AEMS: an attention enhancement network of modules stacking for lowlight image enhancement

Due to the images obtained in lowlight environments often showing low contrast, low brightness and artifacts, it is difficult to distinguish the details of these images for people. In the field of images fusion and target tacking, lowlight images cannot be processed better. In this paper, we propose...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 38; no. 12; pp. 4203 - 4219
Main Authors Li, Miao, Zhao, Li, Zhou, Dongming, Nie, Rencan, Liu, Yanyu, Wei, Yixue
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-2789
1432-2315
DOI10.1007/s00371-021-02289-x

Cover

Abstract Due to the images obtained in lowlight environments often showing low contrast, low brightness and artifacts, it is difficult to distinguish the details of these images for people. In the field of images fusion and target tacking, lowlight images cannot be processed better. In this paper, we proposed an end-to-end lowlight image enhancement network, which uses modules stacking methods and attention modules. Firstly, the method of module stacking was applied to extract the different features of images, and then the features are fused on the channel dimension. Finally, the final image was reconstructed with a series of convolutions. In particular, our loss function consists of two parts: the first part of the loss function was calculated using L 1 loss, L 2 loss and the gradient loss, and VGG network was utilized to calculate the second part. Furthermore, we verified the effectiveness of the model via a large number of comparative experiments, and illustrated the comparison results through quantitative and qualitative methods. We additionally show the performance of our network on lowlight video enhancement, which also has better results than the other methods.
AbstractList Due to the images obtained in lowlight environments often showing low contrast, low brightness and artifacts, it is difficult to distinguish the details of these images for people. In the field of images fusion and target tacking, lowlight images cannot be processed better. In this paper, we proposed an end-to-end lowlight image enhancement network, which uses modules stacking methods and attention modules. Firstly, the method of module stacking was applied to extract the different features of images, and then the features are fused on the channel dimension. Finally, the final image was reconstructed with a series of convolutions. In particular, our loss function consists of two parts: the first part of the loss function was calculated using L 1 loss, L 2 loss and the gradient loss, and VGG network was utilized to calculate the second part. Furthermore, we verified the effectiveness of the model via a large number of comparative experiments, and illustrated the comparison results through quantitative and qualitative methods. We additionally show the performance of our network on lowlight video enhancement, which also has better results than the other methods.
Due to the images obtained in lowlight environments often showing low contrast, low brightness and artifacts, it is difficult to distinguish the details of these images for people. In the field of images fusion and target tacking, lowlight images cannot be processed better. In this paper, we proposed an end-to-end lowlight image enhancement network, which uses modules stacking methods and attention modules. Firstly, the method of module stacking was applied to extract the different features of images, and then the features are fused on the channel dimension. Finally, the final image was reconstructed with a series of convolutions. In particular, our loss function consists of two parts: the first part of the loss function was calculated using L1 loss, L2 loss and the gradient loss, and VGG network was utilized to calculate the second part. Furthermore, we verified the effectiveness of the model via a large number of comparative experiments, and illustrated the comparison results through quantitative and qualitative methods. We additionally show the performance of our network on lowlight video enhancement, which also has better results than the other methods.
Author Nie, Rencan
Wei, Yixue
Zhao, Li
Zhou, Dongming
Li, Miao
Liu, Yanyu
Author_xml – sequence: 1
  givenname: Miao
  surname: Li
  fullname: Li, Miao
  organization: School of Information Science and Engineering, Yunnan University
– sequence: 2
  givenname: Li
  surname: Zhao
  fullname: Zhao, Li
  organization: Department of Computer Science, University of Sheffield
– sequence: 3
  givenname: Dongming
  orcidid: 0000-0003-0139-9415
  surname: Zhou
  fullname: Zhou, Dongming
  email: zhoudm@ynu.edu.cn
  organization: School of Information Science and Engineering, Yunnan University
– sequence: 4
  givenname: Rencan
  surname: Nie
  fullname: Nie, Rencan
  organization: School of Information Science and Engineering, Yunnan University
– sequence: 5
  givenname: Yanyu
  surname: Liu
  fullname: Liu, Yanyu
– sequence: 6
  givenname: Yixue
  surname: Wei
  fullname: Wei, Yixue
  organization: School of Information Science and Engineering, Yunnan University
BookMark eNp9kMtOwzAQRS1UJNrCD7CyxDrgRxLH7KqqPKQiFsCCleU4dpo2tYvtquXvSQkSiEUXo9FI98zMvSMwsM5qAC4xusYIsZuAEGU4QeRQpODJ_gQMcUpJQijOBmCIMCsSwgp-BkYhLFE3s5QPwftk9vRyC6WFMkZtY-Ms1HYhrdLrboRWx53zK-gMXLtq2-oAQ5Rq1dgaGudh63ZtUy8ibNay1n_Rc3BqZBv0xU8fg7e72ev0IZk_3z9OJ_NEUcxjojOKSi4zg1JTEia5limrKk5ylCrODecyzaTKCamKUlNEkMpKpQgxueHaFHQMrvq9G-8-tjpEsXRbb7uTgnDMeJHjjHaqolcp70Lw2gjVRHmwG71sWoGROAQp-iBFF6T4DlLsO5T8Qze-c-s_j0O0h0IntrX2v18dob4AbIqJmQ
CitedBy_id crossref_primary_10_1007_s00371_023_02805_1
crossref_primary_10_3390_s23156990
crossref_primary_10_1007_s11220_023_00411_y
crossref_primary_10_1007_s00371_023_02770_9
crossref_primary_10_1007_s00371_022_02412_6
crossref_primary_10_1038_s41598_024_69505_1
crossref_primary_10_1007_s00371_022_02718_5
crossref_primary_10_1007_s00371_022_02582_3
Cites_doi 10.1109/TIP.2021.3051462
10.1109/TIP.2005.859378
10.1109/TPAMI.2019.2913372
10.1109/TCE.2007.381734
10.1038/scientificamerican1277-108
10.1111/j.1467-8659.2012.03137.x
10.1109/TCE.2007.4429280
10.1109/TCE.2002.1010085
10.1109/TPAMI.2019.2957464
10.1109/83.597272
10.1016/j.patcog.2016.06.008
10.1049/iet-ipr.2019.0118
10.1109/TIP.2018.2794218
10.1109/JSEN.2014.2319891
10.1016/S0734-189X(87)80186-X
10.1007/s00371-021-02067-9
10.1007/s00371-020-01964-9
10.1109/TIP.2003.819861
10.1007/s00371-021-02079-5
10.3233/ICA-200641
10.1109/TCE.2003.1261234
10.1109/TCE.2005.1561863
10.1109/83.557356
10.1016/j.sigpro.2016.05.031
10.1109/TIP.2005.859389
10.1016/j.asoc.2020.106335
10.1109/30.754419
10.1109/83.841940
10.1016/j.patrec.2018.01.010
10.1007/s11263-010-0390-2
10.1109/TCI.2020.2965304
10.1109/TCE.2010.5681130
10.1049/ipr2.12173
10.1109/LGRS.2020.3031398
10.1109/TIP.2013.2261309
10.1007/s00371-019-01774-8
10.1109/CVPR.2016.304
10.1109/CVPR.2018.00347
10.1109/CVPR.2016.90
10.1109/ICETECH.2015.7275011
10.1109/VCIP.2017.8305143
10.1145/3343031.3350926
10.1109/CVPR42600.2020.00185
10.1109/CVPR.2019.00060
10.1609/aaai.v30i1.10287
10.1109/CVPR.2018.00068
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-021-02289-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 4219
ExternalDocumentID 10_1007_s00371_021_02289_x
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62066047; 61966037; 61463052; 61365001
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-e530b9a5f04fb27a9ea47dd92604c99f99a45ac622d8be3020c5bcc22f6f9ef83
IEDL.DBID AGYKE
ISSN 0178-2789
IngestDate Fri Jul 25 23:02:12 EDT 2025
Tue Jul 01 01:05:50 EDT 2025
Thu Apr 24 23:08:53 EDT 2025
Fri Feb 21 02:43:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Video enhancement
Attention modules
Lowlight image
Module stacking
Feature loss
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e530b9a5f04fb27a9ea47dd92604c99f99a45ac622d8be3020c5bcc22f6f9ef83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0139-9415
PQID 2917986153
PQPubID 2043737
PageCount 17
ParticipantIDs proquest_journals_2917986153
crossref_citationtrail_10_1007_s00371_021_02289_x
crossref_primary_10_1007_s00371_021_02289_x
springer_journals_10_1007_s00371_021_02289_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Chen, Ramli (CR20) 2003; 49
Cai, Gu, Zhang (CR53) 2018; 27
Huang, Zhao, Huang (CR58) 2021; 43
Lore, Akintayo, Sarkar (CR33) 2017; 61
Liu, Zhou, Nie, Hou, Ding (CR4) 2020; 14
CR39
CR38
Wang, Zheng, Hu, Li (CR28) 2013; 22
CR36
Woo, Park, Lee, Kweon (CR44) 2018
Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, ter Haar Romeny, Zimmerman, Zuiderveld (CR8) 1987; 39
CR34
CR32
Zhong, Kleijn, Hu (CR56) 2014; 14
CR31
CR30
Li, Guo, Porikli, Pang (CR35) 2018; 104
Jiang, Gong, Liu, Cheng, Fang, Shen, Yang, Zhou, Wang (CR37) 2021; 30
Sheikh, Bovik, de Veciana (CR50) 2005; 14
Wang, He, Xu (CR5) 2021; 37
Baker, Scharstein, Lewis, Roth, Black, Szeliski (CR57) 2011; 92
Jobson, Rahman, Woodell (CR25) 1997; 6
Pizer, Zimmerman, Staab (CR17) 1984; 8
Li, Zhou, Nie, Xie, Liu (CR13) 2021; 15
Abdullah-Al-Wadud, Kabir, Dewan, Chae (CR24) 2007; 53
Wang, Ye (CR21) 2005; 51
Zhang, He (CR61) 2020; 36
Jobson, Rahman, Woodell (CR10) 1997; 6
CR47
CR46
Ibrahim, Kong (CR6) 2007; 53
CR43
CR42
CR41
Hu, Shen, Albanie, Sun, Wu (CR55) 2020; 42
CR40
Chen, Qin (CR3) 2021
Ronneberger, Fischer, Brox (CR16) 2015
Sheet, Garud, Suveer, Mahadevappa, Chatterjee (CR7) 2010; 56
Zhang, Feng, Li, Yuan (CR23) 2020
Hou, Zhou, Nie, Liu, Xiong, Guo, Yu (CR2) 2020; 6
Guo, Xu (CR1) 2020
CR12
CR11
CR54
Liang, He, Zeng (CR59) 2020; 27
CR52
Wang, Bovik, Sheikh, Simoncelli (CR45) 2004; 13
CR51
Damera-Venkata, Kite, Geisler, Evans, Bovik (CR48) 2000; 9
Kim (CR18) 1997; 43
Sheikh, Bovik (CR49) 2006; 15
Janner, Wu, Kulkarni, Yildirim, Tenenbaum (CR15) 2017; 30
Wang, Chen, Zhang (CR19) 1999; 45
CR27
CR26
CR22
Chen, He, Li, Zhang, Wu (CR60) 2020; 93
Fu, Zeng, Huang, Liao, Ding, Paisley (CR29) 2016; 129
Land (CR9) 1977; 237
Garces, Munoz, Lopez-Moreno, Gutierrez (CR14) 2012; 31
Y Liang (2289_CR59) 2020; 27
2289_CR36
X Zhang (2289_CR23) 2020
2289_CR38
M Li (2289_CR13) 2021; 15
2289_CR39
KG Lore (2289_CR33) 2017; 61
Z Wang (2289_CR45) 2004; 13
J Cai (2289_CR53) 2018; 27
J Zhong (2289_CR56) 2014; 14
EH Land (2289_CR9) 1977; 237
Y Chen (2289_CR60) 2020; 93
S Zhang (2289_CR61) 2020; 36
2289_CR32
2289_CR34
M Abdullah-Al-Wadud (2289_CR24) 2007; 53
DJ Jobson (2289_CR10) 1997; 6
2289_CR30
2289_CR31
C Wang (2289_CR21) 2005; 51
YT Kim (2289_CR18) 1997; 43
2289_CR47
2289_CR43
L Huang (2289_CR58) 2021; 43
2289_CR46
2289_CR40
Y Wang (2289_CR19) 1999; 45
2289_CR41
2289_CR42
M Janner (2289_CR15) 2017; 30
S Baker (2289_CR57) 2011; 92
C Li (2289_CR35) 2018; 104
N Damera-Venkata (2289_CR48) 2000; 9
H Ibrahim (2289_CR6) 2007; 53
2289_CR54
2289_CR11
2289_CR12
J Hu (2289_CR55) 2020; 42
HR Sheikh (2289_CR50) 2005; 14
S Wang (2289_CR28) 2013; 22
2289_CR51
2289_CR52
X Fu (2289_CR29) 2016; 129
2289_CR26
Y Liu (2289_CR4) 2020; 14
2289_CR27
E Garces (2289_CR14) 2012; 31
Y Jiang (2289_CR37) 2021; 30
G Chen (2289_CR3) 2021
SD Chen (2289_CR20) 2003; 49
S Woo (2289_CR44) 2018
DJ Jobson (2289_CR25) 1997; 6
D Sheet (2289_CR7) 2010; 56
SM Pizer (2289_CR17) 1984; 8
HR Sheikh (2289_CR49) 2006; 15
T Guo (2289_CR1) 2020
R Hou (2289_CR2) 2020; 6
O Ronneberger (2289_CR16) 2015
2289_CR22
C Wang (2289_CR5) 2021; 37
SM Pizer (2289_CR8) 1987; 39
References_xml – ident: CR22
– volume: 30
  start-page: 2340
  year: 2021
  end-page: 2349
  ident: CR37
  article-title: EnlightenGAN: deep light enhancement without paired supervision
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3051462
– volume: 15
  start-page: 430
  issue: 2
  year: 2006
  end-page: 444
  ident: CR49
  article-title: Image information and visual quality
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.859378
– volume: 42
  start-page: 2011
  issue: 8
  year: 2020
  end-page: 2023
  ident: CR55
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2913372
– ident: CR39
– ident: CR51
– ident: CR12
– volume: 53
  start-page: 593
  issue: 2
  year: 2007
  end-page: 600
  ident: CR24
  article-title: A dynamic histogram equalization for image contrast enhancement
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2007.381734
– volume: 237
  start-page: 108
  issue: 6
  year: 1977
  end-page: 129
  ident: CR9
  article-title: The retinex theory of color vision
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican1277-108
– ident: CR54
– volume: 31
  start-page: 1415
  issue: 4
  year: 2012
  end-page: 1424
  ident: CR14
  article-title: Intrinsic images by clustering
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2012.03137.x
– volume: 53
  start-page: 1752
  issue: 4
  year: 2007
  end-page: 1758
  ident: CR6
  article-title: Brightness preserving dynamic histogram equalization for image contrast enhancement
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2007.4429280
– ident: CR42
– ident: CR46
– volume: 43
  start-page: 1
  issue: 1
  year: 1997
  end-page: 8
  ident: CR18
  article-title: Contrast enhancement using brightness preserving bi-histogram equalization
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2002.1010085
– volume: 43
  start-page: 1562
  issue: 5
  year: 2021
  end-page: 1577
  ident: CR58
  article-title: Got-10k: a large high-diversity benchmark for generic object tracking in the wild
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2957464
– volume: 30
  start-page: 5937
  year: 2017
  end-page: 5947
  ident: CR15
  article-title: Self-supervised intrinsic image decomposition
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 6
  start-page: 965
  issue: 7
  year: 1997
  end-page: 976
  ident: CR10
  article-title: A multiscale retinex for bridging the gap between color images and the human observation of scenes
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.597272
– ident: CR11
– ident: CR32
– ident: CR36
– start-page: 3
  year: 2018
  end-page: 19
  ident: CR44
  publication-title: CBAM: Convolutional Block Attention Module. Lecture Notes in Computer Science
– volume: 61
  start-page: 650
  issue: SI
  year: 2017
  end-page: 662
  ident: CR33
  article-title: LLNet: a deep autoencoder approach to natural lowlight image enhancement
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.06.008
– volume: 14
  start-page: 1233
  issue: 7
  year: 2020
  end-page: 1239
  ident: CR4
  article-title: Construction of high dynamic range image based on gradient information transformation
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2019.0118
– volume: 27
  start-page: 2049
  issue: 4
  year: 2018
  end-page: 2062
  ident: CR53
  article-title: Learning a deep single image contrast enhancer from multi-exposure images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2794218
– ident: CR26
– volume: 14
  start-page: 2955
  issue: 9
  year: 2014
  end-page: 2966
  ident: CR56
  article-title: Camera control in multi-camera systems for video quality enhancement
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2319891
– volume: 39
  start-page: 355
  issue: 3
  year: 1987
  end-page: 368
  ident: CR8
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/S0734-189X(87)80186-X
– year: 2021
  ident: CR3
  article-title: Class-discriminative focal loss for extreme imbalanced multiclass object detection towards autonomous driving
  publication-title: Visual Comput.
  doi: 10.1007/s00371-021-02067-9
– ident: CR43
– year: 2020
  ident: CR1
  article-title: Salient object detection from low contrast images based on local contrast enhancing and non-local feature learning
  publication-title: Visual Comput.
  doi: 10.1007/s00371-020-01964-9
– ident: CR47
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  ident: CR45
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 37
  start-page: 1233
  issue: 5
  year: 2021
  end-page: 1243
  ident: CR5
  article-title: Fast exposure fusion of detail enhancement for brightest and darkest regions
  publication-title: Visual Comput.
  doi: 10.1007/s00371-021-02079-5
– ident: CR30
– volume: 27
  start-page: 417
  issue: 4
  year: 2020
  end-page: 435
  ident: CR59
  article-title: 3D mesh simplification with feature preservation based on whale optimization algorithm and differential evolution
  publication-title: Integr. Comput.-Aided Eng.
  doi: 10.3233/ICA-200641
– volume: 49
  start-page: 1310
  issue: 4
  year: 2003
  end-page: 1319
  ident: CR20
  article-title: Minimum mean brightness error bi-histogram equalization in contrast enhancement
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2003.1261234
– volume: 51
  start-page: 1326
  issue: 4
  year: 2005
  end-page: 1334
  ident: CR21
  article-title: Brightness preserving histogram equalization with maximum entropy: a variational perspective
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2005.1561863
– ident: CR40
– ident: CR27
– volume: 6
  start-page: 451
  issue: 3
  year: 1997
  end-page: 462
  ident: CR25
  article-title: Properties and performance of a center/surround retinex
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.557356
– start-page: 234
  year: 2015
  end-page: 241
  ident: CR16
  publication-title: U-net: Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science,
– volume: 129
  start-page: 82
  year: 2016
  end-page: 96
  ident: CR29
  article-title: A fusion-based enhancing method for weakly illuminated images
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.05.031
– volume: 14
  start-page: 2117
  issue: 12
  year: 2005
  end-page: 2128
  ident: CR50
  article-title: An information fidelity criterion for image quality assessment using natural scene statistics
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.859389
– ident: CR38
– volume: 93
  start-page: 106335
  year: 2020
  ident: CR60
  article-title: A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106335
– volume: 45
  start-page: 68
  issue: 1
  year: 1999
  end-page: 75
  ident: CR19
  article-title: Image enhancement based on equal area dualistic sub-image histogram equalization method
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/30.754419
– ident: CR52
– volume: 9
  start-page: 636
  issue: 4
  year: 2000
  end-page: 650
  ident: CR48
  article-title: Image quality assessment based on a degradation model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.841940
– ident: CR31
– volume: 104
  start-page: 15
  year: 2018
  end-page: 22
  ident: CR35
  article-title: LightenNet: a convolutional neural network for weakly illuminated image enhancement
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2018.01.010
– volume: 92
  start-page: 1
  issue: 1
  year: 2011
  end-page: 31
  ident: CR57
  article-title: A database and evaluation methodology for optical flow
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-010-0390-2
– volume: 6
  start-page: 640
  year: 2020
  end-page: 651
  ident: CR2
  article-title: VIF-Net: an unsupervised framework for infrared and visible image fusion
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2020.2965304
– ident: CR34
– volume: 8
  start-page: 300
  issue: 2
  year: 1984
  end-page: 305
  ident: CR17
  article-title: Adaptive grey level assignment in CT scan display
  publication-title: J. Comput. Assist. Tomogr.
– volume: 56
  start-page: 2475
  issue: 4
  year: 2010
  end-page: 2480
  ident: CR7
  article-title: Brightness preserving dynamic fuzzy histogram equalization
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2010.5681130
– volume: 15
  start-page: 2020
  issue: 9
  year: 2021
  end-page: 2038
  ident: CR13
  article-title: AMBCR: lowlight image enhancement via attention guided multi-branch construction and Retinex theory
  publication-title: IET Image Proc.
  doi: 10.1049/ipr2.12173
– ident: CR41
– year: 2020
  ident: CR23
  article-title: Block adjustment-based radiometric normalization by considering global and local differences
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.3031398
– volume: 22
  start-page: 3538
  issue: 9
  year: 2013
  end-page: 3548
  ident: CR28
  article-title: Naturalness preserved enhancement algorithm for non-uniform illumination images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2261309
– volume: 36
  start-page: 1797
  issue: 9
  year: 2020
  end-page: 1808
  ident: CR61
  article-title: DRCDN: learning deep residual convolutional dehazing networks
  publication-title: Visual Comput.
  doi: 10.1007/s00371-019-01774-8
– volume: 30
  start-page: 2340
  year: 2021
  ident: 2289_CR37
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3051462
– volume: 30
  start-page: 5937
  year: 2017
  ident: 2289_CR15
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 53
  start-page: 593
  issue: 2
  year: 2007
  ident: 2289_CR24
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2007.381734
– volume: 6
  start-page: 965
  issue: 7
  year: 1997
  ident: 2289_CR10
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.597272
– volume: 93
  start-page: 106335
  year: 2020
  ident: 2289_CR60
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106335
– ident: 2289_CR40
– volume: 49
  start-page: 1310
  issue: 4
  year: 2003
  ident: 2289_CR20
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2003.1261234
– ident: 2289_CR30
  doi: 10.1109/CVPR.2016.304
– volume: 51
  start-page: 1326
  issue: 4
  year: 2005
  ident: 2289_CR21
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2005.1561863
– ident: 2289_CR31
– volume: 14
  start-page: 1233
  issue: 7
  year: 2020
  ident: 2289_CR4
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2019.0118
– volume: 237
  start-page: 108
  issue: 6
  year: 1977
  ident: 2289_CR9
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican1277-108
– volume: 45
  start-page: 68
  issue: 1
  year: 1999
  ident: 2289_CR19
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/30.754419
– ident: 2289_CR51
– volume: 27
  start-page: 2049
  issue: 4
  year: 2018
  ident: 2289_CR53
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2794218
– volume: 8
  start-page: 300
  issue: 2
  year: 1984
  ident: 2289_CR17
  publication-title: J. Comput. Assist. Tomogr.
– volume: 9
  start-page: 636
  issue: 4
  year: 2000
  ident: 2289_CR48
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.841940
– volume: 53
  start-page: 1752
  issue: 4
  year: 2007
  ident: 2289_CR6
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2007.4429280
– ident: 2289_CR41
– volume: 56
  start-page: 2475
  issue: 4
  year: 2010
  ident: 2289_CR7
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2010.5681130
– volume: 39
  start-page: 355
  issue: 3
  year: 1987
  ident: 2289_CR8
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/S0734-189X(87)80186-X
– year: 2020
  ident: 2289_CR1
  publication-title: Visual Comput.
  doi: 10.1007/s00371-020-01964-9
– ident: 2289_CR34
  doi: 10.1109/CVPR.2018.00347
– ident: 2289_CR43
  doi: 10.1109/CVPR.2016.90
– start-page: 234
  volume-title: U-net: Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science,
  year: 2015
  ident: 2289_CR16
– ident: 2289_CR38
– volume: 104
  start-page: 15
  year: 2018
  ident: 2289_CR35
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2018.01.010
– volume: 15
  start-page: 2020
  issue: 9
  year: 2021
  ident: 2289_CR13
  publication-title: IET Image Proc.
  doi: 10.1049/ipr2.12173
– volume: 6
  start-page: 640
  year: 2020
  ident: 2289_CR2
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2020.2965304
– volume: 36
  start-page: 1797
  issue: 9
  year: 2020
  ident: 2289_CR61
  publication-title: Visual Comput.
  doi: 10.1007/s00371-019-01774-8
– year: 2020
  ident: 2289_CR23
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.3031398
– ident: 2289_CR46
– volume: 92
  start-page: 1
  issue: 1
  year: 2011
  ident: 2289_CR57
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-010-0390-2
– start-page: 3
  volume-title: CBAM: Convolutional Block Attention Module. Lecture Notes in Computer Science
  year: 2018
  ident: 2289_CR44
– volume: 37
  start-page: 1233
  issue: 5
  year: 2021
  ident: 2289_CR5
  publication-title: Visual Comput.
  doi: 10.1007/s00371-021-02079-5
– ident: 2289_CR27
– volume: 6
  start-page: 451
  issue: 3
  year: 1997
  ident: 2289_CR25
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.557356
– ident: 2289_CR22
  doi: 10.1109/ICETECH.2015.7275011
– volume: 43
  start-page: 1
  issue: 1
  year: 1997
  ident: 2289_CR18
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2002.1010085
– volume: 14
  start-page: 2117
  issue: 12
  year: 2005
  ident: 2289_CR50
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.859389
– volume: 22
  start-page: 3538
  issue: 9
  year: 2013
  ident: 2289_CR28
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2261309
– ident: 2289_CR32
  doi: 10.1109/VCIP.2017.8305143
– ident: 2289_CR12
  doi: 10.1145/3343031.3350926
– volume: 61
  start-page: 650
  issue: SI
  year: 2017
  ident: 2289_CR33
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.06.008
– ident: 2289_CR47
– ident: 2289_CR26
– ident: 2289_CR39
  doi: 10.1109/CVPR42600.2020.00185
– ident: 2289_CR54
  doi: 10.1109/CVPR.2019.00060
– volume: 129
  start-page: 82
  year: 2016
  ident: 2289_CR29
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.05.031
– ident: 2289_CR42
  doi: 10.1609/aaai.v30i1.10287
– volume: 43
  start-page: 1562
  issue: 5
  year: 2021
  ident: 2289_CR58
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2957464
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 2289_CR45
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 42
  start-page: 2011
  issue: 8
  year: 2020
  ident: 2289_CR55
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2913372
– volume: 27
  start-page: 417
  issue: 4
  year: 2020
  ident: 2289_CR59
  publication-title: Integr. Comput.-Aided Eng.
  doi: 10.3233/ICA-200641
– ident: 2289_CR36
– volume: 14
  start-page: 2955
  issue: 9
  year: 2014
  ident: 2289_CR56
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2319891
– volume: 31
  start-page: 1415
  issue: 4
  year: 2012
  ident: 2289_CR14
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2012.03137.x
– year: 2021
  ident: 2289_CR3
  publication-title: Visual Comput.
  doi: 10.1007/s00371-021-02067-9
– ident: 2289_CR52
  doi: 10.1109/CVPR.2018.00068
– volume: 15
  start-page: 430
  issue: 2
  year: 2006
  ident: 2289_CR49
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.859378
– ident: 2289_CR11
SSID ssj0017749
Score 2.3588212
Snippet Due to the images obtained in lowlight environments often showing low contrast, low brightness and artifacts, it is difficult to distinguish the details of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4203
SubjectTerms Artificial Intelligence
Computer Graphics
Computer Science
Decomposition
Deep learning
Image contrast
Image enhancement
Image Processing and Computer Vision
Image reconstruction
Methods
Modules
Neural networks
Original Article
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCAeIrBQDlwg4g2TR_hgia0MSHBBSaNU5WmiUDq2sE2sZ9PnKXbQGLnNjnYTvzZsT8jdBko35d5khPmi5gYC2GEJ9ojkikvSDzFRG6rLZ6jXp89DsKBS7iNXVllfSfaizqvJOTIbygHai2AJ3ejTwJTo-B11Y3Q2ERbvvE0YOdJ92HximCgjYW_vomUoOPTNc3Y1jnLVUegQAEYYDiZ_XZMS7T554HU-p3uHtp1gBG35xreRxuqPEA7KzSCh-it3Xl6ucWixECWacsXsSrfQZ-Q-8PlvNQbVxoPq3xaqDE2mFBCkhwbzIqL6ruAGB1_DM3tsrr0CPW7ndf7HnEjE4g0Z2lCVBh4GReh9pjOaCy4EizOc26iFiY515wLFgoZUZonmQoMVpRhJiWlOtJc6SQ4Ro2yKtUJwsoPdWgOfAwjYbSOudRccE09qiJuQEUT-bW8Uun4xGGsRZEumJCtjFMj49TKOJ010dVizWjOprH271athtSdrHG6tIMmuq5Vs_z8_26n63c7Q9sUOhtspUoLNSZfU3Vu8MYku7BG9QN989Co
  priority: 102
  providerName: ProQuest
Title AEMS: an attention enhancement network of modules stacking for lowlight image enhancement
URI https://link.springer.com/article/10.1007/s00371-021-02289-x
https://www.proquest.com/docview/2917986153
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7ovOjB3-J0Sg7eNKNN063xNmVzKIqog-1U0jRBcXbiNhT_el-ydk5RwVOhTUKT95J8Sb73BeAg0L6v0iil3Jd1ih7CqYiMRxXXXhB5msvUsS2uau0OP--G3TwobFiw3YsjSTdST4PdnLoctZQCq9kiKCLHhdCPRFSChcZZ76I5PT1ASONgr48rJBvpmQfL_FzK1wnpE2V-Oxh1801rBTrFn05oJo_V8SipqvdvIo7_rcoqLOcAlDQmHrMGczpbh5XicgeS9_V1WJpRKtyAXqN5eXtMZEasHqdjSBKd3VuXsduLJJuwycnAkKdBOu7rIUHYqew-PEFYTPqD177dBiAPTziAzWbdhE6reXfapvmtDFRhdx1RHQZeImRoPG4SVpdCS15PU4ELI66EMEJIHkpVYyyNEh0gHFVhohRjpmaENlGwBaVskOltINoPDVoQxzhcZxpTF8oIKQzzmK4JxC1l8AvTxCqXLLc3Z_Tjqdiya8kYWzJ2LRm_leFwmud5ItjxZ-pKYfE477zDmAmr4maRcBmOCgN-fv69tJ3_Jd-FRWaDKRw5pgKl0ctY7yHEGSX7MB-1zvZzv8bnSfPq-gbfdljjA7nd9Pk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFH4q7QE4oDFAlDHwgZ2GReI4TYyEprIVlQEV4ocEp-A4tkAqCaNFsH9qf-P83KTtJsGNc2Ifnj8_f35-73sAW4H2fZXFGeW-jKhFCKciNh5VXHtB7GkuM5dt0Wt1L_nPq_CqBn-qWhhMq6x8onPUWaEwRr7DBEprIT359vCLYtcofF2tWmiMYHGkfz_bK9tg7_CHXd8vjB10Lr53adlVgCoLtyHVYeClQobG4yZlkRRa8ijLhCX2XAlhhJA8lKrFWBanOrB0SoWpUoyZlhHaxIGddwYaHCta69DY7_ROz8bvFpZMOcLt27sZ1piWZTquWM-p41FMiUDNGUFf_j0KJ_z2vydZd9IdfICFkqKS9ghTi1DT-UeYnxIuXILrdufkfJfInKA8p0uYJDq_RQRhtJHko-RyUhhyX2RPfT0gloUqDMsTy5JJv3juY1SA3N1bfzY9dBku38WcK1DPi1yvAtF-aELrYiJsQmNMJJQRUhjmMd0SlsY0wa_slahSwRwbafSTsfays3FibZw4GycvTfg6HvMw0u948-_1ahmSci8PkgnymrBdLc3k8-uzrb092ybMdi9OjpPjw97RJ5hjWFfh8mTWoT58fNKfLdsZphslxAjcvDeq_wK00BAI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5SQfTgUhWrVXPwpqEzmcwSb0VbXIughXoaMpkEhelMsVP055tkllZRwXOWw1uSL3nvfQ-AE0fYNo-DGBGb-UhZCEE0kBbiRFhOYAnCYpNtMfCuhuRm5I4WqvhNtnsVkixqGjRLU5p3JrHs1IVvhmkO6fQCzd9CkUKRy-o4trWlD3G3jiMocGMAsK3eSrrmsyyb-XmPr1fTHG9-C5Gam6e_CdZLyAi7hY63wJJIm2CjascAS-9sgrUFbsFt8Nzt3T-eQ5ZCzaBpchqhSF-0kvWHIEyL_G-YSTjO4lkiplABRa5_zqECsjDJ3hP9cIevY3XkLC7dAcN-7-niCpV9FBBXDpYj4TpWRJkrLSIj7DMqGPHjmKqnDOGUSkoZcRn3MI6DSDgKQHI34hxj6UkqZODsgkaapWIPQGG70lWngK_7xEjpUy4poxJbWHhUIY0WsCsRhrwkGde9LpKwpkc2Yg-V2EMj9vCjBU7rNZOCYuPP2e1KM2HpbtMQU827prFrC5xV2poP_77b_v-mH4OVh8t-eHc9uD0Aq1hXQpjMljZo5G8zcajwSR4dGRP8BF2523Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AEMS%3A+an+attention+enhancement+network+of+modules+stacking+for+lowlight+image+enhancement&rft.jtitle=The+Visual+computer&rft.au=Li%2C+Miao&rft.au=Zhao%2C+Li&rft.au=Zhou%2C+Dongming&rft.au=Nie%2C+Rencan&rft.date=2022-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=38&rft.issue=12&rft.spage=4203&rft.epage=4219&rft_id=info:doi/10.1007%2Fs00371-021-02289-x&rft.externalDocID=10_1007_s00371_021_02289_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon