First-principles analysis of how Cobalt doping affects the structural, electronic, and optical properties of α-MoO3
Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO 3 ) for utilizing it directly in gas sensing and optoelectronic devices. Doping with transition metal ions can be an optimistic solution to these problems. By doping four side of modification of a mater...
Saved in:
Published in | Indian journal of physics Vol. 98; no. 8; pp. 2695 - 2704 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.07.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO
3
) for utilizing it directly in gas sensing and optoelectronic devices. Doping with transition metal ions can be an optimistic solution to these problems. By doping four side of modification of a material is possible. At first, doping can curtail the width of the energy band of semiconductor materials, thereby largely boosting the photo-sensitivity of the material and intensifying the light consumption that is more suitable for anti-laser devices and light source substances. The second is that doping can widen the material's band gap, which can significantly reduce the purities of the substance, improve absorbance, and make it suitable for strong interference semiconductor films and aperture materials. Third, changing the material's charge carrier density and effective mass can significantly improve conductivity. This is mostly relevant for conductive devices and photosensitive materials. Finally, changing the material's valance electron location influences the magnetic moment created by the spin of elementary particles in the entire system, allowing the magnetic characteristics of the substance to be regulated, which is especially useful for diluted magnetic semiconductor (DMS) materials. The investigation report of the structural, electrical, and optical characteristics of Cobalt (Co)-doped orthorhombic-phase MoO
3
utilizing plane-wave pseudo-potential technique based on first-principles computation is presented in this paper. The computation has been executed using density a functional theory (DFT)-based CASTEP computer program with the generalized gradient approximation (GGA) together with the Perdue-Burke-Ernzerhof (PBE) exchange–correlation function. Acquired structural parameters present good consistency with the former reported experimental data. The resultant electronic band structure reveals that pure MoO
3
shows an indirect energy band gap of 1.873 eV/2.312 eV whereas Co doping causes band narrowing of about 0.94 eV/1.36 eV with PBE/HSE techniques. The total and partial density of states (PDOS) have been studied comparatively, for pure and Co-doped MoO
3
, respectively. The absorption coefficient, loss function, reflectivity, refractive index, extinction coefficient, dielectric function, along with optical conductivity have also been determined to analyze the optical properties of Co-doped MoO
3
. Co-doped MoO
3
offers higher conductivity while decreasing resistivity, compared to the undoped case. The present study ensures that Co-doped α- MoO
3
can be competently employed as a functional material in gas sensing and optoelectronic devices. |
---|---|
AbstractList | Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO3) for utilizing it directly in gas sensing and optoelectronic devices. Doping with transition metal ions can be an optimistic solution to these problems. By doping four side of modification of a material is possible. At first, doping can curtail the width of the energy band of semiconductor materials, thereby largely boosting the photo-sensitivity of the material and intensifying the light consumption that is more suitable for anti-laser devices and light source substances. The second is that doping can widen the material's band gap, which can significantly reduce the purities of the substance, improve absorbance, and make it suitable for strong interference semiconductor films and aperture materials. Third, changing the material's charge carrier density and effective mass can significantly improve conductivity. This is mostly relevant for conductive devices and photosensitive materials. Finally, changing the material's valance electron location influences the magnetic moment created by the spin of elementary particles in the entire system, allowing the magnetic characteristics of the substance to be regulated, which is especially useful for diluted magnetic semiconductor (DMS) materials. The investigation report of the structural, electrical, and optical characteristics of Cobalt (Co)-doped orthorhombic-phase MoO3 utilizing plane-wave pseudo-potential technique based on first-principles computation is presented in this paper. The computation has been executed using density a functional theory (DFT)-based CASTEP computer program with the generalized gradient approximation (GGA) together with the Perdue-Burke-Ernzerhof (PBE) exchange–correlation function. Acquired structural parameters present good consistency with the former reported experimental data. The resultant electronic band structure reveals that pure MoO3 shows an indirect energy band gap of 1.873 eV/2.312 eV whereas Co doping causes band narrowing of about 0.94 eV/1.36 eV with PBE/HSE techniques. The total and partial density of states (PDOS) have been studied comparatively, for pure and Co-doped MoO3, respectively. The absorption coefficient, loss function, reflectivity, refractive index, extinction coefficient, dielectric function, along with optical conductivity have also been determined to analyze the optical properties of Co-doped MoO3. Co-doped MoO3 offers higher conductivity while decreasing resistivity, compared to the undoped case. The present study ensures that Co-doped α- MoO3 can be competently employed as a functional material in gas sensing and optoelectronic devices. Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO 3 ) for utilizing it directly in gas sensing and optoelectronic devices. Doping with transition metal ions can be an optimistic solution to these problems. By doping four side of modification of a material is possible. At first, doping can curtail the width of the energy band of semiconductor materials, thereby largely boosting the photo-sensitivity of the material and intensifying the light consumption that is more suitable for anti-laser devices and light source substances. The second is that doping can widen the material's band gap, which can significantly reduce the purities of the substance, improve absorbance, and make it suitable for strong interference semiconductor films and aperture materials. Third, changing the material's charge carrier density and effective mass can significantly improve conductivity. This is mostly relevant for conductive devices and photosensitive materials. Finally, changing the material's valance electron location influences the magnetic moment created by the spin of elementary particles in the entire system, allowing the magnetic characteristics of the substance to be regulated, which is especially useful for diluted magnetic semiconductor (DMS) materials. The investigation report of the structural, electrical, and optical characteristics of Cobalt (Co)-doped orthorhombic-phase MoO 3 utilizing plane-wave pseudo-potential technique based on first-principles computation is presented in this paper. The computation has been executed using density a functional theory (DFT)-based CASTEP computer program with the generalized gradient approximation (GGA) together with the Perdue-Burke-Ernzerhof (PBE) exchange–correlation function. Acquired structural parameters present good consistency with the former reported experimental data. The resultant electronic band structure reveals that pure MoO 3 shows an indirect energy band gap of 1.873 eV/2.312 eV whereas Co doping causes band narrowing of about 0.94 eV/1.36 eV with PBE/HSE techniques. The total and partial density of states (PDOS) have been studied comparatively, for pure and Co-doped MoO 3 , respectively. The absorption coefficient, loss function, reflectivity, refractive index, extinction coefficient, dielectric function, along with optical conductivity have also been determined to analyze the optical properties of Co-doped MoO 3 . Co-doped MoO 3 offers higher conductivity while decreasing resistivity, compared to the undoped case. The present study ensures that Co-doped α- MoO 3 can be competently employed as a functional material in gas sensing and optoelectronic devices. |
Author | Ghosh, Avijit Ali, Md. Hasan Melody, Zinat Rahman Barman, Pobitra Hossain, M. Khalid Rahman, Md. Ferdous Islam, Md. Rasidul |
Author_xml | – sequence: 1 givenname: Md. Ferdous orcidid: 0000-0002-0090-2384 surname: Rahman fullname: Rahman, Md. Ferdous email: ferdousapee@gmail.com organization: Advanced Energy Materials and Solar Cell Research Laboratory, Department of Electrical and Electronic Engineering, Begum Rokeya University – sequence: 2 givenname: Zinat Rahman surname: Melody fullname: Melody, Zinat Rahman organization: Advanced Energy Materials and Solar Cell Research Laboratory, Department of Electrical and Electronic Engineering, Begum Rokeya University – sequence: 3 givenname: Md. Hasan surname: Ali fullname: Ali, Md. Hasan email: hasan@brur.ac.bd organization: Advanced Energy Materials and Solar Cell Research Laboratory, Department of Electrical and Electronic Engineering, Begum Rokeya University – sequence: 4 givenname: Avijit surname: Ghosh fullname: Ghosh, Avijit organization: Advanced Energy Materials and Solar Cell Research Laboratory, Department of Electrical and Electronic Engineering, Begum Rokeya University – sequence: 5 givenname: Pobitra surname: Barman fullname: Barman, Pobitra organization: Advanced Energy Materials and Solar Cell Research Laboratory, Department of Electrical and Electronic Engineering, Begum Rokeya University – sequence: 6 givenname: Md. Rasidul surname: Islam fullname: Islam, Md. Rasidul organization: Department of Electrical and Electronic Engineering, Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University – sequence: 7 givenname: M. Khalid surname: Hossain fullname: Hossain, M. Khalid organization: Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission |
BookMark | eNp9kMFKAzEQhoNUsK2-gKeA10aTze4me5RiVVB60XPIJtk2Zd2sSUrpY_kiPpNpVxA89DTDMN_PzDcBo851BoBrgm8JxuwukKzMOcIZRZjinKLdGRjjiuWo4nkxOvYUkbzgF2ASwgbjsiKsGIO4sD5E1HvbKdu3JkDZyXYfbICugWu3g3NXyzZC7XrbraBsGqNigHFtYIh-q-LWy3YGTZvG3nVWzVKChq6PVskW9t71xkdrjnnfX-jVLeklOG9kG8zVb52C98XD2_wJvSwfn-f3L0hRUkVkSMNKqQhjkhpSaUzqihNdpV-NZjUuJZO6ZNiQmlGeNZITo7hWktW1bpSiU3Az5KYrPrcmRLFxW5_-C4LikhecZSVPW9mwpbwLwZtGJBsf0u8FweJgVwx2RbIrjnbFLkH8H6RslNG6Lnpp29MoHdBwsL4y_u-qE9QPOfGUpA |
CitedBy_id | crossref_primary_10_1016_j_mseb_2024_117559 crossref_primary_10_1039_D4RA05079G crossref_primary_10_1007_s12648_024_03350_w crossref_primary_10_1021_acsomega_3c08285 crossref_primary_10_1039_D4CP03286A crossref_primary_10_1016_j_jics_2025_101618 crossref_primary_10_1039_D4RA07912D |
Cites_doi | 10.1038/nmat2612 10.1039/B9NR00320G 10.1063/1.1613992 10.12688/f1000research.137044.1 10.1002/adfm.201200993 10.1002/qua.25681 10.1016/S0040-6090(03)00524-8 10.1007/s10008-008-0741-x 10.1007/s10853-023-08825-5 10.1038/355624a0 10.1039/D2RA06734J 10.1016/0038-1098(90)90981-G 10.1021/am404441n 10.1016/j.bios.2013.09.057 10.1021/acsomega.2c05912 10.1007/s43939-023-00061-7 10.1016/j.tsf.2011.10.174 10.1364/OPTCON.495816 10.1002/chem.200600977 10.1016/j.commatsci.2017.01.014 10.1103/PhysRevB.88.115141 10.1063/1.1532104 10.1021/nn403241f 10.1039/C7TA07705J 10.1038/ncomms11049 10.1088/1402-4896/acfce9 10.1154/1.3257906 10.1166/jap.2016.1278 10.1063/1.1979470 10.1016/S0925-4005(01)01072-3 10.1038/srep07131 10.1021/cm9023887 10.1140/epjb/e2004-00164-3 10.1002/nano.202300066 10.1179/026708404225016454 10.1103/PhysRevLett.77.3865 10.1088/0022-3727/42/17/175305 10.1007/s10854-009-9867-6 10.1016/j.jssc.2023.124341 10.1038/383608a0 10.1016/j.apsusc.2008.03.159 10.1039/c000744g 10.1021/acsomega.2c07846 10.1016/j.optcom.2010.03.059 10.1016/S0925-4005(01)00738-9 10.1088/0953-8984/15/35/101 10.1038/333836a0 10.1039/C5TC02043C 10.1007/s40094-014-0161-5 10.1039/c1cc14030b 10.1038/s41598-018-28522-7 10.1039/C4NR04529G 10.1021/ic101103g 10.1002/adfm.201706006 10.1016/j.optmat.2022.112678 10.1002/chem.200802182 10.1103/PhysRevLett.95.176403 10.1088/1402-4896/acee29 10.1021/nl902357q 10.1016/j.heliyon.2023.e19271 |
ContentType | Journal Article |
Copyright | Indian Association for the Cultivation of Science 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Indian Association for the Cultivation of Science 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1007/s12648-023-03043-w |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 0974-9845 |
EndPage | 2704 |
ExternalDocumentID | 10_1007_s12648_023_03043_w |
GroupedDBID | -EM 04Q 04W 06D 0R~ 0VY 203 29I 29~ 2JN 2KG 2VQ 30V 3V. 406 408 5GY 5VS 67Z 8FE 8FG 8G5 95. 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABXPI ACAOD ACCUX ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARMRJ AXYYD AYJHY AZQEC BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CSCUP C~6 DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HCIFZ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXC IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M2O M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P62 P9T PQQKQ PROAC PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 Z45 Z7X Z7Y ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7U5 8FD ABRTQ H8D L7M |
ID | FETCH-LOGICAL-c319t-e1f76ac177a3e19d01b981d9126ed7b06a7ad670e1b7382fa81ec8dca7bbdfcc3 |
IEDL.DBID | U2A |
ISSN | 0973-1458 |
IngestDate | Fri Jul 25 04:41:45 EDT 2025 Tue Jul 01 03:02:39 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 Fri Feb 21 02:41:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Density of states Electronic band structure Optical properties Density functional theory First-principles calculation MoO Structural properties Cobalt doping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e1f76ac177a3e19d01b981d9126ed7b06a7ad670e1b7382fa81ec8dca7bbdfcc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0090-2384 |
PQID | 3068587268 |
PQPubID | 2034531 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3068587268 crossref_primary_10_1007_s12648_023_03043_w crossref_citationtrail_10_1007_s12648_023_03043_w springer_journals_10_1007_s12648_023_03043_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: West Bengal |
PublicationTitle | Indian journal of physics |
PublicationTitleAbbrev | Indian J Phys |
PublicationYear | 2024 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | M F Rahman, M A I Islam, M R Islam, M H Ali, P Barman, M A Rahman, M Harun‐Or‐Rashid, M Hasan and M K Hossain Nano Select4 (2023) NirupamaVUthannaSJ. Mater. Sci. Mater. Electron.2010214510.1007/s10854-009-9867-6 XuZSolid State Commun.19907611431990SSCom..76.1143X10.1016/0038-1098(90)90981-G A Ghosh, M F Rahman, M R Islam, M S Islam, M Hossain, S Bhattarai, R panday, J Madan, M A Rahman and A B Ismail Opt. Continuum2 (2023) C M I Okoye Eur. Phys. J. B39 5 (2004) ChenYLuCXuLMaYHouWZhuJ-JCrystEngComm201012374010.1039/c000744g M F Rahman, M Harun-Or-Rashid, M R Islam, A Ghosh, M K Hossain, S Bhattarai, R Pandey, J Madan, M A Ali and A B M Ismail Phys. Scripta98 (2023) BechingerCFerrereSZabanASpragueJGreggBANature19963836081996Natur.383..608B10.1038/383608a0 M F Rahman, H Rahman, R Islam and M K Hossain J. Mater. Sci.58 (2023) M D Haque, M H Ali, M F Rahman and A Z M T Islam Opt. Mater.131 112678 (2022) GalatsisKLiYXWlodarskiWCominiESberveglieriGCantaliniCSantucciSPassacantandoMSens. Actuators B Chem.20028327610.1016/S0925-4005(01)01072-3 Z Yin, X Zhang, Y Cai, J Chen, J I Wong, Y-Y Tay, J Chai, J Wu, Z Zeng, B Zheng, H Y Yang and H Zhang Angew. Chemie Int. Ed. (2014) BandaruSSaranyaGEnglishNJYamCChenMSci. Rep.20188101442018NatSR...810144B10.1038/s41598-018-28522-7 Kalantar-zadehKNanoscale201024292010Nanos...2..429K10.1039/B9NR00320G DighoreNRJadhavSPGaikwadSTRajbhojASInt. J. Eng. Res. Appl.20144135 ClarkSJSegallMDPickardCJHasnipPJProbertMIJRefsonKPayneMCZeitschrift Fur Kristallographie20052205672005ZK....220..567C H Sitepu Powder Diffr.24 315 (2009) MichailovskiAPatzkeGRChem. Eur. J.200612912210.1002/chem.200600977 LunkH-JInorg. Chem.201049940010.1021/ic101103g SuZWangLLiYZhangGZhaoHYangHMaYChuBLiWACS Appl. Mater. Interfaces201351284710.1021/am404441n AliMHAl MamunMAHaqueMDRahmanMFHossainMKTouhidul IslamAZMACS Omega20238701710.1021/acsomega.2c07846 ZhengLXuYJinDXieYChem. Mater.200921568110.1021/cm9023887 F Paquin, J Rivnay, A Salleo, N Stingelin and C Silva J. Mater. Chem. C3 10715 (2015) GreinerMTChaiLHelanderMGTangW-MLuZ-HAdv. Funct. Mater.20132321510.1002/adfm.201200993 RahmanARahmanARahamanZJ. Adv. Phys.2016535410.1166/jap.2016.1278 BrezesinskiTWangJTolbertSHDunnBNat. Mater.201091462010NatMa...9..146B10.1038/nmat2612 AritaMKajiHFujiiTTakahashiYThin Solid Films201252047622012TSF...520.4762A10.1016/j.tsf.2011.10.174 GalatsisKLiYWlodarskiWKalantar-zadehKSens. Actuators B Chem.20017747810.1016/S0925-4005(01)00738-9 NavasIVinodkumarRLethyKJDettyAPGanesanVSatheVMahadevan PillaiVPJ. Phys. D Appl. Phys.2009421753052009JPhD...42q5305N10.1088/0022-3727/42/17/175305 A B Shanto,M F Rahman, R Islam, A Ghosh, A Azzouz-rached, H Albalawi and Q Mahmood F1000Research12 (2023) B Sultana, A T M S Islam, M D Haque, A Kuddus, M H Ali and M F Rahman Phys. Scripta98 (2023) R Islam, M F Rahman, S Bhattarai, H Bencherif, M K A Mohammed, R Pandey and J Madan Energy & Fuels 37 (2023) YaoJNHashimotoKFujishimaANature19923556241992Natur.355..624Y10.1038/355624a0 HuangP-RHeYCaoCLuZ-HSci. Rep.20144713110.1038/srep07131 ShonJKNat. Commun.20167110492016NatCo...711049S10.1038/ncomms11049 A K Prasad, P I Gouma, D J Kubinski, J H Visser, R E Soltis and P J Schmitz Thin Solid Films436 46 (2003) PandeeswariRJeyaprakashBGBiosens. Bioelectron.20145318210.1016/j.bios.2013.09.057 QuQZhangW-BHuangKChenH-MComput. Mater. Sci.201713024210.1016/j.commatsci.2017.01.014 LiYBBandoYGolbergDKurashimaKAppl. Phys. Lett.20028150482002ApPhL..81.5048L10.1063/1.1532104 LajaunieLBoucherFDessaptRMoreauPPhys. Rev. B2013881151412013PhRvB..88k5141L10.1103/PhysRevB.88.115141 MengQFanLZhuLXuNZhangQInt. J. Quantum Chem.2018118e2568110.1002/qua.25681 RahmanFRahmanAIslamRGhoshAShantoABChowdhuryMIslamAIRahmanHHossainMKIslamMAAIP Adv.20230853291 ZhouJDengSZXuNSChenJSheJCAppl. Phys. Lett.20038326532003ApPhL..83.2653Z10.1063/1.1613992 KimMHNano Lett.2009941382009NanoL...9.4138K10.1021/nl902357q BalendhranSACS Nano20137975310.1021/nn403241f MahajanSSMujawarSHShindePSInamdarAIPatilPSAppl. Surf. Sci.200825458952008ApSS..254.5895M10.1016/j.apsusc.2008.03.159 C V. Subba Reddy, E H Walker, S A Wicker, Q L Williams and R R Kalluru J. Solid State Electrochem.13 1945 (2009) Al-KuhailiMFDurraniSMABakhtiariIAAl-ShukriAMOpt. Commun.201028328572010OptCo.283.2857A10.1016/j.optcom.2010.03.059 N Rahman, M D Haque, M F Rahman, M M Islam, M A N Juthi, A R Roy, M A Akter and M F Islam Discov. Mater.3 (2023) LiangRCaoHQianDChem. Commun.2011471030510.1039/c1cc14030b HojabriAHajakbariFMeibodiAEJ. Theor. Appl. Phys.20159672015JTAP....9...67H10.1007/s40094-014-0161-5 S Bhatia and A Khanna Struct. Opt. Prop. Molybd. Trioxide Thin Films p 080057 (2015) ZhangBYAdv. Funct. Mater.201828170600610.1002/adfm.201706006 SivakumarRJayachandranMSanjeevirajaCSurf. Eng.20042038510.1179/026708404225016454 GhoshARahmanFIslamRIslamSHeliyon20239e1927110.1016/j.heliyon.2023.e19271 N Illyaskutty, S Sreedhar, G Sanal Kumar, H Kohler, M Schwotzer, C Natzeck and V P M Pillai Nanoscale6 13882 (2014) ChengLShaoMWangXHuHChem. Eur. J.200915231010.1002/chem.200802182 RahmanMFIslamMMIslamMRGhoshARahmanMARahmanMHIslamMAIIslamMAAlbalawiHMahmoodQJ. Solid State Chem.202332812434110.1016/j.jssc.2023.124341 PerdewJPBurkeKErnzerhofMPhys. Rev. Lett.19967738651996PhRvL..77.3865P10.1103/PhysRevLett.77.3865 KuzmenkoABRev. Sci. Instrum.2005760831082005RScI...76h3108K10.1063/1.1979470 ZhaoYLiuJZhouYZhangZXuYNaramotoHYamamotoSJ. Phys. Condens. Matter200315L5472003JPCM...15L.547Z10.1088/0953-8984/15/35/101 DattaRSHaqueFMohiuddinMCareyBJSyedNZavabetiAZhangBKhanHBereanKJOuJZMahmoodNDaenekeTKalantar-zadehKJ. Mater. Chem. A201752422310.1039/C7TA07705J HossainMKRubelMHKTokiGFIAlamIRahmanMFBencherifHACS Omega202274321010.1021/acsomega.2c05912 M K Hossain et al. Sci. Rep. 1 (2023) HossainMKArnabAADasRCHossainKMRubelMHKRahmanMFBencherifHEmetereMEMohammedMKAPandeyRRSC Adv.202212348502022RSCAd..1234850H10.1039/D2RA06734J HinksDGDabrowskiBJorgensenJDMitchellAWRichardsDRPeiSShiDNature19883338361988Natur.333..836H10.1038/333836a0 NishioTAhmadJUweHPhys. Rev. Lett.2005951764032005PhRvL..95q6403N10.1103/PhysRevLett.95.176403 V Nirupama (3043_CR38) 2010; 21 MH Ali (3043_CR2) 2023; 8 I Navas (3043_CR40) 2009; 42 NR Dighore (3043_CR7) 2014; 4 3043_CR50 3043_CR51 3043_CR52 3043_CR53 3043_CR54 A Hojabri (3043_CR42) 2015; 9 A Ghosh (3043_CR56) 2023; 9 Z Su (3043_CR12) 2013; 5 3043_CR13 3043_CR57 3043_CR15 JP Perdew (3043_CR49) 1996; 77 AB Kuzmenko (3043_CR63) 2005; 76 K Galatsis (3043_CR14) 2001; 77 T Brezesinski (3043_CR29) 2010; 9 R Pandeeswari (3043_CR10) 2014; 53 R Sivakumar (3043_CR19) 2004; 20 K Kalantar-zadeh (3043_CR11) 2010; 2 L Zheng (3043_CR34) 2009; 21 3043_CR61 K Galatsis (3043_CR6) 2002; 83 3043_CR21 3043_CR66 3043_CR67 Z Xu (3043_CR64) 1990; 76 T Nishio (3043_CR60) 2005; 95 A Michailovski (3043_CR36) 2006; 12 SJ Clark (3043_CR46) 2005; 220 MK Hossain (3043_CR47) 2022; 12 3043_CR8 3043_CR3 3043_CR5 S Bandaru (3043_CR32) 2018; 8 3043_CR4 MH Kim (3043_CR37) 2009; 9 3043_CR1 JK Shon (3043_CR18) 2016; 7 M Arita (3043_CR28) 2012; 520 RS Datta (3043_CR27) 2017; 5 Y Chen (3043_CR24) 2010; 12 MF Al-Kuhaili (3043_CR39) 2010; 283 S Balendhran (3043_CR16) 2013; 7 BY Zhang (3043_CR17) 2018; 28 MF Rahman (3043_CR58) 2023; 328 A Rahman (3043_CR62) 2016; 5 C Bechinger (3043_CR20) 1996; 383 JN Yao (3043_CR22) 1992; 355 F Rahman (3043_CR55) 2023; 085329 L Lajaunie (3043_CR65) 2013; 88 YB Li (3043_CR23) 2002; 81 3043_CR35 Q Meng (3043_CR44) 2018; 118 L Cheng (3043_CR26) 2009; 15 MT Greiner (3043_CR31) 2013; 23 DG Hinks (3043_CR59) 1988; 333 J Zhou (3043_CR25) 2003; 83 Y Zhao (3043_CR33) 2003; 15 H-J Lunk (3043_CR9) 2010; 49 R Liang (3043_CR30) 2011; 47 Q Qu (3043_CR45) 2017; 130 P-R Huang (3043_CR43) 2014; 4 SS Mahajan (3043_CR41) 2008; 254 MK Hossain (3043_CR48) 2022; 7 |
References_xml | – reference: LiangRCaoHQianDChem. Commun.2011471030510.1039/c1cc14030b – reference: HossainMKArnabAADasRCHossainKMRubelMHKRahmanMFBencherifHEmetereMEMohammedMKAPandeyRRSC Adv.202212348502022RSCAd..1234850H10.1039/D2RA06734J – reference: HossainMKRubelMHKTokiGFIAlamIRahmanMFBencherifHACS Omega202274321010.1021/acsomega.2c05912 – reference: M F Rahman, H Rahman, R Islam and M K Hossain J. Mater. Sci.58 (2023) – reference: DattaRSHaqueFMohiuddinMCareyBJSyedNZavabetiAZhangBKhanHBereanKJOuJZMahmoodNDaenekeTKalantar-zadehKJ. Mater. Chem. A201752422310.1039/C7TA07705J – reference: ZhengLXuYJinDXieYChem. Mater.200921568110.1021/cm9023887 – reference: PandeeswariRJeyaprakashBGBiosens. Bioelectron.20145318210.1016/j.bios.2013.09.057 – reference: KimMHNano Lett.2009941382009NanoL...9.4138K10.1021/nl902357q – reference: RahmanFRahmanAIslamRGhoshAShantoABChowdhuryMIslamAIRahmanHHossainMKIslamMAAIP Adv.20230853291 – reference: LunkH-JInorg. Chem.201049940010.1021/ic101103g – reference: ClarkSJSegallMDPickardCJHasnipPJProbertMIJRefsonKPayneMCZeitschrift Fur Kristallographie20052205672005ZK....220..567C – reference: RahmanARahmanARahamanZJ. Adv. Phys.2016535410.1166/jap.2016.1278 – reference: GreinerMTChaiLHelanderMGTangW-MLuZ-HAdv. Funct. Mater.20132321510.1002/adfm.201200993 – reference: DighoreNRJadhavSPGaikwadSTRajbhojASInt. J. Eng. Res. Appl.20144135 – reference: M F Rahman, M Harun-Or-Rashid, M R Islam, A Ghosh, M K Hossain, S Bhattarai, R Pandey, J Madan, M A Ali and A B M Ismail Phys. Scripta98 (2023) – reference: NavasIVinodkumarRLethyKJDettyAPGanesanVSatheVMahadevan PillaiVPJ. Phys. D Appl. Phys.2009421753052009JPhD...42q5305N10.1088/0022-3727/42/17/175305 – reference: F Paquin, J Rivnay, A Salleo, N Stingelin and C Silva J. Mater. Chem. C3 10715 (2015) – reference: QuQZhangW-BHuangKChenH-MComput. Mater. Sci.201713024210.1016/j.commatsci.2017.01.014 – reference: GalatsisKLiYXWlodarskiWCominiESberveglieriGCantaliniCSantucciSPassacantandoMSens. Actuators B Chem.20028327610.1016/S0925-4005(01)01072-3 – reference: S Bhatia and A Khanna Struct. Opt. Prop. Molybd. Trioxide Thin Films p 080057 (2015) – reference: LiYBBandoYGolbergDKurashimaKAppl. Phys. Lett.20028150482002ApPhL..81.5048L10.1063/1.1532104 – reference: M D Haque, M H Ali, M F Rahman and A Z M T Islam Opt. Mater.131 112678 (2022) – reference: NirupamaVUthannaSJ. Mater. Sci. Mater. Electron.2010214510.1007/s10854-009-9867-6 – reference: M F Rahman, M A I Islam, M R Islam, M H Ali, P Barman, M A Rahman, M Harun‐Or‐Rashid, M Hasan and M K Hossain Nano Select4 (2023) – reference: KuzmenkoABRev. Sci. Instrum.2005760831082005RScI...76h3108K10.1063/1.1979470 – reference: Kalantar-zadehKNanoscale201024292010Nanos...2..429K10.1039/B9NR00320G – reference: NishioTAhmadJUweHPhys. Rev. Lett.2005951764032005PhRvL..95q6403N10.1103/PhysRevLett.95.176403 – reference: GalatsisKLiYWlodarskiWKalantar-zadehKSens. Actuators B Chem.20017747810.1016/S0925-4005(01)00738-9 – reference: BandaruSSaranyaGEnglishNJYamCChenMSci. Rep.20188101442018NatSR...810144B10.1038/s41598-018-28522-7 – reference: ZhaoYLiuJZhouYZhangZXuYNaramotoHYamamotoSJ. Phys. Condens. Matter200315L5472003JPCM...15L.547Z10.1088/0953-8984/15/35/101 – reference: BalendhranSACS Nano20137975310.1021/nn403241f – reference: YaoJNHashimotoKFujishimaANature19923556241992Natur.355..624Y10.1038/355624a0 – reference: GhoshARahmanFIslamRIslamSHeliyon20239e1927110.1016/j.heliyon.2023.e19271 – reference: ZhangBYAdv. Funct. Mater.201828170600610.1002/adfm.201706006 – reference: ChengLShaoMWangXHuHChem. Eur. J.200915231010.1002/chem.200802182 – reference: HinksDGDabrowskiBJorgensenJDMitchellAWRichardsDRPeiSShiDNature19883338361988Natur.333..836H10.1038/333836a0 – reference: LajaunieLBoucherFDessaptRMoreauPPhys. Rev. B2013881151412013PhRvB..88k5141L10.1103/PhysRevB.88.115141 – reference: AritaMKajiHFujiiTTakahashiYThin Solid Films201252047622012TSF...520.4762A10.1016/j.tsf.2011.10.174 – reference: ChenYLuCXuLMaYHouWZhuJ-JCrystEngComm201012374010.1039/c000744g – reference: C M I Okoye Eur. Phys. J. B39 5 (2004) – reference: H Sitepu Powder Diffr.24 315 (2009) – reference: MichailovskiAPatzkeGRChem. Eur. J.200612912210.1002/chem.200600977 – reference: ZhouJDengSZXuNSChenJSheJCAppl. Phys. Lett.20038326532003ApPhL..83.2653Z10.1063/1.1613992 – reference: M K Hossain et al. Sci. Rep. 1 (2023) – reference: MahajanSSMujawarSHShindePSInamdarAIPatilPSAppl. Surf. Sci.200825458952008ApSS..254.5895M10.1016/j.apsusc.2008.03.159 – reference: N Rahman, M D Haque, M F Rahman, M M Islam, M A N Juthi, A R Roy, M A Akter and M F Islam Discov. Mater.3 (2023) – reference: ShonJKNat. Commun.20167110492016NatCo...711049S10.1038/ncomms11049 – reference: HuangP-RHeYCaoCLuZ-HSci. Rep.20144713110.1038/srep07131 – reference: C V. Subba Reddy, E H Walker, S A Wicker, Q L Williams and R R Kalluru J. Solid State Electrochem.13 1945 (2009) – reference: RahmanMFIslamMMIslamMRGhoshARahmanMARahmanMHIslamMAIIslamMAAlbalawiHMahmoodQJ. Solid State Chem.202332812434110.1016/j.jssc.2023.124341 – reference: R Islam, M F Rahman, S Bhattarai, H Bencherif, M K A Mohammed, R Pandey and J Madan Energy & Fuels 37 (2023) – reference: A K Prasad, P I Gouma, D J Kubinski, J H Visser, R E Soltis and P J Schmitz Thin Solid Films436 46 (2003) – reference: BechingerCFerrereSZabanASpragueJGreggBANature19963836081996Natur.383..608B10.1038/383608a0 – reference: HojabriAHajakbariFMeibodiAEJ. Theor. Appl. Phys.20159672015JTAP....9...67H10.1007/s40094-014-0161-5 – reference: A Ghosh, M F Rahman, M R Islam, M S Islam, M Hossain, S Bhattarai, R panday, J Madan, M A Rahman and A B Ismail Opt. Continuum2 (2023) – reference: Al-KuhailiMFDurraniSMABakhtiariIAAl-ShukriAMOpt. Commun.201028328572010OptCo.283.2857A10.1016/j.optcom.2010.03.059 – reference: MengQFanLZhuLXuNZhangQInt. J. Quantum Chem.2018118e2568110.1002/qua.25681 – reference: SuZWangLLiYZhangGZhaoHYangHMaYChuBLiWACS Appl. Mater. Interfaces201351284710.1021/am404441n – reference: SivakumarRJayachandranMSanjeevirajaCSurf. Eng.20042038510.1179/026708404225016454 – reference: N Illyaskutty, S Sreedhar, G Sanal Kumar, H Kohler, M Schwotzer, C Natzeck and V P M Pillai Nanoscale6 13882 (2014) – reference: XuZSolid State Commun.19907611431990SSCom..76.1143X10.1016/0038-1098(90)90981-G – reference: A B Shanto,M F Rahman, R Islam, A Ghosh, A Azzouz-rached, H Albalawi and Q Mahmood F1000Research12 (2023) – reference: Z Yin, X Zhang, Y Cai, J Chen, J I Wong, Y-Y Tay, J Chai, J Wu, Z Zeng, B Zheng, H Y Yang and H Zhang Angew. Chemie Int. Ed. (2014) – reference: AliMHAl MamunMAHaqueMDRahmanMFHossainMKTouhidul IslamAZMACS Omega20238701710.1021/acsomega.2c07846 – reference: B Sultana, A T M S Islam, M D Haque, A Kuddus, M H Ali and M F Rahman Phys. Scripta98 (2023) – reference: BrezesinskiTWangJTolbertSHDunnBNat. Mater.201091462010NatMa...9..146B10.1038/nmat2612 – reference: PerdewJPBurkeKErnzerhofMPhys. Rev. Lett.19967738651996PhRvL..77.3865P10.1103/PhysRevLett.77.3865 – volume: 9 start-page: 146 year: 2010 ident: 3043_CR29 publication-title: Nat. Mater. doi: 10.1038/nmat2612 – volume: 2 start-page: 429 year: 2010 ident: 3043_CR11 publication-title: Nanoscale doi: 10.1039/B9NR00320G – volume: 83 start-page: 2653 year: 2003 ident: 3043_CR25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1613992 – volume: 220 start-page: 567 year: 2005 ident: 3043_CR46 publication-title: Zeitschrift Fur Kristallographie – ident: 3043_CR54 doi: 10.12688/f1000research.137044.1 – volume: 23 start-page: 215 year: 2013 ident: 3043_CR31 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200993 – volume: 118 start-page: e25681 year: 2018 ident: 3043_CR44 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.25681 – ident: 3043_CR15 doi: 10.1016/S0040-6090(03)00524-8 – ident: 3043_CR35 doi: 10.1007/s10008-008-0741-x – ident: 3043_CR57 doi: 10.1007/s10853-023-08825-5 – volume: 355 start-page: 624 year: 1992 ident: 3043_CR22 publication-title: Nature doi: 10.1038/355624a0 – volume: 12 start-page: 34850 year: 2022 ident: 3043_CR47 publication-title: RSC Adv. doi: 10.1039/D2RA06734J – volume: 76 start-page: 1143 year: 1990 ident: 3043_CR64 publication-title: Solid State Commun. doi: 10.1016/0038-1098(90)90981-G – volume: 5 start-page: 12847 year: 2013 ident: 3043_CR12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am404441n – volume: 53 start-page: 182 year: 2014 ident: 3043_CR10 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.09.057 – volume: 7 start-page: 43210 year: 2022 ident: 3043_CR48 publication-title: ACS Omega doi: 10.1021/acsomega.2c05912 – ident: 3043_CR3 doi: 10.1007/s43939-023-00061-7 – ident: 3043_CR8 – volume: 520 start-page: 4762 year: 2012 ident: 3043_CR28 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.10.174 – ident: 3043_CR52 doi: 10.1364/OPTCON.495816 – volume: 12 start-page: 9122 year: 2006 ident: 3043_CR36 publication-title: Chem. Eur. J. doi: 10.1002/chem.200600977 – volume: 130 start-page: 242 year: 2017 ident: 3043_CR45 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2017.01.014 – volume: 88 start-page: 115141 year: 2013 ident: 3043_CR65 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.115141 – volume: 81 start-page: 5048 year: 2002 ident: 3043_CR23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1532104 – ident: 3043_CR66 – volume: 7 start-page: 9753 year: 2013 ident: 3043_CR16 publication-title: ACS Nano doi: 10.1021/nn403241f – volume: 5 start-page: 24223 year: 2017 ident: 3043_CR27 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07705J – volume: 7 start-page: 11049 year: 2016 ident: 3043_CR18 publication-title: Nat. Commun. doi: 10.1038/ncomms11049 – ident: 3043_CR51 doi: 10.1088/1402-4896/acfce9 – ident: 3043_CR50 doi: 10.1154/1.3257906 – volume: 5 start-page: 354 year: 2016 ident: 3043_CR62 publication-title: J. Adv. Phys. doi: 10.1166/jap.2016.1278 – volume: 76 start-page: 083108 year: 2005 ident: 3043_CR63 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1979470 – volume: 83 start-page: 276 year: 2002 ident: 3043_CR6 publication-title: Sens. Actuators B Chem. doi: 10.1016/S0925-4005(01)01072-3 – volume: 4 start-page: 7131 year: 2014 ident: 3043_CR43 publication-title: Sci. Rep. doi: 10.1038/srep07131 – volume: 21 start-page: 5681 year: 2009 ident: 3043_CR34 publication-title: Chem. Mater. doi: 10.1021/cm9023887 – ident: 3043_CR61 doi: 10.1140/epjb/e2004-00164-3 – ident: 3043_CR21 – ident: 3043_CR67 – ident: 3043_CR53 doi: 10.1002/nano.202300066 – volume: 20 start-page: 385 year: 2004 ident: 3043_CR19 publication-title: Surf. Eng. doi: 10.1179/026708404225016454 – volume: 77 start-page: 3865 year: 1996 ident: 3043_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 42 start-page: 175305 year: 2009 ident: 3043_CR40 publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/42/17/175305 – volume: 21 start-page: 45 year: 2010 ident: 3043_CR38 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-009-9867-6 – volume: 085329 start-page: 1 year: 2023 ident: 3043_CR55 publication-title: AIP Adv. – volume: 328 start-page: 124341 year: 2023 ident: 3043_CR58 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2023.124341 – volume: 383 start-page: 608 year: 1996 ident: 3043_CR20 publication-title: Nature doi: 10.1038/383608a0 – volume: 254 start-page: 5895 year: 2008 ident: 3043_CR41 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.03.159 – volume: 12 start-page: 3740 year: 2010 ident: 3043_CR24 publication-title: CrystEngComm doi: 10.1039/c000744g – volume: 8 start-page: 7017 year: 2023 ident: 3043_CR2 publication-title: ACS Omega doi: 10.1021/acsomega.2c07846 – volume: 283 start-page: 2857 year: 2010 ident: 3043_CR39 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2010.03.059 – volume: 77 start-page: 478 year: 2001 ident: 3043_CR14 publication-title: Sens. Actuators B Chem. doi: 10.1016/S0925-4005(01)00738-9 – volume: 4 start-page: 135 year: 2014 ident: 3043_CR7 publication-title: Int. J. Eng. Res. Appl. – volume: 15 start-page: L547 year: 2003 ident: 3043_CR33 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/15/35/101 – volume: 333 start-page: 836 year: 1988 ident: 3043_CR59 publication-title: Nature doi: 10.1038/333836a0 – ident: 3043_CR5 doi: 10.1039/C5TC02043C – volume: 9 start-page: 67 year: 2015 ident: 3043_CR42 publication-title: J. Theor. Appl. Phys. doi: 10.1007/s40094-014-0161-5 – volume: 47 start-page: 10305 year: 2011 ident: 3043_CR30 publication-title: Chem. Commun. doi: 10.1039/c1cc14030b – volume: 8 start-page: 10144 year: 2018 ident: 3043_CR32 publication-title: Sci. Rep. doi: 10.1038/s41598-018-28522-7 – ident: 3043_CR13 doi: 10.1039/C4NR04529G – volume: 49 start-page: 9400 year: 2010 ident: 3043_CR9 publication-title: Inorg. Chem. doi: 10.1021/ic101103g – volume: 28 start-page: 1706006 year: 2018 ident: 3043_CR17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706006 – ident: 3043_CR1 doi: 10.1016/j.optmat.2022.112678 – volume: 15 start-page: 2310 year: 2009 ident: 3043_CR26 publication-title: Chem. Eur. J. doi: 10.1002/chem.200802182 – volume: 95 start-page: 176403 year: 2005 ident: 3043_CR60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.176403 – ident: 3043_CR4 doi: 10.1088/1402-4896/acee29 – volume: 9 start-page: 4138 year: 2009 ident: 3043_CR37 publication-title: Nano Lett. doi: 10.1021/nl902357q – volume: 9 start-page: e19271 year: 2023 ident: 3043_CR56 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e19271 |
SSID | ssj0069175 |
Score | 2.4582438 |
Snippet | Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO
3
) for utilizing it directly in gas sensing and... Inbuilt high energy band gap and resistivity cause harm to the intrinsic molybdenum trioxide (MoO3) for utilizing it directly in gas sensing and optoelectronic... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2695 |
SubjectTerms | Absorptivity Astrophysics and Astroparticles Carrier density Charge materials Computation Correlation Current carriers Devices Electrical resistivity Elementary particles Energy bands Energy gap First principles Gas sensors Light sources Magnetic moments Magnetic properties Molybdenum trioxide Optical properties Original Paper Orthorhombic phase Particle spin Photosensitivity Physics Physics and Astronomy Plane waves Refractivity Semiconductor materials Transition metals |
Title | First-principles analysis of how Cobalt doping affects the structural, electronic, and optical properties of α-MoO3 |
URI | https://link.springer.com/article/10.1007/s12648-023-03043-w https://www.proquest.com/docview/3068587268 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA66IfgiXnE6Rx58c4GlTZP0cRuromy-OJhPJbeiIOtwhf0u_4i_ySRtLYoKPrXQ9Dycc5J8OZcvAFxmAecuuIYoCwQiWgsUMxkigokigYMUPns-ndGbObldRIuqKWxdV7vXKUm_UjfNbq4YC9k9Brl0Xog226AdubO79eJ5MKzXX2oPIL5wMWYhwiTiVavMzzK-bkcNxvyWFvW7TbIP9iqYCIelXQ_Allkegh1frqnWR6BIni1qQ6s6Ur6GoiIXgXkGn_INHDuejwJq3w8FRVm1AS3agyVjrGPb6MPmEpy-laBhvvKhbbhyIfpXx7Xq5L2_oWl-Hx6DeTJ5GN-g6v4EpOzEKpDBGaNCYcZEaHCsB1jGFp7GVglGMzmggglN2cBgyUIeZIJjo7hWgkmpM6XCE9Ba5ktz6jq7Q0mVHYazgMhA88y-EWmoijMlOOkAXKsxVRW5uLvj4iVtaJGd6lOr-tSrPt10wNXnP6uSWuPP0d3aOmk1zdapPe_wiLOA8g7o1xZrPv8u7ex_w8_BrnU0UpbpdkHLGspcWDBSyB5oD5PRaOae1493k573xQ99oNr_ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aEb2In1itmoM3G2iyaZI9lmKp2tZLC70t-VoUpFvsQn-Xf8TfZJLddVFU8Law2TnMbJKXmTcvAFynRAifXEOME4moMRLFXEWIYqop8ZAiVM_HEzac0ft5d142ha0qtntVkgwrdd3s5slYyO0xyJfzIrTeBFsODAhP5JqRXrX-MncACcTFmEcI064oW2V-tvF1O6ox5reyaNhtBvtgr4SJsFfE9QBs2MUh2A50Tb06Avng2aE2tKwy5SsoS3ERmKXwKVvDvtf5yKEJ_VBQFqwN6NAeLBRjvdpGG9aX4LSdBQOzZUhtw6VP0b96rVVv7_0NjbPH6BjMBrfT_hCV9ycg7SZWjixOOZMacy4ji2PTwSp28DR2TrCGqw6TXBrGOxYrHgmSSoGtFkZLrpRJtY5OQGORLeyp7-yOFNNuGE4JVcSI1D1RZZmOUy0FbQJcuTHRpbi4v-PiJallkb3rE-f6JLg-WTfBzec3y0Ja48_RrSo6STnNVok774iu4ISJJmhXEatf_27t7H_Dr8DOcDoeJaO7ycM52CUO2BSU3RZouKDZCwdMcnUZ_sMPPIDa4g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uKF7EFcc1B29OcJJmkvQo6uCuBwe8lawoyLQ4hfld_hF_k0naWhUVvBWavsN7ad6Xt3wPgH1HhAjBNcQ4kYgaI1HKVYIoppqSACli9vz6hp0N6cVD_-FTF3-sdm9SklVPQ2BpGpWHhXGHbeNbKMxC3t-gkNpL0GQazPrjGId9PSRHzVnM_GUkFjGmPEGY9kXdNvOzjK-uqcWb31Kk0fMMlsBiDRnhUWXjZTBlRytgLpZu6vEqKAdPHsGhoomaj6GsiUZg7uBjPoHHgfOjhCb2RkFZVXBAj_xgxR4bmDe6sB2I0_USDMyLGOaGRQjXvwTe1SDv7RVd57fJGhgOTu-Pz1A9SwFpr5USWew4kxpzLhOLU9PDKvVQNfVKsIarHpNcGsZ7FiueCOKkwFYLoyVXyjitk3UwM8pHdiN0eSeKab8MO0IVMcL5J6os06nTUtAOwI0aM10TjYd5F89ZS5EcVJ951WdR9dmkAw4-vikqmo0_V2831snqX26c-buP6AtOmOiAbmOx9vXv0jb_t3wPzN-dDLKr85vLLbBAPMapqne3wYy3md3xGKVUu3EbvgPWWd8e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-principles+analysis+of+how+Cobalt+doping+affects+the+structural%2C+electronic%2C+and+optical+properties+of+%CE%B1-MoO3&rft.jtitle=Indian+journal+of+physics&rft.au=Rahman%2C+Md.+Ferdous&rft.au=Melody%2C+Zinat+Rahman&rft.au=Ali%2C+Md.+Hasan&rft.au=Ghosh%2C+Avijit&rft.date=2024-07-01&rft.pub=Springer+India&rft.issn=0973-1458&rft.eissn=0974-9845&rft.volume=98&rft.issue=8&rft.spage=2695&rft.epage=2704&rft_id=info:doi/10.1007%2Fs12648-023-03043-w&rft.externalDocID=10_1007_s12648_023_03043_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-1458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-1458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-1458&client=summon |