AEMS: an attention enhancement network of modules stacking for lowlight image enhancement
Due to the images obtained in lowlight environments often showing low contrast, low brightness and artifacts, it is difficult to distinguish the details of these images for people. In the field of images fusion and target tacking, lowlight images cannot be processed better. In this paper, we propose...
Saved in:
Published in | The Visual computer Vol. 38; no. 12; pp. 4203 - 4219 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0178-2789 1432-2315 |
DOI | 10.1007/s00371-021-02289-x |
Cover
Abstract | Due to the images obtained in lowlight environments often showing low contrast, low brightness and artifacts, it is difficult to distinguish the details of these images for people. In the field of images fusion and target tacking, lowlight images cannot be processed better. In this paper, we proposed an end-to-end lowlight image enhancement network, which uses modules stacking methods and attention modules. Firstly, the method of module stacking was applied to extract the different features of images, and then the features are fused on the channel dimension. Finally, the final image was reconstructed with a series of convolutions. In particular, our loss function consists of two parts: the first part of the loss function was calculated using
L
1
loss,
L
2
loss and the gradient loss, and VGG network was utilized to calculate the second part. Furthermore, we verified the effectiveness of the model via a large number of comparative experiments, and illustrated the comparison results through quantitative and qualitative methods. We additionally show the performance of our network on lowlight video enhancement, which also has better results than the other methods. |
---|---|
AbstractList | Due to the images obtained in lowlight environments often showing low contrast, low brightness and artifacts, it is difficult to distinguish the details of these images for people. In the field of images fusion and target tacking, lowlight images cannot be processed better. In this paper, we proposed an end-to-end lowlight image enhancement network, which uses modules stacking methods and attention modules. Firstly, the method of module stacking was applied to extract the different features of images, and then the features are fused on the channel dimension. Finally, the final image was reconstructed with a series of convolutions. In particular, our loss function consists of two parts: the first part of the loss function was calculated using
L
1
loss,
L
2
loss and the gradient loss, and VGG network was utilized to calculate the second part. Furthermore, we verified the effectiveness of the model via a large number of comparative experiments, and illustrated the comparison results through quantitative and qualitative methods. We additionally show the performance of our network on lowlight video enhancement, which also has better results than the other methods. Due to the images obtained in lowlight environments often showing low contrast, low brightness and artifacts, it is difficult to distinguish the details of these images for people. In the field of images fusion and target tacking, lowlight images cannot be processed better. In this paper, we proposed an end-to-end lowlight image enhancement network, which uses modules stacking methods and attention modules. Firstly, the method of module stacking was applied to extract the different features of images, and then the features are fused on the channel dimension. Finally, the final image was reconstructed with a series of convolutions. In particular, our loss function consists of two parts: the first part of the loss function was calculated using L1 loss, L2 loss and the gradient loss, and VGG network was utilized to calculate the second part. Furthermore, we verified the effectiveness of the model via a large number of comparative experiments, and illustrated the comparison results through quantitative and qualitative methods. We additionally show the performance of our network on lowlight video enhancement, which also has better results than the other methods. |
Author | Nie, Rencan Wei, Yixue Zhao, Li Zhou, Dongming Li, Miao Liu, Yanyu |
Author_xml | – sequence: 1 givenname: Miao surname: Li fullname: Li, Miao organization: School of Information Science and Engineering, Yunnan University – sequence: 2 givenname: Li surname: Zhao fullname: Zhao, Li organization: Department of Computer Science, University of Sheffield – sequence: 3 givenname: Dongming orcidid: 0000-0003-0139-9415 surname: Zhou fullname: Zhou, Dongming email: zhoudm@ynu.edu.cn organization: School of Information Science and Engineering, Yunnan University – sequence: 4 givenname: Rencan surname: Nie fullname: Nie, Rencan organization: School of Information Science and Engineering, Yunnan University – sequence: 5 givenname: Yanyu surname: Liu fullname: Liu, Yanyu – sequence: 6 givenname: Yixue surname: Wei fullname: Wei, Yixue organization: School of Information Science and Engineering, Yunnan University |
BookMark | eNp9kMtOwzAQRS1UJNrCD7CyxDrgRxLH7KqqPKQiFsCCleU4dpo2tYvtquXvSQkSiEUXo9FI98zMvSMwsM5qAC4xusYIsZuAEGU4QeRQpODJ_gQMcUpJQijOBmCIMCsSwgp-BkYhLFE3s5QPwftk9vRyC6WFMkZtY-Ms1HYhrdLrboRWx53zK-gMXLtq2-oAQ5Rq1dgaGudh63ZtUy8ibNay1n_Rc3BqZBv0xU8fg7e72ev0IZk_3z9OJ_NEUcxjojOKSi4zg1JTEia5limrKk5ylCrODecyzaTKCamKUlNEkMpKpQgxueHaFHQMrvq9G-8-tjpEsXRbb7uTgnDMeJHjjHaqolcp70Lw2gjVRHmwG71sWoGROAQp-iBFF6T4DlLsO5T8Qze-c-s_j0O0h0IntrX2v18dob4AbIqJmQ |
CitedBy_id | crossref_primary_10_1007_s00371_023_02805_1 crossref_primary_10_3390_s23156990 crossref_primary_10_1007_s11220_023_00411_y crossref_primary_10_1007_s00371_023_02770_9 crossref_primary_10_1007_s00371_022_02412_6 crossref_primary_10_1038_s41598_024_69505_1 crossref_primary_10_1007_s00371_022_02718_5 crossref_primary_10_1007_s00371_022_02582_3 |
Cites_doi | 10.1109/TIP.2021.3051462 10.1109/TIP.2005.859378 10.1109/TPAMI.2019.2913372 10.1109/TCE.2007.381734 10.1038/scientificamerican1277-108 10.1111/j.1467-8659.2012.03137.x 10.1109/TCE.2007.4429280 10.1109/TCE.2002.1010085 10.1109/TPAMI.2019.2957464 10.1109/83.597272 10.1016/j.patcog.2016.06.008 10.1049/iet-ipr.2019.0118 10.1109/TIP.2018.2794218 10.1109/JSEN.2014.2319891 10.1016/S0734-189X(87)80186-X 10.1007/s00371-021-02067-9 10.1007/s00371-020-01964-9 10.1109/TIP.2003.819861 10.1007/s00371-021-02079-5 10.3233/ICA-200641 10.1109/TCE.2003.1261234 10.1109/TCE.2005.1561863 10.1109/83.557356 10.1016/j.sigpro.2016.05.031 10.1109/TIP.2005.859389 10.1016/j.asoc.2020.106335 10.1109/30.754419 10.1109/83.841940 10.1016/j.patrec.2018.01.010 10.1007/s11263-010-0390-2 10.1109/TCI.2020.2965304 10.1109/TCE.2010.5681130 10.1049/ipr2.12173 10.1109/LGRS.2020.3031398 10.1109/TIP.2013.2261309 10.1007/s00371-019-01774-8 10.1109/CVPR.2016.304 10.1109/CVPR.2018.00347 10.1109/CVPR.2016.90 10.1109/ICETECH.2015.7275011 10.1109/VCIP.2017.8305143 10.1145/3343031.3350926 10.1109/CVPR42600.2020.00185 10.1109/CVPR.2019.00060 10.1609/aaai.v30i1.10287 10.1109/CVPR.2018.00068 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00371-021-02289-x |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 4219 |
ExternalDocumentID | 10_1007_s00371_021_02289_x |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62066047; 61966037; 61463052; 61365001 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-e530b9a5f04fb27a9ea47dd92604c99f99a45ac622d8be3020c5bcc22f6f9ef83 |
IEDL.DBID | AGYKE |
ISSN | 0178-2789 |
IngestDate | Fri Jul 25 23:02:12 EDT 2025 Tue Jul 01 01:05:50 EDT 2025 Thu Apr 24 23:08:53 EDT 2025 Fri Feb 21 02:43:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Video enhancement Attention modules Lowlight image Module stacking Feature loss |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e530b9a5f04fb27a9ea47dd92604c99f99a45ac622d8be3020c5bcc22f6f9ef83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0139-9415 |
PQID | 2917986153 |
PQPubID | 2043737 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2917986153 crossref_citationtrail_10_1007_s00371_021_02289_x crossref_primary_10_1007_s00371_021_02289_x springer_journals_10_1007_s00371_021_02289_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Chen, Ramli (CR20) 2003; 49 Cai, Gu, Zhang (CR53) 2018; 27 Huang, Zhao, Huang (CR58) 2021; 43 Lore, Akintayo, Sarkar (CR33) 2017; 61 Liu, Zhou, Nie, Hou, Ding (CR4) 2020; 14 CR39 CR38 Wang, Zheng, Hu, Li (CR28) 2013; 22 CR36 Woo, Park, Lee, Kweon (CR44) 2018 Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, ter Haar Romeny, Zimmerman, Zuiderveld (CR8) 1987; 39 CR34 CR32 Zhong, Kleijn, Hu (CR56) 2014; 14 CR31 CR30 Li, Guo, Porikli, Pang (CR35) 2018; 104 Jiang, Gong, Liu, Cheng, Fang, Shen, Yang, Zhou, Wang (CR37) 2021; 30 Sheikh, Bovik, de Veciana (CR50) 2005; 14 Wang, He, Xu (CR5) 2021; 37 Baker, Scharstein, Lewis, Roth, Black, Szeliski (CR57) 2011; 92 Jobson, Rahman, Woodell (CR25) 1997; 6 Pizer, Zimmerman, Staab (CR17) 1984; 8 Li, Zhou, Nie, Xie, Liu (CR13) 2021; 15 Abdullah-Al-Wadud, Kabir, Dewan, Chae (CR24) 2007; 53 Wang, Ye (CR21) 2005; 51 Zhang, He (CR61) 2020; 36 Jobson, Rahman, Woodell (CR10) 1997; 6 CR47 CR46 Ibrahim, Kong (CR6) 2007; 53 CR43 CR42 CR41 Hu, Shen, Albanie, Sun, Wu (CR55) 2020; 42 CR40 Chen, Qin (CR3) 2021 Ronneberger, Fischer, Brox (CR16) 2015 Sheet, Garud, Suveer, Mahadevappa, Chatterjee (CR7) 2010; 56 Zhang, Feng, Li, Yuan (CR23) 2020 Hou, Zhou, Nie, Liu, Xiong, Guo, Yu (CR2) 2020; 6 Guo, Xu (CR1) 2020 CR12 CR11 CR54 Liang, He, Zeng (CR59) 2020; 27 CR52 Wang, Bovik, Sheikh, Simoncelli (CR45) 2004; 13 CR51 Damera-Venkata, Kite, Geisler, Evans, Bovik (CR48) 2000; 9 Kim (CR18) 1997; 43 Sheikh, Bovik (CR49) 2006; 15 Janner, Wu, Kulkarni, Yildirim, Tenenbaum (CR15) 2017; 30 Wang, Chen, Zhang (CR19) 1999; 45 CR27 CR26 CR22 Chen, He, Li, Zhang, Wu (CR60) 2020; 93 Fu, Zeng, Huang, Liao, Ding, Paisley (CR29) 2016; 129 Land (CR9) 1977; 237 Garces, Munoz, Lopez-Moreno, Gutierrez (CR14) 2012; 31 Y Liang (2289_CR59) 2020; 27 2289_CR36 X Zhang (2289_CR23) 2020 2289_CR38 M Li (2289_CR13) 2021; 15 2289_CR39 KG Lore (2289_CR33) 2017; 61 Z Wang (2289_CR45) 2004; 13 J Cai (2289_CR53) 2018; 27 J Zhong (2289_CR56) 2014; 14 EH Land (2289_CR9) 1977; 237 Y Chen (2289_CR60) 2020; 93 S Zhang (2289_CR61) 2020; 36 2289_CR32 2289_CR34 M Abdullah-Al-Wadud (2289_CR24) 2007; 53 DJ Jobson (2289_CR10) 1997; 6 2289_CR30 2289_CR31 C Wang (2289_CR21) 2005; 51 YT Kim (2289_CR18) 1997; 43 2289_CR47 2289_CR43 L Huang (2289_CR58) 2021; 43 2289_CR46 2289_CR40 Y Wang (2289_CR19) 1999; 45 2289_CR41 2289_CR42 M Janner (2289_CR15) 2017; 30 S Baker (2289_CR57) 2011; 92 C Li (2289_CR35) 2018; 104 N Damera-Venkata (2289_CR48) 2000; 9 H Ibrahim (2289_CR6) 2007; 53 2289_CR54 2289_CR11 2289_CR12 J Hu (2289_CR55) 2020; 42 HR Sheikh (2289_CR50) 2005; 14 S Wang (2289_CR28) 2013; 22 2289_CR51 2289_CR52 X Fu (2289_CR29) 2016; 129 2289_CR26 Y Liu (2289_CR4) 2020; 14 2289_CR27 E Garces (2289_CR14) 2012; 31 Y Jiang (2289_CR37) 2021; 30 G Chen (2289_CR3) 2021 SD Chen (2289_CR20) 2003; 49 S Woo (2289_CR44) 2018 DJ Jobson (2289_CR25) 1997; 6 D Sheet (2289_CR7) 2010; 56 SM Pizer (2289_CR17) 1984; 8 HR Sheikh (2289_CR49) 2006; 15 T Guo (2289_CR1) 2020 R Hou (2289_CR2) 2020; 6 O Ronneberger (2289_CR16) 2015 2289_CR22 C Wang (2289_CR5) 2021; 37 SM Pizer (2289_CR8) 1987; 39 |
References_xml | – ident: CR22 – volume: 30 start-page: 2340 year: 2021 end-page: 2349 ident: CR37 article-title: EnlightenGAN: deep light enhancement without paired supervision publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3051462 – volume: 15 start-page: 430 issue: 2 year: 2006 end-page: 444 ident: CR49 article-title: Image information and visual quality publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.859378 – volume: 42 start-page: 2011 issue: 8 year: 2020 end-page: 2023 ident: CR55 article-title: Squeeze-and-excitation networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2913372 – ident: CR39 – ident: CR51 – ident: CR12 – volume: 53 start-page: 593 issue: 2 year: 2007 end-page: 600 ident: CR24 article-title: A dynamic histogram equalization for image contrast enhancement publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2007.381734 – volume: 237 start-page: 108 issue: 6 year: 1977 end-page: 129 ident: CR9 article-title: The retinex theory of color vision publication-title: Sci. Am. doi: 10.1038/scientificamerican1277-108 – ident: CR54 – volume: 31 start-page: 1415 issue: 4 year: 2012 end-page: 1424 ident: CR14 article-title: Intrinsic images by clustering publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2012.03137.x – volume: 53 start-page: 1752 issue: 4 year: 2007 end-page: 1758 ident: CR6 article-title: Brightness preserving dynamic histogram equalization for image contrast enhancement publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2007.4429280 – ident: CR42 – ident: CR46 – volume: 43 start-page: 1 issue: 1 year: 1997 end-page: 8 ident: CR18 article-title: Contrast enhancement using brightness preserving bi-histogram equalization publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2002.1010085 – volume: 43 start-page: 1562 issue: 5 year: 2021 end-page: 1577 ident: CR58 article-title: Got-10k: a large high-diversity benchmark for generic object tracking in the wild publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2957464 – volume: 30 start-page: 5937 year: 2017 end-page: 5947 ident: CR15 article-title: Self-supervised intrinsic image decomposition publication-title: Adv. Neural Inf. Process. Syst. – volume: 6 start-page: 965 issue: 7 year: 1997 end-page: 976 ident: CR10 article-title: A multiscale retinex for bridging the gap between color images and the human observation of scenes publication-title: IEEE Trans. Image Process. doi: 10.1109/83.597272 – ident: CR11 – ident: CR32 – ident: CR36 – start-page: 3 year: 2018 end-page: 19 ident: CR44 publication-title: CBAM: Convolutional Block Attention Module. Lecture Notes in Computer Science – volume: 61 start-page: 650 issue: SI year: 2017 end-page: 662 ident: CR33 article-title: LLNet: a deep autoencoder approach to natural lowlight image enhancement publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.06.008 – volume: 14 start-page: 1233 issue: 7 year: 2020 end-page: 1239 ident: CR4 article-title: Construction of high dynamic range image based on gradient information transformation publication-title: IET Image Process. doi: 10.1049/iet-ipr.2019.0118 – volume: 27 start-page: 2049 issue: 4 year: 2018 end-page: 2062 ident: CR53 article-title: Learning a deep single image contrast enhancer from multi-exposure images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2794218 – ident: CR26 – volume: 14 start-page: 2955 issue: 9 year: 2014 end-page: 2966 ident: CR56 article-title: Camera control in multi-camera systems for video quality enhancement publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2319891 – volume: 39 start-page: 355 issue: 3 year: 1987 end-page: 368 ident: CR8 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/S0734-189X(87)80186-X – year: 2021 ident: CR3 article-title: Class-discriminative focal loss for extreme imbalanced multiclass object detection towards autonomous driving publication-title: Visual Comput. doi: 10.1007/s00371-021-02067-9 – ident: CR43 – year: 2020 ident: CR1 article-title: Salient object detection from low contrast images based on local contrast enhancing and non-local feature learning publication-title: Visual Comput. doi: 10.1007/s00371-020-01964-9 – ident: CR47 – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 ident: CR45 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 37 start-page: 1233 issue: 5 year: 2021 end-page: 1243 ident: CR5 article-title: Fast exposure fusion of detail enhancement for brightest and darkest regions publication-title: Visual Comput. doi: 10.1007/s00371-021-02079-5 – ident: CR30 – volume: 27 start-page: 417 issue: 4 year: 2020 end-page: 435 ident: CR59 article-title: 3D mesh simplification with feature preservation based on whale optimization algorithm and differential evolution publication-title: Integr. Comput.-Aided Eng. doi: 10.3233/ICA-200641 – volume: 49 start-page: 1310 issue: 4 year: 2003 end-page: 1319 ident: CR20 article-title: Minimum mean brightness error bi-histogram equalization in contrast enhancement publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2003.1261234 – volume: 51 start-page: 1326 issue: 4 year: 2005 end-page: 1334 ident: CR21 article-title: Brightness preserving histogram equalization with maximum entropy: a variational perspective publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2005.1561863 – ident: CR40 – ident: CR27 – volume: 6 start-page: 451 issue: 3 year: 1997 end-page: 462 ident: CR25 article-title: Properties and performance of a center/surround retinex publication-title: IEEE Trans. Image Process. doi: 10.1109/83.557356 – start-page: 234 year: 2015 end-page: 241 ident: CR16 publication-title: U-net: Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science, – volume: 129 start-page: 82 year: 2016 end-page: 96 ident: CR29 article-title: A fusion-based enhancing method for weakly illuminated images publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.05.031 – volume: 14 start-page: 2117 issue: 12 year: 2005 end-page: 2128 ident: CR50 article-title: An information fidelity criterion for image quality assessment using natural scene statistics publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.859389 – ident: CR38 – volume: 93 start-page: 106335 year: 2020 ident: CR60 article-title: A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106335 – volume: 45 start-page: 68 issue: 1 year: 1999 end-page: 75 ident: CR19 article-title: Image enhancement based on equal area dualistic sub-image histogram equalization method publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/30.754419 – ident: CR52 – volume: 9 start-page: 636 issue: 4 year: 2000 end-page: 650 ident: CR48 article-title: Image quality assessment based on a degradation model publication-title: IEEE Trans. Image Process. doi: 10.1109/83.841940 – ident: CR31 – volume: 104 start-page: 15 year: 2018 end-page: 22 ident: CR35 article-title: LightenNet: a convolutional neural network for weakly illuminated image enhancement publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2018.01.010 – volume: 92 start-page: 1 issue: 1 year: 2011 end-page: 31 ident: CR57 article-title: A database and evaluation methodology for optical flow publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-010-0390-2 – volume: 6 start-page: 640 year: 2020 end-page: 651 ident: CR2 article-title: VIF-Net: an unsupervised framework for infrared and visible image fusion publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2020.2965304 – ident: CR34 – volume: 8 start-page: 300 issue: 2 year: 1984 end-page: 305 ident: CR17 article-title: Adaptive grey level assignment in CT scan display publication-title: J. Comput. Assist. Tomogr. – volume: 56 start-page: 2475 issue: 4 year: 2010 end-page: 2480 ident: CR7 article-title: Brightness preserving dynamic fuzzy histogram equalization publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2010.5681130 – volume: 15 start-page: 2020 issue: 9 year: 2021 end-page: 2038 ident: CR13 article-title: AMBCR: lowlight image enhancement via attention guided multi-branch construction and Retinex theory publication-title: IET Image Proc. doi: 10.1049/ipr2.12173 – ident: CR41 – year: 2020 ident: CR23 article-title: Block adjustment-based radiometric normalization by considering global and local differences publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.3031398 – volume: 22 start-page: 3538 issue: 9 year: 2013 end-page: 3548 ident: CR28 article-title: Naturalness preserved enhancement algorithm for non-uniform illumination images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2261309 – volume: 36 start-page: 1797 issue: 9 year: 2020 end-page: 1808 ident: CR61 article-title: DRCDN: learning deep residual convolutional dehazing networks publication-title: Visual Comput. doi: 10.1007/s00371-019-01774-8 – volume: 30 start-page: 2340 year: 2021 ident: 2289_CR37 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3051462 – volume: 30 start-page: 5937 year: 2017 ident: 2289_CR15 publication-title: Adv. Neural Inf. Process. Syst. – volume: 53 start-page: 593 issue: 2 year: 2007 ident: 2289_CR24 publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2007.381734 – volume: 6 start-page: 965 issue: 7 year: 1997 ident: 2289_CR10 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.597272 – volume: 93 start-page: 106335 year: 2020 ident: 2289_CR60 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106335 – ident: 2289_CR40 – volume: 49 start-page: 1310 issue: 4 year: 2003 ident: 2289_CR20 publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2003.1261234 – ident: 2289_CR30 doi: 10.1109/CVPR.2016.304 – volume: 51 start-page: 1326 issue: 4 year: 2005 ident: 2289_CR21 publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2005.1561863 – ident: 2289_CR31 – volume: 14 start-page: 1233 issue: 7 year: 2020 ident: 2289_CR4 publication-title: IET Image Process. doi: 10.1049/iet-ipr.2019.0118 – volume: 237 start-page: 108 issue: 6 year: 1977 ident: 2289_CR9 publication-title: Sci. Am. doi: 10.1038/scientificamerican1277-108 – volume: 45 start-page: 68 issue: 1 year: 1999 ident: 2289_CR19 publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/30.754419 – ident: 2289_CR51 – volume: 27 start-page: 2049 issue: 4 year: 2018 ident: 2289_CR53 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2794218 – volume: 8 start-page: 300 issue: 2 year: 1984 ident: 2289_CR17 publication-title: J. Comput. Assist. Tomogr. – volume: 9 start-page: 636 issue: 4 year: 2000 ident: 2289_CR48 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.841940 – volume: 53 start-page: 1752 issue: 4 year: 2007 ident: 2289_CR6 publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2007.4429280 – ident: 2289_CR41 – volume: 56 start-page: 2475 issue: 4 year: 2010 ident: 2289_CR7 publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2010.5681130 – volume: 39 start-page: 355 issue: 3 year: 1987 ident: 2289_CR8 publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/S0734-189X(87)80186-X – year: 2020 ident: 2289_CR1 publication-title: Visual Comput. doi: 10.1007/s00371-020-01964-9 – ident: 2289_CR34 doi: 10.1109/CVPR.2018.00347 – ident: 2289_CR43 doi: 10.1109/CVPR.2016.90 – start-page: 234 volume-title: U-net: Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science, year: 2015 ident: 2289_CR16 – ident: 2289_CR38 – volume: 104 start-page: 15 year: 2018 ident: 2289_CR35 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2018.01.010 – volume: 15 start-page: 2020 issue: 9 year: 2021 ident: 2289_CR13 publication-title: IET Image Proc. doi: 10.1049/ipr2.12173 – volume: 6 start-page: 640 year: 2020 ident: 2289_CR2 publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2020.2965304 – volume: 36 start-page: 1797 issue: 9 year: 2020 ident: 2289_CR61 publication-title: Visual Comput. doi: 10.1007/s00371-019-01774-8 – year: 2020 ident: 2289_CR23 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.3031398 – ident: 2289_CR46 – volume: 92 start-page: 1 issue: 1 year: 2011 ident: 2289_CR57 publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-010-0390-2 – start-page: 3 volume-title: CBAM: Convolutional Block Attention Module. Lecture Notes in Computer Science year: 2018 ident: 2289_CR44 – volume: 37 start-page: 1233 issue: 5 year: 2021 ident: 2289_CR5 publication-title: Visual Comput. doi: 10.1007/s00371-021-02079-5 – ident: 2289_CR27 – volume: 6 start-page: 451 issue: 3 year: 1997 ident: 2289_CR25 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.557356 – ident: 2289_CR22 doi: 10.1109/ICETECH.2015.7275011 – volume: 43 start-page: 1 issue: 1 year: 1997 ident: 2289_CR18 publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2002.1010085 – volume: 14 start-page: 2117 issue: 12 year: 2005 ident: 2289_CR50 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.859389 – volume: 22 start-page: 3538 issue: 9 year: 2013 ident: 2289_CR28 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2261309 – ident: 2289_CR32 doi: 10.1109/VCIP.2017.8305143 – ident: 2289_CR12 doi: 10.1145/3343031.3350926 – volume: 61 start-page: 650 issue: SI year: 2017 ident: 2289_CR33 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.06.008 – ident: 2289_CR47 – ident: 2289_CR26 – ident: 2289_CR39 doi: 10.1109/CVPR42600.2020.00185 – ident: 2289_CR54 doi: 10.1109/CVPR.2019.00060 – volume: 129 start-page: 82 year: 2016 ident: 2289_CR29 publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.05.031 – ident: 2289_CR42 doi: 10.1609/aaai.v30i1.10287 – volume: 43 start-page: 1562 issue: 5 year: 2021 ident: 2289_CR58 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2957464 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 2289_CR45 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 42 start-page: 2011 issue: 8 year: 2020 ident: 2289_CR55 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2913372 – volume: 27 start-page: 417 issue: 4 year: 2020 ident: 2289_CR59 publication-title: Integr. Comput.-Aided Eng. doi: 10.3233/ICA-200641 – ident: 2289_CR36 – volume: 14 start-page: 2955 issue: 9 year: 2014 ident: 2289_CR56 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2319891 – volume: 31 start-page: 1415 issue: 4 year: 2012 ident: 2289_CR14 publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2012.03137.x – year: 2021 ident: 2289_CR3 publication-title: Visual Comput. doi: 10.1007/s00371-021-02067-9 – ident: 2289_CR52 doi: 10.1109/CVPR.2018.00068 – volume: 15 start-page: 430 issue: 2 year: 2006 ident: 2289_CR49 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.859378 – ident: 2289_CR11 |
SSID | ssj0017749 |
Score | 2.3588212 |
Snippet | Due to the images obtained in lowlight environments often showing low contrast, low brightness and artifacts, it is difficult to distinguish the details of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4203 |
SubjectTerms | Artificial Intelligence Computer Graphics Computer Science Decomposition Deep learning Image contrast Image enhancement Image Processing and Computer Vision Image reconstruction Methods Modules Neural networks Original Article |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCAeIrBQDlwg4g2TR_hgia0MSHBBSaNU5WmiUDq2sE2sZ9PnKXbQGLnNjnYTvzZsT8jdBko35d5khPmi5gYC2GEJ9ojkikvSDzFRG6rLZ6jXp89DsKBS7iNXVllfSfaizqvJOTIbygHai2AJ3ejTwJTo-B11Y3Q2ERbvvE0YOdJ92HximCgjYW_vomUoOPTNc3Y1jnLVUegQAEYYDiZ_XZMS7T554HU-p3uHtp1gBG35xreRxuqPEA7KzSCh-it3Xl6ucWixECWacsXsSrfQZ-Q-8PlvNQbVxoPq3xaqDE2mFBCkhwbzIqL6ruAGB1_DM3tsrr0CPW7ndf7HnEjE4g0Z2lCVBh4GReh9pjOaCy4EizOc26iFiY515wLFgoZUZonmQoMVpRhJiWlOtJc6SQ4Ro2yKtUJwsoPdWgOfAwjYbSOudRccE09qiJuQEUT-bW8Uun4xGGsRZEumJCtjFMj49TKOJ010dVizWjOprH271athtSdrHG6tIMmuq5Vs_z8_26n63c7Q9sUOhtspUoLNSZfU3Vu8MYku7BG9QN989Co priority: 102 providerName: ProQuest |
Title | AEMS: an attention enhancement network of modules stacking for lowlight image enhancement |
URI | https://link.springer.com/article/10.1007/s00371-021-02289-x https://www.proquest.com/docview/2917986153 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7ovOjB3-J0Sg7eNKNN063xNmVzKIqog-1U0jRBcXbiNhT_el-ydk5RwVOhTUKT95J8Sb73BeAg0L6v0iil3Jd1ih7CqYiMRxXXXhB5msvUsS2uau0OP--G3TwobFiw3YsjSTdST4PdnLoctZQCq9kiKCLHhdCPRFSChcZZ76I5PT1ASONgr48rJBvpmQfL_FzK1wnpE2V-Oxh1801rBTrFn05oJo_V8SipqvdvIo7_rcoqLOcAlDQmHrMGczpbh5XicgeS9_V1WJpRKtyAXqN5eXtMZEasHqdjSBKd3VuXsduLJJuwycnAkKdBOu7rIUHYqew-PEFYTPqD177dBiAPTziAzWbdhE6reXfapvmtDFRhdx1RHQZeImRoPG4SVpdCS15PU4ELI66EMEJIHkpVYyyNEh0gHFVhohRjpmaENlGwBaVskOltINoPDVoQxzhcZxpTF8oIKQzzmK4JxC1l8AvTxCqXLLc3Z_Tjqdiya8kYWzJ2LRm_leFwmud5ItjxZ-pKYfE477zDmAmr4maRcBmOCgN-fv69tJ3_Jd-FRWaDKRw5pgKl0ctY7yHEGSX7MB-1zvZzv8bnSfPq-gbfdljjA7nd9Pk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFH4q7QE4oDFAlDHwgZ2GReI4TYyEprIVlQEV4ocEp-A4tkAqCaNFsH9qf-P83KTtJsGNc2Ifnj8_f35-73sAW4H2fZXFGeW-jKhFCKciNh5VXHtB7GkuM5dt0Wt1L_nPq_CqBn-qWhhMq6x8onPUWaEwRr7DBEprIT359vCLYtcofF2tWmiMYHGkfz_bK9tg7_CHXd8vjB10Lr53adlVgCoLtyHVYeClQobG4yZlkRRa8ijLhCX2XAlhhJA8lKrFWBanOrB0SoWpUoyZlhHaxIGddwYaHCta69DY7_ROz8bvFpZMOcLt27sZ1piWZTquWM-p41FMiUDNGUFf_j0KJ_z2vydZd9IdfICFkqKS9ghTi1DT-UeYnxIuXILrdufkfJfInKA8p0uYJDq_RQRhtJHko-RyUhhyX2RPfT0gloUqDMsTy5JJv3juY1SA3N1bfzY9dBku38WcK1DPi1yvAtF-aELrYiJsQmNMJJQRUhjmMd0SlsY0wa_slahSwRwbafSTsfays3FibZw4GycvTfg6HvMw0u948-_1ahmSci8PkgnymrBdLc3k8-uzrb092ybMdi9OjpPjw97RJ5hjWFfh8mTWoT58fNKfLdsZphslxAjcvDeq_wK00BAI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5SQfTgUhWrVXPwpqEzmcwSb0VbXIughXoaMpkEhelMsVP055tkllZRwXOWw1uSL3nvfQ-AE0fYNo-DGBGb-UhZCEE0kBbiRFhOYAnCYpNtMfCuhuRm5I4WqvhNtnsVkixqGjRLU5p3JrHs1IVvhmkO6fQCzd9CkUKRy-o4trWlD3G3jiMocGMAsK3eSrrmsyyb-XmPr1fTHG9-C5Gam6e_CdZLyAi7hY63wJJIm2CjascAS-9sgrUFbsFt8Nzt3T-eQ5ZCzaBpchqhSF-0kvWHIEyL_G-YSTjO4lkiplABRa5_zqECsjDJ3hP9cIevY3XkLC7dAcN-7-niCpV9FBBXDpYj4TpWRJkrLSIj7DMqGPHjmKqnDOGUSkoZcRn3MI6DSDgKQHI34hxj6UkqZODsgkaapWIPQGG70lWngK_7xEjpUy4poxJbWHhUIY0WsCsRhrwkGde9LpKwpkc2Yg-V2EMj9vCjBU7rNZOCYuPP2e1KM2HpbtMQU827prFrC5xV2poP_77b_v-mH4OVh8t-eHc9uD0Aq1hXQpjMljZo5G8zcajwSR4dGRP8BF2523Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AEMS%3A+an+attention+enhancement+network+of+modules+stacking+for+lowlight+image+enhancement&rft.jtitle=The+Visual+computer&rft.au=Li%2C+Miao&rft.au=Zhao%2C+Li&rft.au=Zhou%2C+Dongming&rft.au=Nie%2C+Rencan&rft.date=2022-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=38&rft.issue=12&rft.spage=4203&rft.epage=4219&rft_id=info:doi/10.1007%2Fs00371-021-02289-x&rft.externalDocID=10_1007_s00371_021_02289_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |