Harnessing fuzzy neural network for gear fault diagnosis with limited data labels
Diagnosis and prognosis of gear systems play an important role in modern manufacturing. While first-principle-based inverse analysis is subject to various limitations, data-driven approaches such as many machine learning techniques have shown great promise in recent years. Nevertheless, major challe...
Saved in:
Published in | International journal of advanced manufacturing technology Vol. 115; no. 4; pp. 1005 - 1019 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.07.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diagnosis and prognosis of gear systems play an important role in modern manufacturing. While first-principle-based inverse analysis is subject to various limitations, data-driven approaches such as many machine learning techniques have shown great promise in recent years. Nevertheless, major challenges remain. Machine learning generally requires large amount of high-quality training data which may not be available for many industrial systems. In particular, while gear faults are continuous in nature and exhibit many different scenarios, in practical situations owing to the high cost in data acquisition especially for fault scenarios, only a small number of discrete classes of faults, i.e., fault types and severities, can be recorded and employed in training. As such, the neural networks trained will need to deal with unseen faults when they are actually implemented. To tackle this challenge, in this research, we develop a fuzzy classification approach capable of handling fault scenarios that are not included in the training dataset. Through the integration of a fuzzification procedure, this fuzzy neural network (FNN) can produce classification outcome with probability and confidence level. An unseen fault scenario will be classified into the nearest fault class with probability, effectively yielding the diagnosis result under limited data. While fault features in gear vibration signals are hidden and have complex nonlinear relations with respect to fault scenarios, it is found that the kernel principal component analysis (KPCA) can enable the FNN to facilitate the correlation of fault features. Systematic case studies using experimental data acquired from a lab-scale gear system are carried out to validate the new approach. |
---|---|
AbstractList | Diagnosis and prognosis of gear systems play an important role in modern manufacturing. While first-principle-based inverse analysis is subject to various limitations, data-driven approaches such as many machine learning techniques have shown great promise in recent years. Nevertheless, major challenges remain. Machine learning generally requires large amount of high-quality training data which may not be available for many industrial systems. In particular, while gear faults are continuous in nature and exhibit many different scenarios, in practical situations owing to the high cost in data acquisition especially for fault scenarios, only a small number of discrete classes of faults, i.e., fault types and severities, can be recorded and employed in training. As such, the neural networks trained will need to deal with unseen faults when they are actually implemented. To tackle this challenge, in this research, we develop a fuzzy classification approach capable of handling fault scenarios that are not included in the training dataset. Through the integration of a fuzzification procedure, this fuzzy neural network (FNN) can produce classification outcome with probability and confidence level. An unseen fault scenario will be classified into the nearest fault class with probability, effectively yielding the diagnosis result under limited data. While fault features in gear vibration signals are hidden and have complex nonlinear relations with respect to fault scenarios, it is found that the kernel principal component analysis (KPCA) can enable the FNN to facilitate the correlation of fault features. Systematic case studies using experimental data acquired from a lab-scale gear system are carried out to validate the new approach. |
Author | Zhou, Kai Tang, Jiong |
Author_xml | – sequence: 1 givenname: Kai surname: Zhou fullname: Zhou, Kai organization: Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University – sequence: 2 givenname: Jiong orcidid: 0000-0002-6825-9049 surname: Tang fullname: Tang, Jiong email: jiong.tang@uconn.edu organization: Department of Mechanical Engineering, University of Connecticut |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6v52M1uj1LUCgUR9Bymm2RN3SY1yVLaX-_WFQQPPc3lfWbeeSZo5LzTCF1TcksJKe8iIbQkGWE0IyUreCbO0JjmnGec0GKExoSJKuOlqC7QJMZ1HxdUVGP0uoDgdIzWNdh0h8MeO90FaPuRdj58YuMDbjQEbKBrE1YWGuejjXhn0wdu7cYmrbCCBLiFlW7jJTo30EZ99Tun6P3x4W2-yJYvT8_z-2VWczpLmWaC9y0YlKSYqVzNtDF1BblS_T9sJXIOhVH5irGy5nlFFRjOCgpFbXSlTMGn6GbYuw3-q9MxybXvgutPSlbkFZsJTkWfqoZUHXyMQRtZ2wTJepcC2FZSIo8C5SBQ9gLlj0B5RNk_dBvsBsL-NMQHKPZh1-jw1-oE9Q0I_YWB |
CitedBy_id | crossref_primary_10_1177_10775463221091601 crossref_primary_10_1088_1361_6501_ad0f6d crossref_primary_10_1177_10775463231211403 crossref_primary_10_3934_mbe_2023392 crossref_primary_10_1007_s13369_023_07789_7 crossref_primary_10_1007_s40313_023_01023_3 crossref_primary_10_1115_1_4065442 crossref_primary_10_1016_j_ifacol_2022_11_279 crossref_primary_10_3390_machines10080659 crossref_primary_10_3390_s24134258 crossref_primary_10_3390_electronics10182266 crossref_primary_10_1007_s00170_022_10392_z crossref_primary_10_3390_s22155543 crossref_primary_10_1016_j_jmsy_2024_11_020 crossref_primary_10_1109_JSEN_2022_3178137 crossref_primary_10_1002_rnc_7908 crossref_primary_10_1007_s00170_021_08392_6 crossref_primary_10_3390_app13021134 crossref_primary_10_1016_j_aei_2022_101750 crossref_primary_10_1088_1361_6501_ad2bcb crossref_primary_10_3390_act11030067 crossref_primary_10_1186_s10033_023_00966_7 crossref_primary_10_1016_j_jmsy_2024_10_003 crossref_primary_10_3390_e26040304 crossref_primary_10_3390_s23249679 crossref_primary_10_1007_s13369_024_09716_w |
Cites_doi | 10.1109/ACCESS.2019.2890979 10.1016/j.measurement.2018.08.002 10.1109/TIE.2016.2574987 10.1016/j.compind.2014.06.002 10.1016/j.knosys.2019.105313 10.1007/s10845-016-1268-0 10.1016/j.measurement.2017.07.017 10.1016/j.ymssp.2011.12.013 10.1016/j.engfailanal.2017.08.028 10.3390/s20113105 10.1017/9781108583664 10.1016/j.renene.2017.03.035 10.1016/j.engfailanal.2012.08.015 10.1016/j.neucom.2018.05.024 10.1109/TEC.2013.2295301 10.1016/j.ymssp.2018.05.050 10.1016/j.neucom.2013.04.042 10.1016/j.ymssp.2014.09.010 10.1016/j.jmsy.2018.01.003 10.1007/s00170-013-4797-0 10.1016/j.compind.2019.06.001 10.1016/j.jsv.2018.06.055 10.1007/s00170-019-04726-7 10.1007/s00170-003-1830-8 10.1016/j.measurement.2019.03.065 10.1016/j.neucom.2009.08.014 10.1016/j.ymssp.2017.07.001 10.1109/ACCESS.2018.2837621 10.1006/mssp.2001.1415 10.1016/j.measurement.2012.10.026 10.1177/1475921715591873 10.1016/j.eswa.2008.01.010 10.1007/s00170-020-05315-9 10.1016/j.sigpro.2013.04.015 10.1016/j.ymssp.2011.02.017 10.1016/j.jsv.2018.09.054 10.1016/j.measurement.2019.05.074 10.1016/j.compind.2018.12.001 10.1007/978-981-15-1532-3_22 10.1177/1475921719887496 10.5772/intechopen.79552 10.1007/978-0-387-30164-8 10.1142/5493 10.1016/j.compind.2018.02.015 10.1109/TIM.2020.3011584 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00170-021-07253-6 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 1019 |
ExternalDocumentID | 10_1007_s00170_021_07253_6 |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1741174 funderid: http://dx.doi.org/10.13039/501100008982 |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-e2630012a7059d4d9effc8a4dd0072b643a5fd4b227c3481daf3251a5cfe8df53 |
IEDL.DBID | U2A |
ISSN | 0268-3768 |
IngestDate | Fri Jul 25 11:13:09 EDT 2025 Thu Apr 24 23:00:55 EDT 2025 Tue Jul 01 02:01:04 EDT 2025 Fri Feb 21 02:48:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Gear fault diagnosis Fuzzy neural network (FNN) Kernel principal component analysis (KPCA) Unseen fault scenarios Fuzzy classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e2630012a7059d4d9effc8a4dd0072b643a5fd4b227c3481daf3251a5cfe8df53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6825-9049 |
PQID | 2548296316 |
PQPubID | 2044010 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2548296316 crossref_citationtrail_10_1007_s00170_021_07253_6 crossref_primary_10_1007_s00170_021_07253_6 springer_journals_10_1007_s00170_021_07253_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210700 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2021 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Yan, Gao, Chen (CR43) 2014; 96 Soualhi, Nguyen, Soualhi, Medjaher, Hemsas (CR33) 2019; 141 Deng, Tian (CR12) 2013; 121 CR38 Chen, Zhang, Zhai, Wang, Liu (CR8) 2017; 82 Nguyen, Prosvirin, Kim (CR27) 2020; 20 CR31 Cheng, Cheng, Shen, Qiu, Zhang (CR10) 2013; 46 CR30 Moosavian, Khazaee, Ahmadi, Khazaee, Najafi (CR26) 2015; 14 Chen, Zhou, Guo, Lin, Lyu, Lu (CR9) 2019; 7 Wu, Jiang, Ding, Feng, Chen (CR41) 2019; 108 CR7 Li, Cheng, Liu, Chen (CR21) 2018; 130 Zhang, Tang (CR48) 2018; 90 Youcef Khodja, Guersi, Saadi, Boutasseta (CR44) 2020; 106 Wang, Wang, Wang (CR40) 2018; 310 He, Shao, Wang, Lin, Cheng, Yang (CR18) 2020; 191 Jing, Zhao, Li, Xu (CR19) 2017; 111 Buzzoni, Antoni, D’Elia (CR5) 2018; 432 Ahuja, Ramteke, Parey (CR1) 2020; 1096 Li, Pang, Yang (CR23) 2019; 145 CR17 Boyd, Vandenberghe (CR4) 2018 CR15 CR13 Li, Feng, Liang, Zou (CR22) 2019; 439 CR11 Saravanan, Cholarirajan, Ramachandram (CR32) 2009; 36 Yampikulsakul, Byon, Huang, Sheng, You (CR42) 2014; 29 Wang, Cai, Zhu, Huang, Zhang (CR39) 2015; 54 Zhang, Nie, Xiang (CR47) 2010; 73 Gao, He, Woo, Tian, Liu, Hu (CR16) 2016; 63 Bishop (CR3) 2006 Amarouayache, Saadi, Guersi, Boutasseta (CR2) 2020; 107 Wang, Yan, Li, Gao, Zhao (CR36) 2019; 111 Zhao, Yan, Chen, Mao, Wang, Gao (CR49) 2019; 115 Li, Yan, Yuan, Peng, Li (CR24) 2011; 25 CR25 Zhang, Lu, Chu (CR46) 2017; 109 Randall, Antoni, Chobsaard (CR29) 2001; 15 Wang, Ma, Zhang, Gao, Wu (CR35) 2018; 48 Zhang, Qin, Wu, Zhai (CR45) 2014; 2014 Fakhfakh, Chaari, Haddar (CR14) 2005; 25 CR20 Pandya, Parey (CR28) 2013; 27 Cao, Zhang, Tang (CR6) 2018; 6 Wang, Gao, Yuan, Fan, Zhang (CR37) 2019; 30 Zhang, Wang, Wang (CR50) 2013; 68 Villa, Renones, Peran, De Miguel (CR34) 2012; 29 LF Villa (7253_CR34) 2012; 29 7253_CR25 Z He (7253_CR18) 2020; 191 RB Randall (7253_CR29) 2001; 15 G Cheng (7253_CR10) 2013; 46 L Jing (7253_CR19) 2017; 111 7253_CR20 T Fakhfakh (7253_CR14) 2005; 25 Y Pandya (7253_CR28) 2013; 27 X Deng (7253_CR12) 2013; 121 B Gao (7253_CR16) 2016; 63 Y Zhang (7253_CR46) 2017; 109 S Boyd (7253_CR4) 2018 A Youcef Khodja (7253_CR44) 2020; 106 Y Li (7253_CR21) 2018; 130 R Zhao (7253_CR49) 2019; 115 Z Li (7253_CR24) 2011; 25 J Wang (7253_CR35) 2018; 48 7253_CR17 7253_CR15 A Moosavian (7253_CR26) 2015; 14 7253_CR13 Z Zhang (7253_CR50) 2013; 68 P Cao (7253_CR6) 2018; 6 7253_CR11 F Li (7253_CR23) 2019; 145 J Wang (7253_CR36) 2019; 111 C Zhang (7253_CR47) 2010; 73 CM Bishop (7253_CR3) 2006 R Yan (7253_CR43) 2014; 96 AS Ahuja (7253_CR1) 2020; 1096 S Wang (7253_CR39) 2015; 54 Y Li (7253_CR22) 2019; 439 N Yampikulsakul (7253_CR42) 2014; 29 J Chen (7253_CR9) 2019; 7 M Buzzoni (7253_CR5) 2018; 432 Z Chen (7253_CR8) 2017; 82 C Wu (7253_CR41) 2019; 108 S Zhang (7253_CR48) 2018; 90 7253_CR38 7253_CR7 Z Wang (7253_CR40) 2018; 310 M Soualhi (7253_CR33) 2019; 141 7253_CR30 N Saravanan (7253_CR32) 2009; 36 IIE Amarouayache (7253_CR2) 2020; 107 7253_CR31 J Wang (7253_CR37) 2019; 30 CD Nguyen (7253_CR27) 2020; 20 J Zhang (7253_CR45) 2014; 2014 |
References_xml | – volume: 7 start-page: 9022 year: 2019 end-page: 9031 ident: CR9 article-title: An active learning method based on uncertainty and complexity for gearbox fault diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2890979 – volume: 130 start-page: 94 year: 2018 end-page: 104 ident: CR21 article-title: Study on planetary gear fault diagnosis based on variational mode decomposition and deep neural networks publication-title: Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2018.08.002 – volume: 63 start-page: 6305 issue: 10 year: 2016 end-page: 6315 ident: CR16 article-title: Multidimensional tensor-based inductive thermography with multiple physical fields for offshore wind turbine gear inspection publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2016.2574987 – volume: 2014 start-page: 1115 year: 2014 end-page: 1125 ident: CR45 article-title: Fuzzy neural network-based rescheduling decision mechanism for semiconductor manufacturing publication-title: Comput Ind doi: 10.1016/j.compind.2014.06.002 – volume: 191 start-page: 105313 year: 2020 ident: CR18 article-title: Deep transfer multi-wavelet auto-encoder for intelligent fault diagnosis of gearbox with few target training samples publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.105313 – volume: 30 start-page: 605 issue: 2 year: 2019 end-page: 621 ident: CR37 article-title: A joint particle filter and expectation maximization approach to machine condition prognosis publication-title: J Intell Manuf doi: 10.1007/s10845-016-1268-0 – volume: 111 start-page: 1 year: 2017 end-page: 10 ident: CR19 article-title: A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox publication-title: Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2017.07.017 – volume: 29 start-page: 436 year: 2012 end-page: 446 ident: CR34 article-title: Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2011.12.013 – volume: 82 start-page: 72 year: 2017 end-page: 81 ident: CR8 article-title: Improved analytical methods for calculation of gear tooth fillet-foundation stiffness with tooth root crack publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2017.08.028 – ident: CR25 – volume: 20 start-page: 3105 issue: 11 year: 2020 ident: CR27 article-title: A reliable fault diagnosis method for a gearbox system with varying rotational speeds publication-title: Sensors doi: 10.3390/s20113105 – year: 2018 ident: CR4 publication-title: 2018, Introduction to applied linear algebra: vectors, matrices, and least squares doi: 10.1017/9781108583664 – volume: 109 start-page: 449 year: 2017 end-page: 460 ident: CR46 article-title: Planet gear fault localization for wind turbine gearbox using acoustic emission signals publication-title: Renew Energy doi: 10.1016/j.renene.2017.03.035 – volume: 27 start-page: 286 year: 2013 end-page: 296 ident: CR28 article-title: Failure path based modified gear mesh stiffness for spur gear pair with tooth root crack publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2012.08.015 – volume: 310 start-page: 213 year: 2018 end-page: 222 ident: CR40 article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.024 – volume: 29 start-page: 288 issue: 2 year: 2014 end-page: 299 ident: CR42 article-title: Condition monitoring of wind power system with nonparametric regression analysis publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2013.2295301 – ident: CR15 – volume: 115 start-page: 213 year: 2019 end-page: 237 ident: CR49 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.05.050 – volume: 121 start-page: 298 year: 2013 end-page: 308 ident: CR12 article-title: Nonlinear process fault pattern recognition using statistics kernel PCA similarity factor publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.04.042 – ident: CR11 – volume: 54 start-page: 16 year: 2015 end-page: 40 ident: CR39 article-title: Transient signal analysis based on Levenberg-Marquardt method for fault feature extraction of rotating machines publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2014.09.010 – volume: 48 start-page: 144 year: 2018 end-page: 156 ident: CR35 article-title: Deep learning for smart manufacturing: methods and applications publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2018.01.003 – volume: 68 start-page: 763 issue: 1-4 year: 2013 end-page: 773 ident: CR50 article-title: Intelligent fault diagnosis and prognosis approach for rotating machinery integrating wavelet transform, principal component analysis and artificial neural networks publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-013-4797-0 – volume: 111 start-page: 1 year: 2019 end-page: 14 ident: CR36 article-title: Deep heterogeneous GRU model for predictive analytics in smart manufacturing: application to tool wear prediction publication-title: Comput Ind doi: 10.1016/j.compind.2019.06.001 – volume: 432 start-page: 569 year: 2018 end-page: 601 ident: CR5 article-title: Blind deconvolution based on cyclostationarity maximization and its application to fault identification publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.06.055 – volume: 106 start-page: 1737 issue: 5-6 year: 2020 end-page: 1751 ident: CR44 article-title: Rolling element bearing fault diagnosis for rotating machinery using vibration spectrum imaging and convolutional neural networks publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-04726-7 – volume: 25 start-page: 542 issue: 5-6 year: 2005 end-page: 550 ident: CR14 article-title: Numerical and experimental analysis of a gear system with teeth defects publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-003-1830-8 – volume: 141 start-page: 37 year: 2019 end-page: 51 ident: CR33 article-title: Health monitoring of bearing and gear faults by using a new health indicator extracted from current signals publication-title: Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2019.03.065 – volume: 73 start-page: 959 issue: 4-6 year: 2010 end-page: 967 ident: CR47 article-title: A general kernelization framework for learning algorithms based on kernel PCA publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.08.014 – ident: CR30 – volume: 90 start-page: 711 year: 2018 end-page: 729 ident: CR48 article-title: Integrating angle-frequency domain synchronous averaging technique with feature extraction for gear fault diagnosis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.07.001 – volume: 6 start-page: 26241 year: 2018 end-page: 26253 ident: CR6 article-title: Pre-processing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2837621 – volume: 15 start-page: 945 issue: 5 year: 2001 end-page: 962 ident: CR29 article-title: The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals publication-title: Mech Syst Signal Process doi: 10.1006/mssp.2001.1415 – volume: 46 start-page: 1137 issue: 3 year: 2013 end-page: 1146 ident: CR10 article-title: Gear fault identification based on Hilbert-Huang transform and SOM neural network publication-title: Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2012.10.026 – volume: 14 start-page: 402 issue: 5 year: 2015 end-page: 410 ident: CR26 article-title: Fault diagnosis and classification of water pump using adaptive neuro-fuzzy inference system based on vibration signals publication-title: Struct Health Monit doi: 10.1177/1475921715591873 – volume: 36 start-page: 3119 year: 2009 end-page: 3135 ident: CR32 article-title: Vibration-based fault diagnosis of spur bevel gear box using fuzzy technique publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.01.010 – ident: CR38 – volume: 107 start-page: 4077 issue: 9-10 year: 2020 end-page: 4095 ident: CR2 article-title: Bearing fault diagnostics using EEMD processing and convolutional neural network methods publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05315-9 – ident: CR17 – ident: CR31 – volume: 96 start-page: 1 year: 2014 end-page: 15 ident: CR43 article-title: Wavelets for fault diagnosis of rotary machines: a review with applications publication-title: Signal Process doi: 10.1016/j.sigpro.2013.04.015 – ident: CR13 – volume: 25 start-page: 2589 issue: 7 year: 2011 end-page: 2607 ident: CR24 article-title: Virtual prototype and experimental research on gear multi-fault diagnosis using wavelet-autoregressive model and principal component analysis method publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2011.02.017 – volume: 439 start-page: 271 year: 2019 end-page: 286 ident: CR22 article-title: A fault diagnosis method for planetary gearboxes under non-stationary working conditions using improved vold-Karlman filter and multi-scale sample entropy publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.09.054 – volume: 145 start-page: 45 year: 2019 end-page: 54 ident: CR23 article-title: Motor current signal analysis using deep neural network for planetary gear fault diagnosis publication-title: Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2019.05.074 – volume: 108 start-page: 53 year: 2019 end-page: 61 ident: CR41 article-title: Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network publication-title: Comput Ind doi: 10.1016/j.compind.2018.12.001 – year: 2006 ident: CR3 – volume: 1096 start-page: 473 year: 2020 end-page: 496 ident: CR1 article-title: Vibration-based fault diagnosis of a bevel and spur gearbox using continuous wavelet transform and adaptive neural-fuzzy inference system publication-title: Adv Intelligent Syst Comp doi: 10.1007/978-981-15-1532-3_22 – ident: CR7 – ident: CR20 – volume: 2014 start-page: 1115 year: 2014 ident: 7253_CR45 publication-title: Comput Ind doi: 10.1016/j.compind.2014.06.002 – ident: 7253_CR38 – ident: 7253_CR15 – volume: 82 start-page: 72 year: 2017 ident: 7253_CR8 publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2017.08.028 – ident: 7253_CR13 doi: 10.1177/1475921719887496 – volume: 1096 start-page: 473 year: 2020 ident: 7253_CR1 publication-title: Adv Intelligent Syst Comp doi: 10.1007/978-981-15-1532-3_22 – volume: 109 start-page: 449 year: 2017 ident: 7253_CR46 publication-title: Renew Energy doi: 10.1016/j.renene.2017.03.035 – volume: 111 start-page: 1 year: 2017 ident: 7253_CR19 publication-title: Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2017.07.017 – volume: 20 start-page: 3105 issue: 11 year: 2020 ident: 7253_CR27 publication-title: Sensors doi: 10.3390/s20113105 – volume: 115 start-page: 213 year: 2019 ident: 7253_CR49 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.05.050 – volume: 439 start-page: 271 year: 2019 ident: 7253_CR22 publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.09.054 – ident: 7253_CR30 doi: 10.5772/intechopen.79552 – volume: 107 start-page: 4077 issue: 9-10 year: 2020 ident: 7253_CR2 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05315-9 – volume: 48 start-page: 144 year: 2018 ident: 7253_CR35 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2018.01.003 – volume: 106 start-page: 1737 issue: 5-6 year: 2020 ident: 7253_CR44 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-04726-7 – ident: 7253_CR31 doi: 10.1007/978-0-387-30164-8 – ident: 7253_CR20 – volume: 73 start-page: 959 issue: 4-6 year: 2010 ident: 7253_CR47 publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.08.014 – volume: 25 start-page: 2589 issue: 7 year: 2011 ident: 7253_CR24 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2011.02.017 – volume: 108 start-page: 53 year: 2019 ident: 7253_CR41 publication-title: Comput Ind doi: 10.1016/j.compind.2018.12.001 – volume: 130 start-page: 94 year: 2018 ident: 7253_CR21 publication-title: Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2018.08.002 – volume: 15 start-page: 945 issue: 5 year: 2001 ident: 7253_CR29 publication-title: Mech Syst Signal Process doi: 10.1006/mssp.2001.1415 – volume: 191 start-page: 105313 year: 2020 ident: 7253_CR18 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.105313 – volume: 36 start-page: 3119 year: 2009 ident: 7253_CR32 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.01.010 – ident: 7253_CR17 – ident: 7253_CR25 doi: 10.1142/5493 – volume: 121 start-page: 298 year: 2013 ident: 7253_CR12 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.04.042 – volume: 111 start-page: 1 year: 2019 ident: 7253_CR36 publication-title: Comput Ind doi: 10.1016/j.compind.2019.06.001 – volume: 46 start-page: 1137 issue: 3 year: 2013 ident: 7253_CR10 publication-title: Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2012.10.026 – volume: 145 start-page: 45 year: 2019 ident: 7253_CR23 publication-title: Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2019.05.074 – volume: 25 start-page: 542 issue: 5-6 year: 2005 ident: 7253_CR14 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-003-1830-8 – volume: 29 start-page: 436 year: 2012 ident: 7253_CR34 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2011.12.013 – ident: 7253_CR7 doi: 10.1016/j.compind.2018.02.015 – volume: 68 start-page: 763 issue: 1-4 year: 2013 ident: 7253_CR50 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-013-4797-0 – volume: 27 start-page: 286 year: 2013 ident: 7253_CR28 publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2012.08.015 – volume: 14 start-page: 402 issue: 5 year: 2015 ident: 7253_CR26 publication-title: Struct Health Monit doi: 10.1177/1475921715591873 – volume: 7 start-page: 9022 year: 2019 ident: 7253_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2890979 – volume: 432 start-page: 569 year: 2018 ident: 7253_CR5 publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.06.055 – volume: 6 start-page: 26241 year: 2018 ident: 7253_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2837621 – volume: 96 start-page: 1 year: 2014 ident: 7253_CR43 publication-title: Signal Process doi: 10.1016/j.sigpro.2013.04.015 – volume-title: Pattern recognition and machine learning year: 2006 ident: 7253_CR3 – ident: 7253_CR11 doi: 10.1109/TIM.2020.3011584 – volume: 29 start-page: 288 issue: 2 year: 2014 ident: 7253_CR42 publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2013.2295301 – volume: 141 start-page: 37 year: 2019 ident: 7253_CR33 publication-title: Measurement: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2019.03.065 – volume-title: 2018, Introduction to applied linear algebra: vectors, matrices, and least squares year: 2018 ident: 7253_CR4 doi: 10.1017/9781108583664 – volume: 90 start-page: 711 year: 2018 ident: 7253_CR48 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.07.001 – volume: 54 start-page: 16 year: 2015 ident: 7253_CR39 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2014.09.010 – volume: 310 start-page: 213 year: 2018 ident: 7253_CR40 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.024 – volume: 63 start-page: 6305 issue: 10 year: 2016 ident: 7253_CR16 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2016.2574987 – volume: 30 start-page: 605 issue: 2 year: 2019 ident: 7253_CR37 publication-title: J Intell Manuf doi: 10.1007/s10845-016-1268-0 |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.5195742 |
Snippet | Diagnosis and prognosis of gear systems play an important role in modern manufacturing. While first-principle-based inverse analysis is subject to various... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1005 |
SubjectTerms | Artificial neural networks CAE) and Design Classification Computer-Aided Engineering (CAD Confidence intervals Data acquisition Engineering Fault diagnosis Faults First principles Fuzzy logic Industrial and Production Engineering Machine learning Mechanical Engineering Media Management Neural networks Original Article Principal components analysis Statistical analysis Training |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrG-yMGbBjfZTZqcRKWlCBYVC70tySYRobRq24P-eie72VYFPS7Z5DD5ZjLJzHyD0CncELgBLSOJNJJkquBEsSIhzmjKjBLalZ3n7vqiN8huh3wYH9ymMa2ytomlobaTIryRX8BFRjJACxWXr28kdI0K0dXYQmMVNcEES9lAzetO__6xRhRV7dAVc4E4pkIr-iWi04ynVZwrxh0ELYvn4GIig-rJWGZTFtuVVDMkpDQkbcZTIn4eZUv_9FdItTypuptoI7qY-KrCxBZaceNttP6NeHAHPfT0e7Bx8IH9_PPzAwdeS5g0rrLCMbiy-BmUAHs9H82wrRLyXqY4vNviUVUVhUN6KQYYwfm6iwbdztNNj8TmCqQArZsRxwLZFmW6DQ6Wzaxy3hdSZ9YGMnEDjorm3maGsXYRinWt9in4QpoX3knrebqHGuPJ2O0jLLSCrdXMGtgknjjtEsWE0lQwb6hIWojWcsqLyDweGmCM8gVncinbHGSbl7LNRQudLea8Vrwb__59VIs_jzo4zZeIaaHzekuWw3-vdvD_aodojVUoIAk9Qo3Z-9wdg2cyMycRfl_X4dkv priority: 102 providerName: ProQuest |
Title | Harnessing fuzzy neural network for gear fault diagnosis with limited data labels |
URI | https://link.springer.com/article/10.1007/s00170-021-07253-6 https://www.proquest.com/docview/2548296316 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62vehBfGK1lhy8aWCT3aSbY5U-UCwqFuppSTaJCKVKHwf7653so1VRwdOyJNldJl-SmZ2ZbxA6AwuBa1hlJIh1TCKZciJZGhCrFWVaCmWzynO3A9EfRtcjPiqSwmZltHvpksx26lWyW0b1QnxIQdBiPCSigmocbHcfyDVk7RJFVLZ8JcwVypj05efXKA4jHua-rcLXIGiWMAfGSOyXW1yk1vz8zq_H11on_eZGzU6n7g7aLtRK3M5xsIs27GQPbX0iG9xH93019fsa3GC3WC7fseeyhEGTPBIcg_qKnwH42KnFeI5NHoT3MsP-Xy0e55lQ2IeUYoAOnKkHaNjtPF71SVFQgaSw0ubEMk-wRZlqgVJlIiOtc2msImM8gbgG5URxZyLNWCv1CbpGuRD0H8VTZ2PjeHiIqpPXiT1CWCgJ06mY0WBh8sAqG0gmpKKCOU1FUEe0lFOSFmzjvujFOFnxJGeyTUC2SSbbRNTR-WrMW8618WfvRin-pFh3swQ-Jmawp1BoviinZN38-9OO_9f9BG2yHBUkoA1UnU8X9hS0k7luokrc7TVRrd17uunA9bIzuHtoZhD9AL2A2Ko |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOLQ9IGipujx9aE9gNXYSb3xACNFul_KQKoHELbVju6q0Wh67KwQ_it_IjJPsUqRy4xgltqLxNy_PC-Azegi5RS7jSWELnukq51pWCffWCGm1Mj5Onjs5Vf3z7OdFfjEHD20tDKVVtjIxCmp3WdEd-Vd0ZAqJaBFq7-qa09Qoiq62IzRqWBz5u1t02Ua7h9_wfL9I2ft-dtDnzVQBXiHcxtxL6jIlpOmiZeEyp30IVWEy56iLtkUNbfLgMitlt6IqVWdCikaAyavgCxdoSgSK_IUsRU1Olem9Hy1-he7SDM4pvqWmwfcz_kmzPK2jak2UQ4lYqoduUEGMXjRFPbG0Lza24ZRAgX-Vp1z9qzhn1vCzAG7Ui70lWGwMWrZfI3AZ5vzwPbx70ubwA_zqmxuSqPjAwuT-_o5RF01cNKxz0BkazuwP0pYFMxmMmavT__6OGN0Ss0Fdg8UomZUhaFGbr8D5qxD9I8wPL4f-EzBlNALJSGcREnnijU-0VNoIJYMVKumAaOlUVk2fcxq3MSinHZojbUukbRlpW6oObE_XXNVdPl78er0lf9lw_Kic4bMDO-2RzF7_f7fVl3fbgjf9s5Pj8vjw9GgN3soaETwR6zA_vpn4DbSJxnYzApHB79dG_iOr2hUk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA6LguhBfOLbHPSkYZtsmzYHD4vrsroqCi7srSZNIsJSxe0i-qv8iU762FVRwYPHkqa0k28yk87MNwjtwQkhUKBlxItURHyRBESwxCNGScqU4NLknecuLnmn55_1g34NvVW1MHm2exWSLGoaHEtTmtUfta2PC99y2hfi0gu8kAUNwsu0yq55eYZD2_DotAUrvM9Y--TmuEPKvgIkAcBlxDDHM0WZDMG30L4Wxtokkr7WjkdbgY2WgdW-YixMXJ2qlrYBboAMEmsibV2fCNj0p31XfQwa1GPNCsFUhK4L5xjhTIBDE040qOEHjSKuVsY5OM2L9eAgFDlVj8qynu-_8bPpnPjDX0K4uWVsL6D50qXFzQKDi6hm0iU094HocBldd-ST21PhAtvR6-sLdjyaMCktstAxuM74DmSLrRwNMqyLBMD7IXb_ifGgqMLCLp0VA2zBnq-g3r8IfRVNpQ-pWUOYSwFQkkwrON0GnpHGE4wLSTmzinJvHdFKTnFSMp27hhuDeMzRnMs2BtnGuWxjvo4OxnMeC56PX-_eqsQflzo_jOFlIgb7GYXhw2pJJsM_P23jb7fvopmrVjs-P73sbqJZVgCEeHQLTWVPI7MNTlKmdnJcYnT734rwDgmaFkM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+fuzzy+neural+network+for+gear+fault+diagnosis+with+limited+data+labels&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Zhou%2C+Kai&rft.au=Tang%2C+Jiong&rft.date=2021-07-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=115&rft.issue=4&rft.spage=1005&rft.epage=1019&rft_id=info:doi/10.1007%2Fs00170-021-07253-6&rft.externalDocID=10_1007_s00170_021_07253_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |