Harnessing fuzzy neural network for gear fault diagnosis with limited data labels

Diagnosis and prognosis of gear systems play an important role in modern manufacturing. While first-principle-based inverse analysis is subject to various limitations, data-driven approaches such as many machine learning techniques have shown great promise in recent years. Nevertheless, major challe...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 115; no. 4; pp. 1005 - 1019
Main Authors Zhou, Kai, Tang, Jiong
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diagnosis and prognosis of gear systems play an important role in modern manufacturing. While first-principle-based inverse analysis is subject to various limitations, data-driven approaches such as many machine learning techniques have shown great promise in recent years. Nevertheless, major challenges remain. Machine learning generally requires large amount of high-quality training data which may not be available for many industrial systems. In particular, while gear faults are continuous in nature and exhibit many different scenarios, in practical situations owing to the high cost in data acquisition especially for fault scenarios, only a small number of discrete classes of faults, i.e., fault types and severities, can be recorded and employed in training. As such, the neural networks trained will need to deal with unseen faults when they are actually implemented. To tackle this challenge, in this research, we develop a fuzzy classification approach capable of handling fault scenarios that are not included in the training dataset. Through the integration of a fuzzification procedure, this fuzzy neural network (FNN) can produce classification outcome with probability and confidence level. An unseen fault scenario will be classified into the nearest fault class with probability, effectively yielding the diagnosis result under limited data. While fault features in gear vibration signals are hidden and have complex nonlinear relations with respect to fault scenarios, it is found that the kernel principal component analysis (KPCA) can enable the FNN to facilitate the correlation of fault features. Systematic case studies using experimental data acquired from a lab-scale gear system are carried out to validate the new approach.
AbstractList Diagnosis and prognosis of gear systems play an important role in modern manufacturing. While first-principle-based inverse analysis is subject to various limitations, data-driven approaches such as many machine learning techniques have shown great promise in recent years. Nevertheless, major challenges remain. Machine learning generally requires large amount of high-quality training data which may not be available for many industrial systems. In particular, while gear faults are continuous in nature and exhibit many different scenarios, in practical situations owing to the high cost in data acquisition especially for fault scenarios, only a small number of discrete classes of faults, i.e., fault types and severities, can be recorded and employed in training. As such, the neural networks trained will need to deal with unseen faults when they are actually implemented. To tackle this challenge, in this research, we develop a fuzzy classification approach capable of handling fault scenarios that are not included in the training dataset. Through the integration of a fuzzification procedure, this fuzzy neural network (FNN) can produce classification outcome with probability and confidence level. An unseen fault scenario will be classified into the nearest fault class with probability, effectively yielding the diagnosis result under limited data. While fault features in gear vibration signals are hidden and have complex nonlinear relations with respect to fault scenarios, it is found that the kernel principal component analysis (KPCA) can enable the FNN to facilitate the correlation of fault features. Systematic case studies using experimental data acquired from a lab-scale gear system are carried out to validate the new approach.
Author Zhou, Kai
Tang, Jiong
Author_xml – sequence: 1
  givenname: Kai
  surname: Zhou
  fullname: Zhou, Kai
  organization: Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University
– sequence: 2
  givenname: Jiong
  orcidid: 0000-0002-6825-9049
  surname: Tang
  fullname: Tang, Jiong
  email: jiong.tang@uconn.edu
  organization: Department of Mechanical Engineering, University of Connecticut
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6v52M1uj1LUCgUR9Bymm2RN3SY1yVLaX-_WFQQPPc3lfWbeeSZo5LzTCF1TcksJKe8iIbQkGWE0IyUreCbO0JjmnGec0GKExoSJKuOlqC7QJMZ1HxdUVGP0uoDgdIzWNdh0h8MeO90FaPuRdj58YuMDbjQEbKBrE1YWGuejjXhn0wdu7cYmrbCCBLiFlW7jJTo30EZ99Tun6P3x4W2-yJYvT8_z-2VWczpLmWaC9y0YlKSYqVzNtDF1BblS_T9sJXIOhVH5irGy5nlFFRjOCgpFbXSlTMGn6GbYuw3-q9MxybXvgutPSlbkFZsJTkWfqoZUHXyMQRtZ2wTJepcC2FZSIo8C5SBQ9gLlj0B5RNk_dBvsBsL-NMQHKPZh1-jw1-oE9Q0I_YWB
CitedBy_id crossref_primary_10_1177_10775463221091601
crossref_primary_10_1088_1361_6501_ad0f6d
crossref_primary_10_1177_10775463231211403
crossref_primary_10_3934_mbe_2023392
crossref_primary_10_1007_s13369_023_07789_7
crossref_primary_10_1007_s40313_023_01023_3
crossref_primary_10_1115_1_4065442
crossref_primary_10_1016_j_ifacol_2022_11_279
crossref_primary_10_3390_machines10080659
crossref_primary_10_3390_s24134258
crossref_primary_10_3390_electronics10182266
crossref_primary_10_1007_s00170_022_10392_z
crossref_primary_10_3390_s22155543
crossref_primary_10_1016_j_jmsy_2024_11_020
crossref_primary_10_1109_JSEN_2022_3178137
crossref_primary_10_1002_rnc_7908
crossref_primary_10_1007_s00170_021_08392_6
crossref_primary_10_3390_app13021134
crossref_primary_10_1016_j_aei_2022_101750
crossref_primary_10_1088_1361_6501_ad2bcb
crossref_primary_10_3390_act11030067
crossref_primary_10_1186_s10033_023_00966_7
crossref_primary_10_1016_j_jmsy_2024_10_003
crossref_primary_10_3390_e26040304
crossref_primary_10_3390_s23249679
crossref_primary_10_1007_s13369_024_09716_w
Cites_doi 10.1109/ACCESS.2019.2890979
10.1016/j.measurement.2018.08.002
10.1109/TIE.2016.2574987
10.1016/j.compind.2014.06.002
10.1016/j.knosys.2019.105313
10.1007/s10845-016-1268-0
10.1016/j.measurement.2017.07.017
10.1016/j.ymssp.2011.12.013
10.1016/j.engfailanal.2017.08.028
10.3390/s20113105
10.1017/9781108583664
10.1016/j.renene.2017.03.035
10.1016/j.engfailanal.2012.08.015
10.1016/j.neucom.2018.05.024
10.1109/TEC.2013.2295301
10.1016/j.ymssp.2018.05.050
10.1016/j.neucom.2013.04.042
10.1016/j.ymssp.2014.09.010
10.1016/j.jmsy.2018.01.003
10.1007/s00170-013-4797-0
10.1016/j.compind.2019.06.001
10.1016/j.jsv.2018.06.055
10.1007/s00170-019-04726-7
10.1007/s00170-003-1830-8
10.1016/j.measurement.2019.03.065
10.1016/j.neucom.2009.08.014
10.1016/j.ymssp.2017.07.001
10.1109/ACCESS.2018.2837621
10.1006/mssp.2001.1415
10.1016/j.measurement.2012.10.026
10.1177/1475921715591873
10.1016/j.eswa.2008.01.010
10.1007/s00170-020-05315-9
10.1016/j.sigpro.2013.04.015
10.1016/j.ymssp.2011.02.017
10.1016/j.jsv.2018.09.054
10.1016/j.measurement.2019.05.074
10.1016/j.compind.2018.12.001
10.1007/978-981-15-1532-3_22
10.1177/1475921719887496
10.5772/intechopen.79552
10.1007/978-0-387-30164-8
10.1142/5493
10.1016/j.compind.2018.02.015
10.1109/TIM.2020.3011584
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-021-07253-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 1019
ExternalDocumentID 10_1007_s00170_021_07253_6
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1741174
  funderid: http://dx.doi.org/10.13039/501100008982
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-e2630012a7059d4d9effc8a4dd0072b643a5fd4b227c3481daf3251a5cfe8df53
IEDL.DBID U2A
ISSN 0268-3768
IngestDate Fri Jul 25 11:13:09 EDT 2025
Thu Apr 24 23:00:55 EDT 2025
Tue Jul 01 02:01:04 EDT 2025
Fri Feb 21 02:48:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Gear fault diagnosis
Fuzzy neural network (FNN)
Kernel principal component analysis (KPCA)
Unseen fault scenarios
Fuzzy classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e2630012a7059d4d9effc8a4dd0072b643a5fd4b227c3481daf3251a5cfe8df53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6825-9049
PQID 2548296316
PQPubID 2044010
PageCount 15
ParticipantIDs proquest_journals_2548296316
crossref_citationtrail_10_1007_s00170_021_07253_6
crossref_primary_10_1007_s00170_021_07253_6
springer_journals_10_1007_s00170_021_07253_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Yan, Gao, Chen (CR43) 2014; 96
Soualhi, Nguyen, Soualhi, Medjaher, Hemsas (CR33) 2019; 141
Deng, Tian (CR12) 2013; 121
CR38
Chen, Zhang, Zhai, Wang, Liu (CR8) 2017; 82
Nguyen, Prosvirin, Kim (CR27) 2020; 20
CR31
Cheng, Cheng, Shen, Qiu, Zhang (CR10) 2013; 46
CR30
Moosavian, Khazaee, Ahmadi, Khazaee, Najafi (CR26) 2015; 14
Chen, Zhou, Guo, Lin, Lyu, Lu (CR9) 2019; 7
Wu, Jiang, Ding, Feng, Chen (CR41) 2019; 108
CR7
Li, Cheng, Liu, Chen (CR21) 2018; 130
Zhang, Tang (CR48) 2018; 90
Youcef Khodja, Guersi, Saadi, Boutasseta (CR44) 2020; 106
Wang, Wang, Wang (CR40) 2018; 310
He, Shao, Wang, Lin, Cheng, Yang (CR18) 2020; 191
Jing, Zhao, Li, Xu (CR19) 2017; 111
Buzzoni, Antoni, D’Elia (CR5) 2018; 432
Ahuja, Ramteke, Parey (CR1) 2020; 1096
Li, Pang, Yang (CR23) 2019; 145
CR17
Boyd, Vandenberghe (CR4) 2018
CR15
CR13
Li, Feng, Liang, Zou (CR22) 2019; 439
CR11
Saravanan, Cholarirajan, Ramachandram (CR32) 2009; 36
Yampikulsakul, Byon, Huang, Sheng, You (CR42) 2014; 29
Wang, Cai, Zhu, Huang, Zhang (CR39) 2015; 54
Zhang, Nie, Xiang (CR47) 2010; 73
Gao, He, Woo, Tian, Liu, Hu (CR16) 2016; 63
Bishop (CR3) 2006
Amarouayache, Saadi, Guersi, Boutasseta (CR2) 2020; 107
Wang, Yan, Li, Gao, Zhao (CR36) 2019; 111
Zhao, Yan, Chen, Mao, Wang, Gao (CR49) 2019; 115
Li, Yan, Yuan, Peng, Li (CR24) 2011; 25
CR25
Zhang, Lu, Chu (CR46) 2017; 109
Randall, Antoni, Chobsaard (CR29) 2001; 15
Wang, Ma, Zhang, Gao, Wu (CR35) 2018; 48
Zhang, Qin, Wu, Zhai (CR45) 2014; 2014
Fakhfakh, Chaari, Haddar (CR14) 2005; 25
CR20
Pandya, Parey (CR28) 2013; 27
Cao, Zhang, Tang (CR6) 2018; 6
Wang, Gao, Yuan, Fan, Zhang (CR37) 2019; 30
Zhang, Wang, Wang (CR50) 2013; 68
Villa, Renones, Peran, De Miguel (CR34) 2012; 29
LF Villa (7253_CR34) 2012; 29
7253_CR25
Z He (7253_CR18) 2020; 191
RB Randall (7253_CR29) 2001; 15
G Cheng (7253_CR10) 2013; 46
L Jing (7253_CR19) 2017; 111
7253_CR20
T Fakhfakh (7253_CR14) 2005; 25
Y Pandya (7253_CR28) 2013; 27
X Deng (7253_CR12) 2013; 121
B Gao (7253_CR16) 2016; 63
Y Zhang (7253_CR46) 2017; 109
S Boyd (7253_CR4) 2018
A Youcef Khodja (7253_CR44) 2020; 106
Y Li (7253_CR21) 2018; 130
R Zhao (7253_CR49) 2019; 115
Z Li (7253_CR24) 2011; 25
J Wang (7253_CR35) 2018; 48
7253_CR17
7253_CR15
A Moosavian (7253_CR26) 2015; 14
7253_CR13
Z Zhang (7253_CR50) 2013; 68
P Cao (7253_CR6) 2018; 6
7253_CR11
F Li (7253_CR23) 2019; 145
J Wang (7253_CR36) 2019; 111
C Zhang (7253_CR47) 2010; 73
CM Bishop (7253_CR3) 2006
R Yan (7253_CR43) 2014; 96
AS Ahuja (7253_CR1) 2020; 1096
S Wang (7253_CR39) 2015; 54
Y Li (7253_CR22) 2019; 439
N Yampikulsakul (7253_CR42) 2014; 29
J Chen (7253_CR9) 2019; 7
M Buzzoni (7253_CR5) 2018; 432
Z Chen (7253_CR8) 2017; 82
C Wu (7253_CR41) 2019; 108
S Zhang (7253_CR48) 2018; 90
7253_CR38
7253_CR7
Z Wang (7253_CR40) 2018; 310
M Soualhi (7253_CR33) 2019; 141
7253_CR30
N Saravanan (7253_CR32) 2009; 36
IIE Amarouayache (7253_CR2) 2020; 107
7253_CR31
J Wang (7253_CR37) 2019; 30
CD Nguyen (7253_CR27) 2020; 20
J Zhang (7253_CR45) 2014; 2014
References_xml – volume: 7
  start-page: 9022
  year: 2019
  end-page: 9031
  ident: CR9
  article-title: An active learning method based on uncertainty and complexity for gearbox fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2890979
– volume: 130
  start-page: 94
  year: 2018
  end-page: 104
  ident: CR21
  article-title: Study on planetary gear fault diagnosis based on variational mode decomposition and deep neural networks
  publication-title: Measurement: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2018.08.002
– volume: 63
  start-page: 6305
  issue: 10
  year: 2016
  end-page: 6315
  ident: CR16
  article-title: Multidimensional tensor-based inductive thermography with multiple physical fields for offshore wind turbine gear inspection
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2574987
– volume: 2014
  start-page: 1115
  year: 2014
  end-page: 1125
  ident: CR45
  article-title: Fuzzy neural network-based rescheduling decision mechanism for semiconductor manufacturing
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2014.06.002
– volume: 191
  start-page: 105313
  year: 2020
  ident: CR18
  article-title: Deep transfer multi-wavelet auto-encoder for intelligent fault diagnosis of gearbox with few target training samples
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105313
– volume: 30
  start-page: 605
  issue: 2
  year: 2019
  end-page: 621
  ident: CR37
  article-title: A joint particle filter and expectation maximization approach to machine condition prognosis
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-016-1268-0
– volume: 111
  start-page: 1
  year: 2017
  end-page: 10
  ident: CR19
  article-title: A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox
  publication-title: Measurement: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2017.07.017
– volume: 29
  start-page: 436
  year: 2012
  end-page: 446
  ident: CR34
  article-title: Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2011.12.013
– volume: 82
  start-page: 72
  year: 2017
  end-page: 81
  ident: CR8
  article-title: Improved analytical methods for calculation of gear tooth fillet-foundation stiffness with tooth root crack
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2017.08.028
– ident: CR25
– volume: 20
  start-page: 3105
  issue: 11
  year: 2020
  ident: CR27
  article-title: A reliable fault diagnosis method for a gearbox system with varying rotational speeds
  publication-title: Sensors
  doi: 10.3390/s20113105
– year: 2018
  ident: CR4
  publication-title: 2018, Introduction to applied linear algebra: vectors, matrices, and least squares
  doi: 10.1017/9781108583664
– volume: 109
  start-page: 449
  year: 2017
  end-page: 460
  ident: CR46
  article-title: Planet gear fault localization for wind turbine gearbox using acoustic emission signals
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.03.035
– volume: 27
  start-page: 286
  year: 2013
  end-page: 296
  ident: CR28
  article-title: Failure path based modified gear mesh stiffness for spur gear pair with tooth root crack
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2012.08.015
– volume: 310
  start-page: 213
  year: 2018
  end-page: 222
  ident: CR40
  article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.024
– volume: 29
  start-page: 288
  issue: 2
  year: 2014
  end-page: 299
  ident: CR42
  article-title: Condition monitoring of wind power system with nonparametric regression analysis
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2013.2295301
– ident: CR15
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: CR49
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 121
  start-page: 298
  year: 2013
  end-page: 308
  ident: CR12
  article-title: Nonlinear process fault pattern recognition using statistics kernel PCA similarity factor
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.042
– ident: CR11
– volume: 54
  start-page: 16
  year: 2015
  end-page: 40
  ident: CR39
  article-title: Transient signal analysis based on Levenberg-Marquardt method for fault feature extraction of rotating machines
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2014.09.010
– volume: 48
  start-page: 144
  year: 2018
  end-page: 156
  ident: CR35
  article-title: Deep learning for smart manufacturing: methods and applications
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2018.01.003
– volume: 68
  start-page: 763
  issue: 1-4
  year: 2013
  end-page: 773
  ident: CR50
  article-title: Intelligent fault diagnosis and prognosis approach for rotating machinery integrating wavelet transform, principal component analysis and artificial neural networks
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-013-4797-0
– volume: 111
  start-page: 1
  year: 2019
  end-page: 14
  ident: CR36
  article-title: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: application to tool wear prediction
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2019.06.001
– volume: 432
  start-page: 569
  year: 2018
  end-page: 601
  ident: CR5
  article-title: Blind deconvolution based on cyclostationarity maximization and its application to fault identification
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.06.055
– volume: 106
  start-page: 1737
  issue: 5-6
  year: 2020
  end-page: 1751
  ident: CR44
  article-title: Rolling element bearing fault diagnosis for rotating machinery using vibration spectrum imaging and convolutional neural networks
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-019-04726-7
– volume: 25
  start-page: 542
  issue: 5-6
  year: 2005
  end-page: 550
  ident: CR14
  article-title: Numerical and experimental analysis of a gear system with teeth defects
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-003-1830-8
– volume: 141
  start-page: 37
  year: 2019
  end-page: 51
  ident: CR33
  article-title: Health monitoring of bearing and gear faults by using a new health indicator extracted from current signals
  publication-title: Measurement: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2019.03.065
– volume: 73
  start-page: 959
  issue: 4-6
  year: 2010
  end-page: 967
  ident: CR47
  article-title: A general kernelization framework for learning algorithms based on kernel PCA
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.08.014
– ident: CR30
– volume: 90
  start-page: 711
  year: 2018
  end-page: 729
  ident: CR48
  article-title: Integrating angle-frequency domain synchronous averaging technique with feature extraction for gear fault diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.07.001
– volume: 6
  start-page: 26241
  year: 2018
  end-page: 26253
  ident: CR6
  article-title: Pre-processing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2837621
– volume: 15
  start-page: 945
  issue: 5
  year: 2001
  end-page: 962
  ident: CR29
  article-title: The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals
  publication-title: Mech Syst Signal Process
  doi: 10.1006/mssp.2001.1415
– volume: 46
  start-page: 1137
  issue: 3
  year: 2013
  end-page: 1146
  ident: CR10
  article-title: Gear fault identification based on Hilbert-Huang transform and SOM neural network
  publication-title: Measurement: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2012.10.026
– volume: 14
  start-page: 402
  issue: 5
  year: 2015
  end-page: 410
  ident: CR26
  article-title: Fault diagnosis and classification of water pump using adaptive neuro-fuzzy inference system based on vibration signals
  publication-title: Struct Health Monit
  doi: 10.1177/1475921715591873
– volume: 36
  start-page: 3119
  year: 2009
  end-page: 3135
  ident: CR32
  article-title: Vibration-based fault diagnosis of spur bevel gear box using fuzzy technique
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.01.010
– ident: CR38
– volume: 107
  start-page: 4077
  issue: 9-10
  year: 2020
  end-page: 4095
  ident: CR2
  article-title: Bearing fault diagnostics using EEMD processing and convolutional neural network methods
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05315-9
– ident: CR17
– ident: CR31
– volume: 96
  start-page: 1
  year: 2014
  end-page: 15
  ident: CR43
  article-title: Wavelets for fault diagnosis of rotary machines: a review with applications
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2013.04.015
– ident: CR13
– volume: 25
  start-page: 2589
  issue: 7
  year: 2011
  end-page: 2607
  ident: CR24
  article-title: Virtual prototype and experimental research on gear multi-fault diagnosis using wavelet-autoregressive model and principal component analysis method
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2011.02.017
– volume: 439
  start-page: 271
  year: 2019
  end-page: 286
  ident: CR22
  article-title: A fault diagnosis method for planetary gearboxes under non-stationary working conditions using improved vold-Karlman filter and multi-scale sample entropy
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.09.054
– volume: 145
  start-page: 45
  year: 2019
  end-page: 54
  ident: CR23
  article-title: Motor current signal analysis using deep neural network for planetary gear fault diagnosis
  publication-title: Measurement: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2019.05.074
– volume: 108
  start-page: 53
  year: 2019
  end-page: 61
  ident: CR41
  article-title: Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2018.12.001
– year: 2006
  ident: CR3
– volume: 1096
  start-page: 473
  year: 2020
  end-page: 496
  ident: CR1
  article-title: Vibration-based fault diagnosis of a bevel and spur gearbox using continuous wavelet transform and adaptive neural-fuzzy inference system
  publication-title: Adv Intelligent Syst Comp
  doi: 10.1007/978-981-15-1532-3_22
– ident: CR7
– ident: CR20
– volume: 2014
  start-page: 1115
  year: 2014
  ident: 7253_CR45
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2014.06.002
– ident: 7253_CR38
– ident: 7253_CR15
– volume: 82
  start-page: 72
  year: 2017
  ident: 7253_CR8
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2017.08.028
– ident: 7253_CR13
  doi: 10.1177/1475921719887496
– volume: 1096
  start-page: 473
  year: 2020
  ident: 7253_CR1
  publication-title: Adv Intelligent Syst Comp
  doi: 10.1007/978-981-15-1532-3_22
– volume: 109
  start-page: 449
  year: 2017
  ident: 7253_CR46
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.03.035
– volume: 111
  start-page: 1
  year: 2017
  ident: 7253_CR19
  publication-title: Measurement: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2017.07.017
– volume: 20
  start-page: 3105
  issue: 11
  year: 2020
  ident: 7253_CR27
  publication-title: Sensors
  doi: 10.3390/s20113105
– volume: 115
  start-page: 213
  year: 2019
  ident: 7253_CR49
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 439
  start-page: 271
  year: 2019
  ident: 7253_CR22
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.09.054
– ident: 7253_CR30
  doi: 10.5772/intechopen.79552
– volume: 107
  start-page: 4077
  issue: 9-10
  year: 2020
  ident: 7253_CR2
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05315-9
– volume: 48
  start-page: 144
  year: 2018
  ident: 7253_CR35
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2018.01.003
– volume: 106
  start-page: 1737
  issue: 5-6
  year: 2020
  ident: 7253_CR44
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-019-04726-7
– ident: 7253_CR31
  doi: 10.1007/978-0-387-30164-8
– ident: 7253_CR20
– volume: 73
  start-page: 959
  issue: 4-6
  year: 2010
  ident: 7253_CR47
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.08.014
– volume: 25
  start-page: 2589
  issue: 7
  year: 2011
  ident: 7253_CR24
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2011.02.017
– volume: 108
  start-page: 53
  year: 2019
  ident: 7253_CR41
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2018.12.001
– volume: 130
  start-page: 94
  year: 2018
  ident: 7253_CR21
  publication-title: Measurement: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2018.08.002
– volume: 15
  start-page: 945
  issue: 5
  year: 2001
  ident: 7253_CR29
  publication-title: Mech Syst Signal Process
  doi: 10.1006/mssp.2001.1415
– volume: 191
  start-page: 105313
  year: 2020
  ident: 7253_CR18
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105313
– volume: 36
  start-page: 3119
  year: 2009
  ident: 7253_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.01.010
– ident: 7253_CR17
– ident: 7253_CR25
  doi: 10.1142/5493
– volume: 121
  start-page: 298
  year: 2013
  ident: 7253_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.042
– volume: 111
  start-page: 1
  year: 2019
  ident: 7253_CR36
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2019.06.001
– volume: 46
  start-page: 1137
  issue: 3
  year: 2013
  ident: 7253_CR10
  publication-title: Measurement: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2012.10.026
– volume: 145
  start-page: 45
  year: 2019
  ident: 7253_CR23
  publication-title: Measurement: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2019.05.074
– volume: 25
  start-page: 542
  issue: 5-6
  year: 2005
  ident: 7253_CR14
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-003-1830-8
– volume: 29
  start-page: 436
  year: 2012
  ident: 7253_CR34
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2011.12.013
– ident: 7253_CR7
  doi: 10.1016/j.compind.2018.02.015
– volume: 68
  start-page: 763
  issue: 1-4
  year: 2013
  ident: 7253_CR50
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-013-4797-0
– volume: 27
  start-page: 286
  year: 2013
  ident: 7253_CR28
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2012.08.015
– volume: 14
  start-page: 402
  issue: 5
  year: 2015
  ident: 7253_CR26
  publication-title: Struct Health Monit
  doi: 10.1177/1475921715591873
– volume: 7
  start-page: 9022
  year: 2019
  ident: 7253_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2890979
– volume: 432
  start-page: 569
  year: 2018
  ident: 7253_CR5
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.06.055
– volume: 6
  start-page: 26241
  year: 2018
  ident: 7253_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2837621
– volume: 96
  start-page: 1
  year: 2014
  ident: 7253_CR43
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2013.04.015
– volume-title: Pattern recognition and machine learning
  year: 2006
  ident: 7253_CR3
– ident: 7253_CR11
  doi: 10.1109/TIM.2020.3011584
– volume: 29
  start-page: 288
  issue: 2
  year: 2014
  ident: 7253_CR42
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2013.2295301
– volume: 141
  start-page: 37
  year: 2019
  ident: 7253_CR33
  publication-title: Measurement: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2019.03.065
– volume-title: 2018, Introduction to applied linear algebra: vectors, matrices, and least squares
  year: 2018
  ident: 7253_CR4
  doi: 10.1017/9781108583664
– volume: 90
  start-page: 711
  year: 2018
  ident: 7253_CR48
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.07.001
– volume: 54
  start-page: 16
  year: 2015
  ident: 7253_CR39
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2014.09.010
– volume: 310
  start-page: 213
  year: 2018
  ident: 7253_CR40
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.024
– volume: 63
  start-page: 6305
  issue: 10
  year: 2016
  ident: 7253_CR16
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2574987
– volume: 30
  start-page: 605
  issue: 2
  year: 2019
  ident: 7253_CR37
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-016-1268-0
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.5195742
Snippet Diagnosis and prognosis of gear systems play an important role in modern manufacturing. While first-principle-based inverse analysis is subject to various...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1005
SubjectTerms Artificial neural networks
CAE) and Design
Classification
Computer-Aided Engineering (CAD
Confidence intervals
Data acquisition
Engineering
Fault diagnosis
Faults
First principles
Fuzzy logic
Industrial and Production Engineering
Machine learning
Mechanical Engineering
Media Management
Neural networks
Original Article
Principal components analysis
Statistical analysis
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrG-yMGbBjfZTZqcRKWlCBYVC70tySYRobRq24P-eie72VYFPS7Z5DD5ZjLJzHyD0CncELgBLSOJNJJkquBEsSIhzmjKjBLalZ3n7vqiN8huh3wYH9ymMa2ytomlobaTIryRX8BFRjJACxWXr28kdI0K0dXYQmMVNcEES9lAzetO__6xRhRV7dAVc4E4pkIr-iWi04ynVZwrxh0ELYvn4GIig-rJWGZTFtuVVDMkpDQkbcZTIn4eZUv_9FdItTypuptoI7qY-KrCxBZaceNttP6NeHAHPfT0e7Bx8IH9_PPzAwdeS5g0rrLCMbiy-BmUAHs9H82wrRLyXqY4vNviUVUVhUN6KQYYwfm6iwbdztNNj8TmCqQArZsRxwLZFmW6DQ6Wzaxy3hdSZ9YGMnEDjorm3maGsXYRinWt9in4QpoX3knrebqHGuPJ2O0jLLSCrdXMGtgknjjtEsWE0lQwb6hIWojWcsqLyDweGmCM8gVncinbHGSbl7LNRQudLea8Vrwb__59VIs_jzo4zZeIaaHzekuWw3-vdvD_aodojVUoIAk9Qo3Z-9wdg2cyMycRfl_X4dkv
  priority: 102
  providerName: ProQuest
Title Harnessing fuzzy neural network for gear fault diagnosis with limited data labels
URI https://link.springer.com/article/10.1007/s00170-021-07253-6
https://www.proquest.com/docview/2548296316
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62vehBfGK1lhy8aWCT3aSbY5U-UCwqFuppSTaJCKVKHwf7653so1VRwdOyJNldJl-SmZ2ZbxA6AwuBa1hlJIh1TCKZciJZGhCrFWVaCmWzynO3A9EfRtcjPiqSwmZltHvpksx26lWyW0b1QnxIQdBiPCSigmocbHcfyDVk7RJFVLZ8JcwVypj05efXKA4jHua-rcLXIGiWMAfGSOyXW1yk1vz8zq_H11on_eZGzU6n7g7aLtRK3M5xsIs27GQPbX0iG9xH93019fsa3GC3WC7fseeyhEGTPBIcg_qKnwH42KnFeI5NHoT3MsP-Xy0e55lQ2IeUYoAOnKkHaNjtPF71SVFQgaSw0ubEMk-wRZlqgVJlIiOtc2msImM8gbgG5URxZyLNWCv1CbpGuRD0H8VTZ2PjeHiIqpPXiT1CWCgJ06mY0WBh8sAqG0gmpKKCOU1FUEe0lFOSFmzjvujFOFnxJGeyTUC2SSbbRNTR-WrMW8618WfvRin-pFh3swQ-Jmawp1BoviinZN38-9OO_9f9BG2yHBUkoA1UnU8X9hS0k7luokrc7TVRrd17uunA9bIzuHtoZhD9AL2A2Ko
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOLQ9IGipujx9aE9gNXYSb3xACNFul_KQKoHELbVju6q0Wh67KwQ_it_IjJPsUqRy4xgltqLxNy_PC-Azegi5RS7jSWELnukq51pWCffWCGm1Mj5Onjs5Vf3z7OdFfjEHD20tDKVVtjIxCmp3WdEd-Vd0ZAqJaBFq7-qa09Qoiq62IzRqWBz5u1t02Ua7h9_wfL9I2ft-dtDnzVQBXiHcxtxL6jIlpOmiZeEyp30IVWEy56iLtkUNbfLgMitlt6IqVWdCikaAyavgCxdoSgSK_IUsRU1Olem9Hy1-he7SDM4pvqWmwfcz_kmzPK2jak2UQ4lYqoduUEGMXjRFPbG0Lza24ZRAgX-Vp1z9qzhn1vCzAG7Ui70lWGwMWrZfI3AZ5vzwPbx70ubwA_zqmxuSqPjAwuT-_o5RF01cNKxz0BkazuwP0pYFMxmMmavT__6OGN0Ss0Fdg8UomZUhaFGbr8D5qxD9I8wPL4f-EzBlNALJSGcREnnijU-0VNoIJYMVKumAaOlUVk2fcxq3MSinHZojbUukbRlpW6oObE_XXNVdPl78er0lf9lw_Kic4bMDO-2RzF7_f7fVl3fbgjf9s5Pj8vjw9GgN3soaETwR6zA_vpn4DbSJxnYzApHB79dG_iOr2hUk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA6LguhBfOLbHPSkYZtsmzYHD4vrsroqCi7srSZNIsJSxe0i-qv8iU762FVRwYPHkqa0k28yk87MNwjtwQkhUKBlxItURHyRBESwxCNGScqU4NLknecuLnmn55_1g34NvVW1MHm2exWSLGoaHEtTmtUfta2PC99y2hfi0gu8kAUNwsu0yq55eYZD2_DotAUrvM9Y--TmuEPKvgIkAcBlxDDHM0WZDMG30L4Wxtokkr7WjkdbgY2WgdW-YixMXJ2qlrYBboAMEmsibV2fCNj0p31XfQwa1GPNCsFUhK4L5xjhTIBDE040qOEHjSKuVsY5OM2L9eAgFDlVj8qynu-_8bPpnPjDX0K4uWVsL6D50qXFzQKDi6hm0iU094HocBldd-ST21PhAtvR6-sLdjyaMCktstAxuM74DmSLrRwNMqyLBMD7IXb_ifGgqMLCLp0VA2zBnq-g3r8IfRVNpQ-pWUOYSwFQkkwrON0GnpHGE4wLSTmzinJvHdFKTnFSMp27hhuDeMzRnMs2BtnGuWxjvo4OxnMeC56PX-_eqsQflzo_jOFlIgb7GYXhw2pJJsM_P23jb7fvopmrVjs-P73sbqJZVgCEeHQLTWVPI7MNTlKmdnJcYnT734rwDgmaFkM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+fuzzy+neural+network+for+gear+fault+diagnosis+with+limited+data+labels&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Zhou%2C+Kai&rft.au=Tang%2C+Jiong&rft.date=2021-07-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=115&rft.issue=4&rft.spage=1005&rft.epage=1019&rft_id=info:doi/10.1007%2Fs00170-021-07253-6&rft.externalDocID=10_1007_s00170_021_07253_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon