The post-determined block universe
A series of reasons to take quantum unitary evolution seriously and explain the projection of the state vector as unitary and not discontinuous are presented, including some from General Relativity. This leads to an interpretation of Quantum Mechanics which is unitary at the level of a single world....
Saved in:
Published in | Quantum Studies : Mathematics and Foundations Vol. 8; no. 1; pp. 69 - 101 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A series of reasons to take quantum unitary evolution seriously and explain the projection of the state vector as unitary and not discontinuous are presented, including some from General Relativity. This leads to an interpretation of Quantum Mechanics which is unitary at the level of a single world. I argue that unitary evolution is consistent with both quantum measurements and the apparent classicality at the macroscopic level. This allows us to take the wavefunction as ontic (but holistic), but a global consistency condition has to be introduced to ensure this compatibility. I justify this by appealing to sheaf cohomology on the block universe. As a consequence, Quantum Theory turns out to be consistent with a definite four-dimensional spacetime, even if this may consist of superpositions of different geometries. But the block universe subject to global consistency gains a new flavor, which for an observer experiencing the flow of time appears as “superdeterministic” or “retrocausal”, although this does not manifest itself in observations in a way which would allow the violation of causality. However, the block universe view offers another interpretation of this behavior, which makes more sense, and removes the tension with causality. Such a block universe subject to global consistency appears thus as being post-determined. Here “post-determined” means that for an observer the block universe appears as not being completely determined from the beginning, but each new quantum observation eliminates some of the possible block universe solutions consistent with the previous observations. I compare the post-determined block universe with other proposals: the presentist view, the block universe, the splitting block universe, and the growing block universe, and explain how it combines their major advantages in a qualitatively different picture. |
---|---|
AbstractList | A series of reasons to take quantum unitary evolution seriously and explain the projection of the state vector as unitary and not discontinuous are presented, including some from General Relativity. This leads to an interpretation of Quantum Mechanics which is unitary at the level of a single world. I argue that unitary evolution is consistent with both quantum measurements and the apparent classicality at the macroscopic level. This allows us to take the wavefunction as ontic (but holistic), but a global consistency condition has to be introduced to ensure this compatibility. I justify this by appealing to sheaf cohomology on the block universe. As a consequence, Quantum Theory turns out to be consistent with a definite four-dimensional spacetime, even if this may consist of superpositions of different geometries. But the block universe subject to global consistency gains a new flavor, which for an observer experiencing the flow of time appears as “superdeterministic” or “retrocausal”, although this does not manifest itself in observations in a way which would allow the violation of causality. However, the block universe view offers another interpretation of this behavior, which makes more sense, and removes the tension with causality. Such a block universe subject to global consistency appears thus as being post-determined. Here “post-determined” means that for an observer the block universe appears as not being completely determined from the beginning, but each new quantum observation eliminates some of the possible block universe solutions consistent with the previous observations. I compare the post-determined block universe with other proposals: the presentist view, the block universe, the splitting block universe, and the growing block universe, and explain how it combines their major advantages in a qualitatively different picture. |
Author | Stoica, Ovidiu Cristinel |
Author_xml | – sequence: 1 givenname: Ovidiu Cristinel orcidid: 0000-0002-2765-1562 surname: Stoica fullname: Stoica, Ovidiu Cristinel email: cristi.stoica@theory.nipne.ro, holotronix@gmail.com organization: Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering, Horia Hulubei |
BookMark | eNp9kE1LAzEQhoNUsNb-AU9Fz9F8bjZHKVqFgpd6Dkl2VqNtUpOt4L9364qCh55mDu8z7_CcolFMERA6p-SKEqKuiyCSaEwYwYQwVmNxhMaM6grLiqrR7070CZqWEhzhVAlKaT1GF6sXmG1T6XADHeRNiNDM3Dr5t9kuhg_IBc7QcWvXBaY_c4Ke7m5X83u8fFw8zG-W2HOqOwxScAWt8lTWysqm8dYrXhGQ1tnWCe84b6yvLCfO28YDV1ry1jFvhQcm-ARdDne3Ob3voHTmNe1y7CsNE5oLzXQPTFA9pHxOpWRojQ-d7UKKXbZhbSgxeylmkGJ6KeZbitkXsH_oNoeNzZ-HIT5ApQ_HZ8h_Xx2gvgCeaHYE |
CitedBy_id | crossref_primary_10_3390_quantum5010008 crossref_primary_10_1007_s10701_024_00802_5 crossref_primary_10_1088_1742_6596_2533_1_012027 crossref_primary_10_3390_e26050411 crossref_primary_10_1007_s40509_024_00358_z |
Cites_doi | 10.1016/j.physletb.2019.03.015 10.1103/PhysRev.134.B1410 10.1103/PhysRevLett.119.240401 10.1038/ncomms1416 10.1103/PhysRevLett.49.91 10.1038/s41534-016-0002-2 10.1155/2018/4130417 10.1103/PhysRevA.49.1473 10.1086/392923 10.1063/1.3062686 10.1088/0034-4885/71/2/022001 10.1002/andp.19263851302 10.1103/PhysRevD.102.023537 10.1007/978-94-010-0385-8_7 10.1142/S0219887814500418 10.1093/acprof:oso/9780199790807.003.0004 10.1038/ncomms3374 10.1103/PhysRevLett.108.150402 10.1088/0034-4885/77/1/016001 10.1017/CBO9780511675768 10.1119/1.15540 10.1103/PhysRevLett.119.240402 10.1103/PhysRevA.71.052108 10.1007/978-3-319-12946-4_5 10.1007/BF02055756 10.1007/s10701-006-9089-1 10.1016/0029-5582(63)90279-7 10.1016/0375-9601(84)91063-6 10.1007/978-94-015-8715-0_2 10.1007/BF01491914 10.1007/s10701-016-0031-x 10.1038/18296 10.1103/PhysRevLett.70.1895 10.1088/1742-6596/626/1/012028 10.1007/978-3-319-41285-6 10.1103/PhysRev.28.1049 10.4236/jmp.2010.12019 10.1142/9781786341419_0012 10.1103/PhysRev.40.749 10.1088/0953-8984/14/15/201 10.2307/1969831 10.1038/nphys2309 10.1103/PhysRevD.84.025007 10.1142/S0217979213450124 10.1103/PhysRevLett.14.57 10.1103/PhysRevD.95.103504 10.1007/BF00276801 10.1088/1361-6382/aaea20 10.1017/S0305004100000487 10.1103/PhysRevD.7.2333 10.12743/quanta.v5i1.40 10.1007/978-1-4612-0647-7 10.3390/e14040665 10.3390/e17117752 10.1016/B978-0-12-473250-6.50006-6 10.1051/epjconf/20135801017 10.1103/PhysRevLett.47.979 10.1103/RevModPhys.38.447 10.1103/PhysRev.85.166 10.1007/BF01883487 10.1017/S1358246100010572 10.1103/PhysRev.47.777 10.1007/BF00670751 10.1093/mind/XVII.4.457 10.1103/PhysRevLett.54.857 10.1007/978-1-4684-8771-8_6 10.1007/BF01336768 10.12743/quanta.v2i1.14 10.1088/1742-6596/701/1/012020 10.1038/nphys3233 10.1007/BF00715241 10.1103/PhysRevD.102.124027 10.3390/e19070343 10.1103/PhysRevLett.111.120502 10.1111/nyas.12559 10.1017/CBO9780511622878 10.1103/PhysRevD.34.470 10.1088/0305-4470/24/10/018 10.1103/RevModPhys.29.454 10.1007/978-94-015-7877-6 10.1103/PhysRevD.14.2460 10.1007/BF02302261 10.1103/PhysRevA.80.043801 10.1103/PhysicsPhysiqueFizika.1.195 10.1103/RevModPhys.58.647 10.1103/PhysRevD.73.064025 10.1016/j.aop.2014.04.027 10.1103/PhysRevA.100.042115 10.1007/s40509-017-0130-1 10.1007/s10701-009-9347-0 10.1103/PhysRev.120.622 10.1103/PhysRevA.97.052109 10.1007/BF00717585 10.1126/science.1202218 10.1007/BF01455871 10.1007/BF01645742 10.1007/BF02906749 10.1038/37539 10.1007/s10701-016-0025-8 10.1007/s10714-006-0332-z 10.1007/BF02345020 10.1007/978-94-017-6065-2 10.1103/PhysRevD.78.064051 10.1007/BF01948686 10.1098/rspa.1970.0021 10.3390/e20010041 10.1063/1.4982765 10.1103/RevModPhys.92.021002 10.1016/j.aop.2015.02.020 10.4324/9780203201107 10.2307/1968551 10.1017/CBO9780511815676 |
ContentType | Journal Article |
Copyright | Chapman University 2020 Chapman University 2020. |
Copyright_xml | – notice: Chapman University 2020 – notice: Chapman University 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s40509-020-00228-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Physics |
EISSN | 2196-5617 |
EndPage | 101 |
ExternalDocumentID | 10_1007_s40509_020_00228_4 |
GroupedDBID | -EM 0R~ 203 4.4 406 AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AVXWI AXYYD AYJHY AZFZN BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD HQYDN HRMNR HVGLF IKXTQ IWAJR IXD J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9G O9J PT4 RIG RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-e5437ef7c1587a5ddcac7360e5abafb4cb33dac6a30bcadce37953fb2ca4ce243 |
IEDL.DBID | AGYKE |
ISSN | 2196-5609 |
IngestDate | Wed Aug 27 05:26:00 EDT 2025 Tue Jul 01 02:55:49 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 Fri Feb 21 02:49:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Semi-classical gravity Foundations of quantum mechanics Determinism Interpretation of quantum mechanics Quantum gravity Block universe |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e5437ef7c1587a5ddcac7360e5abafb4cb33dac6a30bcadce37953fb2ca4ce243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2765-1562 |
PQID | 2493492995 |
PQPubID | 2044442 |
PageCount | 33 |
ParticipantIDs | proquest_journals_2493492995 crossref_citationtrail_10_1007_s40509_020_00228_4 crossref_primary_10_1007_s40509_020_00228_4 springer_journals_10_1007_s40509_020_00228_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Quantum Studies : Mathematics and Foundations |
PublicationTitleAbbrev | Quantum Stud.: Math. Found |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Stoica, O.C.: Flowing with a frozen river. Foundational Questions Institute, “The nature of time” essay contest (2008). http://fqxi.org/community/forum/topic/322. Accessed 18 May 2020 Stoica, O.C.: Quantum measurement and initial conditions. Int. J. Theor. Phys. 1–15 (2015). arXiv:1212.2601 Vaidman, L.: Many-worlds interpretation of quantum mechanics. In: E.N. Zalta (ed) The Stanford Encyclopedia of Philosophy, spring 2015 edition. Stanford (2015). http://plato.stanford.edu/archives/spr2015/entries/qm-manyworlds DaumerMDürrDGoldsteinSZanghìNNaive realism about operatorsErkenntnis1996452–337939714533840912.47044 RingbauerMDuffusBBranciardCCavalcantiEGWhiteAGFedrizziAMeasurements on the reality of the wavefunctionNat. Phys.2015113249 Born, M.: Zur Quantenmechanik der Stoßvorgänge. In: Reprinted and translated in Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement. Princeton University Press, Princeton, p. 52 (1926) SchrödingerEQuantisierung als EigenwertproblemAnn. Phys.19263851343749052.0966.02 Wheeler, J.A.: Information, physics, quantum: the search for links. In: W.H. Zurek (ed) Complexity, entropy, and the physics of information, vol. 8 (1990) Kent, A.: Semi-quantum gravity and testing gravitational Bell non-locality. Preprint arXiv:1808.06084 (2018) Tegmark, M.: Our Mathematical Universe: My Quest for the Ultimate Nature of Reality. Knopf Doubleday Publishing Group, New York (2014) Przibram, K.:(ed), Klein, M.J. (trans). Letters on Wave Mechanics: Schrödinger, Plank, Einstein, Lorentz. Philosophical Library, New York (1967) Stoica, O.C.: Revisiting the black hole entropy and the information paradox. AHEP (2018) Friederich, S., Evans, P.W.: Retrocausality in quantum mechanics. In: E.N. Zalta (ed.) The Stanford encyclopedia of philosophy, summer 2019 edn. Metaphysics Research Lab, Stanford University (2019) EinsteinAPodolskyBRosenNCan quantum-mechanical description of physical reality be considered complete?Phys. Rev.193547107770012.04201 StoicaOCOn the wavefunction collapseQuanta2016511933352164610.12743/quanta.v5i1.40 Stoica, O.C.: The universe remembers no wavefunction collapse. Quantum Stud. Math. Found. (2017). arXiv:1607.02076 WeisskopfVFWignerEPCalculation of the natural brightness of spectral lines on the basis of Dirac’s theoryZ. Phys.1930635473 BurgosMEContradiction between conservation laws and orthodox quantum mechanicsJ. Mod. Phys.201012137 CramerJGThe transactional interpretation of quantum mechanicsRev. Mod. Phys.1986583647854444 Howl, R., Vedral, V., Christodoulou, M., Rovelli, C., Naik, D., Iyer, A.: Testing quantum gravity with a single quantum system. Preprint arXiv:2004.01189 (2020) AharonovYBergmannPGLebowitzJLTime symmetry in the quantum process of measurementPhys. Rev.1964134141014161636140127.43703 Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedanken experiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. (49) (1982) t Hooft, G.: The cellular automaton interpretation of quantum mechanics, vol. 185. Springer, New York (2016) Stoica, O.C.: Singular general relativity—Ph.D. Thesis. Minkowski Institute Press (2013). arXiv:1301.2231 HarriganNSpekkensRWEinstein, incompleteness, and the epistemic view of quantum statesFound. Phys.201040212515725858521184.81006 BardeenJMCarterBHawkingSWThe four laws of black hole mechanicsCommun. Math. Phys.19733121611703347981125.83309 LloydSMacconeLGarcia-PatronRGiovannettiVShikanoYQuantum mechanics of time travel through post-selected teleportationPhys. Rev. D2011842025007 ChristodoulouMRovelliCOn the possibility of laboratory evidence for quantum superposition of geometriesPhys. Lett. B201979264683927926 LeggettAJGargAQuantum mechanics versus macroscopic realism: Is the flux there when nobody looks?Phys. Rev. Lett.1985549857860778316 StoicaOCRepresentation of the wave function on the three-dimensional spacePhys. Rev. A20191000421154028855 BellJSOn the Problem of Hidden Variables in Quantum MechanicsRev. Mod. Phys.19663834474522089270152.23605 HestenesDSpace-Time Algebra1966New YorkGordon & Breach0183.28901 PenroseRGravitational collapse and space-time singularitiesPhys. Rev. Lett.196514357591726780125.21206 Stoica, O.C.: Global and local aspects of causality in quantum mechanics. In: EPJ Web of Conferences, TM 2012— the time machine factory (unspeakable, speakable) on time travel in Turin, vol. 58, p. 01017. EPJ Web of Conferences (2013). Open access RietdijkCWProof of a retroactive influenceFound. Phys.197887–8615628 Schrödinger, E.: Collected papers on wave mechanics, vol. 302. American Mathematical Society, New York (2003) Dürr, D., Goldstein, S., Zanghì, N.: Bohmian mechanics as the foundation of quantum mechanics. In: Cushing, J.T., Fine, A., Goldstein, S. (eds) Bohmian mechanics and quantum theory: an appraisal, pp. 21–44. Springer, New York (1996). arXiv:quant-ph/9511016 CramerJGAn overview of the transactional interpretation of quantum mechanicsInt. J. Theor. Phys.1988272227236942058 BargmannVOn unitary ray representations of continuous groupsAnn. Math.195459146586010055.10304 BouwmeesterDPanJ-WMattleKEiblMWeinfurterHZeilingerAExperimental quantum teleportationNature199739066605755791369.81006 KocsisSBravermanBRavetsSStevensMJMirinRPShalmLKSteinbergAMObserving the average trajectories of single photons in a two-slit interferometerScience20113326034117011731355.81025 BroadCDScientific thought1923LondonRoutledge & Kegan Paul49.0033.10 EllisGFRThe evolving block universe and the meshing together of timesAnn. N. Y. Acad. Sci.2014132612641 SchrödingerEAn undulatory theory of the mechanics of atoms and moleculesPhys. Rev.192628610491070 AharonovYCohenEGrossmanDElitzurACCan a future choice affect a past measurement’s outcome?Ann. Phys.201535525826833269611343.81014 BredonGESheaf theory1997New YorkSpringer0874.55001 KolesovRXiaKReuterRJamaliMStöhrRInalTSiyushevPWrachtrupJMapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization statePhys. Rev. Lett.201311112120502 Lichnerowicz, A., Tonnelat, A.: Les théories relativistes de la gravitation, Number 91 in Colloques Internationaux, Paris. Centre National de la Recherche Scientifique. In: Proceedings of a conference held at Royaumont in June (1959) Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic: a first introduction to topos theory. Springer, New York (1992) Stoica, O.C.: The tao of it and bit. In: It from bit or bit from it? On physics and information, pp. 51–64. Springer, New York (2015). arXiv:1311.0765 PriceHWhartonKDisentangling the quantum worldEntropy2015171177527767 HawkingSWPenroseRWThe singularities of gravitational collapse and cosmologyProc. R. Soc. Lond. Ser. A197031415195295482649590954.83012 Stoica, O.C.: The geometry of singularities and the black hole information paradox. J. Phys. Conf. Ser. 626 (012028) (2015) GhirardiGCRiminiAWeberTUnified dynamics of microscopic and macroscopic systemsPhys. Rev. D1986344704918480841222.82047 DeutschDVindication of quantum localityProc. R. Soc. Lond. Ser. A2011468213853154428740491364.81025 KentASimple refutation of the Eppley-Hannah argumentClass. Quant. Grav.201835242450083891429 DiracPAMThe Principles of Quantum Mechanics1958OxfordOxford University Press0080.22005 RothmayerMTierneyDFrinsEDultzWSchmitzerHIrregular spin angular momentum transfer from light to small birefringent particlesPhys. Rev. A2009804043801 Vaidman, L.: All is ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}. J. Phys. Conf. Ser. 701 (2016) WangQZhuZUnruhWGHow the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the universePhys. Rev. D201795101035043817404 Cohen, E., Cortês, M., Elitzur, A.C., Smolin, L.: Realism and causality I: Pilot wave and retrocausal models as possible facilitators. arXiv:1902.05108 (2019) Cohen, E., Aharonov, Y.: Quantum to classical transitions via weak measurements and post-selection. In: Quantum Structural Studies: Classical Emergence from the Quantum Level. World Scientific Publishing Co., Singapore (2016). arXiv:1602.05083 EllisGFRRothmanTTime and spacetime: the crystallizing block universeIJTP2010495988100326101111190.83115 Marletto, C., Vedral, V.: Answers to a few questions regarding the BMV experiment. Preprint arXiv:1907.08994, (2019) HawkingSWThe occurrence of singularities in cosmology. III. Causality and singularitiesP. R. Soc. A Math. Phys.196730014611872010163.23903 AharonovYVaidmanLComplete description of a quantum system at a given timeJ. Phys. A19912423151118534 PageDNGeilkerCDIndirect evidence for quantum gravityPhys. Rev. Lett.19814714979629372 StoicaOCEinstein equation at singularitiesCent. Eur. J. Phys201412123131 Wheeler, J.A.: The ’past’ and the ’delayed-choice’ experiment. In: A.R. Marlow (ed) Mathematical Foundations of Quantum Theory, p. 30 (1978) de BroglieLUne tentative d’interprétation causale et non linéaire de la mécanique ondulatoire: La théorie de la double solution1956ParisGauthier-Villars0074.44003 Ellis, G.F.R.: On the flow of time. Preprint arXiv:0812.0240 (2008) MarlettoCVedralVWhy we need to quantise everything, including gravityNPJ Quant. Inf.20173115 McTaggart, J.M.E.: The unreality of time. Mind 457–474 (1908) Bohm, D.: Wholeness and the Implicate Order (1995) TamirBCohenEIntroduction to weak measurements and weak valuesQuanta2013217171351.81030 WignerEPOn the quantum correction for thermodynamic equilibriumPhys. Rev.19324074975958.0948.07 MarlettoCVedralVGravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravityPhys. Rev. Lett.201711924240402 AritaYMaziluMDholakiaKLaser-induced rotation and cooling of a trapped microgyroscope in vacuumNat. Commun.20134117 EllisGFRPhysics in the real universe: Time and spacetimeGen. Relat. Grav.200638121797182422890641157.83355 LeggettAJRealism R Kolesov (228_CR83) 2013; 111 228_CR29 GE Bredon (228_CR26) 1997 C Marletto (228_CR90) 2017; 119 228_CR20 RI Sutherland (228_CR138) 2008; 39 228_CR22 M Christodoulou (228_CR31) 2019; 792 228_CR23 M Ringbauer (228_CR106) 2015; 11 L Rosenfeld (228_CR107) 1963; 40 J von Neumann (228_CR146) 1955 SW Hawking (228_CR65) 1966; 295 L Hardy (228_CR62) 2013; 27 WC Myrvold (228_CR97) 2018; 97 JS Bell (228_CR17) 2004 JE Moyal (228_CR96) 1949; 45 228_CR155 228_CR154 OC Stoica (228_CR128) 2014; 12 228_CR153 C Marletto (228_CR91) 2017; 3 KB Wharton (228_CR152) 2007; 37 228_CR139 Y Arita (228_CR8) 2013; 4 228_CR38 GC Ghirardi (228_CR58) 1986; 34 228_CR32 SW Hawking (228_CR68) 1976; 14 228_CR33 HJ Groenewold (228_CR61) 1946 S Lloyd (228_CR88) 2011; 84 E Schrödinger (228_CR112) 1926; 28 C Chevalley (228_CR30) 1997 228_CR140 Y Aharonov (228_CR4) 1991; 24 EP Wigner (228_CR158) 1932; 40 228_CR148 228_CR145 228_CR144 PAM Dirac (228_CR44) 1958 228_CR142 J Mattingly (228_CR93) 2006; 73 Q Wang (228_CR149) 2017; 95 228_CR87 JG Cramer (228_CR37) 1988; 27 A Fine (228_CR55) 1988; 56 228_CR89 MF Pusey (228_CR104) 2012; 8 H Araki (228_CR6) 1960; 120 H Weyl (228_CR151) 1927; 46 OC Stoica (228_CR134) 2016; 5 B Tamir (228_CR141) 2013; 2 228_CR1 VF Weisskopf (228_CR150) 1930; 63 S Bose (228_CR24) 2017; 119 JS Bell (228_CR15) 1964; 1 CD Broad (228_CR27) 1923 D Deutsch (228_CR43) 2011; 468 H Price (228_CR100) 2008; 39 A Kent (228_CR80) 2018; 35 EP Wigner (228_CR157) 1939; 1 K Eppley (228_CR52) 1977; 7 C Hoefer (228_CR73) 2002; 50 D Hestenes (228_CR72) 1966 AM Gleason (228_CR59) 1957; 6 228_CR9 228_CR10 228_CR7 228_CR11 R Colbeck (228_CR35) 2012; 108 SW Hawking (228_CR70) 1996 228_CR94 OC Stoica (228_CR130) 2014; 11 228_CR92 LS Schulman (228_CR115) 1984; 102 DN Page (228_CR98) 1981; 47 M Rothmayer (228_CR108) 2009; 80 L Vaidman (228_CR143) 1994; 49 G Ghirardi (228_CR57) 1990; 20 V Bargmann (228_CR13) 1954; 59 R Penrose (228_CR99) 1965; 14 JA Wheeler (228_CR156) 2000 OC Stoica (228_CR137) 2019; 100 JM Bardeen (228_CR12) 1973; 31 C Emary (228_CR51) 2013; 77 LS Schulman (228_CR118) 2016; 46 M Daumer (228_CR39) 1996; 45 228_CR60 D Bouwmeester (228_CR25) 1997; 390 H Price (228_CR101) 2015; 17 228_CR114 EP Wigner (228_CR160) 1962 N Harrigan (228_CR63) 2010; 40 R Colbeck (228_CR34) 2011; 2 228_CR79 228_CR75 228_CR76 SW Hawking (228_CR69) 1970; 314 228_CR77 C Rovelli (228_CR109) 1996; 35 EP Wigner (228_CR159) 1952; 133 JG Cramer (228_CR36) 1986; 58 228_CR71 GFR Ellis (228_CR47) 2006; 38 S Kocsis (228_CR82) 2011; 332 GFR Ellis (228_CR50) 2010; 49 228_CR74 OC de Beauregard (228_CR40) 1977; 42 OC Stoica (228_CR129) 2014; 347 E Schrödinger (228_CR113) 1935; 23 H Minkowski (228_CR95) 1910; 68 GFR Ellis (228_CR49) 2014; 1326 228_CR103 228_CR102 AJ Leggett (228_CR84) 2002; 14 RM Wald (228_CR147) 1994 JD Bekenstein (228_CR14) 1973; 7 E Schrödinger (228_CR111) 1926; 28 LS Schulman (228_CR116) 1997 LS Schulman (228_CR120) 2016; 46 228_CR48 228_CR127 228_CR45 RW Spekkens (228_CR121) 2005; 71 L de Broglie (228_CR42) 1956 Y Aharonov (228_CR3) 2015; 355 D Bohm (228_CR19) 1952; 85 ME Burgos (228_CR28) 2010; 1 E Schrödinger (228_CR110) 1926; 385 228_CR136 228_CR135 JS Bell (228_CR16) 1966; 38 SW Hawking (228_CR66) 1967; 300 228_CR133 228_CR132 228_CR131 SW Hawking (228_CR64) 1966; 294 A Einstein (228_CR46) 1935; 47 CW Rietdijk (228_CR105) 1978; 8 AJ Leggett (228_CR85) 2008; 71 228_CR54 M Albers (228_CR5) 2008; 78 228_CR56 LS Schulman (228_CR119) 2017; 19 Y Aharonov (228_CR2) 1964; 134 L de Broglie (228_CR41) 1956 AJ Leggett (228_CR86) 1985; 54 LS Schulman (228_CR117) 2012; 14 CH Bennett (228_CR18) 1993; 70 H Everett (228_CR53) 1957; 29 S Kochen (228_CR81) 1967; 17 228_CR126 RE Kastner (228_CR78) 2012 228_CR125 D Bohm (228_CR21) 2004 SW Hawking (228_CR67) 1975; 43 228_CR124 228_CR123 228_CR122 |
References_xml | – reference: Stoica, O.C.: World theory. PhilSci Archive (2008). philsci-archive:00004355/ – reference: EmaryCLambertNNoriFLeggett-Garg inequalitiesRep. Progr. Phys.20137710160013158415 – reference: AharonovYBergmannPGLebowitzJLTime symmetry in the quantum process of measurementPhys. Rev.1964134141014161636140127.43703 – reference: HawkingSWParticle creation by black holesCommun. Math. Phys.19754331992203816251378.83040 – reference: HawkingSWBreakdown of predictability in gravitational collapsePhys. Rev. D197614102460469093 – reference: BennettCHBrassardGCrépeauCJozsaRPeresAWoottersWKTeleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channelsPhys. Rev. Lett.19937013189512082471051.81505 – reference: RovelliCRelational quantum mechanicsInt. J. Theor. Phys.19963581637167814095020885.94012 – reference: BargmannVOn unitary ray representations of continuous groupsAnn. Math.195459146586010055.10304 – reference: Stoica, O.C.: Singular general relativity—Ph.D. Thesis. Minkowski Institute Press (2013). arXiv:1301.2231 – reference: KolesovRXiaKReuterRJamaliMStöhrRInalTSiyushevPWrachtrupJMapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization statePhys. Rev. Lett.201311112120502 – reference: Sutherland, R.I.: How retrocausality helps. In: AIP Conference Proceedings, vol. 1841, p. 020001. AIP Publishing, New York (2017) – reference: SpekkensRWContextuality for preparations, transformations, and unsharp measurementsPhys. Rev. A20057150521082109591 – reference: EinsteinAPodolskyBRosenNCan quantum-mechanical description of physical reality be considered complete?Phys. Rev.193547107770012.04201 – reference: LeggettAJTesting the limits of quantum mechanics: motivation, state of play, prospectsJ. Phys. Condens. Matter20021415R415 – reference: BellJSOn the Einstein-Podolsky-Rosen paradoxPhysics1964131952003790629 – reference: ArakiHYanaseMMMeasurement of quantum mechanical operatorsPhys. Rev.196012026221223770095.42502 – reference: Vaidman, L.: Many-worlds interpretation of quantum mechanics. In: E.N. Zalta (ed) The Stanford Encyclopedia of Philosophy, spring 2015 edition. Stanford (2015). http://plato.stanford.edu/archives/spr2015/entries/qm-manyworlds/ – reference: KocsisSBravermanBRavetsSStevensMJMirinRPShalmLKSteinbergAMObserving the average trajectories of single photons in a two-slit interferometerScience20113326034117011731355.81025 – reference: MyrvoldWCψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-ontology result without the Cartesian product assumptionPhys. Rev. A2018975052109 – reference: SchulmanLSTime’s arrows and quantum measurement1997CambridgeCambridge University Press – reference: HawkingSWPenroseRWThe Nature of Space and Time1996Princeton and OxfordPrinceton University Press0962.83500 – reference: MoyalJEQuantum mechanics as a statistical theoryMath. Proc. Camb. Philos. Soc.194945199124293300031.33601 – reference: Crumeyrolle, A.: Orthogonal and symplectic Clifford algebras. Spinor structures. Kluwer Academic Publishers, Dordrecht/Boston (1990) – reference: Przibram, K.:(ed), Klein, M.J. (trans). Letters on Wave Mechanics: Schrödinger, Plank, Einstein, Lorentz. Philosophical Library, New York (1967) – reference: WignerEPRemarks on the mind-body question1962LondonHeinmann – reference: MinkowskiHThe fundamental equations for electromagnetic processes in moving bodiesMath. Ann191068472525151157341.0948.03 – reference: Lichnerowicz, A., Tonnelat, A.: Les théories relativistes de la gravitation, Number 91 in Colloques Internationaux, Paris. Centre National de la Recherche Scientifique. In: Proceedings of a conference held at Royaumont in June (1959) – reference: Bacciagaluppi, G.: Remarks on space-time and locality in Everett’s interpretation. In: Placek, T., Butterfield, J. (eds.) Non-locality and modality, vol. 64, pp. 105–122. Springer, New York (2002) – reference: Wang, Q., Unruh, W.G.: Vacuum fluctuation, micro-cyclic “universes” and the cosmological constant problem. Preprint arXiv:1904.08599 (2019) – reference: KochenSSpeckerEPThe problem of hidden variables in quantum mechanicsJ. Math. Mech.19671759872192800156.23302 – reference: MarlettoCVedralVWhy we need to quantise everything, including gravityNPJ Quant. Inf.20173115 – reference: Cohen, E., Aharonov, Y.: Quantum to classical transitions via weak measurements and post-selection. In: Quantum Structural Studies: Classical Emergence from the Quantum Level. World Scientific Publishing Co., Singapore (2016). arXiv:1602.05083 – reference: AharonovYCohenEGrossmanDElitzurACCan a future choice affect a past measurement’s outcome?Ann. Phys.201535525826833269611343.81014 – reference: GhirardiGCRiminiAWeberTUnified dynamics of microscopic and macroscopic systemsPhys. Rev. D1986344704918480841222.82047 – reference: DiracPAMThe Principles of Quantum Mechanics1958OxfordOxford University Press0080.22005 – reference: EverettH“Relative state” formulation of quantum mechanicsRev. Mod. Phys.195729345446294159 – reference: Stoica, O.C.: The universe remembers no wavefunction collapse. Quantum Stud. Math. Found. (2017). arXiv:1607.02076 – reference: Stoica, O.C.: The tao of it and bit. In: It from bit or bit from it? On physics and information, pp. 51–64. Springer, New York (2015). arXiv:1311.0765 – reference: McTaggart, J.M.E.: The unreality of time. Mind 457–474 (1908) – reference: EllisGFRRothmanTTime and spacetime: the crystallizing block universeIJTP2010495988100326101111190.83115 – reference: PageDNGeilkerCDIndirect evidence for quantum gravityPhys. Rev. Lett.19814714979629372 – reference: GleasonAMMeasures on the closed subspaces of a Hilbert spaceJ. Math. Mech195764885893961130078.28803 – reference: Stoica, O.C.: Flowing with a frozen river. Foundational Questions Institute, “The nature of time” essay contest (2008). http://fqxi.org/community/forum/topic/322. Accessed 18 May 2020 – reference: Bohm, D.: Wholeness and the Implicate Order (1995) – reference: EllisGFRThe evolving block universe and the meshing together of timesAnn. N. Y. Acad. Sci.2014132612641 – reference: EllisGFRPhysics in the real universe: Time and spacetimeGen. Relat. Grav.200638121797182422890641157.83355 – reference: KentASimple refutation of the Eppley-Hannah argumentClass. Quant. Grav.201835242450083891429 – reference: FineABrownHRThe shaky game: Einstein, realism and the quantum theoryAm. J. Phys.198856571 – reference: SchulmanLSDefinite measurements and deterministic quantum evolutionPhys. Lett. A19841029396400750630 – reference: de BeauregardOCTime symmetry and the Einstein paradoxIl Nuovo Cimento B (1971-1996)19774214164 – reference: Goldstein, S., Zanghì, N.: Reality and the role of the wave function in quantum theory. In: The wave function: essays on the metaphysics of quantum mechanics, pp. 91–109. Oxford University Press, Oxford (2013) – reference: Marletto, C., Vedral, V.: Answers to a few questions regarding the BMV experiment. Preprint arXiv:1907.08994, (2019) – reference: ColbeckRRennerRNo extension of quantum theory can have improved predictive powerNat. Commun.20112411 – reference: AritaYMaziluMDholakiaKLaser-induced rotation and cooling of a trapped microgyroscope in vacuumNat. Commun.20134117 – reference: PenroseRGravitational collapse and space-time singularitiesPhys. Rev. Lett.196514357591726780125.21206 – reference: ChristodoulouMRovelliCOn the possibility of laboratory evidence for quantum superposition of geometriesPhys. Lett. B201979264683927926 – reference: DeutschDVindication of quantum localityProc. R. Soc. Lond. Ser. A2011468213853154428740491364.81025 – reference: Vaidman, L.: All is ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}. J. Phys. Conf. Ser. 701 (2016) – reference: Howl, R., Vedral, V., Christodoulou, M., Rovelli, C., Naik, D., Iyer, A.: Testing quantum gravity with a single quantum system. Preprint arXiv:2004.01189 (2020) – reference: StoicaOCMetric dimensional reduction at singularities with implications to quantum gravityAnn. Phys.2014347C749132136111342.83092 – reference: BardeenJMCarterBHawkingSWThe four laws of black hole mechanicsCommun. Math. Phys.19733121611703347981125.83309 – reference: de BroglieLUne tentative d’interprétation causale et non linéaire de la mécanique ondulatoire: La théorie de la double solution1956ParisGauthier-Villars0074.44003 – reference: Friederich, S., Evans, P.W.: Retrocausality in quantum mechanics. In: E.N. Zalta (ed.) The Stanford encyclopedia of philosophy, summer 2019 edn. Metaphysics Research Lab, Stanford University (2019) – reference: RosenfeldLOn quantization of fieldsNucl. Phys.1963403533561545810108.22301 – reference: Cohen, E., Cortês, M., Elitzur, A.C., Smolin, L.: Realism and causality I: Pilot wave and retrocausal models as possible facilitators. arXiv:1902.05108 (2019) – reference: SchrödingerEAn undulatory theory of the mechanics of atoms and moleculesPhys. Rev.19262810491070 – reference: SchulmanLSDa LuzMGELooking for the source of changeFound. Phys.201646111495150135549041381.81016 – reference: Adlam, E.: Spooky action at a temporal distance. Entropy 20(1) (2018) – reference: VaidmanLTeleportation of quantum statesPhys. Rev. A199449147314761279150 – reference: Kent, A.: Semi-quantum gravity and testing gravitational Bell non-locality. Preprint arXiv:1808.06084 (2018) – reference: StoicaOCOn the wavefunction collapseQuanta2016511933352164610.12743/quanta.v5i1.40 – reference: Busch, P.: Translation of “Die Messung quantenmechanischer Operatoren” by EP∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document} Wigner (2010). arXiv:1012.4372 – reference: WhartonKBTime-symmetric quantum mechanicsFound. Phys.200737115916822939611113.81304 – reference: WeylHQuantenmechanik und GruppentheorieZ. Phys.1927461–214653.0848.02 – reference: WignerEPOn the quantum correction for thermodynamic equilibriumPhys. Rev.19324074975958.0948.07 – reference: Stoica, O.C.: Quantum measurement and initial conditions. Int. J. Theor. Phys. 1–15 (2015). arXiv:1212.2601 – reference: Huggett, N., Callender, C.: Why quantize gravity (or any other field for that matter)? Philos. Sci. S382–S394 (2001) – reference: BellJSOn the Problem of Hidden Variables in Quantum MechanicsRev. Mod. Phys.19663834474522089270152.23605 – reference: BekensteinJDBlack holes and entropyPhys. Rev. D19737823333663431369.83037 – reference: StoicaOCOn singular semi-Riemannian manifoldsInt. J. Geom. Methods Mod. Phys.2014115145004132088501300.53018 – reference: WangQZhuZUnruhWGHow the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the universePhys. Rev. D201795101035043817404 – reference: LeggettAJGargAQuantum mechanics versus macroscopic realism: Is the flux there when nobody looks?Phys. Rev. Lett.1985549857860778316 – reference: Bohr, N.: Atomic Physics and Human Knowledge (1958) – reference: Aspect, A.: Bell’s Inequality Test: More Ideal than Ever (1999) – reference: HawkingSWThe occurrence of singularities in cosmologyProc. R. Soc. A Math. Phys.196629414395115212089780139.45803 – reference: SchrödingerEQuantisierung als EigenwertproblemAnn. Phys.19263851343749052.0966.02 – reference: SchulmanLSProgram for the special state theory of quantum measurementEntropy2017197343 – reference: de BroglieLLa théorie de la double solution1956ParisGauthier-Villars0074.44003 – reference: Wheeler, J.A.: Information, physics, quantum: the search for links. In: W.H. Zurek (ed) Complexity, entropy, and the physics of information, vol. 8 (1990) – reference: HoeferCFreedom from the inside outR. Inst. Philos. Suppl.200250201222 – reference: LloydSMacconeLGarcia-PatronRGiovannettiVShikanoYQuantum mechanics of time travel through post-selected teleportationPhys. Rev. D2011842025007 – reference: WheelerJAFordKGeons, black holes and quantum foam: a life in physics2000New YorkW.W. Norton & Co.0953.01023 – reference: HardyLAre quantum states real?Int. J. Mod. Phys. D.20132701n03134501230001971279.81008 – reference: Stoica, O.C.: Revisiting the black hole entropy and the information paradox. AHEP (2018) – reference: Dürr, D., Goldstein, S., Zanghì, N.: Bohmian mechanics as the foundation of quantum mechanics. In: Cushing, J.T., Fine, A., Goldstein, S. (eds) Bohmian mechanics and quantum theory: an appraisal, pp. 21–44. Springer, New York (1996). arXiv:quant-ph/9511016 – reference: Schrödinger, E.: Collected papers on wave mechanics, vol. 302. American Mathematical Society, New York (2003) – reference: EppleyKHannahEThe necessity of quantizing the gravitational fieldFound. Phys.197771–25168 – reference: Howard, D.: Nicht Sein Kann was Nicht Sein Darf, or the Prehistory of EPR, 1909–1935: Einstein’s early worries about the quantum mechanics of composite systems. In: Sixty-two years of uncertainty, pp. 61–111. Springer, New York (1990) – reference: Argaman, N.: On Bell’s theorem and causality. Preprint arXiv:0807.2041, (2008) – reference: PriceHWhartonKDisentangling the quantum worldEntropy2015171177527767 – reference: Stoica, O.C.: Convergence and free-will. PhilSci Archive (2008). philsci-archive:00004356/ – reference: MattinglyJWhy Eppley and Hannah’s thought experiment failsPhys. Rev. D20067360640252216995 – reference: ’t Hooft, G.: The cellular automaton interpretation of quantum mechanics, vol. 185. Springer, New York (2016) – reference: SchulmanLSSpecial states demand a force for the observerFound. Phys.201646111471149435549031381.81015 – reference: DaumerMDürrDGoldsteinSZanghìNNaive realism about operatorsErkenntnis1996452–337939714533840912.47044 – reference: RietdijkCWProof of a retroactive influenceFound. Phys.197887–8615628 – reference: Wharton, K.B., Argaman, N.: Bell’s theorem and spacetime-based reformulations of quantum mechanics. Preprint arXiv:1906.04313, (2019) – reference: ChevalleyCThe algebraic theory of spinors and Clifford algebras (Collected works)1997New YorkSpringer0899.01032 – reference: Stoica, O.C.: The geometry of singularities and the black hole information paradox. J. Phys. Conf. Ser. 626 (012028) (2015) – reference: BroadCDScientific thought1923LondonRoutledge & Kegan Paul49.0033.10 – reference: Everett, H.: The theory of the universal wave function. In: The Many-Worlds Hypothesis of Quantum Mechanics, pp. 3–137. Princeton University Press, Princeton (1973) – reference: GroenewoldHJOn the Principles of Elementary Quantum Mechanics1946NetherlandsSpringer0060.45002 – reference: CramerJGThe transactional interpretation of quantum mechanicsRev. Mod. Phys.1986583647854444 – reference: Heisenberg, W.: The Physicist’s Conception of Nature (1958) – reference: MarlettoCVedralVGravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravityPhys. Rev. Lett.201711924240402 – reference: AlbersMKieferCReginattoMMeasurement analysis and quantum gravityPhys. Rev. D20087860640512470323 – reference: Tegmark, M.: Our Mathematical Universe: My Quest for the Ultimate Nature of Reality. Knopf Doubleday Publishing Group, New York (2014) – reference: RingbauerMDuffusBBranciardCCavalcantiEGWhiteAGFedrizziAMeasurements on the reality of the wavefunctionNat. Phys.2015113249 – reference: SchrödingerEDie gegenwärtige situation in der quantenmechanikNaturwissenschaften193523498238280012.42703 – reference: TamirBCohenEIntroduction to weak measurements and weak valuesQuanta2013217171351.81030 – reference: WeisskopfVFWignerEPCalculation of the natural brightness of spectral lines on the basis of Dirac’s theoryZ. Phys.1930635473 – reference: ColbeckRRennerRIs a system’s wave function in one-to-one correspondence with its elements of reality?Phys. Rev. Lett.201210815150402 – reference: HawkingSWPenroseRWThe singularities of gravitational collapse and cosmologyProc. R. Soc. Lond. Ser. A197031415195295482649590954.83012 – reference: BellJSSpeakable and unspeakable in quantum mechanics: collected papers on quantum philosophy2004CambridgeCambridge University Press – reference: Ellis, G.F.R.: On the flow of time. Preprint arXiv:0812.0240 (2008) – reference: BouwmeesterDPanJ-WMattleKEiblMWeinfurterHZeilingerAExperimental quantum teleportationNature199739066605755791369.81006 – reference: HarriganNSpekkensRWEinstein, incompleteness, and the epistemic view of quantum statesFound. Phys.201040212515725858521184.81006 – reference: RothmayerMTierneyDFrinsEDultzWSchmitzerHIrregular spin angular momentum transfer from light to small birefringent particlesPhys. Rev. A2009804043801 – reference: von NeumannJMathematical Foundations of Quantum Mechanics1955PrincetonPrinceton University Press0064.21503 – reference: LeggettAJRealism and the physical worldRep. Progr. Phys.20087120220012393966 – reference: Stoica, O.C.: Smooth quantum mechanics. PhilSci Archive (2008). philsci-archive:00004344/ – reference: Wheeler, J.A.: The ’past’ and the ’delayed-choice’ experiment. In: A.R. Marlow (ed) Mathematical Foundations of Quantum Theory, p. 30 (1978) – reference: Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic: a first introduction to topos theory. Springer, New York (1992) – reference: StoicaOCEinstein equation at singularitiesCent. Eur. J. Phys201412123131 – reference: BurgosMEContradiction between conservation laws and orthodox quantum mechanicsJ. Mod. Phys.201012137 – reference: BredonGESheaf theory1997New YorkSpringer0874.55001 – reference: SchrödingerEAn undulatory theory of the mechanics of atoms and moleculesPhys. Rev.192628610491070 – reference: BohmDA suggested interpretation of quantum mechanics in terms of “hidden” variables. I and IIPhys. Rev.1952852166193462870046.21004 – reference: BoseSMazumdarAMorleyGWUlbrichtHTorošMPaternostroMGeraciAABarkerPFKimMSMilburnGSpin entanglement witness for quantum gravityPhys. Rev. Lett.2017119242404013746326 – reference: HawkingSWThe occurrence of singularities in cosmology. III. Causality and singularitiesP. R. Soc. A Math. Phys.196730014611872010163.23903 – reference: Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedanken experiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. (49) (1982) – reference: AharonovYVaidmanLComplete description of a quantum system at a given timeJ. Phys. A19912423151118534 – reference: BohmDCausality and chance in modern physics2004LondonRoutledge – reference: PuseyMFBarrettJRudolphTOn the reality of the quantum stateNat. Phys.201286475478 – reference: WignerEPOn unitary representations of the inhomogeneous Lorentz groupAnn. Math.1939140149204150345665.1129.01 – reference: CramerJGAn overview of the transactional interpretation of quantum mechanicsInt. J. Theor. Phys.1988272227236942058 – reference: StoicaOCRepresentation of the wave function on the three-dimensional spacePhys. Rev. A20191000421154028855 – reference: KastnerREThe transactional interpretation of quantum mechanics: the reality of possibility2012CambridgeCambridge University Press06107946 – reference: PriceHToy models for retrocausalityStud. Hist. Philos. Sci. B: Stud. Hist. Philos. M. P.200839475276125143111223.81044 – reference: HestenesDSpace-Time Algebra1966New YorkGordon & Breach0183.28901 – reference: Przibram, K.: (ed) , Klein, M.J. (trans). Letters on Wave Mechanics: Correspondence with H.A. Lorentz, Max Planck, and Erwin Schrödinger. Open Road Integrated Media, New York (2011) – reference: SchulmanLSExperimental test of the “Special State” theory of quantum measurementEntropy20121446656861296.81034 – reference: Stoica, O.C.: Global and local aspects of causality in quantum mechanics. In: EPJ Web of Conferences, TM 2012— the time machine factory (unspeakable, speakable) on time travel in Turin, vol. 58, p. 01017. EPJ Web of Conferences (2013). Open access – reference: WaldRMQuantum Field Theory in Curved Space-Time and Black Hole Thermodynamics1994ChicagoUniversity of Chicago Press0842.53052 – reference: GhirardiGGrassiRPearlePRelativistic dynamical reduction models: general framework and examplesFound. Phys.19902011127113161086759 – reference: SutherlandRICausally symmetric Bohm modelStud. Hist. Philos. Sci. B: Stud. Hist. Philos. M. P.200839478280525143141223.81050 – reference: WignerEPDie messung quantenmechanischer operatoren. A Hadrons and nucleiZ. Phys.195213311011080048.44102 – reference: Born, M.: Zur Quantenmechanik der Stoßvorgänge. In: Reprinted and translated in Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement. Princeton University Press, Princeton, p. 52 (1926) – reference: HawkingSWThe occurrence of singularities in cosmology. IIProc. R. Soc. A Math. Phys.196629514434904932089790148.46504 – reference: Jacobson, T.: Introductory lectures on black hole thermodynamics. In: Lectures given at the University of Utrecht, The Netherlands (1996). http://www.physics.umd.edu/grt/taj/776b/lectures.pdf – volume: 468 start-page: 531 issue: 2138 year: 2011 ident: 228_CR43 publication-title: Proc. R. Soc. Lond. Ser. A – volume: 792 start-page: 64 year: 2019 ident: 228_CR31 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.03.015 – volume: 134 start-page: 1410 year: 1964 ident: 228_CR2 publication-title: Phys. Rev. doi: 10.1103/PhysRev.134.B1410 – volume: 119 start-page: 240401 issue: 24 year: 2017 ident: 228_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.240401 – volume: 2 start-page: 411 year: 2011 ident: 228_CR34 publication-title: Nat. Commun. doi: 10.1038/ncomms1416 – ident: 228_CR10 doi: 10.1103/PhysRevLett.49.91 – volume: 3 start-page: 1 issue: 1 year: 2017 ident: 228_CR91 publication-title: NPJ Quant. Inf. doi: 10.1038/s41534-016-0002-2 – ident: 228_CR136 doi: 10.1155/2018/4130417 – volume: 49 start-page: 1473 year: 1994 ident: 228_CR143 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.49.1473 – ident: 228_CR76 doi: 10.1086/392923 – ident: 228_CR79 – ident: 228_CR22 doi: 10.1063/1.3062686 – volume: 71 start-page: 022001 issue: 2 year: 2008 ident: 228_CR85 publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/71/2/022001 – volume: 385 start-page: 437 issue: 13 year: 1926 ident: 228_CR110 publication-title: Ann. Phys. doi: 10.1002/andp.19263851302 – ident: 228_CR114 – ident: 228_CR148 doi: 10.1103/PhysRevD.102.023537 – ident: 228_CR11 doi: 10.1007/978-94-010-0385-8_7 – ident: 228_CR56 – volume: 11 start-page: 1450041 issue: 5 year: 2014 ident: 228_CR130 publication-title: Int. J. Geom. Methods Mod. Phys. doi: 10.1142/S0219887814500418 – ident: 228_CR71 – ident: 228_CR60 doi: 10.1093/acprof:oso/9780199790807.003.0004 – volume: 4 start-page: 1 issue: 1 year: 2013 ident: 228_CR8 publication-title: Nat. Commun. doi: 10.1038/ncomms3374 – volume: 17 start-page: 59 year: 1967 ident: 228_CR81 publication-title: J. Math. Mech. – volume: 108 start-page: 150402 issue: 15 year: 2012 ident: 228_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.150402 – volume: 77 start-page: 016001 issue: 1 year: 2013 ident: 228_CR51 publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/77/1/016001 – volume-title: The transactional interpretation of quantum mechanics: the reality of possibility year: 2012 ident: 228_CR78 doi: 10.1017/CBO9780511675768 – volume: 56 start-page: 571 year: 1988 ident: 228_CR55 publication-title: Am. J. Phys. doi: 10.1119/1.15540 – volume: 119 start-page: 240402 issue: 24 year: 2017 ident: 228_CR90 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.240402 – ident: 228_CR125 – volume: 71 start-page: 052108 issue: 5 year: 2005 ident: 228_CR121 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.71.052108 – ident: 228_CR133 doi: 10.1007/978-3-319-12946-4_5 – volume: 46 start-page: 1 issue: 1–2 year: 1927 ident: 228_CR151 publication-title: Z. Phys. doi: 10.1007/BF02055756 – volume: 37 start-page: 159 issue: 1 year: 2007 ident: 228_CR152 publication-title: Found. Phys. doi: 10.1007/s10701-006-9089-1 – volume: 6 start-page: 885 issue: 4 year: 1957 ident: 228_CR59 publication-title: J. Math. Mech – volume: 40 start-page: 353 year: 1963 ident: 228_CR107 publication-title: Nucl. Phys. doi: 10.1016/0029-5582(63)90279-7 – volume: 102 start-page: 396 issue: 9 year: 1984 ident: 228_CR115 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(84)91063-6 – ident: 228_CR45 doi: 10.1007/978-94-015-8715-0_2 – volume: 23 start-page: 823 issue: 49 year: 1935 ident: 228_CR113 publication-title: Naturwissenschaften doi: 10.1007/BF01491914 – volume: 46 start-page: 1495 issue: 11 year: 2016 ident: 228_CR120 publication-title: Found. Phys. doi: 10.1007/s10701-016-0031-x – ident: 228_CR132 – ident: 228_CR9 doi: 10.1038/18296 – volume: 70 start-page: 1895 issue: 13 year: 1993 ident: 228_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.1895 – ident: 228_CR122 – ident: 228_CR131 doi: 10.1088/1742-6596/626/1/012028 – volume: 39 start-page: 752 issue: 4 year: 2008 ident: 228_CR100 publication-title: Stud. Hist. Philos. Sci. B: Stud. Hist. Philos. M. P. – ident: 228_CR140 doi: 10.1007/978-3-319-41285-6 – volume-title: Remarks on the mind-body question year: 1962 ident: 228_CR160 – volume: 28 start-page: 1049 issue: 6 year: 1926 ident: 228_CR112 publication-title: Phys. Rev. doi: 10.1103/PhysRev.28.1049 – volume: 1 start-page: 137 issue: 2 year: 2010 ident: 228_CR28 publication-title: J. Mod. Phys. doi: 10.4236/jmp.2010.12019 – ident: 228_CR32 doi: 10.1142/9781786341419_0012 – volume: 40 start-page: 749 year: 1932 ident: 228_CR158 publication-title: Phys. Rev. doi: 10.1103/PhysRev.40.749 – volume: 14 start-page: R415 issue: 15 year: 2002 ident: 228_CR84 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/15/201 – volume: 59 start-page: 1 year: 1954 ident: 228_CR13 publication-title: Ann. Math. doi: 10.2307/1969831 – ident: 228_CR77 – volume: 8 start-page: 475 issue: 6 year: 2012 ident: 228_CR104 publication-title: Nat. Phys. doi: 10.1038/nphys2309 – volume: 84 start-page: 025007 issue: 2 year: 2011 ident: 228_CR88 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.84.025007 – volume: 27 start-page: 1345012 issue: 01n03 year: 2013 ident: 228_CR62 publication-title: Int. J. Mod. Phys. D. doi: 10.1142/S0217979213450124 – volume: 14 start-page: 57 issue: 3 year: 1965 ident: 228_CR99 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.14.57 – volume: 95 start-page: 103504 issue: 10 year: 2017 ident: 228_CR149 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.103504 – volume: 45 start-page: 379 issue: 2–3 year: 1996 ident: 228_CR39 publication-title: Erkenntnis doi: 10.1007/BF00276801 – volume: 35 start-page: 245008 issue: 24 year: 2018 ident: 228_CR80 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aaea20 – volume: 45 start-page: 99 issue: 1 year: 1949 ident: 228_CR96 publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S0305004100000487 – volume: 7 start-page: 2333 issue: 8 year: 1973 ident: 228_CR14 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.7.2333 – ident: 228_CR54 – volume: 5 start-page: 19 issue: 1 year: 2016 ident: 228_CR134 publication-title: Quanta doi: 10.12743/quanta.v5i1.40 – volume-title: Sheaf theory year: 1997 ident: 228_CR26 doi: 10.1007/978-1-4612-0647-7 – volume: 295 start-page: 490 issue: 1443 year: 1966 ident: 228_CR65 publication-title: Proc. R. Soc. A Math. Phys. – ident: 228_CR144 – ident: 228_CR102 – ident: 228_CR127 – volume: 14 start-page: 665 issue: 4 year: 2012 ident: 228_CR117 publication-title: Entropy doi: 10.3390/e14040665 – ident: 228_CR29 – volume: 17 start-page: 7752 issue: 11 year: 2015 ident: 228_CR101 publication-title: Entropy doi: 10.3390/e17117752 – ident: 228_CR154 doi: 10.1016/B978-0-12-473250-6.50006-6 – ident: 228_CR126 doi: 10.1051/epjconf/20135801017 – volume: 47 start-page: 979 issue: 14 year: 1981 ident: 228_CR98 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.47.979 – volume: 38 start-page: 447 issue: 3 year: 1966 ident: 228_CR16 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.38.447 – volume: 85 start-page: 166 issue: 2 year: 1952 ident: 228_CR19 publication-title: Phys. Rev. doi: 10.1103/PhysRev.85.166 – volume: 20 start-page: 1271 issue: 11 year: 1990 ident: 228_CR57 publication-title: Found. Phys. doi: 10.1007/BF01883487 – volume-title: Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics year: 1994 ident: 228_CR147 – ident: 228_CR155 – volume: 50 start-page: 201 year: 2002 ident: 228_CR73 publication-title: R. Inst. Philos. Suppl. doi: 10.1017/S1358246100010572 – volume: 47 start-page: 777 issue: 10 year: 1935 ident: 228_CR46 publication-title: Phys. Rev. doi: 10.1103/PhysRev.47.777 – volume-title: Une tentative d’interprétation causale et non linéaire de la mécanique ondulatoire: La théorie de la double solution year: 1956 ident: 228_CR42 – ident: 228_CR20 – ident: 228_CR124 – volume: 27 start-page: 227 issue: 2 year: 1988 ident: 228_CR37 publication-title: Int. J. Theor. Phys. doi: 10.1007/BF00670751 – ident: 228_CR89 – ident: 228_CR94 doi: 10.1093/mind/XVII.4.457 – volume: 28 start-page: 1049 year: 1926 ident: 228_CR111 publication-title: Phys. Rev. doi: 10.1103/PhysRev.28.1049 – volume: 54 start-page: 857 issue: 9 year: 1985 ident: 228_CR86 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.54.857 – ident: 228_CR74 doi: 10.1007/978-1-4684-8771-8_6 – volume: 63 start-page: 54 year: 1930 ident: 228_CR150 publication-title: Z. Phys. doi: 10.1007/BF01336768 – volume: 2 start-page: 7 issue: 1 year: 2013 ident: 228_CR141 publication-title: Quanta doi: 10.12743/quanta.v2i1.14 – ident: 228_CR145 doi: 10.1088/1742-6596/701/1/012020 – volume: 11 start-page: 249 issue: 3 year: 2015 ident: 228_CR106 publication-title: Nat. Phys. doi: 10.1038/nphys3233 – ident: 228_CR75 – volume: 7 start-page: 51 issue: 1–2 year: 1977 ident: 228_CR52 publication-title: Found. Phys. doi: 10.1007/BF00715241 – ident: 228_CR33 doi: 10.1103/PhysRevD.102.124027 – volume: 300 start-page: 187 issue: 1461 year: 1967 ident: 228_CR66 publication-title: P. R. Soc. A Math. Phys. – ident: 228_CR92 – volume-title: The Principles of Quantum Mechanics year: 1958 ident: 228_CR44 – ident: 228_CR48 – volume: 19 start-page: 343 issue: 7 year: 2017 ident: 228_CR119 publication-title: Entropy doi: 10.3390/e19070343 – ident: 228_CR23 – volume: 111 start-page: 120502 issue: 12 year: 2013 ident: 228_CR83 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.120502 – volume: 294 start-page: 511 issue: 1439 year: 1966 ident: 228_CR64 publication-title: Proc. R. Soc. A Math. Phys. – ident: 228_CR142 – volume: 1326 start-page: 26 issue: 1 year: 2014 ident: 228_CR49 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.12559 – volume: 12 start-page: 123 year: 2014 ident: 228_CR128 publication-title: Cent. Eur. J. Phys – volume-title: Time’s arrows and quantum measurement year: 1997 ident: 228_CR116 doi: 10.1017/CBO9780511622878 – volume: 34 start-page: 470 year: 1986 ident: 228_CR58 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.34.470 – volume: 24 start-page: 2315 year: 1991 ident: 228_CR4 publication-title: J. Phys. A doi: 10.1088/0305-4470/24/10/018 – volume: 49 start-page: 988 issue: 5 year: 2010 ident: 228_CR50 publication-title: IJTP – volume: 29 start-page: 454 issue: 3 year: 1957 ident: 228_CR53 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.29.454 – ident: 228_CR38 doi: 10.1007/978-94-015-7877-6 – volume-title: La théorie de la double solution year: 1956 ident: 228_CR41 – volume: 14 start-page: 2460 issue: 10 year: 1976 ident: 228_CR68 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.14.2460 – volume: 35 start-page: 1637 issue: 8 year: 1996 ident: 228_CR109 publication-title: Int. J. Theor. Phys. doi: 10.1007/BF02302261 – ident: 228_CR103 – volume-title: Mathematical Foundations of Quantum Mechanics year: 1955 ident: 228_CR146 – ident: 228_CR7 – ident: 228_CR87 – volume: 80 start-page: 043801 issue: 4 year: 2009 ident: 228_CR108 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.80.043801 – volume: 1 start-page: 195 issue: 3 year: 1964 ident: 228_CR15 publication-title: Physics doi: 10.1103/PhysicsPhysiqueFizika.1.195 – volume: 58 start-page: 647 issue: 3 year: 1986 ident: 228_CR36 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.58.647 – volume: 73 start-page: 064025 issue: 6 year: 2006 ident: 228_CR93 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.73.064025 – volume: 347 start-page: 74 issue: C year: 2014 ident: 228_CR129 publication-title: Ann. Phys. doi: 10.1016/j.aop.2014.04.027 – volume: 100 start-page: 042115 year: 2019 ident: 228_CR137 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.042115 – ident: 228_CR135 doi: 10.1007/s40509-017-0130-1 – volume: 40 start-page: 125 issue: 2 year: 2010 ident: 228_CR63 publication-title: Found. Phys. doi: 10.1007/s10701-009-9347-0 – volume: 120 start-page: 622 issue: 2 year: 1960 ident: 228_CR6 publication-title: Phys. Rev. doi: 10.1103/PhysRev.120.622 – volume: 97 start-page: 052109 issue: 5 year: 2018 ident: 228_CR97 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.052109 – volume: 8 start-page: 615 issue: 7–8 year: 1978 ident: 228_CR105 publication-title: Found. Phys. doi: 10.1007/BF00717585 – volume: 332 start-page: 1170 issue: 6034 year: 2011 ident: 228_CR82 publication-title: Science doi: 10.1126/science.1202218 – volume: 68 start-page: 472 year: 1910 ident: 228_CR95 publication-title: Math. Ann doi: 10.1007/BF01455871 – volume-title: The algebraic theory of spinors and Clifford algebras (Collected works) year: 1997 ident: 228_CR30 – ident: 228_CR123 – volume: 39 start-page: 782 issue: 4 year: 2008 ident: 228_CR138 publication-title: Stud. Hist. Philos. Sci. B: Stud. Hist. Philos. M. P. – volume: 31 start-page: 161 issue: 2 year: 1973 ident: 228_CR12 publication-title: Commun. Math. Phys. doi: 10.1007/BF01645742 – volume: 42 start-page: 41 issue: 1 year: 1977 ident: 228_CR40 publication-title: Il Nuovo Cimento B (1971-1996) doi: 10.1007/BF02906749 – volume: 390 start-page: 575 issue: 6660 year: 1997 ident: 228_CR25 publication-title: Nature doi: 10.1038/37539 – volume-title: Space-Time Algebra year: 1966 ident: 228_CR72 – volume: 46 start-page: 1471 issue: 11 year: 2016 ident: 228_CR118 publication-title: Found. Phys. doi: 10.1007/s10701-016-0025-8 – volume-title: Scientific thought year: 1923 ident: 228_CR27 – volume: 38 start-page: 1797 issue: 12 year: 2006 ident: 228_CR47 publication-title: Gen. Relat. Grav. doi: 10.1007/s10714-006-0332-z – volume: 43 start-page: 199 issue: 3 year: 1975 ident: 228_CR67 publication-title: Commun. Math. Phys. doi: 10.1007/BF02345020 – volume-title: On the Principles of Elementary Quantum Mechanics year: 1946 ident: 228_CR61 doi: 10.1007/978-94-017-6065-2 – volume: 78 start-page: 064051 issue: 6 year: 2008 ident: 228_CR5 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.064051 – volume: 133 start-page: 101 issue: 1 year: 1952 ident: 228_CR159 publication-title: Z. Phys. doi: 10.1007/BF01948686 – volume: 314 start-page: 529 issue: 1519 year: 1970 ident: 228_CR69 publication-title: Proc. R. Soc. Lond. Ser. A doi: 10.1098/rspa.1970.0021 – volume-title: The Nature of Space and Time year: 1996 ident: 228_CR70 – ident: 228_CR1 doi: 10.3390/e20010041 – ident: 228_CR139 doi: 10.1063/1.4982765 – ident: 228_CR153 doi: 10.1103/RevModPhys.92.021002 – volume: 355 start-page: 258 year: 2015 ident: 228_CR3 publication-title: Ann. Phys. doi: 10.1016/j.aop.2015.02.020 – volume-title: Causality and chance in modern physics year: 2004 ident: 228_CR21 doi: 10.4324/9780203201107 – volume-title: Geons, black holes and quantum foam: a life in physics year: 2000 ident: 228_CR156 – volume: 1 start-page: 149 issue: 40 year: 1939 ident: 228_CR157 publication-title: Ann. Math. doi: 10.2307/1968551 – volume-title: Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy year: 2004 ident: 228_CR17 doi: 10.1017/CBO9780511815676 |
SSID | ssib031741118 ssj0002140258 |
Score | 2.2207134 |
Snippet | A series of reasons to take quantum unitary evolution seriously and explain the projection of the state vector as unitary and not discontinuous are presented,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 69 |
SubjectTerms | Consistency Evolution History and Philosophical Foundations of Physics Homology Mathematical and Computational Physics Mathematical Physics Mathematics Mathematics and Statistics Quantum mechanics Quantum Physics Quantum theory Regular Paper Relativity State vectors Theoretical Universe Wave functions |
Title | The post-determined block universe |
URI | https://link.springer.com/article/10.1007/s40509-020-00228-4 https://www.proquest.com/docview/2493492995 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RiIke_IEaUSSL8aYlsLYbPYIBiQZOkuBpabvuggHixsW_3rfuB5GoCee1zfb63r7Xvq9fAe4RhBG1I58I5QnCfOoSyTxGuMLsIJQKnSjd7xhPvNGUvcz4LD8UFhds96Ikaf_U5WE3lkqVkHS5Y0VbCNuHKuYfbVaBau_5_XVQ-BFCIsMQ7pZ7LS6uIlx7VSfGp0cQ5EV-fub3gX9i1Cbx3KqVWggansC0ePmMeTJvrRPV0l9buo67ft0pHOc5qdPLnOgM9syiBkfjUtA1rsGBZYrq-Bzu0LGc1TJOSJgzaUzoKITEubPOSB7mAqbDwdvTiOQXLRCNEZgQwxn1TeTrDu_6koehltqnXttwqWSkmFaUhlJ7kraVlqE21BecRsrVkmnjMnoJlcVyYa7AUZQj5nPRNQL7USmoVrY0SWmHce3WoVOYNtC5Cnl6GcZHUOonW0sEaInAWiJgdXgo-6wyDY5_WzeKGQvyeIwDXGSmMoxC8Do8FhOwefz3aNe7Nb-BQzclvVhadwMqyefa3GLWkqgmOumw3580c2f9Bkzi3ZU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RiFEP_kCNKOpivGkJrO1Gj8SAKD9OkOBpabtywQBx4-Jf71vZRiRqwnlts72-t--99utXgAcEYUTtiU-E8gRhPnWJZB4jXGF2EEqFTpSsd_QHXmfE3sZ8nB4KizK2e7Ylaf_U-WE3lkiVkKTcsaIthO1CkWENjn5dbL68d1uZHyEkMgzhRr7W4mIV4dqrOjE-PYIgL9LzM78P_BOj1onnxl6phaD2MYyyl18xT6bVZayq-mtD13HbrzuBozQndZorJzqFHTMrwWE_F3SNSrBnmaI6OoN7dCxnMY9iEqZMGhM6CiFx6ixXJA9zDqN2a_jcIelFC0RjBMbEcEZ9M_F1nTd8ycNQS-1Tr2a4VHKimFaUhlJ7ktaUlqE21BecTpSrJdPGZfQCCrP5zFyCoyhHzOeiYQT2o1JQrezWJKV1xrVbhnpm2kCnKuTJZRgfQa6fbC0RoCUCa4mAleEx77NYaXD827qSzViQxmMUYJGZyDAKwcvwlE3A-vHfo11t1_wO9jvDfi_ovQ6613DgJgQYS_GuQCH-XJobzGBidZs67DfmxN8I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oRKMHH6gRnxvjTQuybXfpkSj4QIgHSfC0abvdCwaJLBd_vbPdh0rUxHjuI-l0Jt-0_eYrwCmCMKJ25BOhPEGYT10imccIV5gdhFKhEyX3Hb2-dzNgd0M-_FTFb9nu-ZNkWtOQqDSN4_okjOpF4RtLZEtIcvSxAi6ELUKZJdp2JSi3rp-67dynEB4ZhnOzuHdx8UTh2m87MVY9goAvslqa7yf-ilcfSejcu6mFo846yHwhKQtlVJvFqqbf5jQe_7PSDVjLclWnlTrXJiyYcQVWe4XQ67QCS5ZBqqdbcIIO50xepjEJM4aNCR2FUDlyZin5w2zDoNN-vLwh2QcMRGNkxsRwRn0T-brBm77kYail9ql3YbhUMlJMK0pDqT1JL5SWoTbUF5xGytWSaeMyugOl8cvY7IKjKMdcgIumETiOSkG1sk-WlDYY124VGrmZA52pkyefZDwHha6ytUSAlgisJQJWhbNizCTV5vi190G-e0EWp9MAD5-JPKMQvArn-WZ8NP88297fuh_D8sNVJ7i_7Xf3YcVNeDGW-X0Apfh1Zg4xsYnVUea773vZ5-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+post-determined+block+universe&rft.jtitle=Quantum+Studies+%3A+Mathematics+and+Foundations&rft.au=Stoica%2C+Ovidiu+Cristinel&rft.date=2021-02-01&rft.issn=2196-5609&rft.eissn=2196-5617&rft.volume=8&rft.issue=1&rft.spage=69&rft.epage=101&rft_id=info:doi/10.1007%2Fs40509-020-00228-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40509_020_00228_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-5609&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-5609&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-5609&client=summon |