Frequency design of LEO-based navigation augmentation signals for dual-band ionospheric-free ambiguity resolution

Due to the spectrum congestion of current navigation signals in the L-band, it is difficult to apply for another two proper frequencies in this band for future low earth orbit (LEO)-based navigation augmentation systems. A feasible frequency scheme of using the combined frequencies in the L, S and C...

Full description

Saved in:
Bibliographic Details
Published inGPS solutions Vol. 26; no. 2
Main Authors Ma, Fujian, Zhang, Xiaohong, Hu, Jiahuan, Li, Pan, Pan, Lin, Yu, Siqi, Zhang, Zhiyu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1080-5370
1521-1886
DOI10.1007/s10291-022-01240-4

Cover

Abstract Due to the spectrum congestion of current navigation signals in the L-band, it is difficult to apply for another two proper frequencies in this band for future low earth orbit (LEO)-based navigation augmentation systems. A feasible frequency scheme of using the combined frequencies in the L, S and C bands is proposed. A high-efficiency modulation scheme, termed continuous phase modulation, is adopted to make full use of the very limited spectrums and satisfy the radio frequency compatibility with the existing navigation systems, radio astronomy, and microwave landing systems. The high propagation loss in the S and C bands is absent for LEO, as the power margin owing to the short-distance propagation has compensated the frequency-dependent attenuation. Besides, for high-precision positioning, we consider the specific integer ratios between frequencies and propose a strategy for LEO precise point positioning (PPP) ambiguity resolution (AR) by directly fixing the L + S or L + C dual-band ionospheric-free (IF) ambiguity. Based on the simulated data, the quality of fractional cycle biases (FCBs) and the performance of PPP AR are analyzed. After removing the FCBs, 100.0, 99.7 and 71.7% of the fractional parts are within ± 0.15 cycles for GPS narrow-lane, LEO L + S dual-band IF and LEO L + C dual-band IF float ambiguities. At user stations, the convergence time of GPS PPP in static mode can be significantly shortened from 17.9 to within 2.5 min with the augmentation of 5.44 LEO satellites. Furthermore, compared with ambiguity-float solutions, the positioning accuracy of GPS AR + LEO AR solutions in east, north and up components is improved from 0.008, 0.008 and 0.027 m to 0.002, 0.003 and 0.011 m for 10-min sessions, respectively, and the fixing rate after time to first fix is almost 100%.
AbstractList Due to the spectrum congestion of current navigation signals in the L-band, it is difficult to apply for another two proper frequencies in this band for future low earth orbit (LEO)-based navigation augmentation systems. A feasible frequency scheme of using the combined frequencies in the L, S and C bands is proposed. A high-efficiency modulation scheme, termed continuous phase modulation, is adopted to make full use of the very limited spectrums and satisfy the radio frequency compatibility with the existing navigation systems, radio astronomy, and microwave landing systems. The high propagation loss in the S and C bands is absent for LEO, as the power margin owing to the short-distance propagation has compensated the frequency-dependent attenuation. Besides, for high-precision positioning, we consider the specific integer ratios between frequencies and propose a strategy for LEO precise point positioning (PPP) ambiguity resolution (AR) by directly fixing the L + S or L + C dual-band ionospheric-free (IF) ambiguity. Based on the simulated data, the quality of fractional cycle biases (FCBs) and the performance of PPP AR are analyzed. After removing the FCBs, 100.0, 99.7 and 71.7% of the fractional parts are within ± 0.15 cycles for GPS narrow-lane, LEO L + S dual-band IF and LEO L + C dual-band IF float ambiguities. At user stations, the convergence time of GPS PPP in static mode can be significantly shortened from 17.9 to within 2.5 min with the augmentation of 5.44 LEO satellites. Furthermore, compared with ambiguity-float solutions, the positioning accuracy of GPS AR + LEO AR solutions in east, north and up components is improved from 0.008, 0.008 and 0.027 m to 0.002, 0.003 and 0.011 m for 10-min sessions, respectively, and the fixing rate after time to first fix is almost 100%.
Due to the spectrum congestion of current navigation signals in the L-band, it is difficult to apply for another two proper frequencies in this band for future low earth orbit (LEO)-based navigation augmentation systems. A feasible frequency scheme of using the combined frequencies in the L, S and C bands is proposed. A high-efficiency modulation scheme, termed continuous phase modulation, is adopted to make full use of the very limited spectrums and satisfy the radio frequency compatibility with the existing navigation systems, radio astronomy, and microwave landing systems. The high propagation loss in the S and C bands is absent for LEO, as the power margin owing to the short-distance propagation has compensated the frequency-dependent attenuation. Besides, for high-precision positioning, we consider the specific integer ratios between frequencies and propose a strategy for LEO precise point positioning (PPP) ambiguity resolution (AR) by directly fixing the L + S or L + C dual-band ionospheric-free (IF) ambiguity. Based on the simulated data, the quality of fractional cycle biases (FCBs) and the performance of PPP AR are analyzed. After removing the FCBs, 100.0, 99.7 and 71.7% of the fractional parts are within ± 0.15 cycles for GPS narrow-lane, LEO L + S dual-band IF and LEO L + C dual-band IF float ambiguities. At user stations, the convergence time of GPS PPP in static mode can be significantly shortened from 17.9 to within 2.5 min with the augmentation of 5.44 LEO satellites. Furthermore, compared with ambiguity-float solutions, the positioning accuracy of GPS AR + LEO AR solutions in east, north and up components is improved from 0.008, 0.008 and 0.027 m to 0.002, 0.003 and 0.011 m for 10-min sessions, respectively, and the fixing rate after time to first fix is almost 100%.
ArticleNumber 53
Author Zhang, Zhiyu
Ma, Fujian
Hu, Jiahuan
Pan, Lin
Zhang, Xiaohong
Li, Pan
Yu, Siqi
Author_xml – sequence: 1
  givenname: Fujian
  surname: Ma
  fullname: Ma, Fujian
  organization: Institute of Telecommunication and Navigation Satellites, China Academy of Space Technology, School of Geodesy and Geomatics, Wuhan University
– sequence: 2
  givenname: Xiaohong
  orcidid: 0000-0002-2763-2548
  surname: Zhang
  fullname: Zhang, Xiaohong
  email: xhzhang@sgg.whu.edu.cn
  organization: School of Geodesy and Geomatics, Wuhan University, Collaborative Innovation Center of Geospatial Technology
– sequence: 3
  givenname: Jiahuan
  surname: Hu
  fullname: Hu, Jiahuan
  organization: School of Geodesy and Geomatics, Wuhan University
– sequence: 4
  givenname: Pan
  surname: Li
  fullname: Li, Pan
  organization: German Research Centre for Geosciences GFZ
– sequence: 5
  givenname: Lin
  surname: Pan
  fullname: Pan, Lin
  organization: School of Geosciences and Info-Physics, Central South University
– sequence: 6
  givenname: Siqi
  surname: Yu
  fullname: Yu, Siqi
  organization: Qianxun Spatial Intelligence Inc
– sequence: 7
  givenname: Zhiyu
  surname: Zhang
  fullname: Zhang, Zhiyu
  organization: School of Geodesy and Geomatics, Wuhan University
BookMark eNp9kE1LJDEQhsOisH7sH_AU8By3KunpSY4i6i4MeNk9h3Snujcyk4xJtzD_3owtCHvwVFXU-9THe85OYorE2BXCDQKsfxYEaVCAlAJQNiCab-wMVxIFat2e1Bw0iJVaw3d2XsozgARjmjP28pDpZabYH7inEsbI08A390-ic4U8j-41jG4KKXI3jzuK01IclW5b-JAy97PbVnn0vHZS2f-jHHoxZCLudl0Y5zAdeKaStvORvWSnQ0Xpx0e8YH8f7v_c_RKbp8ffd7cb0Ss0k6BGa8QODXovfTsYpVQjtSfwXUe984OU9V1vgDRqVNCSolb3nQZEowd1wa6Xufuc6odlss9pzserrWxV065hZXRVyUXV51RKpsHuc9i5fLAI9mitXay1dZd9t9Y2FdL_QX1YjJmyC9uvUbWgpe6JI-XPq76g3gBWc5Ee
CitedBy_id crossref_primary_10_1109_LCOMM_2024_3376994
crossref_primary_10_1007_s10712_023_09785_w
crossref_primary_10_3390_rs15082136
crossref_primary_10_1016_j_measurement_2024_115010
crossref_primary_10_1007_s00190_024_01874_x
crossref_primary_10_3390_rs16112044
crossref_primary_10_1186_s13634_023_01052_9
crossref_primary_10_1049_ell2_13286
Cites_doi 10.3390/s150613184
10.1007/s10291-019-0835-1
10.3390/s17051039
10.3390/rs10070984
10.1007/s00190-016-0888-7
10.33012/2016.14729
10.1007/s10291-019-0929-9
10.1007/s00190-018-1195-2
10.1007/s10291-020-00977-0
10.1007/BF00863419
10.1007/s10291-004-0098-2
10.1109/NAVITEC.2010.5708075
10.1007/s10291-017-0691-9
10.1016/j.eng.2021.04.002
10.1002/j.2161-4296.2009.tb01750.x
10.3390/s18113919
10.1049/el.2010.1693
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FD
AEUYN
AFKRA
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
H8D
HCIFZ
L7M
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
DOI 10.1007/s10291-022-01240-4
DatabaseName CrossRef
Technology Research Database
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest One Academic
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1521-1886
ExternalDocumentID 10_1007_s10291_022_01240_4
GrantInformation_xml – fundername: National Science Fund for Distinguished Young Scholars
  grantid: 41825009
– fundername: Wuhan Municipal Science and Technology Bureau (CN)
  grantid: 2018010401011270
– fundername: Changjiang Scholars program
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29I
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67M
67Z
6NX
78A
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LK5
LLZTM
M4Y
M7R
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
PCBAR
PF0
PT4
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FD
ABRTQ
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-e48811b191dd2d6f9333428de0dbbecadf22022d90e8181306e3e68cb801198f3
IEDL.DBID U2A
ISSN 1080-5370
IngestDate Sat Jul 26 00:53:28 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Tue Jul 01 01:57:23 EDT 2025
Fri Feb 21 02:45:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Precise point positioning
LEO-based navigation augmentation
Ionospheric-free ambiguity resolution
Frequency design
Continuous phase modulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e48811b191dd2d6f9333428de0dbbecadf22022d90e8181306e3e68cb801198f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2763-2548
PQID 2634670598
PQPubID 2043695
ParticipantIDs proquest_journals_2634670598
crossref_primary_10_1007_s10291_022_01240_4
crossref_citationtrail_10_1007_s10291_022_01240_4
springer_journals_10_1007_s10291_022_01240_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220400
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 4
  year: 2022
  text: 20220400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: New York
PublicationSubtitle The Journal of Global Navigation Satellite Systems
PublicationTitle GPS solutions
PublicationTitleAbbrev GPS Solut
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ZhaoQLiXLiuYGengJLiuJUndifferenced ionospheric-free ambiguity resolution using GLONASS data from inhomogeneous stationsGPS Solut20182212610.1007/s10291-017-0691-9
Teunissen PJG, Joosten P, Tiberius CCJM (1999) Geometry-free ambiguity success rates in case of partial fixing. In: Proc. ION NTM 1999, Institute of Navigation, San Diego, CA, USA, January 25–27, 201–207
Avila-Rodriguez JA, Wallner S, Won JH, Eissfeller B, Schmitz-Peiffer A, Floch JJ, Colzi E, Gerner JL (2008) Study on a Galileo signal and service plan for C-band. In: Proc. ION GNSS 2008, Institute of Navigation, Savannah, GA, USA, September 16–19, 2515–2529
GuoKAquinoMVeettilSVIonospheric scintillation intensity fading characteristics and GPS receiver tracking performance at low latitudesGPS Solut20192324310.1007/s10291-019-0835-1
IrsiglerMHeinGWSchmitz-PeifferAUse of C-band frequencies for satellite navigation: benefits and drawbacksGPS Solut20048311913910.1007/s10291-004-0098-2
LuMYaoZZhangJGuoFWeiZProgress and development trend of signal design for BeiDou satellite navigation systemSatell Appl2015122731in Chinese
YangYConcepts of comprehensive PNT and related key technologiesActa Geod Cartogr Sin2016455505510in Chinese
WangLInitial assessment of the LEO based navigation signal augmentation system from Luojia-1A satelliteSensors20191811391910.3390/s18113919
Dai L (2000) Dual-frequency GPS/GLONASS real-time ambiguity resolution for medium-range kinematic positioning. In: Proc. ION GPS 2000, Institute of Navigation, Salt Lake City, UT, USA, September 19–22, 1071–1080
SunYXueRZhaoDWangDRadio frequency compatibility evaluation of S band navigation signals for future BeiDouSensors2017175103910.3390/s17051039
XueRSunYZhaoDCPM signals for satellite navigation in the S and C bandsSensors2015156131841320010.3390/s150613184
LiXMaFLiXLvHBianLJiangZZhangXLEO constellation-augmented multi-GNSS for rapid PPP convergenceJ Geod201993574976410.1007/s00190-018-1195-2
GeHLiBGeMZangNNieLShenYSchuhHInitial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS)Remote Sens201810798410.3390/rs10070984
ITU-R (2015) Propagation data and prediction methods required for the design of earth-space telecommunication systems. ITU-R Recommendation P.618–12
Reid TGR, Neish AM, Walter TF, Enge PK (2016) Leveraging commercial broadband LEO constellations for navigation. In: Proc. ION GNSS+ 2016, Institute of Navigation, Portland, OR, USA, September 12–16, 2300–2314
TeunissenPJGThe least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimationJ Geod1995701–2658210.1007/BF00863419
BanvilleSGLONASS ionosphere-free ambiguity resolution for precise point positioningJ Geod201690548749610.1007/s00190-016-0888-7
MaFZhangXLiXChengJGuoFHuJPanLHybrid constellation design using a genetic algorithm for a LEO-based navigation augmentation systemGPS Solut20202426210.1007/s10291-020-00977-0
IS-GPS-200 (2010) Interface specification: Navstar GPS space segment/navigation user interfaces, IS-GPS-200, Revision E, GPS Wing (GPSW) Systems Engineering and Integration, June 8
Issler JL, Paonni M, Eissfeller B (2010) Toward centimetric positioning thanks to L- and S-band GNSS and to meta-GNSS signals. In: Proceedings of the 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, Toulouse, France, December 8–10, 1–8
Mateu I, et al. (2009) Exploration of possible GNSS signals in S-band. In: Proc. ION GNSS 2009, Institute of Navigation, Savannah, GA, USA, September 22–25, 1573–1587
Van Dierendonck AJ, Klobuchar J, Hua Q (1993) Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Proc. ION GPS 1993, Institute of Navigation, Salt Lake City, UT, USA, September 22–24, 1333–1342
ITU-R (2009) Attenuation due to clouds and fog. ITU-R Recommendation P.840–4
Kouba J (2009) A guide to using International GNSS Service (IGS) products. http://www.acc.igs.org/UsingIGSProductsVer21.pdf
XieJKangCEngineering innovation and the development of the BDS-3 navigation constellationEngineering20217555856310.1016/j.eng.2021.04.002
ITU-R (2013) Attenuation by atmospheric gases. ITU-R Recommendation P.676–10
LaurichesseDMercierFBerthiasJPBrocaPCerriLInteger ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determinationNavigation200956213514910.1002/j.2161-4296.2009.tb01750.x
YaoZLuMFengZQuadrature multiplexed BOC modulation for interoperable GNSS signalsElectron Lett201046171234123610.1049/el.2010.1693
ZhangXMaFReview of the development of LEO navigation-augmented GNSSActa Geod Cartogr Sin201948910731087in Chinese
HuJZhangXLiPMaFPanLMulti-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan UniversityGPS Solut20192411510.1007/s10291-019-0929-9
ITU-R (2005) Specific attenuation model for rain use in prediction methods. ITU-R Recommendation P.838–3
Lawrence D, Cobb HS, Gutt G, Connor MO, Reid TGR, Walter T, Whelan D (2017) Innovation: navigation from LEO. GPS World, June 2017
H Ge (1240_CR4) 2018; 10
PJG Teunissen (1240_CR23) 1995; 70
1240_CR24
Q Zhao (1240_CR32) 2018; 22
1240_CR21
1240_CR25
1240_CR20
1240_CR9
S Banville (1240_CR2) 2016; 90
1240_CR8
1240_CR1
1240_CR3
M Irsigler (1240_CR7) 2004; 8
X Li (1240_CR17) 2019; 93
Y Yang (1240_CR29) 2016; 45
J Hu (1240_CR6) 2019; 24
1240_CR13
1240_CR12
R Xue (1240_CR28) 2015; 15
1240_CR11
J Xie (1240_CR27) 2021; 7
Z Yao (1240_CR30) 2010; 46
X Zhang (1240_CR31) 2019; 48
1240_CR10
D Laurichesse (1240_CR15) 2009; 56
1240_CR16
1240_CR14
M Lu (1240_CR18) 2015; 12
L Wang (1240_CR26) 2019; 18
K Guo (1240_CR5) 2019; 23
Y Sun (1240_CR22) 2017; 17
F Ma (1240_CR19) 2020; 24
References_xml – reference: MaFZhangXLiXChengJGuoFHuJPanLHybrid constellation design using a genetic algorithm for a LEO-based navigation augmentation systemGPS Solut20202426210.1007/s10291-020-00977-0
– reference: WangLInitial assessment of the LEO based navigation signal augmentation system from Luojia-1A satelliteSensors20191811391910.3390/s18113919
– reference: YangYConcepts of comprehensive PNT and related key technologiesActa Geod Cartogr Sin2016455505510in Chinese
– reference: ITU-R (2015) Propagation data and prediction methods required for the design of earth-space telecommunication systems. ITU-R Recommendation P.618–12
– reference: BanvilleSGLONASS ionosphere-free ambiguity resolution for precise point positioningJ Geod201690548749610.1007/s00190-016-0888-7
– reference: IrsiglerMHeinGWSchmitz-PeifferAUse of C-band frequencies for satellite navigation: benefits and drawbacksGPS Solut20048311913910.1007/s10291-004-0098-2
– reference: Dai L (2000) Dual-frequency GPS/GLONASS real-time ambiguity resolution for medium-range kinematic positioning. In: Proc. ION GPS 2000, Institute of Navigation, Salt Lake City, UT, USA, September 19–22, 1071–1080
– reference: LuMYaoZZhangJGuoFWeiZProgress and development trend of signal design for BeiDou satellite navigation systemSatell Appl2015122731in Chinese
– reference: Mateu I, et al. (2009) Exploration of possible GNSS signals in S-band. In: Proc. ION GNSS 2009, Institute of Navigation, Savannah, GA, USA, September 22–25, 1573–1587
– reference: YaoZLuMFengZQuadrature multiplexed BOC modulation for interoperable GNSS signalsElectron Lett201046171234123610.1049/el.2010.1693
– reference: ZhaoQLiXLiuYGengJLiuJUndifferenced ionospheric-free ambiguity resolution using GLONASS data from inhomogeneous stationsGPS Solut20182212610.1007/s10291-017-0691-9
– reference: Reid TGR, Neish AM, Walter TF, Enge PK (2016) Leveraging commercial broadband LEO constellations for navigation. In: Proc. ION GNSS+ 2016, Institute of Navigation, Portland, OR, USA, September 12–16, 2300–2314
– reference: Teunissen PJG, Joosten P, Tiberius CCJM (1999) Geometry-free ambiguity success rates in case of partial fixing. In: Proc. ION NTM 1999, Institute of Navigation, San Diego, CA, USA, January 25–27, 201–207
– reference: GeHLiBGeMZangNNieLShenYSchuhHInitial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS)Remote Sens201810798410.3390/rs10070984
– reference: IS-GPS-200 (2010) Interface specification: Navstar GPS space segment/navigation user interfaces, IS-GPS-200, Revision E, GPS Wing (GPSW) Systems Engineering and Integration, June 8
– reference: GuoKAquinoMVeettilSVIonospheric scintillation intensity fading characteristics and GPS receiver tracking performance at low latitudesGPS Solut20192324310.1007/s10291-019-0835-1
– reference: LaurichesseDMercierFBerthiasJPBrocaPCerriLInteger ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determinationNavigation200956213514910.1002/j.2161-4296.2009.tb01750.x
– reference: LiXMaFLiXLvHBianLJiangZZhangXLEO constellation-augmented multi-GNSS for rapid PPP convergenceJ Geod201993574976410.1007/s00190-018-1195-2
– reference: HuJZhangXLiPMaFPanLMulti-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan UniversityGPS Solut20192411510.1007/s10291-019-0929-9
– reference: ITU-R (2005) Specific attenuation model for rain use in prediction methods. ITU-R Recommendation P.838–3
– reference: TeunissenPJGThe least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimationJ Geod1995701–2658210.1007/BF00863419
– reference: Avila-Rodriguez JA, Wallner S, Won JH, Eissfeller B, Schmitz-Peiffer A, Floch JJ, Colzi E, Gerner JL (2008) Study on a Galileo signal and service plan for C-band. In: Proc. ION GNSS 2008, Institute of Navigation, Savannah, GA, USA, September 16–19, 2515–2529
– reference: ITU-R (2013) Attenuation by atmospheric gases. ITU-R Recommendation P.676–10
– reference: Lawrence D, Cobb HS, Gutt G, Connor MO, Reid TGR, Walter T, Whelan D (2017) Innovation: navigation from LEO. GPS World, June 2017
– reference: XieJKangCEngineering innovation and the development of the BDS-3 navigation constellationEngineering20217555856310.1016/j.eng.2021.04.002
– reference: ITU-R (2009) Attenuation due to clouds and fog. ITU-R Recommendation P.840–4
– reference: Van Dierendonck AJ, Klobuchar J, Hua Q (1993) Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Proc. ION GPS 1993, Institute of Navigation, Salt Lake City, UT, USA, September 22–24, 1333–1342
– reference: SunYXueRZhaoDWangDRadio frequency compatibility evaluation of S band navigation signals for future BeiDouSensors2017175103910.3390/s17051039
– reference: Kouba J (2009) A guide to using International GNSS Service (IGS) products. http://www.acc.igs.org/UsingIGSProductsVer21.pdf
– reference: XueRSunYZhaoDCPM signals for satellite navigation in the S and C bandsSensors2015156131841320010.3390/s150613184
– reference: ZhangXMaFReview of the development of LEO navigation-augmented GNSSActa Geod Cartogr Sin201948910731087in Chinese
– reference: Issler JL, Paonni M, Eissfeller B (2010) Toward centimetric positioning thanks to L- and S-band GNSS and to meta-GNSS signals. In: Proceedings of the 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, Toulouse, France, December 8–10, 1–8
– volume: 15
  start-page: 13184
  issue: 6
  year: 2015
  ident: 1240_CR28
  publication-title: Sensors
  doi: 10.3390/s150613184
– volume: 23
  start-page: 43
  issue: 2
  year: 2019
  ident: 1240_CR5
  publication-title: GPS Solut
  doi: 10.1007/s10291-019-0835-1
– ident: 1240_CR20
– ident: 1240_CR16
– ident: 1240_CR24
– volume: 17
  start-page: 1039
  issue: 5
  year: 2017
  ident: 1240_CR22
  publication-title: Sensors
  doi: 10.3390/s17051039
– volume: 10
  start-page: 984
  issue: 7
  year: 2018
  ident: 1240_CR4
  publication-title: Remote Sens
  doi: 10.3390/rs10070984
– volume: 90
  start-page: 487
  issue: 5
  year: 2016
  ident: 1240_CR2
  publication-title: J Geod
  doi: 10.1007/s00190-016-0888-7
– ident: 1240_CR1
– ident: 1240_CR3
– ident: 1240_CR21
  doi: 10.33012/2016.14729
– ident: 1240_CR13
– ident: 1240_CR11
– volume: 24
  start-page: 15
  issue: 1
  year: 2019
  ident: 1240_CR6
  publication-title: GPS Solut
  doi: 10.1007/s10291-019-0929-9
– volume: 93
  start-page: 749
  issue: 5
  year: 2019
  ident: 1240_CR17
  publication-title: J Geod
  doi: 10.1007/s00190-018-1195-2
– volume: 24
  start-page: 62
  issue: 2
  year: 2020
  ident: 1240_CR19
  publication-title: GPS Solut
  doi: 10.1007/s10291-020-00977-0
– volume: 70
  start-page: 65
  issue: 1–2
  year: 1995
  ident: 1240_CR23
  publication-title: J Geod
  doi: 10.1007/BF00863419
– volume: 8
  start-page: 119
  issue: 3
  year: 2004
  ident: 1240_CR7
  publication-title: GPS Solut
  doi: 10.1007/s10291-004-0098-2
– ident: 1240_CR25
– ident: 1240_CR9
  doi: 10.1109/NAVITEC.2010.5708075
– ident: 1240_CR8
– volume: 48
  start-page: 1073
  issue: 9
  year: 2019
  ident: 1240_CR31
  publication-title: Acta Geod Cartogr Sin
– volume: 22
  start-page: 26
  issue: 1
  year: 2018
  ident: 1240_CR32
  publication-title: GPS Solut
  doi: 10.1007/s10291-017-0691-9
– ident: 1240_CR10
– volume: 7
  start-page: 558
  issue: 5
  year: 2021
  ident: 1240_CR27
  publication-title: Engineering
  doi: 10.1016/j.eng.2021.04.002
– volume: 56
  start-page: 135
  issue: 2
  year: 2009
  ident: 1240_CR15
  publication-title: Navigation
  doi: 10.1002/j.2161-4296.2009.tb01750.x
– volume: 45
  start-page: 505
  issue: 5
  year: 2016
  ident: 1240_CR29
  publication-title: Acta Geod Cartogr Sin
– ident: 1240_CR14
– volume: 18
  start-page: 3919
  issue: 11
  year: 2019
  ident: 1240_CR26
  publication-title: Sensors
  doi: 10.3390/s18113919
– volume: 46
  start-page: 1234
  issue: 17
  year: 2010
  ident: 1240_CR30
  publication-title: Electron Lett
  doi: 10.1049/el.2010.1693
– ident: 1240_CR12
– volume: 12
  start-page: 27
  year: 2015
  ident: 1240_CR18
  publication-title: Satell Appl
SSID ssj0020994
Score 2.3400095
Snippet Due to the spectrum congestion of current navigation signals in the L-band, it is difficult to apply for another two proper frequencies in this band for future...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Ambiguity
Ambiguity resolution (mathematics)
Astronomy
Atmospheric Sciences
Attenuation
Augmentation systems
Automotive Engineering
Bandwidths
Design
Earth and Environmental Science
Earth orbits
Earth Sciences
Electrical Engineering
Fixing
Geophysics/Geodesy
Global positioning systems
GPS
Low earth orbit satellites
Low earth orbits
Microwave landing systems
Navigation systems
Original Article
Phase modulation
Propagation
Radio astronomy
Ratios
Receivers & amplifiers
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Spectrum allocation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6HfQifuJ0Sg7eNNgmbZaeRGVjiE4RB7uVpknnwLX7FPbf-9KmKwru3CSF9_2S93sPoSsdBFJzyYhLWzHx_MglEbhNEgke-IJLHucgsZce7_a9p4E_sBduc1tWWdrE3FCrLDZ35LeUM9BpCAbE3WRKzNQo87pqR2hsozqYYAFyXn9o997e1ykXxD9eUWLvEJ-1HAubseA5aqp-qClNAL9GvN-uqYo3_zyR5p6ns4_2bMiI7wseH6AtnR6iHTu9_HN1hKadWVEQvcIqL8jAWYKf26_EuCiF0-g776ORpThaDscWbJRisxKED0PYig0iC5anChuUw9z0GhjFJJlpjaOxHA2XEKxjyMytoB6jfqf98dgldpQCiUHHFkSDnrquhORMKap4EjDGIPFQ2lESuBiphFKghAocDR4c_BrXTHMRS2F6womEnaBamqX6FGGDKQy04K7U0pNgEgLXF5GSYB1i0GivgdySimFs-4ybcRdfYdUh2VA-hP-FOeVD2HO93jMpumxsXN0smRNajZuHlXw00E3JsOrz_6edbT7tHO3SXEZMsU4T1Razpb6AOGQhL62w_QB7QtiE
  priority: 102
  providerName: ProQuest
Title Frequency design of LEO-based navigation augmentation signals for dual-band ionospheric-free ambiguity resolution
URI https://link.springer.com/article/10.1007/s10291-022-01240-4
https://www.proquest.com/docview/2634670598
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HfQifuJ0jhy8aaBN2qw9TukcfkwRB_NUmibVget0H8L-e1_SdFNRwVMPeUnhfT_yfi8IHaswFIoLRlzaTInnJy5JIGySJOChH3DBUwMSu-nyTs-77Pt9CwqblN3u5ZWk8dSfwG5Ud-lQ3UoAcYh4q6jqQ-2uzbFHW4syC3Ier2ird4jPmo6Fyvx8xtdwtMwxv12LmmjT3kQbNk3ErUKuW2hF5dtozb5Y_jzfQW_tcdEEPcfSNGHgUYavo1uiw5LEefJuZmeMcpzMnoYWYJRjTQkKhyFVxRqFBeS5xBrZMNHzBQYpycZK4WQoBk8zSNAxVONWOXdRrx09nHeIfT6BpGBXU6LANl1XQEEmJZU8CxljUGxI5UgBkktkRoF7VIaOgqgNsYwrpniQikDPgQsytocq-ShX-whrHGGoAu4KJTwBbiB0_SCRAjxCClbs1ZBbcjFO7Wxx_cTFS7yciqw5H8P_YsP5GPacLPa8FpM1_qSul8KJrZVNYsoZ-HlIEIMaOi0Ftlz-_bSD_5EfonVqdEY37NRRZTqeqSPIRaaigaqti8erCL5nUffuvmFU8QOwC9cD
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOcAFsYodH-AEFo2TmOSAEEurAqUgBBK3EMcOIEEKXUD9Kb6RmcShAglunGM7yvh5lnjeDMCGCUNlpHK5I3YT7vmxw2M0mzwOZOgHUskkJ4mdt2Tjxju99W9H4KPkwlBaZakTc0Wt2wn9I98R0sUzjc5AsP_yyqlrFN2uli00ClicmcE7hmzdvZNj3N9NIeq166MGt10FeIJw63GDkHUchXGK1kLLFCN6F31wbapa4QfFOhUCDZsOqwaNGap4aVwjg0QFVB4tSF1cdxTGPGK0VmDssNa6vPoK8dDf8oqU_ir33d2qpelYsp6gLCNBqRBoR7n33RQO_dsfV7K5patPwaR1UdlBgalpGDHZDIzbbukPg1l4rXeKBOwB03kCCGunrFm74GQSNcvit7xuRztjcf_-2ZKbMkYjEewM3WRGDDAcnmlGrIou1TZ4THjaMYbFz-rxvo_BAeuY8mDMwc2_CHkeKlk7MwvAiMMYmkA6yihPoQoKHT-ItUJtlKAG8RbBKaUYJbauObXXeIqGFZlJ8hG-L8olH-Gcra85L0VVjz9Hr5SbE9kT3o2GeFyE7XLDho9_X23p79XWYbxxfd6Mmiets2WYEDleKFFoBSq9Tt-sog_UU2sWeAzu_hvrnx6CFNY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UE_Vi_Iwoag_etIF1W9mORFlQET1Iwq1p1w5JZCAME_57X_cBaNTE81675H2_9P3eQ-hS-77UTNrEovWQOK6wiICwSYTHfNdjkoUpSOyxw1pd577n9lZQ_Gm3e_EkmWEazJSmOKmOVVRdAb5R07FDTVsBxCTirKMNcMeW0fQubSxKLsh_nKzFvkZcu17LYTM_3_E1NC3zzW9PpGnkCXbRTp4y4kYm4z20puN9tJVvL3-dH6D3YJI1RM-xShsy8CjC7eYTMSFK4Vh8pHM0RjEWs_4wBxvF2FCC8mFIW7FBZAF5rLBBOUzNrIFBSKKJ1lgM5aA_g2QdQ2WeK-oh6gbNl5sWyVcpkBBsLCEa7NSyJBRnSlHFIt-2bSg8lK4pCVIUKqIUOKH8moYIDnGNaVszL5SemQnnRfYRKsWjWB8jbDCFvvaYJbV0JLgE33I9oSR4hxAs2ikjq-AiD_M542bdxRtfTkg2nOfwP55ynsOZq8WZcTZl40_qSiEcnlvclFNmg8-HZNEro-tCYMvPv9928j_yC7T5fBvw9l3n4RRt01R9TB9PBZWSyUyfQYqSyPNUCz8BG-LbBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frequency+design+of+LEO-based+navigation+augmentation+signals+for+dual-band+ionospheric-free+ambiguity+resolution&rft.jtitle=GPS+solutions&rft.au=Ma%2C+Fujian&rft.au=Zhang%2C+Xiaohong&rft.au=Hu%2C+Jiahuan&rft.au=Li%2C+Pan&rft.date=2022-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1080-5370&rft.eissn=1521-1886&rft.volume=26&rft.issue=2&rft_id=info:doi/10.1007%2Fs10291-022-01240-4&rft.externalDocID=10_1007_s10291_022_01240_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1080-5370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1080-5370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1080-5370&client=summon