G.: Remarks on space-time and locality in Everett’s interpretation. In: Placek, T., Butterfield, J. (eds.) Non-locality and modality, vol. 64, pp. 105–122. Springer, New York (2002)
– reference: Wang, Q., Unruh, W.G.: Vacuum fluctuation, micro-cyclic “universes” and the cosmological constant problem. Preprint arXiv:1904.08599 (2019)
– reference: KochenSSpeckerEPThe problem of hidden variables in quantum mechanicsJ. Math. Mech.19671759872192800156.23302
– reference: MarlettoCVedralVWhy we need to quantise everything, including gravityNPJ Quant. Inf.20173115
– reference: Cohen, E., Aharonov, Y.: Quantum to classical transitions via weak measurements and post-selection. In: Quantum Structural Studies: Classical Emergence from the Quantum Level. World Scientific Publishing Co., Singapore (2016). arXiv:1602.05083
– reference: AharonovYCohenEGrossmanDElitzurACCan a future choice affect a past measurement’s outcome?Ann. Phys.201535525826833269611343.81014
– reference: GhirardiGCRiminiAWeberTUnified dynamics of microscopic and macroscopic systemsPhys. Rev. D1986344704918480841222.82047
– reference: DiracPAMThe Principles of Quantum Mechanics1958OxfordOxford University Press0080.22005
– reference: EverettH“Relative state” formulation of quantum mechanicsRev. Mod. Phys.195729345446294159
– reference: Stoica, O.C.: The universe remembers no wavefunction collapse. Quantum Stud. Math. Found. (2017). arXiv:1607.02076
– reference: Stoica, O.C.: The tao of it and bit. In: It from bit or bit from it? On physics and information, pp. 51–64. Springer, New York (2015). arXiv:1311.0765
– reference: McTaggart, J.M.E.: The unreality of time. Mind 457–474 (1908)
– reference: EllisGFRRothmanTTime and spacetime: the crystallizing block universeIJTP2010495988100326101111190.83115
– reference: PageDNGeilkerCDIndirect evidence for quantum gravityPhys. Rev. Lett.19814714979629372
– reference: GleasonAMMeasures on the closed subspaces of a Hilbert spaceJ. Math. Mech195764885893961130078.28803
– reference: Stoica, O.C.: Flowing with a frozen river. Foundational Questions Institute, “The nature of time” essay contest (2008). http://fqxi.org/community/forum/topic/322. Accessed 18 May 2020
– reference: Bohm, D.: Wholeness and the Implicate Order (1995)
– reference: EllisGFRThe evolving block universe and the meshing together of timesAnn. N. Y. Acad. Sci.2014132612641
– reference: EllisGFRPhysics in the real universe: Time and spacetimeGen. Relat. Grav.200638121797182422890641157.83355
– reference: KentASimple refutation of the Eppley-Hannah argumentClass. Quant. Grav.201835242450083891429
– reference: FineABrownHRThe shaky game: Einstein, realism and the quantum theoryAm. J. Phys.198856571
– reference: SchulmanLSDefinite measurements and deterministic quantum evolutionPhys. Lett. A19841029396400750630
– reference: de BeauregardOCTime symmetry and the Einstein paradoxIl Nuovo Cimento B (1971-1996)19774214164
– reference: Goldstein, S., Zanghì, N.: Reality and the role of the wave function in quantum theory. In: The wave function: essays on the metaphysics of quantum mechanics, pp. 91–109. Oxford University Press, Oxford (2013)
– reference: Marletto, C., Vedral, V.: Answers to a few questions regarding the BMV experiment. Preprint arXiv:1907.08994, (2019)
– reference: ColbeckRRennerRNo extension of quantum theory can have improved predictive powerNat. Commun.20112411
– reference: AritaYMaziluMDholakiaKLaser-induced rotation and cooling of a trapped microgyroscope in vacuumNat. Commun.20134117
– reference: PenroseRGravitational collapse and space-time singularitiesPhys. Rev. Lett.196514357591726780125.21206
– reference: ChristodoulouMRovelliCOn the possibility of laboratory evidence for quantum superposition of geometriesPhys. Lett. B201979264683927926
– reference: DeutschDVindication of quantum localityProc. R. Soc. Lond. Ser. A2011468213853154428740491364.81025
– reference: Vaidman, L.: All is ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}. J. Phys. Conf. Ser. 701 (2016)
– reference: Howl, R., Vedral, V., Christodoulou, M., Rovelli, C., Naik, D., Iyer, A.: Testing quantum gravity with a single quantum system. Preprint arXiv:2004.01189 (2020)
– reference: StoicaOCMetric dimensional reduction at singularities with implications to quantum gravityAnn. Phys.2014347C749132136111342.83092
– reference: BardeenJMCarterBHawkingSWThe four laws of black hole mechanicsCommun. Math. Phys.19733121611703347981125.83309
– reference: de BroglieLUne tentative d’interprétation causale et non linéaire de la mécanique ondulatoire: La théorie de la double solution1956ParisGauthier-Villars0074.44003
– reference: Friederich, S., Evans, P.W.: Retrocausality in quantum mechanics. In: E.N. Zalta (ed.) The Stanford encyclopedia of philosophy, summer 2019 edn. Metaphysics Research Lab, Stanford University (2019)
– reference: RosenfeldLOn quantization of fieldsNucl. Phys.1963403533561545810108.22301
– reference: Cohen, E., Cortês, M., Elitzur, A.C., Smolin, L.: Realism and causality I: Pilot wave and retrocausal models as possible facilitators. arXiv:1902.05108 (2019)
– reference: SchrödingerEAn undulatory theory of the mechanics of atoms and moleculesPhys. Rev.19262810491070
– reference: SchulmanLSDa LuzMGELooking for the source of changeFound. Phys.201646111495150135549041381.81016
– reference: Adlam, E.: Spooky action at a temporal distance. Entropy 20(1) (2018)
– reference: VaidmanLTeleportation of quantum statesPhys. Rev. A199449147314761279150
– reference: Kent, A.: Semi-quantum gravity and testing gravitational Bell non-locality. Preprint arXiv:1808.06084 (2018)
– reference: StoicaOCOn the wavefunction collapseQuanta2016511933352164610.12743/quanta.v5i1.40
– reference: Busch, P.: Translation of “Die Messung quantenmechanischer Operatoren” by EP∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document} Wigner (2010). arXiv:1012.4372
– reference: WhartonKBTime-symmetric quantum mechanicsFound. Phys.200737115916822939611113.81304
– reference: WeylHQuantenmechanik und GruppentheorieZ. Phys.1927461–214653.0848.02
– reference: WignerEPOn the quantum correction for thermodynamic equilibriumPhys. Rev.19324074975958.0948.07
– reference: Stoica, O.C.: Quantum measurement and initial conditions. Int. J. Theor. Phys. 1–15 (2015). arXiv:1212.2601
– reference: Huggett, N., Callender, C.: Why quantize gravity (or any other field for that matter)? Philos. Sci. S382–S394 (2001)
– reference: BellJSOn the Problem of Hidden Variables in Quantum MechanicsRev. Mod. Phys.19663834474522089270152.23605
– reference: BekensteinJDBlack holes and entropyPhys. Rev. D19737823333663431369.83037
– reference: StoicaOCOn singular semi-Riemannian manifoldsInt. J. Geom. Methods Mod. Phys.2014115145004132088501300.53018
– reference: WangQZhuZUnruhWGHow the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the universePhys. Rev. D201795101035043817404
– reference: LeggettAJGargAQuantum mechanics versus macroscopic realism: Is the flux there when nobody looks?Phys. Rev. Lett.1985549857860778316
– reference: Bohr, N.: Atomic Physics and Human Knowledge (1958)
– reference: Aspect, A.: Bell’s Inequality Test: More Ideal than Ever (1999)
– reference: HawkingSWThe occurrence of singularities in cosmologyProc. R. Soc. A Math. Phys.196629414395115212089780139.45803
– reference: SchrödingerEQuantisierung als EigenwertproblemAnn. Phys.19263851343749052.0966.02
– reference: SchulmanLSProgram for the special state theory of quantum measurementEntropy2017197343
– reference: de BroglieLLa théorie de la double solution1956ParisGauthier-Villars0074.44003
– reference: Wheeler, J.A.: Information, physics, quantum: the search for links. In: W.H. Zurek (ed) Complexity, entropy, and the physics of information, vol. 8 (1990)
– reference: HoeferCFreedom from the inside outR. Inst. Philos. Suppl.200250201222
– reference: LloydSMacconeLGarcia-PatronRGiovannettiVShikanoYQuantum mechanics of time travel through post-selected teleportationPhys. Rev. D2011842025007
– reference: WheelerJAFordKGeons, black holes and quantum foam: a life in physics2000New YorkW.W. Norton & Co.0953.01023
– reference: HardyLAre quantum states real?Int. J. Mod. Phys. D.20132701n03134501230001971279.81008
– reference: Stoica, O.C.: Revisiting the black hole entropy and the information paradox. AHEP (2018)
– reference: Dürr, D., Goldstein, S., Zanghì, N.: Bohmian mechanics as the foundation of quantum mechanics. In: Cushing, J.T., Fine, A., Goldstein, S. (eds) Bohmian mechanics and quantum theory: an appraisal, pp. 21–44. Springer, New York (1996). arXiv:quant-ph/9511016
– reference: Schrödinger, E.: Collected papers on wave mechanics, vol. 302. American Mathematical Society, New York (2003)
– reference: EppleyKHannahEThe necessity of quantizing the gravitational fieldFound. Phys.197771–25168
– reference: Howard, D.: Nicht Sein Kann was Nicht Sein Darf, or the Prehistory of EPR, 1909–1935: Einstein’s early worries about the quantum mechanics of composite systems. In: Sixty-two years of uncertainty, pp. 61–111. Springer, New York (1990)
– reference: Argaman, N.: On Bell’s theorem and causality. Preprint arXiv:0807.2041, (2008)
– reference: PriceHWhartonKDisentangling the quantum worldEntropy2015171177527767
– reference: Stoica, O.C.: Convergence and free-will. PhilSci Archive (2008). philsci-archive:00004356/
– reference: MattinglyJWhy Eppley and Hannah’s thought experiment failsPhys. Rev. D20067360640252216995
– reference: ’t Hooft, G.: The cellular automaton interpretation of quantum mechanics, vol. 185. Springer, New York (2016)
– reference: SchulmanLSSpecial states demand a force for the observerFound. Phys.201646111471149435549031381.81015
– reference: DaumerMDürrDGoldsteinSZanghìNNaive realism about operatorsErkenntnis1996452–337939714533840912.47044
– reference: RietdijkCWProof of a retroactive influenceFound. Phys.197887–8615628
– reference: Wharton, K.B., Argaman, N.: Bell’s theorem and spacetime-based reformulations of quantum mechanics. Preprint arXiv:1906.04313, (2019)
– reference: ChevalleyCThe algebraic theory of spinors and Clifford algebras (Collected works)1997New YorkSpringer0899.01032
– reference: Stoica, O.C.: The geometry of singularities and the black hole information paradox. J. Phys. Conf. Ser. 626 (012028) (2015)
– reference: BroadCDScientific thought1923LondonRoutledge & Kegan Paul49.0033.10
– reference: Everett, H.: The theory of the universal wave function. In: The Many-Worlds Hypothesis of Quantum Mechanics, pp. 3–137. Princeton University Press, Princeton (1973)
– reference: GroenewoldHJOn the Principles of Elementary Quantum Mechanics1946NetherlandsSpringer0060.45002
– reference: CramerJGThe transactional interpretation of quantum mechanicsRev. Mod. Phys.1986583647854444
– reference: Heisenberg, W.: The Physicist’s Conception of Nature (1958)
– reference: MarlettoCVedralVGravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravityPhys. Rev. Lett.201711924240402
– reference: AlbersMKieferCReginattoMMeasurement analysis and quantum gravityPhys. Rev. D20087860640512470323
– reference: Tegmark, M.: Our Mathematical Universe: My Quest for the Ultimate Nature of Reality. Knopf Doubleday Publishing Group, New York (2014)
– reference: RingbauerMDuffusBBranciardCCavalcantiEGWhiteAGFedrizziAMeasurements on the reality of the wavefunctionNat. Phys.2015113249
– reference: SchrödingerEDie gegenwärtige situation in der quantenmechanikNaturwissenschaften193523498238280012.42703
– reference: TamirBCohenEIntroduction to weak measurements and weak valuesQuanta2013217171351.81030
– reference: WeisskopfVFWignerEPCalculation of the natural brightness of spectral lines on the basis of Dirac’s theoryZ. Phys.1930635473
– reference: ColbeckRRennerRIs a system’s wave function in one-to-one correspondence with its elements of reality?Phys. Rev. Lett.201210815150402
– reference: HawkingSWPenroseRWThe singularities of gravitational collapse and cosmologyProc. R. Soc. Lond. Ser. A197031415195295482649590954.83012
– reference: BellJSSpeakable and unspeakable in quantum mechanics: collected papers on quantum philosophy2004CambridgeCambridge University Press
– reference: Ellis, G.F.R.: On the flow of time. Preprint arXiv:0812.0240 (2008)
– reference: BouwmeesterDPanJ-WMattleKEiblMWeinfurterHZeilingerAExperimental quantum teleportationNature199739066605755791369.81006
– reference: HarriganNSpekkensRWEinstein, incompleteness, and the epistemic view of quantum statesFound. Phys.201040212515725858521184.81006
– reference: RothmayerMTierneyDFrinsEDultzWSchmitzerHIrregular spin angular momentum transfer from light to small birefringent particlesPhys. Rev. A2009804043801
– reference: von NeumannJMathematical Foundations of Quantum Mechanics1955PrincetonPrinceton University Press0064.21503
– reference: LeggettAJRealism and the physical worldRep. Progr. Phys.20087120220012393966
– reference: Stoica, O.C.: Smooth quantum mechanics. PhilSci Archive (2008). philsci-archive:00004344/
– reference: Wheeler, J.A.: The ’past’ and the ’delayed-choice’ experiment. In: A.R. Marlow (ed) Mathematical Foundations of Quantum Theory, p. 30 (1978)
– reference: Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic: a first introduction to topos theory. Springer, New York (1992)
– reference: StoicaOCEinstein equation at singularitiesCent. Eur. J. Phys201412123131
– reference: BurgosMEContradiction between conservation laws and orthodox quantum mechanicsJ. Mod. Phys.201012137
– reference: BredonGESheaf theory1997New YorkSpringer0874.55001
– reference: SchrödingerEAn undulatory theory of the mechanics of atoms and moleculesPhys. Rev.192628610491070
– reference: BohmDA suggested interpretation of quantum mechanics in terms of “hidden” variables. I and IIPhys. Rev.1952852166193462870046.21004
– reference: BoseSMazumdarAMorleyGWUlbrichtHTorošMPaternostroMGeraciAABarkerPFKimMSMilburnGSpin entanglement witness for quantum gravityPhys. Rev. Lett.2017119242404013746326
– reference: HawkingSWThe occurrence of singularities in cosmology. III. Causality and singularitiesP. R. Soc. A Math. Phys.196730014611872010163.23903
– reference: Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedanken experiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. (49) (1982)
– reference: AharonovYVaidmanLComplete description of a quantum system at a given timeJ. Phys. A19912423151118534
– reference: BohmDCausality and chance in modern physics2004LondonRoutledge
– reference: PuseyMFBarrettJRudolphTOn the reality of the quantum stateNat. Phys.201286475478
– reference: WignerEPOn unitary representations of the inhomogeneous Lorentz groupAnn. Math.1939140149204150345665.1129.01
– reference: CramerJGAn overview of the transactional interpretation of quantum mechanicsInt. J. Theor. Phys.1988272227236942058
– reference: StoicaOCRepresentation of the wave function on the three-dimensional spacePhys. Rev. A20191000421154028855
– reference: KastnerREThe transactional interpretation of quantum mechanics: the reality of possibility2012CambridgeCambridge University Press06107946
– reference: PriceHToy models for retrocausalityStud. Hist. Philos. Sci. B: Stud. Hist. Philos. M. P.200839475276125143111223.81044
– reference: HestenesDSpace-Time Algebra1966New YorkGordon & Breach0183.28901
– reference: Przibram, K.: (ed) , Klein, M.J. (trans). Letters on Wave Mechanics: Correspondence with H.A. Lorentz, Max Planck, and Erwin Schrödinger. Open Road Integrated Media, New York (2011)
– reference: SchulmanLSExperimental test of the “Special State” theory of quantum measurementEntropy20121446656861296.81034
– reference: Stoica, O.C.: Global and local aspects of causality in quantum mechanics. In: EPJ Web of Conferences, TM 2012— the time machine factory (unspeakable, speakable) on time travel in Turin, vol. 58, p. 01017. EPJ Web of Conferences (2013). Open access
– reference: WaldRMQuantum Field Theory in Curved Space-Time and Black Hole Thermodynamics1994ChicagoUniversity of Chicago Press0842.53052
– reference: GhirardiGGrassiRPearlePRelativistic dynamical reduction models: general framework and examplesFound. Phys.19902011127113161086759
– reference: SutherlandRICausally symmetric Bohm modelStud. Hist. Philos. Sci. B: Stud. Hist. Philos. M. P.200839478280525143141223.81050
– reference: WignerEPDie messung quantenmechanischer operatoren. A Hadrons and nucleiZ. Phys.195213311011080048.44102
– reference: Born, M.: Zur Quantenmechanik der Stoßvorgänge. In: Reprinted and translated in Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement. Princeton University Press, Princeton, p. 52 (1926)
– reference: HawkingSWThe occurrence of singularities in cosmology. IIProc. R. Soc. A Math. Phys.196629514434904932089790148.46504
– reference: Jacobson, T.: Introductory lectures on black hole thermodynamics. In: Lectures given at the University of Utrecht, The Netherlands (1996). http://www.physics.umd.edu/grt/taj/776b/lectures.pdf
– volume: 468
  start-page: 531
  issue: 2138
  year: 2011
  ident: 228_CR43
  publication-title: Proc. R. Soc. Lond. Ser. A
– volume: 792
  start-page: 64
  year: 2019
  ident: 228_CR31
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2019.03.015
– volume: 134
  start-page: 1410
  year: 1964
  ident: 228_CR2
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.134.B1410
– volume: 119
  start-page: 240401
  issue: 24
  year: 2017
  ident: 228_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.240401
– volume: 2
  start-page: 411
  year: 2011
  ident: 228_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1416
– ident: 228_CR10
  doi: 10.1103/PhysRevLett.49.91
– volume: 3
  start-page: 1
  issue: 1
  year: 2017
  ident: 228_CR91
  publication-title: NPJ Quant. Inf.
  doi: 10.1038/s41534-016-0002-2
– ident: 228_CR136
  doi: 10.1155/2018/4130417
– volume: 49
  start-page: 1473
  year: 1994
  ident: 228_CR143
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.49.1473
– ident: 228_CR76
  doi: 10.1086/392923
– ident: 228_CR79
– ident: 228_CR22
  doi: 10.1063/1.3062686
– volume: 71
  start-page: 022001
  issue: 2
  year: 2008
  ident: 228_CR85
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/0034-4885/71/2/022001
– volume: 385
  start-page: 437
  issue: 13
  year: 1926
  ident: 228_CR110
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19263851302
– ident: 228_CR114
– ident: 228_CR148
  doi: 10.1103/PhysRevD.102.023537
– ident: 228_CR11
  doi: 10.1007/978-94-010-0385-8_7
– ident: 228_CR56
– volume: 11
  start-page: 1450041
  issue: 5
  year: 2014
  ident: 228_CR130
  publication-title: Int. J. Geom. Methods Mod. Phys.
  doi: 10.1142/S0219887814500418
– ident: 228_CR71
– ident: 228_CR60
  doi: 10.1093/acprof:oso/9780199790807.003.0004
– volume: 4
  start-page: 1
  issue: 1
  year: 2013
  ident: 228_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3374
– volume: 17
  start-page: 59
  year: 1967
  ident: 228_CR81
  publication-title: J. Math. Mech.
– volume: 108
  start-page: 150402
  issue: 15
  year: 2012
  ident: 228_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.150402
– volume: 77
  start-page: 016001
  issue: 1
  year: 2013
  ident: 228_CR51
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/0034-4885/77/1/016001
– volume-title: The transactional interpretation of quantum mechanics: the reality of possibility
  year: 2012
  ident: 228_CR78
  doi: 10.1017/CBO9780511675768
– volume: 56
  start-page: 571
  year: 1988
  ident: 228_CR55
  publication-title: Am. J. Phys.
  doi: 10.1119/1.15540
– volume: 119
  start-page: 240402
  issue: 24
  year: 2017
  ident: 228_CR90
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.240402
– ident: 228_CR125
– volume: 71
  start-page: 052108
  issue: 5
  year: 2005
  ident: 228_CR121
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.052108
– ident: 228_CR133
  doi: 10.1007/978-3-319-12946-4_5
– volume: 46
  start-page: 1
  issue: 1–2
  year: 1927
  ident: 228_CR151
  publication-title: Z. Phys.
  doi: 10.1007/BF02055756
– volume: 37
  start-page: 159
  issue: 1
  year: 2007
  ident: 228_CR152
  publication-title: Found. Phys.
  doi: 10.1007/s10701-006-9089-1
– volume: 6
  start-page: 885
  issue: 4
  year: 1957
  ident: 228_CR59
  publication-title: J. Math. Mech
– volume: 40
  start-page: 353
  year: 1963
  ident: 228_CR107
  publication-title: Nucl. Phys.
  doi: 10.1016/0029-5582(63)90279-7
– volume: 102
  start-page: 396
  issue: 9
  year: 1984
  ident: 228_CR115
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(84)91063-6
– ident: 228_CR45
  doi: 10.1007/978-94-015-8715-0_2
– volume: 23
  start-page: 823
  issue: 49
  year: 1935
  ident: 228_CR113
  publication-title: Naturwissenschaften
  doi: 10.1007/BF01491914
– volume: 46
  start-page: 1495
  issue: 11
  year: 2016
  ident: 228_CR120
  publication-title: Found. Phys.
  doi: 10.1007/s10701-016-0031-x
– ident: 228_CR132
– ident: 228_CR9
  doi: 10.1038/18296
– volume: 70
  start-page: 1895
  issue: 13
  year: 1993
  ident: 228_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.1895
– ident: 228_CR122
– ident: 228_CR131
  doi: 10.1088/1742-6596/626/1/012028
– volume: 39
  start-page: 752
  issue: 4
  year: 2008
  ident: 228_CR100
  publication-title: Stud. Hist. Philos. Sci. B: Stud. Hist. Philos. M. P.
– ident: 228_CR140
  doi: 10.1007/978-3-319-41285-6
– volume-title: Remarks on the mind-body question
  year: 1962
  ident: 228_CR160
– volume: 28
  start-page: 1049
  issue: 6
  year: 1926
  ident: 228_CR112
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.28.1049
– volume: 1
  start-page: 137
  issue: 2
  year: 2010
  ident: 228_CR28
  publication-title: J. Mod. Phys.
  doi: 10.4236/jmp.2010.12019
– ident: 228_CR32
  doi: 10.1142/9781786341419_0012
– volume: 40
  start-page: 749
  year: 1932
  ident: 228_CR158
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.40.749
– volume: 14
  start-page: R415
  issue: 15
  year: 2002
  ident: 228_CR84
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/15/201
– volume: 59
  start-page: 1
  year: 1954
  ident: 228_CR13
  publication-title: Ann. Math.
  doi: 10.2307/1969831
– ident: 228_CR77
– volume: 8
  start-page: 475
  issue: 6
  year: 2012
  ident: 228_CR104
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2309
– volume: 84
  start-page: 025007
  issue: 2
  year: 2011
  ident: 228_CR88
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.025007
– volume: 27
  start-page: 1345012
  issue: 01n03
  year: 2013
  ident: 228_CR62
  publication-title: Int. J. Mod. Phys. D.
  doi: 10.1142/S0217979213450124
– volume: 14
  start-page: 57
  issue: 3
  year: 1965
  ident: 228_CR99
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.14.57
– volume: 95
  start-page: 103504
  issue: 10
  year: 2017
  ident: 228_CR149
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.103504
– volume: 45
  start-page: 379
  issue: 2–3
  year: 1996
  ident: 228_CR39
  publication-title: Erkenntnis
  doi: 10.1007/BF00276801
– volume: 35
  start-page: 245008
  issue: 24
  year: 2018
  ident: 228_CR80
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aaea20
– volume: 45
  start-page: 99
  issue: 1
  year: 1949
  ident: 228_CR96
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100000487
– volume: 7
  start-page: 2333
  issue: 8
  year: 1973
  ident: 228_CR14
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.7.2333
– ident: 228_CR54
– volume: 5
  start-page: 19
  issue: 1
  year: 2016
  ident: 228_CR134
  publication-title: Quanta
  doi: 10.12743/quanta.v5i1.40
– volume-title: Sheaf theory
  year: 1997
  ident: 228_CR26
  doi: 10.1007/978-1-4612-0647-7
– volume: 295
  start-page: 490
  issue: 1443
  year: 1966
  ident: 228_CR65
  publication-title: Proc. R. Soc. A Math. Phys.
– ident: 228_CR144
– ident: 228_CR102
– ident: 228_CR127
– volume: 14
  start-page: 665
  issue: 4
  year: 2012
  ident: 228_CR117
  publication-title: Entropy
  doi: 10.3390/e14040665
– ident: 228_CR29
– volume: 17
  start-page: 7752
  issue: 11
  year: 2015
  ident: 228_CR101
  publication-title: Entropy
  doi: 10.3390/e17117752
– ident: 228_CR154
  doi: 10.1016/B978-0-12-473250-6.50006-6
– ident: 228_CR126
  doi: 10.1051/epjconf/20135801017
– volume: 47
  start-page: 979
  issue: 14
  year: 1981
  ident: 228_CR98
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.47.979
– volume: 38
  start-page: 447
  issue: 3
  year: 1966
  ident: 228_CR16
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.38.447
– volume: 85
  start-page: 166
  issue: 2
  year: 1952
  ident: 228_CR19
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.85.166
– volume: 20
  start-page: 1271
  issue: 11
  year: 1990
  ident: 228_CR57
  publication-title: Found. Phys.
  doi: 10.1007/BF01883487
– volume-title: Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics
  year: 1994
  ident: 228_CR147
– ident: 228_CR155
– volume: 50
  start-page: 201
  year: 2002
  ident: 228_CR73
  publication-title: R. Inst. Philos. Suppl.
  doi: 10.1017/S1358246100010572
– volume: 47
  start-page: 777
  issue: 10
  year: 1935
  ident: 228_CR46
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.47.777
– volume-title: Une tentative d’interprétation causale et non linéaire de la mécanique ondulatoire: La théorie de la double solution
  year: 1956
  ident: 228_CR42
– ident: 228_CR20
– ident: 228_CR124
– volume: 27
  start-page: 227
  issue: 2
  year: 1988
  ident: 228_CR37
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/BF00670751
– ident: 228_CR89
– ident: 228_CR94
  doi: 10.1093/mind/XVII.4.457
– volume: 28
  start-page: 1049
  year: 1926
  ident: 228_CR111
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.28.1049
– volume: 54
  start-page: 857
  issue: 9
  year: 1985
  ident: 228_CR86
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.54.857
– ident: 228_CR74
  doi: 10.1007/978-1-4684-8771-8_6
– volume: 63
  start-page: 54
  year: 1930
  ident: 228_CR150
  publication-title: Z. Phys.
  doi: 10.1007/BF01336768
– volume: 2
  start-page: 7
  issue: 1
  year: 2013
  ident: 228_CR141
  publication-title: Quanta
  doi: 10.12743/quanta.v2i1.14
– ident: 228_CR145
  doi: 10.1088/1742-6596/701/1/012020
– volume: 11
  start-page: 249
  issue: 3
  year: 2015
  ident: 228_CR106
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3233
– ident: 228_CR75
– volume: 7
  start-page: 51
  issue: 1–2
  year: 1977
  ident: 228_CR52
  publication-title: Found. Phys.
  doi: 10.1007/BF00715241
– ident: 228_CR33
  doi: 10.1103/PhysRevD.102.124027
– volume: 300
  start-page: 187
  issue: 1461
  year: 1967
  ident: 228_CR66
  publication-title: P. R. Soc. A Math. Phys.
– ident: 228_CR92
– volume-title: The Principles of Quantum Mechanics
  year: 1958
  ident: 228_CR44
– ident: 228_CR48
– volume: 19
  start-page: 343
  issue: 7
  year: 2017
  ident: 228_CR119
  publication-title: Entropy
  doi: 10.3390/e19070343
– ident: 228_CR23
– volume: 111
  start-page: 120502
  issue: 12
  year: 2013
  ident: 228_CR83
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.120502
– volume: 294
  start-page: 511
  issue: 1439
  year: 1966
  ident: 228_CR64
  publication-title: Proc. R. Soc. A Math. Phys.
– ident: 228_CR142
– volume: 1326
  start-page: 26
  issue: 1
  year: 2014
  ident: 228_CR49
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.12559
– volume: 12
  start-page: 123
  year: 2014
  ident: 228_CR128
  publication-title: Cent. Eur. J. Phys
– volume-title: Time’s arrows and quantum measurement
  year: 1997
  ident: 228_CR116
  doi: 10.1017/CBO9780511622878
– volume: 34
  start-page: 470
  year: 1986
  ident: 228_CR58
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.34.470
– volume: 24
  start-page: 2315
  year: 1991
  ident: 228_CR4
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/24/10/018
– volume: 49
  start-page: 988
  issue: 5
  year: 2010
  ident: 228_CR50
  publication-title: IJTP
– volume: 29
  start-page: 454
  issue: 3
  year: 1957
  ident: 228_CR53
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.29.454
– ident: 228_CR38
  doi: 10.1007/978-94-015-7877-6
– volume-title: La théorie de la double solution
  year: 1956
  ident: 228_CR41
– volume: 14
  start-page: 2460
  issue: 10
  year: 1976
  ident: 228_CR68
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.14.2460
– volume: 35
  start-page: 1637
  issue: 8
  year: 1996
  ident: 228_CR109
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/BF02302261
– ident: 228_CR103
– volume-title: Mathematical Foundations of Quantum Mechanics
  year: 1955
  ident: 228_CR146
– ident: 228_CR7
– ident: 228_CR87
– volume: 80
  start-page: 043801
  issue: 4
  year: 2009
  ident: 228_CR108
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.80.043801
– volume: 1
  start-page: 195
  issue: 3
  year: 1964
  ident: 228_CR15
  publication-title: Physics
  doi: 10.1103/PhysicsPhysiqueFizika.1.195
– volume: 58
  start-page: 647
  issue: 3
  year: 1986
  ident: 228_CR36
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.58.647
– volume: 73
  start-page: 064025
  issue: 6
  year: 2006
  ident: 228_CR93
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.064025
– volume: 347
  start-page: 74
  issue: C
  year: 2014
  ident: 228_CR129
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2014.04.027
– volume: 100
  start-page: 042115
  year: 2019
  ident: 228_CR137
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.042115
– ident: 228_CR135
  doi: 10.1007/s40509-017-0130-1
– volume: 40
  start-page: 125
  issue: 2
  year: 2010
  ident: 228_CR63
  publication-title: Found. Phys.
  doi: 10.1007/s10701-009-9347-0
– volume: 120
  start-page: 622
  issue: 2
  year: 1960
  ident: 228_CR6
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.120.622
– volume: 97
  start-page: 052109
  issue: 5
  year: 2018
  ident: 228_CR97
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.052109
– volume: 8
  start-page: 615
  issue: 7–8
  year: 1978
  ident: 228_CR105
  publication-title: Found. Phys.
  doi: 10.1007/BF00717585
– volume: 332
  start-page: 1170
  issue: 6034
  year: 2011
  ident: 228_CR82
  publication-title: Science
  doi: 10.1126/science.1202218
– volume: 68
  start-page: 472
  year: 1910
  ident: 228_CR95
  publication-title: Math. Ann
  doi: 10.1007/BF01455871
– volume-title: The algebraic theory of spinors and Clifford algebras (Collected works)
  year: 1997
  ident: 228_CR30
– ident: 228_CR123
– volume: 39
  start-page: 782
  issue: 4
  year: 2008
  ident: 228_CR138
  publication-title: Stud. Hist. Philos. Sci. B: Stud. Hist. Philos. M. P.
– volume: 31
  start-page: 161
  issue: 2
  year: 1973
  ident: 228_CR12
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01645742
– volume: 42
  start-page: 41
  issue: 1
  year: 1977
  ident: 228_CR40
  publication-title: Il Nuovo Cimento B (1971-1996)
  doi: 10.1007/BF02906749
– volume: 390
  start-page: 575
  issue: 6660
  year: 1997
  ident: 228_CR25
  publication-title: Nature
  doi: 10.1038/37539
– volume-title: Space-Time Algebra
  year: 1966
  ident: 228_CR72
– volume: 46
  start-page: 1471
  issue: 11
  year: 2016
  ident: 228_CR118
  publication-title: Found. Phys.
  doi: 10.1007/s10701-016-0025-8
– volume-title: Scientific thought
  year: 1923
  ident: 228_CR27
– volume: 38
  start-page: 1797
  issue: 12
  year: 2006
  ident: 228_CR47
  publication-title: Gen. Relat. Grav.
  doi: 10.1007/s10714-006-0332-z
– volume: 43
  start-page: 199
  issue: 3
  year: 1975
  ident: 228_CR67
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02345020
– volume-title: On the Principles of Elementary Quantum Mechanics
  year: 1946
  ident: 228_CR61
  doi: 10.1007/978-94-017-6065-2
– volume: 78
  start-page: 064051
  issue: 6
  year: 2008
  ident: 228_CR5
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.064051
– volume: 133
  start-page: 101
  issue: 1
  year: 1952
  ident: 228_CR159
  publication-title: Z. Phys.
  doi: 10.1007/BF01948686
– volume: 314
  start-page: 529
  issue: 1519
  year: 1970
  ident: 228_CR69
  publication-title: Proc. R. Soc. Lond. Ser. A
  doi: 10.1098/rspa.1970.0021
– volume-title: The Nature of Space and Time
  year: 1996
  ident: 228_CR70
– ident: 228_CR1
  doi: 10.3390/e20010041
– ident: 228_CR139
  doi: 10.1063/1.4982765
– ident: 228_CR153
  doi: 10.1103/RevModPhys.92.021002
– volume: 355
  start-page: 258
  year: 2015
  ident: 228_CR3
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2015.02.020
– volume-title: Causality and chance in modern physics
  year: 2004
  ident: 228_CR21
  doi: 10.4324/9780203201107
– volume-title: Geons, black holes and quantum foam: a life in physics
  year: 2000
  ident: 228_CR156
– volume: 1
  start-page: 149
  issue: 40
  year: 1939
  ident: 228_CR157
  publication-title: Ann. Math.
  doi: 10.2307/1968551
– volume-title: Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy
  year: 2004
  ident: 228_CR17
  doi: 10.1017/CBO9780511815676
SSID ssib031741118
ssj0002140258
Score 2.2207134
Snippet A series of reasons to take quantum unitary evolution seriously and explain the projection of the state vector as unitary and not discontinuous are presented,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 69
SubjectTerms Consistency
Evolution
History and Philosophical Foundations of Physics
Homology
Mathematical and Computational Physics
Mathematical Physics
Mathematics
Mathematics and Statistics
Quantum mechanics
Quantum Physics
Quantum theory
Regular Paper
Relativity
State vectors
Theoretical
Universe
Wave functions
Title The post-determined block universe
URI https://link.springer.com/article/10.1007/s40509-020-00228-4
https://www.proquest.com/docview/2493492995
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RiIke_IEaUSSL8aYlsLYbPYIBiQZOkuBpabvuggHixsW_3rfuB5GoCee1zfb63r7Xvq9fAe4RhBG1I58I5QnCfOoSyTxGuMLsIJQKnSjd7xhPvNGUvcz4LD8UFhds96Ikaf_U5WE3lkqVkHS5Y0VbCNuHKuYfbVaBau_5_XVQ-BFCIsMQ7pZ7LS6uIlx7VSfGp0cQ5EV-fub3gX9i1Cbx3KqVWggansC0ePmMeTJvrRPV0l9buo67ft0pHOc5qdPLnOgM9syiBkfjUtA1rsGBZYrq-Bzu0LGc1TJOSJgzaUzoKITEubPOSB7mAqbDwdvTiOQXLRCNEZgQwxn1TeTrDu_6koehltqnXttwqWSkmFaUhlJ7kraVlqE21BecRsrVkmnjMnoJlcVyYa7AUZQj5nPRNQL7USmoVrY0SWmHce3WoVOYNtC5Cnl6GcZHUOonW0sEaInAWiJgdXgo-6wyDY5_WzeKGQvyeIwDXGSmMoxC8Do8FhOwefz3aNe7Nb-BQzclvVhadwMqyefa3GLWkqgmOumw3580c2f9Bkzi3ZU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RiFEP_kCNKOpivGkJrO1Gj8SAKD9OkOBpabtywQBx4-Jf71vZRiRqwnlts72-t--99utXgAcEYUTtiU-E8gRhPnWJZB4jXGF2EEqFTpSsd_QHXmfE3sZ8nB4KizK2e7Ylaf_U-WE3lkiVkKTcsaIthO1CkWENjn5dbL68d1uZHyEkMgzhRr7W4mIV4dqrOjE-PYIgL9LzM78P_BOj1onnxl6phaD2MYyyl18xT6bVZayq-mtD13HbrzuBozQndZorJzqFHTMrwWE_F3SNSrBnmaI6OoN7dCxnMY9iEqZMGhM6CiFx6ixXJA9zDqN2a_jcIelFC0RjBMbEcEZ9M_F1nTd8ycNQS-1Tr2a4VHKimFaUhlJ7ktaUlqE21BecTpSrJdPGZfQCCrP5zFyCoyhHzOeiYQT2o1JQrezWJKV1xrVbhnpm2kCnKuTJZRgfQa6fbC0RoCUCa4mAleEx77NYaXD827qSzViQxmMUYJGZyDAKwcvwlE3A-vHfo11t1_wO9jvDfi_ovQ6613DgJgQYS_GuQCH-XJobzGBidZs67DfmxN8I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oRKMHH6gRnxvjTQuybXfpkSj4QIgHSfC0abvdCwaJLBd_vbPdh0rUxHjuI-l0Jt-0_eYrwCmCMKJ25BOhPEGYT10imccIV5gdhFKhEyX3Hb2-dzNgd0M-_FTFb9nu-ZNkWtOQqDSN4_okjOpF4RtLZEtIcvSxAi6ELUKZJdp2JSi3rp-67dynEB4ZhnOzuHdx8UTh2m87MVY9goAvslqa7yf-ilcfSejcu6mFo846yHwhKQtlVJvFqqbf5jQe_7PSDVjLclWnlTrXJiyYcQVWe4XQ67QCS5ZBqqdbcIIO50xepjEJM4aNCR2FUDlyZin5w2zDoNN-vLwh2QcMRGNkxsRwRn0T-brBm77kYail9ql3YbhUMlJMK0pDqT1JL5SWoTbUF5xGytWSaeMyugOl8cvY7IKjKMdcgIumETiOSkG1sk-WlDYY124VGrmZA52pkyefZDwHha6ytUSAlgisJQJWhbNizCTV5vi190G-e0EWp9MAD5-JPKMQvArn-WZ8NP88297fuh_D8sNVJ7i_7Xf3YcVNeDGW-X0Apfh1Zg4xsYnVUea773vZ5-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+post-determined+block+universe&rft.jtitle=Quantum+Studies+%3A+Mathematics+and+Foundations&rft.au=Stoica%2C+Ovidiu+Cristinel&rft.date=2021-02-01&rft.issn=2196-5609&rft.eissn=2196-5617&rft.volume=8&rft.issue=1&rft.spage=69&rft.epage=101&rft_id=info:doi/10.1007%2Fs40509-020-00228-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40509_020_00228_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-5609&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-5609&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-5609&client=summon