Frequency design of LEO-based navigation augmentation signals for dual-band ionospheric-free ambiguity resolution
Due to the spectrum congestion of current navigation signals in the L-band, it is difficult to apply for another two proper frequencies in this band for future low earth orbit (LEO)-based navigation augmentation systems. A feasible frequency scheme of using the combined frequencies in the L, S and C...
Saved in:
Published in | GPS solutions Vol. 26; no. 2 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1080-5370 1521-1886 |
DOI | 10.1007/s10291-022-01240-4 |
Cover
Abstract | Due to the spectrum congestion of current navigation signals in the L-band, it is difficult to apply for another two proper frequencies in this band for future low earth orbit (LEO)-based navigation augmentation systems. A feasible frequency scheme of using the combined frequencies in the L, S and C bands is proposed. A high-efficiency modulation scheme, termed continuous phase modulation, is adopted to make full use of the very limited spectrums and satisfy the radio frequency compatibility with the existing navigation systems, radio astronomy, and microwave landing systems. The high propagation loss in the S and C bands is absent for LEO, as the power margin owing to the short-distance propagation has compensated the frequency-dependent attenuation. Besides, for high-precision positioning, we consider the specific integer ratios between frequencies and propose a strategy for LEO precise point positioning (PPP) ambiguity resolution (AR) by directly fixing the L + S or L + C dual-band ionospheric-free (IF) ambiguity. Based on the simulated data, the quality of fractional cycle biases (FCBs) and the performance of PPP AR are analyzed. After removing the FCBs, 100.0, 99.7 and 71.7% of the fractional parts are within ± 0.15 cycles for GPS narrow-lane, LEO L + S dual-band IF and LEO L + C dual-band IF float ambiguities. At user stations, the convergence time of GPS PPP in static mode can be significantly shortened from 17.9 to within 2.5 min with the augmentation of 5.44 LEO satellites. Furthermore, compared with ambiguity-float solutions, the positioning accuracy of GPS AR + LEO AR solutions in east, north and up components is improved from 0.008, 0.008 and 0.027 m to 0.002, 0.003 and 0.011 m for 10-min sessions, respectively, and the fixing rate after time to first fix is almost 100%. |
---|---|
AbstractList | Due to the spectrum congestion of current navigation signals in the L-band, it is difficult to apply for another two proper frequencies in this band for future low earth orbit (LEO)-based navigation augmentation systems. A feasible frequency scheme of using the combined frequencies in the L, S and C bands is proposed. A high-efficiency modulation scheme, termed continuous phase modulation, is adopted to make full use of the very limited spectrums and satisfy the radio frequency compatibility with the existing navigation systems, radio astronomy, and microwave landing systems. The high propagation loss in the S and C bands is absent for LEO, as the power margin owing to the short-distance propagation has compensated the frequency-dependent attenuation. Besides, for high-precision positioning, we consider the specific integer ratios between frequencies and propose a strategy for LEO precise point positioning (PPP) ambiguity resolution (AR) by directly fixing the L + S or L + C dual-band ionospheric-free (IF) ambiguity. Based on the simulated data, the quality of fractional cycle biases (FCBs) and the performance of PPP AR are analyzed. After removing the FCBs, 100.0, 99.7 and 71.7% of the fractional parts are within ± 0.15 cycles for GPS narrow-lane, LEO L + S dual-band IF and LEO L + C dual-band IF float ambiguities. At user stations, the convergence time of GPS PPP in static mode can be significantly shortened from 17.9 to within 2.5 min with the augmentation of 5.44 LEO satellites. Furthermore, compared with ambiguity-float solutions, the positioning accuracy of GPS AR + LEO AR solutions in east, north and up components is improved from 0.008, 0.008 and 0.027 m to 0.002, 0.003 and 0.011 m for 10-min sessions, respectively, and the fixing rate after time to first fix is almost 100%. Due to the spectrum congestion of current navigation signals in the L-band, it is difficult to apply for another two proper frequencies in this band for future low earth orbit (LEO)-based navigation augmentation systems. A feasible frequency scheme of using the combined frequencies in the L, S and C bands is proposed. A high-efficiency modulation scheme, termed continuous phase modulation, is adopted to make full use of the very limited spectrums and satisfy the radio frequency compatibility with the existing navigation systems, radio astronomy, and microwave landing systems. The high propagation loss in the S and C bands is absent for LEO, as the power margin owing to the short-distance propagation has compensated the frequency-dependent attenuation. Besides, for high-precision positioning, we consider the specific integer ratios between frequencies and propose a strategy for LEO precise point positioning (PPP) ambiguity resolution (AR) by directly fixing the L + S or L + C dual-band ionospheric-free (IF) ambiguity. Based on the simulated data, the quality of fractional cycle biases (FCBs) and the performance of PPP AR are analyzed. After removing the FCBs, 100.0, 99.7 and 71.7% of the fractional parts are within ± 0.15 cycles for GPS narrow-lane, LEO L + S dual-band IF and LEO L + C dual-band IF float ambiguities. At user stations, the convergence time of GPS PPP in static mode can be significantly shortened from 17.9 to within 2.5 min with the augmentation of 5.44 LEO satellites. Furthermore, compared with ambiguity-float solutions, the positioning accuracy of GPS AR + LEO AR solutions in east, north and up components is improved from 0.008, 0.008 and 0.027 m to 0.002, 0.003 and 0.011 m for 10-min sessions, respectively, and the fixing rate after time to first fix is almost 100%. |
ArticleNumber | 53 |
Author | Zhang, Zhiyu Ma, Fujian Hu, Jiahuan Pan, Lin Zhang, Xiaohong Li, Pan Yu, Siqi |
Author_xml | – sequence: 1 givenname: Fujian surname: Ma fullname: Ma, Fujian organization: Institute of Telecommunication and Navigation Satellites, China Academy of Space Technology, School of Geodesy and Geomatics, Wuhan University – sequence: 2 givenname: Xiaohong orcidid: 0000-0002-2763-2548 surname: Zhang fullname: Zhang, Xiaohong email: xhzhang@sgg.whu.edu.cn organization: School of Geodesy and Geomatics, Wuhan University, Collaborative Innovation Center of Geospatial Technology – sequence: 3 givenname: Jiahuan surname: Hu fullname: Hu, Jiahuan organization: School of Geodesy and Geomatics, Wuhan University – sequence: 4 givenname: Pan surname: Li fullname: Li, Pan organization: German Research Centre for Geosciences GFZ – sequence: 5 givenname: Lin surname: Pan fullname: Pan, Lin organization: School of Geosciences and Info-Physics, Central South University – sequence: 6 givenname: Siqi surname: Yu fullname: Yu, Siqi organization: Qianxun Spatial Intelligence Inc – sequence: 7 givenname: Zhiyu surname: Zhang fullname: Zhang, Zhiyu organization: School of Geodesy and Geomatics, Wuhan University |
BookMark | eNp9kE1LJDEQhsOisH7sH_AU8By3KunpSY4i6i4MeNk9h3Snujcyk4xJtzD_3owtCHvwVFXU-9THe85OYorE2BXCDQKsfxYEaVCAlAJQNiCab-wMVxIFat2e1Bw0iJVaw3d2XsozgARjmjP28pDpZabYH7inEsbI08A390-ic4U8j-41jG4KKXI3jzuK01IclW5b-JAy97PbVnn0vHZS2f-jHHoxZCLudl0Y5zAdeKaStvORvWSnQ0Xpx0e8YH8f7v_c_RKbp8ffd7cb0Ss0k6BGa8QODXovfTsYpVQjtSfwXUe984OU9V1vgDRqVNCSolb3nQZEowd1wa6Xufuc6odlss9pzserrWxV065hZXRVyUXV51RKpsHuc9i5fLAI9mitXay1dZd9t9Y2FdL_QX1YjJmyC9uvUbWgpe6JI-XPq76g3gBWc5Ee |
CitedBy_id | crossref_primary_10_1109_LCOMM_2024_3376994 crossref_primary_10_1007_s10712_023_09785_w crossref_primary_10_3390_rs15082136 crossref_primary_10_1016_j_measurement_2024_115010 crossref_primary_10_1007_s00190_024_01874_x crossref_primary_10_3390_rs16112044 crossref_primary_10_1186_s13634_023_01052_9 crossref_primary_10_1049_ell2_13286 |
Cites_doi | 10.3390/s150613184 10.1007/s10291-019-0835-1 10.3390/s17051039 10.3390/rs10070984 10.1007/s00190-016-0888-7 10.33012/2016.14729 10.1007/s10291-019-0929-9 10.1007/s00190-018-1195-2 10.1007/s10291-020-00977-0 10.1007/BF00863419 10.1007/s10291-004-0098-2 10.1109/NAVITEC.2010.5708075 10.1007/s10291-017-0691-9 10.1016/j.eng.2021.04.002 10.1002/j.2161-4296.2009.tb01750.x 10.3390/s18113919 10.1049/el.2010.1693 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION 8FD AEUYN AFKRA BENPR BHPHI BKSAR CCPQU DWQXO H8D HCIFZ L7M PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI |
DOI | 10.1007/s10291-022-01240-4 |
DatabaseName | CrossRef Technology Research Database ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Technology Research Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest One Academic ProQuest Central (New) Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1521-1886 |
ExternalDocumentID | 10_1007_s10291_022_01240_4 |
GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars grantid: 41825009 – fundername: Wuhan Municipal Science and Technology Bureau (CN) grantid: 2018010401011270 – fundername: Changjiang Scholars program |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29I 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67M 67Z 6NX 78A 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LK5 LLZTM M4Y M7R MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P PCBAR PF0 PT4 QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FD ABRTQ DWQXO H8D L7M PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-e48811b191dd2d6f9333428de0dbbecadf22022d90e8181306e3e68cb801198f3 |
IEDL.DBID | U2A |
ISSN | 1080-5370 |
IngestDate | Sat Jul 26 00:53:28 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Tue Jul 01 01:57:23 EDT 2025 Fri Feb 21 02:45:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Precise point positioning LEO-based navigation augmentation Ionospheric-free ambiguity resolution Frequency design Continuous phase modulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e48811b191dd2d6f9333428de0dbbecadf22022d90e8181306e3e68cb801198f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2763-2548 |
PQID | 2634670598 |
PQPubID | 2043695 |
ParticipantIDs | proquest_journals_2634670598 crossref_primary_10_1007_s10291_022_01240_4 crossref_citationtrail_10_1007_s10291_022_01240_4 springer_journals_10_1007_s10291_022_01240_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220400 2022-04-00 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 4 year: 2022 text: 20220400 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: New York |
PublicationSubtitle | The Journal of Global Navigation Satellite Systems |
PublicationTitle | GPS solutions |
PublicationTitleAbbrev | GPS Solut |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | ZhaoQLiXLiuYGengJLiuJUndifferenced ionospheric-free ambiguity resolution using GLONASS data from inhomogeneous stationsGPS Solut20182212610.1007/s10291-017-0691-9 Teunissen PJG, Joosten P, Tiberius CCJM (1999) Geometry-free ambiguity success rates in case of partial fixing. In: Proc. ION NTM 1999, Institute of Navigation, San Diego, CA, USA, January 25–27, 201–207 Avila-Rodriguez JA, Wallner S, Won JH, Eissfeller B, Schmitz-Peiffer A, Floch JJ, Colzi E, Gerner JL (2008) Study on a Galileo signal and service plan for C-band. In: Proc. ION GNSS 2008, Institute of Navigation, Savannah, GA, USA, September 16–19, 2515–2529 GuoKAquinoMVeettilSVIonospheric scintillation intensity fading characteristics and GPS receiver tracking performance at low latitudesGPS Solut20192324310.1007/s10291-019-0835-1 IrsiglerMHeinGWSchmitz-PeifferAUse of C-band frequencies for satellite navigation: benefits and drawbacksGPS Solut20048311913910.1007/s10291-004-0098-2 LuMYaoZZhangJGuoFWeiZProgress and development trend of signal design for BeiDou satellite navigation systemSatell Appl2015122731in Chinese YangYConcepts of comprehensive PNT and related key technologiesActa Geod Cartogr Sin2016455505510in Chinese WangLInitial assessment of the LEO based navigation signal augmentation system from Luojia-1A satelliteSensors20191811391910.3390/s18113919 Dai L (2000) Dual-frequency GPS/GLONASS real-time ambiguity resolution for medium-range kinematic positioning. In: Proc. ION GPS 2000, Institute of Navigation, Salt Lake City, UT, USA, September 19–22, 1071–1080 SunYXueRZhaoDWangDRadio frequency compatibility evaluation of S band navigation signals for future BeiDouSensors2017175103910.3390/s17051039 XueRSunYZhaoDCPM signals for satellite navigation in the S and C bandsSensors2015156131841320010.3390/s150613184 LiXMaFLiXLvHBianLJiangZZhangXLEO constellation-augmented multi-GNSS for rapid PPP convergenceJ Geod201993574976410.1007/s00190-018-1195-2 GeHLiBGeMZangNNieLShenYSchuhHInitial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS)Remote Sens201810798410.3390/rs10070984 ITU-R (2015) Propagation data and prediction methods required for the design of earth-space telecommunication systems. ITU-R Recommendation P.618–12 Reid TGR, Neish AM, Walter TF, Enge PK (2016) Leveraging commercial broadband LEO constellations for navigation. In: Proc. ION GNSS+ 2016, Institute of Navigation, Portland, OR, USA, September 12–16, 2300–2314 TeunissenPJGThe least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimationJ Geod1995701–2658210.1007/BF00863419 BanvilleSGLONASS ionosphere-free ambiguity resolution for precise point positioningJ Geod201690548749610.1007/s00190-016-0888-7 MaFZhangXLiXChengJGuoFHuJPanLHybrid constellation design using a genetic algorithm for a LEO-based navigation augmentation systemGPS Solut20202426210.1007/s10291-020-00977-0 IS-GPS-200 (2010) Interface specification: Navstar GPS space segment/navigation user interfaces, IS-GPS-200, Revision E, GPS Wing (GPSW) Systems Engineering and Integration, June 8 Issler JL, Paonni M, Eissfeller B (2010) Toward centimetric positioning thanks to L- and S-band GNSS and to meta-GNSS signals. In: Proceedings of the 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, Toulouse, France, December 8–10, 1–8 Mateu I, et al. (2009) Exploration of possible GNSS signals in S-band. In: Proc. ION GNSS 2009, Institute of Navigation, Savannah, GA, USA, September 22–25, 1573–1587 Van Dierendonck AJ, Klobuchar J, Hua Q (1993) Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Proc. ION GPS 1993, Institute of Navigation, Salt Lake City, UT, USA, September 22–24, 1333–1342 ITU-R (2009) Attenuation due to clouds and fog. ITU-R Recommendation P.840–4 Kouba J (2009) A guide to using International GNSS Service (IGS) products. http://www.acc.igs.org/UsingIGSProductsVer21.pdf XieJKangCEngineering innovation and the development of the BDS-3 navigation constellationEngineering20217555856310.1016/j.eng.2021.04.002 ITU-R (2013) Attenuation by atmospheric gases. ITU-R Recommendation P.676–10 LaurichesseDMercierFBerthiasJPBrocaPCerriLInteger ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determinationNavigation200956213514910.1002/j.2161-4296.2009.tb01750.x YaoZLuMFengZQuadrature multiplexed BOC modulation for interoperable GNSS signalsElectron Lett201046171234123610.1049/el.2010.1693 ZhangXMaFReview of the development of LEO navigation-augmented GNSSActa Geod Cartogr Sin201948910731087in Chinese HuJZhangXLiPMaFPanLMulti-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan UniversityGPS Solut20192411510.1007/s10291-019-0929-9 ITU-R (2005) Specific attenuation model for rain use in prediction methods. ITU-R Recommendation P.838–3 Lawrence D, Cobb HS, Gutt G, Connor MO, Reid TGR, Walter T, Whelan D (2017) Innovation: navigation from LEO. GPS World, June 2017 H Ge (1240_CR4) 2018; 10 PJG Teunissen (1240_CR23) 1995; 70 1240_CR24 Q Zhao (1240_CR32) 2018; 22 1240_CR21 1240_CR25 1240_CR20 1240_CR9 S Banville (1240_CR2) 2016; 90 1240_CR8 1240_CR1 1240_CR3 M Irsigler (1240_CR7) 2004; 8 X Li (1240_CR17) 2019; 93 Y Yang (1240_CR29) 2016; 45 J Hu (1240_CR6) 2019; 24 1240_CR13 1240_CR12 R Xue (1240_CR28) 2015; 15 1240_CR11 J Xie (1240_CR27) 2021; 7 Z Yao (1240_CR30) 2010; 46 X Zhang (1240_CR31) 2019; 48 1240_CR10 D Laurichesse (1240_CR15) 2009; 56 1240_CR16 1240_CR14 M Lu (1240_CR18) 2015; 12 L Wang (1240_CR26) 2019; 18 K Guo (1240_CR5) 2019; 23 Y Sun (1240_CR22) 2017; 17 F Ma (1240_CR19) 2020; 24 |
References_xml | – reference: MaFZhangXLiXChengJGuoFHuJPanLHybrid constellation design using a genetic algorithm for a LEO-based navigation augmentation systemGPS Solut20202426210.1007/s10291-020-00977-0 – reference: WangLInitial assessment of the LEO based navigation signal augmentation system from Luojia-1A satelliteSensors20191811391910.3390/s18113919 – reference: YangYConcepts of comprehensive PNT and related key technologiesActa Geod Cartogr Sin2016455505510in Chinese – reference: ITU-R (2015) Propagation data and prediction methods required for the design of earth-space telecommunication systems. ITU-R Recommendation P.618–12 – reference: BanvilleSGLONASS ionosphere-free ambiguity resolution for precise point positioningJ Geod201690548749610.1007/s00190-016-0888-7 – reference: IrsiglerMHeinGWSchmitz-PeifferAUse of C-band frequencies for satellite navigation: benefits and drawbacksGPS Solut20048311913910.1007/s10291-004-0098-2 – reference: Dai L (2000) Dual-frequency GPS/GLONASS real-time ambiguity resolution for medium-range kinematic positioning. In: Proc. ION GPS 2000, Institute of Navigation, Salt Lake City, UT, USA, September 19–22, 1071–1080 – reference: LuMYaoZZhangJGuoFWeiZProgress and development trend of signal design for BeiDou satellite navigation systemSatell Appl2015122731in Chinese – reference: Mateu I, et al. (2009) Exploration of possible GNSS signals in S-band. In: Proc. ION GNSS 2009, Institute of Navigation, Savannah, GA, USA, September 22–25, 1573–1587 – reference: YaoZLuMFengZQuadrature multiplexed BOC modulation for interoperable GNSS signalsElectron Lett201046171234123610.1049/el.2010.1693 – reference: ZhaoQLiXLiuYGengJLiuJUndifferenced ionospheric-free ambiguity resolution using GLONASS data from inhomogeneous stationsGPS Solut20182212610.1007/s10291-017-0691-9 – reference: Reid TGR, Neish AM, Walter TF, Enge PK (2016) Leveraging commercial broadband LEO constellations for navigation. In: Proc. ION GNSS+ 2016, Institute of Navigation, Portland, OR, USA, September 12–16, 2300–2314 – reference: Teunissen PJG, Joosten P, Tiberius CCJM (1999) Geometry-free ambiguity success rates in case of partial fixing. In: Proc. ION NTM 1999, Institute of Navigation, San Diego, CA, USA, January 25–27, 201–207 – reference: GeHLiBGeMZangNNieLShenYSchuhHInitial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS)Remote Sens201810798410.3390/rs10070984 – reference: IS-GPS-200 (2010) Interface specification: Navstar GPS space segment/navigation user interfaces, IS-GPS-200, Revision E, GPS Wing (GPSW) Systems Engineering and Integration, June 8 – reference: GuoKAquinoMVeettilSVIonospheric scintillation intensity fading characteristics and GPS receiver tracking performance at low latitudesGPS Solut20192324310.1007/s10291-019-0835-1 – reference: LaurichesseDMercierFBerthiasJPBrocaPCerriLInteger ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determinationNavigation200956213514910.1002/j.2161-4296.2009.tb01750.x – reference: LiXMaFLiXLvHBianLJiangZZhangXLEO constellation-augmented multi-GNSS for rapid PPP convergenceJ Geod201993574976410.1007/s00190-018-1195-2 – reference: HuJZhangXLiPMaFPanLMulti-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan UniversityGPS Solut20192411510.1007/s10291-019-0929-9 – reference: ITU-R (2005) Specific attenuation model for rain use in prediction methods. ITU-R Recommendation P.838–3 – reference: TeunissenPJGThe least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimationJ Geod1995701–2658210.1007/BF00863419 – reference: Avila-Rodriguez JA, Wallner S, Won JH, Eissfeller B, Schmitz-Peiffer A, Floch JJ, Colzi E, Gerner JL (2008) Study on a Galileo signal and service plan for C-band. In: Proc. ION GNSS 2008, Institute of Navigation, Savannah, GA, USA, September 16–19, 2515–2529 – reference: ITU-R (2013) Attenuation by atmospheric gases. ITU-R Recommendation P.676–10 – reference: Lawrence D, Cobb HS, Gutt G, Connor MO, Reid TGR, Walter T, Whelan D (2017) Innovation: navigation from LEO. GPS World, June 2017 – reference: XieJKangCEngineering innovation and the development of the BDS-3 navigation constellationEngineering20217555856310.1016/j.eng.2021.04.002 – reference: ITU-R (2009) Attenuation due to clouds and fog. ITU-R Recommendation P.840–4 – reference: Van Dierendonck AJ, Klobuchar J, Hua Q (1993) Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Proc. ION GPS 1993, Institute of Navigation, Salt Lake City, UT, USA, September 22–24, 1333–1342 – reference: SunYXueRZhaoDWangDRadio frequency compatibility evaluation of S band navigation signals for future BeiDouSensors2017175103910.3390/s17051039 – reference: Kouba J (2009) A guide to using International GNSS Service (IGS) products. http://www.acc.igs.org/UsingIGSProductsVer21.pdf – reference: XueRSunYZhaoDCPM signals for satellite navigation in the S and C bandsSensors2015156131841320010.3390/s150613184 – reference: ZhangXMaFReview of the development of LEO navigation-augmented GNSSActa Geod Cartogr Sin201948910731087in Chinese – reference: Issler JL, Paonni M, Eissfeller B (2010) Toward centimetric positioning thanks to L- and S-band GNSS and to meta-GNSS signals. In: Proceedings of the 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, Toulouse, France, December 8–10, 1–8 – volume: 15 start-page: 13184 issue: 6 year: 2015 ident: 1240_CR28 publication-title: Sensors doi: 10.3390/s150613184 – volume: 23 start-page: 43 issue: 2 year: 2019 ident: 1240_CR5 publication-title: GPS Solut doi: 10.1007/s10291-019-0835-1 – ident: 1240_CR20 – ident: 1240_CR16 – ident: 1240_CR24 – volume: 17 start-page: 1039 issue: 5 year: 2017 ident: 1240_CR22 publication-title: Sensors doi: 10.3390/s17051039 – volume: 10 start-page: 984 issue: 7 year: 2018 ident: 1240_CR4 publication-title: Remote Sens doi: 10.3390/rs10070984 – volume: 90 start-page: 487 issue: 5 year: 2016 ident: 1240_CR2 publication-title: J Geod doi: 10.1007/s00190-016-0888-7 – ident: 1240_CR1 – ident: 1240_CR3 – ident: 1240_CR21 doi: 10.33012/2016.14729 – ident: 1240_CR13 – ident: 1240_CR11 – volume: 24 start-page: 15 issue: 1 year: 2019 ident: 1240_CR6 publication-title: GPS Solut doi: 10.1007/s10291-019-0929-9 – volume: 93 start-page: 749 issue: 5 year: 2019 ident: 1240_CR17 publication-title: J Geod doi: 10.1007/s00190-018-1195-2 – volume: 24 start-page: 62 issue: 2 year: 2020 ident: 1240_CR19 publication-title: GPS Solut doi: 10.1007/s10291-020-00977-0 – volume: 70 start-page: 65 issue: 1–2 year: 1995 ident: 1240_CR23 publication-title: J Geod doi: 10.1007/BF00863419 – volume: 8 start-page: 119 issue: 3 year: 2004 ident: 1240_CR7 publication-title: GPS Solut doi: 10.1007/s10291-004-0098-2 – ident: 1240_CR25 – ident: 1240_CR9 doi: 10.1109/NAVITEC.2010.5708075 – ident: 1240_CR8 – volume: 48 start-page: 1073 issue: 9 year: 2019 ident: 1240_CR31 publication-title: Acta Geod Cartogr Sin – volume: 22 start-page: 26 issue: 1 year: 2018 ident: 1240_CR32 publication-title: GPS Solut doi: 10.1007/s10291-017-0691-9 – ident: 1240_CR10 – volume: 7 start-page: 558 issue: 5 year: 2021 ident: 1240_CR27 publication-title: Engineering doi: 10.1016/j.eng.2021.04.002 – volume: 56 start-page: 135 issue: 2 year: 2009 ident: 1240_CR15 publication-title: Navigation doi: 10.1002/j.2161-4296.2009.tb01750.x – volume: 45 start-page: 505 issue: 5 year: 2016 ident: 1240_CR29 publication-title: Acta Geod Cartogr Sin – ident: 1240_CR14 – volume: 18 start-page: 3919 issue: 11 year: 2019 ident: 1240_CR26 publication-title: Sensors doi: 10.3390/s18113919 – volume: 46 start-page: 1234 issue: 17 year: 2010 ident: 1240_CR30 publication-title: Electron Lett doi: 10.1049/el.2010.1693 – ident: 1240_CR12 – volume: 12 start-page: 27 year: 2015 ident: 1240_CR18 publication-title: Satell Appl |
SSID | ssj0020994 |
Score | 2.3400095 |
Snippet | Due to the spectrum congestion of current navigation signals in the L-band, it is difficult to apply for another two proper frequencies in this band for future... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Ambiguity Ambiguity resolution (mathematics) Astronomy Atmospheric Sciences Attenuation Augmentation systems Automotive Engineering Bandwidths Design Earth and Environmental Science Earth orbits Earth Sciences Electrical Engineering Fixing Geophysics/Geodesy Global positioning systems GPS Low earth orbit satellites Low earth orbits Microwave landing systems Navigation systems Original Article Phase modulation Propagation Radio astronomy Ratios Receivers & amplifiers Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Spectrum allocation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6HfQifuJ0Sg7eNNgmbZaeRGVjiE4RB7uVpknnwLX7FPbf-9KmKwru3CSF9_2S93sPoSsdBFJzyYhLWzHx_MglEbhNEgke-IJLHucgsZce7_a9p4E_sBduc1tWWdrE3FCrLDZ35LeUM9BpCAbE3WRKzNQo87pqR2hsozqYYAFyXn9o997e1ykXxD9eUWLvEJ-1HAubseA5aqp-qClNAL9GvN-uqYo3_zyR5p6ns4_2bMiI7wseH6AtnR6iHTu9_HN1hKadWVEQvcIqL8jAWYKf26_EuCiF0-g776ORpThaDscWbJRisxKED0PYig0iC5anChuUw9z0GhjFJJlpjaOxHA2XEKxjyMytoB6jfqf98dgldpQCiUHHFkSDnrquhORMKap4EjDGIPFQ2lESuBiphFKghAocDR4c_BrXTHMRS2F6womEnaBamqX6FGGDKQy04K7U0pNgEgLXF5GSYB1i0GivgdySimFs-4ybcRdfYdUh2VA-hP-FOeVD2HO93jMpumxsXN0smRNajZuHlXw00E3JsOrz_6edbT7tHO3SXEZMsU4T1Razpb6AOGQhL62w_QB7QtiE priority: 102 providerName: ProQuest |
Title | Frequency design of LEO-based navigation augmentation signals for dual-band ionospheric-free ambiguity resolution |
URI | https://link.springer.com/article/10.1007/s10291-022-01240-4 https://www.proquest.com/docview/2634670598 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HfQifuJ0jhy8aaBN2qw9TukcfkwRB_NUmibVget0H8L-e1_SdFNRwVMPeUnhfT_yfi8IHaswFIoLRlzaTInnJy5JIGySJOChH3DBUwMSu-nyTs-77Pt9CwqblN3u5ZWk8dSfwG5Ud-lQ3UoAcYh4q6jqQ-2uzbFHW4syC3Ier2ird4jPmo6Fyvx8xtdwtMwxv12LmmjT3kQbNk3ErUKuW2hF5dtozb5Y_jzfQW_tcdEEPcfSNGHgUYavo1uiw5LEefJuZmeMcpzMnoYWYJRjTQkKhyFVxRqFBeS5xBrZMNHzBQYpycZK4WQoBk8zSNAxVONWOXdRrx09nHeIfT6BpGBXU6LANl1XQEEmJZU8CxljUGxI5UgBkktkRoF7VIaOgqgNsYwrpniQikDPgQsytocq-ShX-whrHGGoAu4KJTwBbiB0_SCRAjxCClbs1ZBbcjFO7Wxx_cTFS7yciqw5H8P_YsP5GPacLPa8FpM1_qSul8KJrZVNYsoZ-HlIEIMaOi0Ftlz-_bSD_5EfonVqdEY37NRRZTqeqSPIRaaigaqti8erCL5nUffuvmFU8QOwC9cD |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOcAFsYodH-AEFo2TmOSAEEurAqUgBBK3EMcOIEEKXUD9Kb6RmcShAglunGM7yvh5lnjeDMCGCUNlpHK5I3YT7vmxw2M0mzwOZOgHUskkJ4mdt2Tjxju99W9H4KPkwlBaZakTc0Wt2wn9I98R0sUzjc5AsP_yyqlrFN2uli00ClicmcE7hmzdvZNj3N9NIeq166MGt10FeIJw63GDkHUchXGK1kLLFCN6F31wbapa4QfFOhUCDZsOqwaNGap4aVwjg0QFVB4tSF1cdxTGPGK0VmDssNa6vPoK8dDf8oqU_ir33d2qpelYsp6gLCNBqRBoR7n33RQO_dsfV7K5patPwaR1UdlBgalpGDHZDIzbbukPg1l4rXeKBOwB03kCCGunrFm74GQSNcvit7xuRztjcf_-2ZKbMkYjEewM3WRGDDAcnmlGrIou1TZ4THjaMYbFz-rxvo_BAeuY8mDMwc2_CHkeKlk7MwvAiMMYmkA6yihPoQoKHT-ItUJtlKAG8RbBKaUYJbauObXXeIqGFZlJ8hG-L8olH-Gcra85L0VVjz9Hr5SbE9kT3o2GeFyE7XLDho9_X23p79XWYbxxfd6Mmiets2WYEDleKFFoBSq9Tt-sog_UU2sWeAzu_hvrnx6CFNY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UE_Vi_Iwoag_etIF1W9mORFlQET1Iwq1p1w5JZCAME_57X_cBaNTE81675H2_9P3eQ-hS-77UTNrEovWQOK6wiICwSYTHfNdjkoUpSOyxw1pd577n9lZQ_Gm3e_EkmWEazJSmOKmOVVRdAb5R07FDTVsBxCTirKMNcMeW0fQubSxKLsh_nKzFvkZcu17LYTM_3_E1NC3zzW9PpGnkCXbRTp4y4kYm4z20puN9tJVvL3-dH6D3YJI1RM-xShsy8CjC7eYTMSFK4Vh8pHM0RjEWs_4wBxvF2FCC8mFIW7FBZAF5rLBBOUzNrIFBSKKJ1lgM5aA_g2QdQ2WeK-oh6gbNl5sWyVcpkBBsLCEa7NSyJBRnSlHFIt-2bSg8lK4pCVIUKqIUOKH8moYIDnGNaVszL5SemQnnRfYRKsWjWB8jbDCFvvaYJbV0JLgE33I9oSR4hxAs2ikjq-AiD_M542bdxRtfTkg2nOfwP55ynsOZq8WZcTZl40_qSiEcnlvclFNmg8-HZNEro-tCYMvPv9928j_yC7T5fBvw9l3n4RRt01R9TB9PBZWSyUyfQYqSyPNUCz8BG-LbBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frequency+design+of+LEO-based+navigation+augmentation+signals+for+dual-band+ionospheric-free+ambiguity+resolution&rft.jtitle=GPS+solutions&rft.au=Ma%2C+Fujian&rft.au=Zhang%2C+Xiaohong&rft.au=Hu%2C+Jiahuan&rft.au=Li%2C+Pan&rft.date=2022-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1080-5370&rft.eissn=1521-1886&rft.volume=26&rft.issue=2&rft_id=info:doi/10.1007%2Fs10291-022-01240-4&rft.externalDocID=10_1007_s10291_022_01240_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1080-5370&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1080-5370&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1080-5370&client=summon |