First-principles analysis of how Cobalt doping affects the structural, electronic, and optical properties of α-MoO3

Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO 3 ) for utilizing it directly in gas sensing and optoelectronic devices. Doping with transition metal ions can be an optimistic solution to these problems. By doping four side of modification of a mater...

Full description

Saved in:
Bibliographic Details
Published inIndian journal of physics Vol. 98; no. 8; pp. 2695 - 2704
Main Authors Rahman, Md. Ferdous, Melody, Zinat Rahman, Ali, Md. Hasan, Ghosh, Avijit, Barman, Pobitra, Islam, Md. Rasidul, Hossain, M. Khalid
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO 3 ) for utilizing it directly in gas sensing and optoelectronic devices. Doping with transition metal ions can be an optimistic solution to these problems. By doping four side of modification of a material is possible. At first, doping can curtail the width of the energy band of semiconductor materials, thereby largely boosting the photo-sensitivity of the material and intensifying the light consumption that is more suitable for anti-laser devices and light source substances. The second is that doping can widen the material's band gap, which can significantly reduce the purities of the substance, improve absorbance, and make it suitable for strong interference semiconductor films and aperture materials. Third, changing the material's charge carrier density and effective mass can significantly improve conductivity. This is mostly relevant for conductive devices and photosensitive materials. Finally, changing the material's valance electron location influences the magnetic moment created by the spin of elementary particles in the entire system, allowing the magnetic characteristics of the substance to be regulated, which is especially useful for diluted magnetic semiconductor (DMS) materials. The investigation report of the structural, electrical, and optical characteristics of Cobalt (Co)-doped orthorhombic-phase MoO 3 utilizing plane-wave pseudo-potential technique based on first-principles computation is presented in this paper. The computation has been executed using density a functional theory (DFT)-based CASTEP computer program with the generalized gradient approximation (GGA) together with the Perdue-Burke-Ernzerhof (PBE) exchange–correlation function. Acquired structural parameters present good consistency with the former reported experimental data. The resultant electronic band structure reveals that pure MoO 3 shows an indirect energy band gap of 1.873 eV/2.312 eV whereas Co doping causes band narrowing of about 0.94 eV/1.36 eV with PBE/HSE techniques. The total and partial density of states (PDOS) have been studied comparatively, for pure and Co-doped MoO 3 , respectively. The absorption coefficient, loss function, reflectivity, refractive index, extinction coefficient, dielectric function, along with optical conductivity have also been determined to analyze the optical properties of Co-doped MoO 3 . Co-doped MoO 3 offers higher conductivity while decreasing resistivity, compared to the undoped case. The present study ensures that Co-doped α- MoO 3 can be competently employed as a functional material in gas sensing and optoelectronic devices.
AbstractList Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO3) for utilizing it directly in gas sensing and optoelectronic devices. Doping with transition metal ions can be an optimistic solution to these problems. By doping four side of modification of a material is possible. At first, doping can curtail the width of the energy band of semiconductor materials, thereby largely boosting the photo-sensitivity of the material and intensifying the light consumption that is more suitable for anti-laser devices and light source substances. The second is that doping can widen the material's band gap, which can significantly reduce the purities of the substance, improve absorbance, and make it suitable for strong interference semiconductor films and aperture materials. Third, changing the material's charge carrier density and effective mass can significantly improve conductivity. This is mostly relevant for conductive devices and photosensitive materials. Finally, changing the material's valance electron location influences the magnetic moment created by the spin of elementary particles in the entire system, allowing the magnetic characteristics of the substance to be regulated, which is especially useful for diluted magnetic semiconductor (DMS) materials. The investigation report of the structural, electrical, and optical characteristics of Cobalt (Co)-doped orthorhombic-phase MoO3 utilizing plane-wave pseudo-potential technique based on first-principles computation is presented in this paper. The computation has been executed using density a functional theory (DFT)-based CASTEP computer program with the generalized gradient approximation (GGA) together with the Perdue-Burke-Ernzerhof (PBE) exchange–correlation function. Acquired structural parameters present good consistency with the former reported experimental data. The resultant electronic band structure reveals that pure MoO3 shows an indirect energy band gap of 1.873 eV/2.312 eV whereas Co doping causes band narrowing of about 0.94 eV/1.36 eV with PBE/HSE techniques. The total and partial density of states (PDOS) have been studied comparatively, for pure and Co-doped MoO3, respectively. The absorption coefficient, loss function, reflectivity, refractive index, extinction coefficient, dielectric function, along with optical conductivity have also been determined to analyze the optical properties of Co-doped MoO3. Co-doped MoO3 offers higher conductivity while decreasing resistivity, compared to the undoped case. The present study ensures that Co-doped α- MoO3 can be competently employed as a functional material in gas sensing and optoelectronic devices.
Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO 3 ) for utilizing it directly in gas sensing and optoelectronic devices. Doping with transition metal ions can be an optimistic solution to these problems. By doping four side of modification of a material is possible. At first, doping can curtail the width of the energy band of semiconductor materials, thereby largely boosting the photo-sensitivity of the material and intensifying the light consumption that is more suitable for anti-laser devices and light source substances. The second is that doping can widen the material's band gap, which can significantly reduce the purities of the substance, improve absorbance, and make it suitable for strong interference semiconductor films and aperture materials. Third, changing the material's charge carrier density and effective mass can significantly improve conductivity. This is mostly relevant for conductive devices and photosensitive materials. Finally, changing the material's valance electron location influences the magnetic moment created by the spin of elementary particles in the entire system, allowing the magnetic characteristics of the substance to be regulated, which is especially useful for diluted magnetic semiconductor (DMS) materials. The investigation report of the structural, electrical, and optical characteristics of Cobalt (Co)-doped orthorhombic-phase MoO 3 utilizing plane-wave pseudo-potential technique based on first-principles computation is presented in this paper. The computation has been executed using density a functional theory (DFT)-based CASTEP computer program with the generalized gradient approximation (GGA) together with the Perdue-Burke-Ernzerhof (PBE) exchange–correlation function. Acquired structural parameters present good consistency with the former reported experimental data. The resultant electronic band structure reveals that pure MoO 3 shows an indirect energy band gap of 1.873 eV/2.312 eV whereas Co doping causes band narrowing of about 0.94 eV/1.36 eV with PBE/HSE techniques. The total and partial density of states (PDOS) have been studied comparatively, for pure and Co-doped MoO 3 , respectively. The absorption coefficient, loss function, reflectivity, refractive index, extinction coefficient, dielectric function, along with optical conductivity have also been determined to analyze the optical properties of Co-doped MoO 3 . Co-doped MoO 3 offers higher conductivity while decreasing resistivity, compared to the undoped case. The present study ensures that Co-doped α- MoO 3 can be competently employed as a functional material in gas sensing and optoelectronic devices.
Author Ghosh, Avijit
Ali, Md. Hasan
Melody, Zinat Rahman
Barman, Pobitra
Hossain, M. Khalid
Rahman, Md. Ferdous
Islam, Md. Rasidul
Author_xml – sequence: 1
  givenname: Md. Ferdous
  orcidid: 0000-0002-0090-2384
  surname: Rahman
  fullname: Rahman, Md. Ferdous
  email: ferdousapee@gmail.com
  organization: Advanced Energy Materials and Solar Cell Research Laboratory, Department of Electrical and Electronic Engineering, Begum Rokeya University
– sequence: 2
  givenname: Zinat Rahman
  surname: Melody
  fullname: Melody, Zinat Rahman
  organization: Advanced Energy Materials and Solar Cell Research Laboratory, Department of Electrical and Electronic Engineering, Begum Rokeya University
– sequence: 3
  givenname: Md. Hasan
  surname: Ali
  fullname: Ali, Md. Hasan
  email: hasan@brur.ac.bd
  organization: Advanced Energy Materials and Solar Cell Research Laboratory, Department of Electrical and Electronic Engineering, Begum Rokeya University
– sequence: 4
  givenname: Avijit
  surname: Ghosh
  fullname: Ghosh, Avijit
  organization: Advanced Energy Materials and Solar Cell Research Laboratory, Department of Electrical and Electronic Engineering, Begum Rokeya University
– sequence: 5
  givenname: Pobitra
  surname: Barman
  fullname: Barman, Pobitra
  organization: Advanced Energy Materials and Solar Cell Research Laboratory, Department of Electrical and Electronic Engineering, Begum Rokeya University
– sequence: 6
  givenname: Md. Rasidul
  surname: Islam
  fullname: Islam, Md. Rasidul
  organization: Department of Electrical and Electronic Engineering, Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University
– sequence: 7
  givenname: M. Khalid
  surname: Hossain
  fullname: Hossain, M. Khalid
  organization: Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission
BookMark eNp9kMFKAzEQhoNUsK2-gKeA10aTze4me5RiVVB60XPIJtk2Zd2sSUrpY_kiPpNpVxA89DTDMN_PzDcBo851BoBrgm8JxuwukKzMOcIZRZjinKLdGRjjiuWo4nkxOvYUkbzgF2ASwgbjsiKsGIO4sD5E1HvbKdu3JkDZyXYfbICugWu3g3NXyzZC7XrbraBsGqNigHFtYIh-q-LWy3YGTZvG3nVWzVKChq6PVskW9t71xkdrjnnfX-jVLeklOG9kG8zVb52C98XD2_wJvSwfn-f3L0hRUkVkSMNKqQhjkhpSaUzqihNdpV-NZjUuJZO6ZNiQmlGeNZITo7hWktW1bpSiU3Az5KYrPrcmRLFxW5_-C4LikhecZSVPW9mwpbwLwZtGJBsf0u8FweJgVwx2RbIrjnbFLkH8H6RslNG6Lnpp29MoHdBwsL4y_u-qE9QPOfGUpA
CitedBy_id crossref_primary_10_1016_j_mseb_2024_117559
crossref_primary_10_1039_D4RA05079G
crossref_primary_10_1007_s12648_024_03350_w
crossref_primary_10_1021_acsomega_3c08285
crossref_primary_10_1039_D4CP03286A
crossref_primary_10_1016_j_jics_2025_101618
crossref_primary_10_1039_D4RA07912D
Cites_doi 10.1038/nmat2612
10.1039/B9NR00320G
10.1063/1.1613992
10.12688/f1000research.137044.1
10.1002/adfm.201200993
10.1002/qua.25681
10.1016/S0040-6090(03)00524-8
10.1007/s10008-008-0741-x
10.1007/s10853-023-08825-5
10.1038/355624a0
10.1039/D2RA06734J
10.1016/0038-1098(90)90981-G
10.1021/am404441n
10.1016/j.bios.2013.09.057
10.1021/acsomega.2c05912
10.1007/s43939-023-00061-7
10.1016/j.tsf.2011.10.174
10.1364/OPTCON.495816
10.1002/chem.200600977
10.1016/j.commatsci.2017.01.014
10.1103/PhysRevB.88.115141
10.1063/1.1532104
10.1021/nn403241f
10.1039/C7TA07705J
10.1038/ncomms11049
10.1088/1402-4896/acfce9
10.1154/1.3257906
10.1166/jap.2016.1278
10.1063/1.1979470
10.1016/S0925-4005(01)01072-3
10.1038/srep07131
10.1021/cm9023887
10.1140/epjb/e2004-00164-3
10.1002/nano.202300066
10.1179/026708404225016454
10.1103/PhysRevLett.77.3865
10.1088/0022-3727/42/17/175305
10.1007/s10854-009-9867-6
10.1016/j.jssc.2023.124341
10.1038/383608a0
10.1016/j.apsusc.2008.03.159
10.1039/c000744g
10.1021/acsomega.2c07846
10.1016/j.optcom.2010.03.059
10.1016/S0925-4005(01)00738-9
10.1088/0953-8984/15/35/101
10.1038/333836a0
10.1039/C5TC02043C
10.1007/s40094-014-0161-5
10.1039/c1cc14030b
10.1038/s41598-018-28522-7
10.1039/C4NR04529G
10.1021/ic101103g
10.1002/adfm.201706006
10.1016/j.optmat.2022.112678
10.1002/chem.200802182
10.1103/PhysRevLett.95.176403
10.1088/1402-4896/acee29
10.1021/nl902357q
10.1016/j.heliyon.2023.e19271
ContentType Journal Article
Copyright Indian Association for the Cultivation of Science 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Indian Association for the Cultivation of Science 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1007/s12648-023-03043-w
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 0974-9845
EndPage 2704
ExternalDocumentID 10_1007_s12648_023_03043_w
GroupedDBID -EM
04Q
04W
06D
0R~
0VY
203
29I
29~
2JN
2KG
2VQ
30V
3V.
406
408
5GY
5VS
67Z
8FE
8FG
8G5
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACCUX
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
AZQEC
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CSCUP
C~6
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GUQSH
H13
HCIFZ
HG6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M2O
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P62
P9T
PQQKQ
PROAC
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
Z45
Z7X
Z7Y
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7U5
8FD
ABRTQ
H8D
L7M
ID FETCH-LOGICAL-c319t-e1f76ac177a3e19d01b981d9126ed7b06a7ad670e1b7382fa81ec8dca7bbdfcc3
IEDL.DBID U2A
ISSN 0973-1458
IngestDate Fri Jul 25 04:41:45 EDT 2025
Tue Jul 01 03:02:39 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Fri Feb 21 02:41:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Density of states
Electronic band structure
Optical properties
Density functional theory
First-principles calculation
MoO
Structural properties
Cobalt doping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e1f76ac177a3e19d01b981d9126ed7b06a7ad670e1b7382fa81ec8dca7bbdfcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0090-2384
PQID 3068587268
PQPubID 2034531
PageCount 10
ParticipantIDs proquest_journals_3068587268
crossref_primary_10_1007_s12648_023_03043_w
crossref_citationtrail_10_1007_s12648_023_03043_w
springer_journals_10_1007_s12648_023_03043_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: West Bengal
PublicationTitle Indian journal of physics
PublicationTitleAbbrev Indian J Phys
PublicationYear 2024
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References M F Rahman, M A I Islam, M R Islam, M H Ali, P Barman, M A Rahman, M Harun‐Or‐Rashid, M Hasan and M K Hossain Nano Select4 (2023)
NirupamaVUthannaSJ. Mater. Sci. Mater. Electron.2010214510.1007/s10854-009-9867-6
XuZSolid State Commun.19907611431990SSCom..76.1143X10.1016/0038-1098(90)90981-G
A Ghosh, M F Rahman, M R Islam, M S Islam, M Hossain, S Bhattarai, R panday, J Madan, M A Rahman and A B Ismail Opt. Continuum2 (2023)
C M I Okoye Eur. Phys. J. B39 5 (2004)
ChenYLuCXuLMaYHouWZhuJ-JCrystEngComm201012374010.1039/c000744g
M F Rahman, M Harun-Or-Rashid, M R Islam, A Ghosh, M K Hossain, S Bhattarai, R Pandey, J Madan, M A Ali and A B M Ismail Phys. Scripta98 (2023)
BechingerCFerrereSZabanASpragueJGreggBANature19963836081996Natur.383..608B10.1038/383608a0
M F Rahman, H Rahman, R Islam and M K Hossain J. Mater. Sci.58 (2023)
M D Haque, M H Ali, M F Rahman and A Z M T Islam Opt. Mater.131 112678 (2022)
GalatsisKLiYXWlodarskiWCominiESberveglieriGCantaliniCSantucciSPassacantandoMSens. Actuators B Chem.20028327610.1016/S0925-4005(01)01072-3
Z Yin, X Zhang, Y Cai, J Chen, J I Wong, Y-Y Tay, J Chai, J Wu, Z Zeng, B Zheng, H Y Yang and H Zhang Angew. Chemie Int. Ed. (2014)
BandaruSSaranyaGEnglishNJYamCChenMSci. Rep.20188101442018NatSR...810144B10.1038/s41598-018-28522-7
Kalantar-zadehKNanoscale201024292010Nanos...2..429K10.1039/B9NR00320G
DighoreNRJadhavSPGaikwadSTRajbhojASInt. J. Eng. Res. Appl.20144135
ClarkSJSegallMDPickardCJHasnipPJProbertMIJRefsonKPayneMCZeitschrift Fur Kristallographie20052205672005ZK....220..567C
H Sitepu Powder Diffr.24 315 (2009)
MichailovskiAPatzkeGRChem. Eur. J.200612912210.1002/chem.200600977
LunkH-JInorg. Chem.201049940010.1021/ic101103g
SuZWangLLiYZhangGZhaoHYangHMaYChuBLiWACS Appl. Mater. Interfaces201351284710.1021/am404441n
AliMHAl MamunMAHaqueMDRahmanMFHossainMKTouhidul IslamAZMACS Omega20238701710.1021/acsomega.2c07846
ZhengLXuYJinDXieYChem. Mater.200921568110.1021/cm9023887
F Paquin, J Rivnay, A Salleo, N Stingelin and C Silva J. Mater. Chem. C3 10715 (2015)
GreinerMTChaiLHelanderMGTangW-MLuZ-HAdv. Funct. Mater.20132321510.1002/adfm.201200993
RahmanARahmanARahamanZJ. Adv. Phys.2016535410.1166/jap.2016.1278
BrezesinskiTWangJTolbertSHDunnBNat. Mater.201091462010NatMa...9..146B10.1038/nmat2612
AritaMKajiHFujiiTTakahashiYThin Solid Films201252047622012TSF...520.4762A10.1016/j.tsf.2011.10.174
GalatsisKLiYWlodarskiWKalantar-zadehKSens. Actuators B Chem.20017747810.1016/S0925-4005(01)00738-9
NavasIVinodkumarRLethyKJDettyAPGanesanVSatheVMahadevan PillaiVPJ. Phys. D Appl. Phys.2009421753052009JPhD...42q5305N10.1088/0022-3727/42/17/175305
A B Shanto,M F Rahman, R Islam, A Ghosh, A Azzouz-rached, H Albalawi and Q Mahmood F1000Research12 (2023)
B Sultana, A T M S Islam, M D Haque, A Kuddus, M H Ali and M F Rahman Phys. Scripta98 (2023)
R Islam, M F Rahman, S Bhattarai, H Bencherif, M K A Mohammed, R Pandey and J Madan Energy & Fuels 37 (2023)
YaoJNHashimotoKFujishimaANature19923556241992Natur.355..624Y10.1038/355624a0
HuangP-RHeYCaoCLuZ-HSci. Rep.20144713110.1038/srep07131
ShonJKNat. Commun.20167110492016NatCo...711049S10.1038/ncomms11049
A K Prasad, P I Gouma, D J Kubinski, J H Visser, R E Soltis and P J Schmitz Thin Solid Films436 46 (2003)
PandeeswariRJeyaprakashBGBiosens. Bioelectron.20145318210.1016/j.bios.2013.09.057
QuQZhangW-BHuangKChenH-MComput. Mater. Sci.201713024210.1016/j.commatsci.2017.01.014
LiYBBandoYGolbergDKurashimaKAppl. Phys. Lett.20028150482002ApPhL..81.5048L10.1063/1.1532104
LajaunieLBoucherFDessaptRMoreauPPhys. Rev. B2013881151412013PhRvB..88k5141L10.1103/PhysRevB.88.115141
MengQFanLZhuLXuNZhangQInt. J. Quantum Chem.2018118e2568110.1002/qua.25681
RahmanFRahmanAIslamRGhoshAShantoABChowdhuryMIslamAIRahmanHHossainMKIslamMAAIP Adv.20230853291
ZhouJDengSZXuNSChenJSheJCAppl. Phys. Lett.20038326532003ApPhL..83.2653Z10.1063/1.1613992
KimMHNano Lett.2009941382009NanoL...9.4138K10.1021/nl902357q
BalendhranSACS Nano20137975310.1021/nn403241f
MahajanSSMujawarSHShindePSInamdarAIPatilPSAppl. Surf. Sci.200825458952008ApSS..254.5895M10.1016/j.apsusc.2008.03.159
C V. Subba Reddy, E H Walker, S A Wicker, Q L Williams and R R Kalluru J. Solid State Electrochem.13 1945 (2009)
Al-KuhailiMFDurraniSMABakhtiariIAAl-ShukriAMOpt. Commun.201028328572010OptCo.283.2857A10.1016/j.optcom.2010.03.059
N Rahman, M D Haque, M F Rahman, M M Islam, M A N Juthi, A R Roy, M A Akter and M F Islam Discov. Mater.3 (2023)
LiangRCaoHQianDChem. Commun.2011471030510.1039/c1cc14030b
HojabriAHajakbariFMeibodiAEJ. Theor. Appl. Phys.20159672015JTAP....9...67H10.1007/s40094-014-0161-5
S Bhatia and A Khanna Struct. Opt. Prop. Molybd. Trioxide Thin Films p 080057 (2015)
ZhangBYAdv. Funct. Mater.201828170600610.1002/adfm.201706006
SivakumarRJayachandranMSanjeevirajaCSurf. Eng.20042038510.1179/026708404225016454
GhoshARahmanFIslamRIslamSHeliyon20239e1927110.1016/j.heliyon.2023.e19271
N Illyaskutty, S Sreedhar, G Sanal Kumar, H Kohler, M Schwotzer, C Natzeck and V P M Pillai Nanoscale6 13882 (2014)
ChengLShaoMWangXHuHChem. Eur. J.200915231010.1002/chem.200802182
RahmanMFIslamMMIslamMRGhoshARahmanMARahmanMHIslamMAIIslamMAAlbalawiHMahmoodQJ. Solid State Chem.202332812434110.1016/j.jssc.2023.124341
PerdewJPBurkeKErnzerhofMPhys. Rev. Lett.19967738651996PhRvL..77.3865P10.1103/PhysRevLett.77.3865
KuzmenkoABRev. Sci. Instrum.2005760831082005RScI...76h3108K10.1063/1.1979470
ZhaoYLiuJZhouYZhangZXuYNaramotoHYamamotoSJ. Phys. Condens. Matter200315L5472003JPCM...15L.547Z10.1088/0953-8984/15/35/101
DattaRSHaqueFMohiuddinMCareyBJSyedNZavabetiAZhangBKhanHBereanKJOuJZMahmoodNDaenekeTKalantar-zadehKJ. Mater. Chem. A201752422310.1039/C7TA07705J
HossainMKRubelMHKTokiGFIAlamIRahmanMFBencherifHACS Omega202274321010.1021/acsomega.2c05912
M K Hossain et al. Sci. Rep. 1 (2023)
HossainMKArnabAADasRCHossainKMRubelMHKRahmanMFBencherifHEmetereMEMohammedMKAPandeyRRSC Adv.202212348502022RSCAd..1234850H10.1039/D2RA06734J
HinksDGDabrowskiBJorgensenJDMitchellAWRichardsDRPeiSShiDNature19883338361988Natur.333..836H10.1038/333836a0
NishioTAhmadJUweHPhys. Rev. Lett.2005951764032005PhRvL..95q6403N10.1103/PhysRevLett.95.176403
V Nirupama (3043_CR38) 2010; 21
MH Ali (3043_CR2) 2023; 8
I Navas (3043_CR40) 2009; 42
NR Dighore (3043_CR7) 2014; 4
3043_CR50
3043_CR51
3043_CR52
3043_CR53
3043_CR54
A Hojabri (3043_CR42) 2015; 9
A Ghosh (3043_CR56) 2023; 9
Z Su (3043_CR12) 2013; 5
3043_CR13
3043_CR57
3043_CR15
JP Perdew (3043_CR49) 1996; 77
AB Kuzmenko (3043_CR63) 2005; 76
K Galatsis (3043_CR14) 2001; 77
T Brezesinski (3043_CR29) 2010; 9
R Pandeeswari (3043_CR10) 2014; 53
R Sivakumar (3043_CR19) 2004; 20
K Kalantar-zadeh (3043_CR11) 2010; 2
L Zheng (3043_CR34) 2009; 21
3043_CR61
K Galatsis (3043_CR6) 2002; 83
3043_CR21
3043_CR66
3043_CR67
Z Xu (3043_CR64) 1990; 76
T Nishio (3043_CR60) 2005; 95
A Michailovski (3043_CR36) 2006; 12
SJ Clark (3043_CR46) 2005; 220
MK Hossain (3043_CR47) 2022; 12
3043_CR8
3043_CR3
3043_CR5
S Bandaru (3043_CR32) 2018; 8
3043_CR4
MH Kim (3043_CR37) 2009; 9
3043_CR1
JK Shon (3043_CR18) 2016; 7
M Arita (3043_CR28) 2012; 520
RS Datta (3043_CR27) 2017; 5
Y Chen (3043_CR24) 2010; 12
MF Al-Kuhaili (3043_CR39) 2010; 283
S Balendhran (3043_CR16) 2013; 7
BY Zhang (3043_CR17) 2018; 28
MF Rahman (3043_CR58) 2023; 328
A Rahman (3043_CR62) 2016; 5
C Bechinger (3043_CR20) 1996; 383
JN Yao (3043_CR22) 1992; 355
F Rahman (3043_CR55) 2023; 085329
L Lajaunie (3043_CR65) 2013; 88
YB Li (3043_CR23) 2002; 81
3043_CR35
Q Meng (3043_CR44) 2018; 118
L Cheng (3043_CR26) 2009; 15
MT Greiner (3043_CR31) 2013; 23
DG Hinks (3043_CR59) 1988; 333
J Zhou (3043_CR25) 2003; 83
Y Zhao (3043_CR33) 2003; 15
H-J Lunk (3043_CR9) 2010; 49
R Liang (3043_CR30) 2011; 47
Q Qu (3043_CR45) 2017; 130
P-R Huang (3043_CR43) 2014; 4
SS Mahajan (3043_CR41) 2008; 254
MK Hossain (3043_CR48) 2022; 7
References_xml – reference: LiangRCaoHQianDChem. Commun.2011471030510.1039/c1cc14030b
– reference: HossainMKArnabAADasRCHossainKMRubelMHKRahmanMFBencherifHEmetereMEMohammedMKAPandeyRRSC Adv.202212348502022RSCAd..1234850H10.1039/D2RA06734J
– reference: HossainMKRubelMHKTokiGFIAlamIRahmanMFBencherifHACS Omega202274321010.1021/acsomega.2c05912
– reference: M F Rahman, H Rahman, R Islam and M K Hossain J. Mater. Sci.58 (2023)
– reference: DattaRSHaqueFMohiuddinMCareyBJSyedNZavabetiAZhangBKhanHBereanKJOuJZMahmoodNDaenekeTKalantar-zadehKJ. Mater. Chem. A201752422310.1039/C7TA07705J
– reference: ZhengLXuYJinDXieYChem. Mater.200921568110.1021/cm9023887
– reference: PandeeswariRJeyaprakashBGBiosens. Bioelectron.20145318210.1016/j.bios.2013.09.057
– reference: KimMHNano Lett.2009941382009NanoL...9.4138K10.1021/nl902357q
– reference: RahmanFRahmanAIslamRGhoshAShantoABChowdhuryMIslamAIRahmanHHossainMKIslamMAAIP Adv.20230853291
– reference: LunkH-JInorg. Chem.201049940010.1021/ic101103g
– reference: ClarkSJSegallMDPickardCJHasnipPJProbertMIJRefsonKPayneMCZeitschrift Fur Kristallographie20052205672005ZK....220..567C
– reference: RahmanARahmanARahamanZJ. Adv. Phys.2016535410.1166/jap.2016.1278
– reference: GreinerMTChaiLHelanderMGTangW-MLuZ-HAdv. Funct. Mater.20132321510.1002/adfm.201200993
– reference: DighoreNRJadhavSPGaikwadSTRajbhojASInt. J. Eng. Res. Appl.20144135
– reference: M F Rahman, M Harun-Or-Rashid, M R Islam, A Ghosh, M K Hossain, S Bhattarai, R Pandey, J Madan, M A Ali and A B M Ismail Phys. Scripta98 (2023)
– reference: NavasIVinodkumarRLethyKJDettyAPGanesanVSatheVMahadevan PillaiVPJ. Phys. D Appl. Phys.2009421753052009JPhD...42q5305N10.1088/0022-3727/42/17/175305
– reference: F Paquin, J Rivnay, A Salleo, N Stingelin and C Silva J. Mater. Chem. C3 10715 (2015)
– reference: QuQZhangW-BHuangKChenH-MComput. Mater. Sci.201713024210.1016/j.commatsci.2017.01.014
– reference: GalatsisKLiYXWlodarskiWCominiESberveglieriGCantaliniCSantucciSPassacantandoMSens. Actuators B Chem.20028327610.1016/S0925-4005(01)01072-3
– reference: S Bhatia and A Khanna Struct. Opt. Prop. Molybd. Trioxide Thin Films p 080057 (2015)
– reference: LiYBBandoYGolbergDKurashimaKAppl. Phys. Lett.20028150482002ApPhL..81.5048L10.1063/1.1532104
– reference: M D Haque, M H Ali, M F Rahman and A Z M T Islam Opt. Mater.131 112678 (2022)
– reference: NirupamaVUthannaSJ. Mater. Sci. Mater. Electron.2010214510.1007/s10854-009-9867-6
– reference: M F Rahman, M A I Islam, M R Islam, M H Ali, P Barman, M A Rahman, M Harun‐Or‐Rashid, M Hasan and M K Hossain Nano Select4 (2023)
– reference: KuzmenkoABRev. Sci. Instrum.2005760831082005RScI...76h3108K10.1063/1.1979470
– reference: Kalantar-zadehKNanoscale201024292010Nanos...2..429K10.1039/B9NR00320G
– reference: NishioTAhmadJUweHPhys. Rev. Lett.2005951764032005PhRvL..95q6403N10.1103/PhysRevLett.95.176403
– reference: GalatsisKLiYWlodarskiWKalantar-zadehKSens. Actuators B Chem.20017747810.1016/S0925-4005(01)00738-9
– reference: BandaruSSaranyaGEnglishNJYamCChenMSci. Rep.20188101442018NatSR...810144B10.1038/s41598-018-28522-7
– reference: ZhaoYLiuJZhouYZhangZXuYNaramotoHYamamotoSJ. Phys. Condens. Matter200315L5472003JPCM...15L.547Z10.1088/0953-8984/15/35/101
– reference: BalendhranSACS Nano20137975310.1021/nn403241f
– reference: YaoJNHashimotoKFujishimaANature19923556241992Natur.355..624Y10.1038/355624a0
– reference: GhoshARahmanFIslamRIslamSHeliyon20239e1927110.1016/j.heliyon.2023.e19271
– reference: ZhangBYAdv. Funct. Mater.201828170600610.1002/adfm.201706006
– reference: ChengLShaoMWangXHuHChem. Eur. J.200915231010.1002/chem.200802182
– reference: HinksDGDabrowskiBJorgensenJDMitchellAWRichardsDRPeiSShiDNature19883338361988Natur.333..836H10.1038/333836a0
– reference: LajaunieLBoucherFDessaptRMoreauPPhys. Rev. B2013881151412013PhRvB..88k5141L10.1103/PhysRevB.88.115141
– reference: AritaMKajiHFujiiTTakahashiYThin Solid Films201252047622012TSF...520.4762A10.1016/j.tsf.2011.10.174
– reference: ChenYLuCXuLMaYHouWZhuJ-JCrystEngComm201012374010.1039/c000744g
– reference: C M I Okoye Eur. Phys. J. B39 5 (2004)
– reference: H Sitepu Powder Diffr.24 315 (2009)
– reference: MichailovskiAPatzkeGRChem. Eur. J.200612912210.1002/chem.200600977
– reference: ZhouJDengSZXuNSChenJSheJCAppl. Phys. Lett.20038326532003ApPhL..83.2653Z10.1063/1.1613992
– reference: M K Hossain et al. Sci. Rep. 1 (2023)
– reference: MahajanSSMujawarSHShindePSInamdarAIPatilPSAppl. Surf. Sci.200825458952008ApSS..254.5895M10.1016/j.apsusc.2008.03.159
– reference: N Rahman, M D Haque, M F Rahman, M M Islam, M A N Juthi, A R Roy, M A Akter and M F Islam Discov. Mater.3 (2023)
– reference: ShonJKNat. Commun.20167110492016NatCo...711049S10.1038/ncomms11049
– reference: HuangP-RHeYCaoCLuZ-HSci. Rep.20144713110.1038/srep07131
– reference: C V. Subba Reddy, E H Walker, S A Wicker, Q L Williams and R R Kalluru J. Solid State Electrochem.13 1945 (2009)
– reference: RahmanMFIslamMMIslamMRGhoshARahmanMARahmanMHIslamMAIIslamMAAlbalawiHMahmoodQJ. Solid State Chem.202332812434110.1016/j.jssc.2023.124341
– reference: R Islam, M F Rahman, S Bhattarai, H Bencherif, M K A Mohammed, R Pandey and J Madan Energy & Fuels 37 (2023)
– reference: A K Prasad, P I Gouma, D J Kubinski, J H Visser, R E Soltis and P J Schmitz Thin Solid Films436 46 (2003)
– reference: BechingerCFerrereSZabanASpragueJGreggBANature19963836081996Natur.383..608B10.1038/383608a0
– reference: HojabriAHajakbariFMeibodiAEJ. Theor. Appl. Phys.20159672015JTAP....9...67H10.1007/s40094-014-0161-5
– reference: A Ghosh, M F Rahman, M R Islam, M S Islam, M Hossain, S Bhattarai, R panday, J Madan, M A Rahman and A B Ismail Opt. Continuum2 (2023)
– reference: Al-KuhailiMFDurraniSMABakhtiariIAAl-ShukriAMOpt. Commun.201028328572010OptCo.283.2857A10.1016/j.optcom.2010.03.059
– reference: MengQFanLZhuLXuNZhangQInt. J. Quantum Chem.2018118e2568110.1002/qua.25681
– reference: SuZWangLLiYZhangGZhaoHYangHMaYChuBLiWACS Appl. Mater. Interfaces201351284710.1021/am404441n
– reference: SivakumarRJayachandranMSanjeevirajaCSurf. Eng.20042038510.1179/026708404225016454
– reference: N Illyaskutty, S Sreedhar, G Sanal Kumar, H Kohler, M Schwotzer, C Natzeck and V P M Pillai Nanoscale6 13882 (2014)
– reference: XuZSolid State Commun.19907611431990SSCom..76.1143X10.1016/0038-1098(90)90981-G
– reference: A B Shanto,M F Rahman, R Islam, A Ghosh, A Azzouz-rached, H Albalawi and Q Mahmood F1000Research12 (2023)
– reference: Z Yin, X Zhang, Y Cai, J Chen, J I Wong, Y-Y Tay, J Chai, J Wu, Z Zeng, B Zheng, H Y Yang and H Zhang Angew. Chemie Int. Ed. (2014)
– reference: AliMHAl MamunMAHaqueMDRahmanMFHossainMKTouhidul IslamAZMACS Omega20238701710.1021/acsomega.2c07846
– reference: B Sultana, A T M S Islam, M D Haque, A Kuddus, M H Ali and M F Rahman Phys. Scripta98 (2023)
– reference: BrezesinskiTWangJTolbertSHDunnBNat. Mater.201091462010NatMa...9..146B10.1038/nmat2612
– reference: PerdewJPBurkeKErnzerhofMPhys. Rev. Lett.19967738651996PhRvL..77.3865P10.1103/PhysRevLett.77.3865
– volume: 9
  start-page: 146
  year: 2010
  ident: 3043_CR29
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2612
– volume: 2
  start-page: 429
  year: 2010
  ident: 3043_CR11
  publication-title: Nanoscale
  doi: 10.1039/B9NR00320G
– volume: 83
  start-page: 2653
  year: 2003
  ident: 3043_CR25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1613992
– volume: 220
  start-page: 567
  year: 2005
  ident: 3043_CR46
  publication-title: Zeitschrift Fur Kristallographie
– ident: 3043_CR54
  doi: 10.12688/f1000research.137044.1
– volume: 23
  start-page: 215
  year: 2013
  ident: 3043_CR31
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200993
– volume: 118
  start-page: e25681
  year: 2018
  ident: 3043_CR44
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25681
– ident: 3043_CR15
  doi: 10.1016/S0040-6090(03)00524-8
– ident: 3043_CR35
  doi: 10.1007/s10008-008-0741-x
– ident: 3043_CR57
  doi: 10.1007/s10853-023-08825-5
– volume: 355
  start-page: 624
  year: 1992
  ident: 3043_CR22
  publication-title: Nature
  doi: 10.1038/355624a0
– volume: 12
  start-page: 34850
  year: 2022
  ident: 3043_CR47
  publication-title: RSC Adv.
  doi: 10.1039/D2RA06734J
– volume: 76
  start-page: 1143
  year: 1990
  ident: 3043_CR64
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(90)90981-G
– volume: 5
  start-page: 12847
  year: 2013
  ident: 3043_CR12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am404441n
– volume: 53
  start-page: 182
  year: 2014
  ident: 3043_CR10
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.09.057
– volume: 7
  start-page: 43210
  year: 2022
  ident: 3043_CR48
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c05912
– ident: 3043_CR3
  doi: 10.1007/s43939-023-00061-7
– ident: 3043_CR8
– volume: 520
  start-page: 4762
  year: 2012
  ident: 3043_CR28
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.10.174
– ident: 3043_CR52
  doi: 10.1364/OPTCON.495816
– volume: 12
  start-page: 9122
  year: 2006
  ident: 3043_CR36
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200600977
– volume: 130
  start-page: 242
  year: 2017
  ident: 3043_CR45
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2017.01.014
– volume: 88
  start-page: 115141
  year: 2013
  ident: 3043_CR65
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.115141
– volume: 81
  start-page: 5048
  year: 2002
  ident: 3043_CR23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1532104
– ident: 3043_CR66
– volume: 7
  start-page: 9753
  year: 2013
  ident: 3043_CR16
  publication-title: ACS Nano
  doi: 10.1021/nn403241f
– volume: 5
  start-page: 24223
  year: 2017
  ident: 3043_CR27
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07705J
– volume: 7
  start-page: 11049
  year: 2016
  ident: 3043_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11049
– ident: 3043_CR51
  doi: 10.1088/1402-4896/acfce9
– ident: 3043_CR50
  doi: 10.1154/1.3257906
– volume: 5
  start-page: 354
  year: 2016
  ident: 3043_CR62
  publication-title: J. Adv. Phys.
  doi: 10.1166/jap.2016.1278
– volume: 76
  start-page: 083108
  year: 2005
  ident: 3043_CR63
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1979470
– volume: 83
  start-page: 276
  year: 2002
  ident: 3043_CR6
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/S0925-4005(01)01072-3
– volume: 4
  start-page: 7131
  year: 2014
  ident: 3043_CR43
  publication-title: Sci. Rep.
  doi: 10.1038/srep07131
– volume: 21
  start-page: 5681
  year: 2009
  ident: 3043_CR34
  publication-title: Chem. Mater.
  doi: 10.1021/cm9023887
– ident: 3043_CR61
  doi: 10.1140/epjb/e2004-00164-3
– ident: 3043_CR21
– ident: 3043_CR67
– ident: 3043_CR53
  doi: 10.1002/nano.202300066
– volume: 20
  start-page: 385
  year: 2004
  ident: 3043_CR19
  publication-title: Surf. Eng.
  doi: 10.1179/026708404225016454
– volume: 77
  start-page: 3865
  year: 1996
  ident: 3043_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 42
  start-page: 175305
  year: 2009
  ident: 3043_CR40
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/42/17/175305
– volume: 21
  start-page: 45
  year: 2010
  ident: 3043_CR38
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-009-9867-6
– volume: 085329
  start-page: 1
  year: 2023
  ident: 3043_CR55
  publication-title: AIP Adv.
– volume: 328
  start-page: 124341
  year: 2023
  ident: 3043_CR58
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2023.124341
– volume: 383
  start-page: 608
  year: 1996
  ident: 3043_CR20
  publication-title: Nature
  doi: 10.1038/383608a0
– volume: 254
  start-page: 5895
  year: 2008
  ident: 3043_CR41
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.03.159
– volume: 12
  start-page: 3740
  year: 2010
  ident: 3043_CR24
  publication-title: CrystEngComm
  doi: 10.1039/c000744g
– volume: 8
  start-page: 7017
  year: 2023
  ident: 3043_CR2
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c07846
– volume: 283
  start-page: 2857
  year: 2010
  ident: 3043_CR39
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2010.03.059
– volume: 77
  start-page: 478
  year: 2001
  ident: 3043_CR14
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/S0925-4005(01)00738-9
– volume: 4
  start-page: 135
  year: 2014
  ident: 3043_CR7
  publication-title: Int. J. Eng. Res. Appl.
– volume: 15
  start-page: L547
  year: 2003
  ident: 3043_CR33
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/15/35/101
– volume: 333
  start-page: 836
  year: 1988
  ident: 3043_CR59
  publication-title: Nature
  doi: 10.1038/333836a0
– ident: 3043_CR5
  doi: 10.1039/C5TC02043C
– volume: 9
  start-page: 67
  year: 2015
  ident: 3043_CR42
  publication-title: J. Theor. Appl. Phys.
  doi: 10.1007/s40094-014-0161-5
– volume: 47
  start-page: 10305
  year: 2011
  ident: 3043_CR30
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc14030b
– volume: 8
  start-page: 10144
  year: 2018
  ident: 3043_CR32
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28522-7
– ident: 3043_CR13
  doi: 10.1039/C4NR04529G
– volume: 49
  start-page: 9400
  year: 2010
  ident: 3043_CR9
  publication-title: Inorg. Chem.
  doi: 10.1021/ic101103g
– volume: 28
  start-page: 1706006
  year: 2018
  ident: 3043_CR17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706006
– ident: 3043_CR1
  doi: 10.1016/j.optmat.2022.112678
– volume: 15
  start-page: 2310
  year: 2009
  ident: 3043_CR26
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200802182
– volume: 95
  start-page: 176403
  year: 2005
  ident: 3043_CR60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.176403
– ident: 3043_CR4
  doi: 10.1088/1402-4896/acee29
– volume: 9
  start-page: 4138
  year: 2009
  ident: 3043_CR37
  publication-title: Nano Lett.
  doi: 10.1021/nl902357q
– volume: 9
  start-page: e19271
  year: 2023
  ident: 3043_CR56
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e19271
SSID ssj0069175
Score 2.4582438
Snippet Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO 3 ) for utilizing it directly in gas sensing and...
Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO3) for utilizing it directly in gas sensing and optoelectronic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2695
SubjectTerms Absorptivity
Astrophysics and Astroparticles
Carrier density
Charge materials
Computation
Correlation
Current carriers
Devices
Electrical resistivity
Elementary particles
Energy bands
Energy gap
First principles
Gas sensors
Light sources
Magnetic moments
Magnetic properties
Molybdenum trioxide
Optical properties
Original Paper
Orthorhombic phase
Particle spin
Photosensitivity
Physics
Physics and Astronomy
Plane waves
Refractivity
Semiconductor materials
Transition metals
Title First-principles analysis of how Cobalt doping affects the structural, electronic, and optical properties of α-MoO3
URI https://link.springer.com/article/10.1007/s12648-023-03043-w
https://www.proquest.com/docview/3068587268
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA66IfgiXnE6Rx58c4GlTZP0cRuromy-OJhPJbeiIOtwhf0u_4i_ySRtLYoKPrXQ9Dycc5J8OZcvAFxmAecuuIYoCwQiWgsUMxkigokigYMUPns-ndGbObldRIuqKWxdV7vXKUm_UjfNbq4YC9k9Brl0Xog226AdubO79eJ5MKzXX2oPIL5wMWYhwiTiVavMzzK-bkcNxvyWFvW7TbIP9iqYCIelXQ_Allkegh1frqnWR6BIni1qQ6s6Ur6GoiIXgXkGn_INHDuejwJq3w8FRVm1AS3agyVjrGPb6MPmEpy-laBhvvKhbbhyIfpXx7Xq5L2_oWl-Hx6DeTJ5GN-g6v4EpOzEKpDBGaNCYcZEaHCsB1jGFp7GVglGMzmggglN2cBgyUIeZIJjo7hWgkmpM6XCE9Ba5ktz6jq7Q0mVHYazgMhA88y-EWmoijMlOOkAXKsxVRW5uLvj4iVtaJGd6lOr-tSrPt10wNXnP6uSWuPP0d3aOmk1zdapPe_wiLOA8g7o1xZrPv8u7ex_w8_BrnU0UpbpdkHLGspcWDBSyB5oD5PRaOae1493k573xQ99oNr_
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aEb2In1itmoM3G2iyaZI9lmKp2tZLC70t-VoUpFvsQn-Xf8TfZJLddVFU8Law2TnMbJKXmTcvAFynRAifXEOME4moMRLFXEWIYqop8ZAiVM_HEzac0ft5d142ha0qtntVkgwrdd3s5slYyO0xyJfzIrTeBFsODAhP5JqRXrX-MncACcTFmEcI064oW2V-tvF1O6ox5reyaNhtBvtgr4SJsFfE9QBs2MUh2A50Tb06Avng2aE2tKwy5SsoS3ERmKXwKVvDvtf5yKEJ_VBQFqwN6NAeLBRjvdpGG9aX4LSdBQOzZUhtw6VP0b96rVVv7_0NjbPH6BjMBrfT_hCV9ycg7SZWjixOOZMacy4ji2PTwSp28DR2TrCGqw6TXBrGOxYrHgmSSoGtFkZLrpRJtY5OQGORLeyp7-yOFNNuGE4JVcSI1D1RZZmOUy0FbQJcuTHRpbi4v-PiJallkb3rE-f6JLg-WTfBzec3y0Ja48_RrSo6STnNVok774iu4ISJJmhXEatf_27t7H_Dr8DOcDoeJaO7ycM52CUO2BSU3RZouKDZCwdMcnUZ_sMPPIDa4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uKF7EFcc1B29OcJJmkvQo6uCuBwe8lawoyLQ4hfld_hF_k0naWhUVvBWavsN7ad6Xt3wPgH1HhAjBNcQ4kYgaI1HKVYIoppqSACli9vz6hp0N6cVD_-FTF3-sdm9SklVPQ2BpGpWHhXGHbeNbKMxC3t-gkNpL0GQazPrjGId9PSRHzVnM_GUkFjGmPEGY9kXdNvOzjK-uqcWb31Kk0fMMlsBiDRnhUWXjZTBlRytgLpZu6vEqKAdPHsGhoomaj6GsiUZg7uBjPoHHgfOjhCb2RkFZVXBAj_xgxR4bmDe6sB2I0_USDMyLGOaGRQjXvwTe1SDv7RVd57fJGhgOTu-Pz1A9SwFpr5USWew4kxpzLhOLU9PDKvVQNfVKsIarHpNcGsZ7FiueCOKkwFYLoyVXyjitk3UwM8pHdiN0eSeKab8MO0IVMcL5J6os06nTUtAOwI0aM10TjYd5F89ZS5EcVJ951WdR9dmkAw4-vikqmo0_V2831snqX26c-buP6AtOmOiAbmOx9vXv0jb_t3wPzN-dDLKr85vLLbBAPMapqne3wYy3md3xGKVUu3EbvgPWWd8e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-principles+analysis+of+how+Cobalt+doping+affects+the+structural%2C+electronic%2C+and+optical+properties+of+%CE%B1-MoO3&rft.jtitle=Indian+journal+of+physics&rft.au=Rahman%2C+Md.+Ferdous&rft.au=Melody%2C+Zinat+Rahman&rft.au=Ali%2C+Md.+Hasan&rft.au=Ghosh%2C+Avijit&rft.date=2024-07-01&rft.pub=Springer+India&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=98&rft.issue=8&rft.spage=2695&rft.epage=2704&rft_id=info:doi/10.1007%2Fs12648-023-03043-w&rft.externalDocID=10_1007_s12648_023_03043_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon