BDRI: block decomposition based on relational interaction for knowledge graph completion

Knowledge graphs (KGs) are large-scale semantic networks designed to describe real-world facts. However, existing KGs typically contain only a small subset of all possible facts. Knowledge graph completion (KGC) is a task of inferring missing facts based on existing facts, which can help KGs become...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 37; no. 2; pp. 767 - 787
Main Authors Yu, Mei, Guo, Jiujiang, Yu, Jian, Xu, Tianyi, Zhao, Mankun, Liu, Hongwei, Li, Xuewei, Yu, Ruiguo
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Knowledge graphs (KGs) are large-scale semantic networks designed to describe real-world facts. However, existing KGs typically contain only a small subset of all possible facts. Knowledge graph completion (KGC) is a task of inferring missing facts based on existing facts, which can help KGs become more complete. Tensor decomposition algorithms have proved promising for KGC problems. In this paper, we propose block decomposition based on relational interaction for knowledge graph completion (BDRI), a novel and robust model based on block term decomposition of the binary tensor representation of knowledge graph triples. Further, BDRI considers that the inverse relation, as one of the most important relation types, not only occupies a large proportion in real-world facts but also has an impact on other relation types. Although some existing models also take into account the importance of inverse relations, it is not enough to learn inverse relations independently. BDRI strengthens the fusion of forward relations and inverse relations by introducing inverse relations into the model in an enhanced way. We prove BDRI is full expressiveness and derive the bound on its entity and relation embedding dimensionality and smaller than the bound of SimplE and ComplEx. Experimental results on five public datasets show the effectiveness of BDRI.
AbstractList Knowledge graphs (KGs) are large-scale semantic networks designed to describe real-world facts. However, existing KGs typically contain only a small subset of all possible facts. Knowledge graph completion (KGC) is a task of inferring missing facts based on existing facts, which can help KGs become more complete. Tensor decomposition algorithms have proved promising for KGC problems. In this paper, we propose block decomposition based on relational interaction for knowledge graph completion (BDRI), a novel and robust model based on block term decomposition of the binary tensor representation of knowledge graph triples. Further, BDRI considers that the inverse relation, as one of the most important relation types, not only occupies a large proportion in real-world facts but also has an impact on other relation types. Although some existing models also take into account the importance of inverse relations, it is not enough to learn inverse relations independently. BDRI strengthens the fusion of forward relations and inverse relations by introducing inverse relations into the model in an enhanced way. We prove BDRI is full expressiveness and derive the bound on its entity and relation embedding dimensionality and smaller than the bound of SimplE and ComplEx. Experimental results on five public datasets show the effectiveness of BDRI.
Author Yu, Jian
Li, Xuewei
Liu, Hongwei
Yu, Ruiguo
Guo, Jiujiang
Yu, Mei
Zhao, Mankun
Xu, Tianyi
Author_xml – sequence: 1
  givenname: Mei
  surname: Yu
  fullname: Yu, Mei
  organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application
– sequence: 2
  givenname: Jiujiang
  surname: Guo
  fullname: Guo, Jiujiang
  organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application
– sequence: 3
  givenname: Jian
  surname: Yu
  fullname: Yu, Jian
  organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application
– sequence: 4
  givenname: Tianyi
  surname: Xu
  fullname: Xu, Tianyi
  organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application
– sequence: 5
  givenname: Mankun
  surname: Zhao
  fullname: Zhao, Mankun
  organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application
– sequence: 6
  givenname: Hongwei
  surname: Liu
  fullname: Liu, Hongwei
  organization: Foreign Language, Literature and Culture Studies Center, Tianjin Foreign Studies University
– sequence: 7
  givenname: Xuewei
  orcidid: 0000-0002-5330-7298
  surname: Li
  fullname: Li, Xuewei
  email: lixuewei@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application
– sequence: 8
  givenname: Ruiguo
  surname: Yu
  fullname: Yu, Ruiguo
  organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application
BookMark eNp9kM9LwzAUx4NMcJv-A54CnqsvSdsk3nT-hIEgO-wW0iSd3bpmJh3if2-7CoKHnfIl733ee3wmaNT4xiF0SeCaAPCbSCAnIgHKEgDZJXGCxiTjLOFZvhx1mYk0yQSBMzSJcQ0AGWUwRsv7h_fXW1zU3mywdcZvdz5WbeUbXOjoLO5CcLXuf3SNq6Z1QZtDvfQBbxr_VTu7cngV9O4D93zt-vI5Oi11Hd3F7ztFi6fHxewlmb89v87u5olhRLaJI1an1BjCjCilBk0ZL2kJUmrDU6stKRgtDJWZBid5YXPNSiFkmuepJZZN0dUwdhf8597FVq39PnSnRkU5lxxIKrOuiw5dJvgYgyvVLlRbHb4VAdULVINA1QlUB4FKdJD4B5mqPYhog67q4ygb0NjtaVYu_F11hPoBAXqIRA
CitedBy_id crossref_primary_10_1016_j_neucom_2024_128721
Cites_doi 10.5555/2627435.2670313
10.1016/j.knosys.2022.109262
10.1002/sapm192761164
10.1016/j.eswa.2020.114164
10.1186/s12859-018-2167-5
10.1109/JPROC.2015.2483592
10.1109/TASLP.2021.3079812
10.1007/978-3-540-76298-0_52
10.1137/070690729
10.1145/3487553.3524251
10.1609/aaai.v28i1.8870
10.1609/aaai.v29i1.9491
10.18653/v1/P17-1132
10.18653/v1/D19-1522
10.1609/aaai.v32i1.11573
10.1145/1376616.1376746
10.18653/v1/P17-1021
10.18653/v1/P16-1219
10.1609/aaai.v35i8.16850
10.1145/1242572.1242667
10.1145/3308558.3313705
10.1609/aaai.v30i1.10089
10.3115/v1/P15-1067
10.18653/v1/2020.acl-main.241
10.1609/aaai.v35i8.16879
10.1609/aaai.v34i03.5694
10.18653/v1/D15-1174
10.18653/v1/P17-1162
10.1145/2623330.2623623
10.1145/3485447.3512028
10.1609/aaai.v24i1.7519
10.18653/v1/N16-1054
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-023-00918-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 787
ExternalDocumentID 10_1007_s10618_023_00918_8
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c319t-e1da42cc13c8f9a0a237f2f099ac74dad1b32bc295a0e97bd6a3f8894664d1d3
IEDL.DBID BENPR
ISSN 1384-5810
IngestDate Sat Aug 23 14:29:08 EDT 2025
Tue Jul 01 00:40:32 EDT 2025
Thu Apr 24 22:59:57 EDT 2025
Fri Feb 21 02:44:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Tensor decomposition
Inverse relation
Knowledge graph completion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e1da42cc13c8f9a0a237f2f099ac74dad1b32bc295a0e97bd6a3f8894664d1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5330-7298
PQID 2779701495
PQPubID 43030
PageCount 21
ParticipantIDs proquest_journals_2779701495
crossref_primary_10_1007_s10618_023_00918_8
crossref_citationtrail_10_1007_s10618_023_00918_8
springer_journals_10_1007_s10618_023_00918_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Lathauwer (CR20) 2008; 30
CR19
Xie, Zhu, Liu, Zhou, Huang (CR40) 2021; 2
CR18
CR17
CR39
CR16
CR38
CR15
CR37
CR14
CR36
CR35
CR12
CR34
CR11
CR33
CR10
CR32
CR31
CR30
Auer, Bizer, Kobilarov, Lehmann, Cyganiak, Ives, Aberer, Choi, Noy, Allemang, Lee, Nixon, Golbeck, Mika, Maynard, Mizoguchi, Schreiber, Cudré-Mauroux (CR1) 2007
Zeb, Ul Haq, Zhang, Chen, Gong (CR43) 2021; 167
CR2
CR4
CR3
Hitchcock (CR13) 1927; 6
CR6
CR5
CR8
Sang, Yang, Wang, Liu, Lin, Wang (CR27) 2018; 19
CR7
CR28
CR9
Li, Zhao, Zhang, Zhang (CR21) 2022; 251
CR26
CR24
CR23
CR22
CR44
CR42
CR41
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR29) 2014; 15
Nickel, Murphy, Tresp, Gabrilovich (CR25) 2016; 104
Z Li (918_CR21) 2022; 251
918_CR19
918_CR17
918_CR39
918_CR18
918_CR15
918_CR37
918_CR16
918_CR38
918_CR35
918_CR14
918_CR36
918_CR11
918_CR33
918_CR12
918_CR34
918_CR31
918_CR10
N Srivastava (918_CR29) 2014; 15
918_CR32
FL Hitchcock (918_CR13) 1927; 6
918_CR30
S Auer (918_CR1) 2007
A Zeb (918_CR43) 2021; 167
M Nickel (918_CR25) 2016; 104
S Sang (918_CR27) 2018; 19
918_CR4
918_CR5
918_CR2
918_CR3
LD Lathauwer (918_CR20) 2008; 30
918_CR8
918_CR9
918_CR6
918_CR28
918_CR7
918_CR26
918_CR24
918_CR22
918_CR44
918_CR23
918_CR42
918_CR41
Z Xie (918_CR40) 2021; 2
References_xml – ident: CR22
– ident: CR18
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  ident: CR29
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
  doi: 10.5555/2627435.2670313
– ident: CR4
– ident: CR14
– ident: CR39
– ident: CR2
– ident: CR16
– ident: CR37
– ident: CR12
– ident: CR30
– volume: 251
  start-page: 109
  year: 2022
  end-page: 262
  ident: CR21
  article-title: Multi-relational graph attention networks for knowledge graph completion
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.109262
– ident: CR10
– ident: CR33
– ident: CR35
– ident: CR6
– ident: CR8
– volume: 6
  start-page: 164
  issue: 1–4
  year: 1927
  end-page: 189
  ident: CR13
  article-title: The expression of a tensor or a polyadic as a sum of products
  publication-title: J Math Phys
  doi: 10.1002/sapm192761164
– ident: CR42
– volume: 167
  start-page: 114
  year: 2021
  end-page: 164
  ident: CR43
  article-title: KGEL: a novel end-to-end embedding learning framework for knowledge graph completion
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114164
– ident: CR23
– ident: CR19
– volume: 19
  start-page: 1
  issue: 1
  year: 2018
  end-page: 11
  ident: CR27
  article-title: SemaTyP: a knowledge graph based literature mining method for drug discovery
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-018-2167-5
– ident: CR44
– volume: 104
  start-page: 11
  issue: 1
  year: 2016
  end-page: 33
  ident: CR25
  article-title: A review of relational machine learning for knowledge graphs
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2483592
– ident: CR3
– ident: CR15
– ident: CR38
– volume: 2
  start-page: 1762
  year: 2021
  end-page: 1773
  ident: CR40
  article-title: Hierarchical neighbor propagation with bidirectional graph attention network for relation prediction
  publication-title: IEEE ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2021.3079812
– ident: CR17
– ident: CR31
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR34
– ident: CR36
– ident: CR5
– ident: CR7
– ident: CR28
– ident: CR41
– start-page: 722
  year: 2007
  end-page: 735
  ident: CR1
  article-title: DBpedia: a nucleus for a web of open data
  publication-title: The semantic web
  doi: 10.1007/978-3-540-76298-0_52
– ident: CR26
– ident: CR24
– volume: 30
  start-page: 1033
  issue: 3
  year: 2008
  end-page: 1066
  ident: CR20
  article-title: Decompositions of a higher-order tensor in block terms - Part II: definitions and uniqueness
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/070690729
– ident: 918_CR31
– ident: 918_CR24
  doi: 10.1145/3487553.3524251
– ident: 918_CR37
  doi: 10.1609/aaai.v28i1.8870
– ident: 918_CR22
  doi: 10.1609/aaai.v29i1.9491
– ident: 918_CR41
  doi: 10.18653/v1/P17-1132
– ident: 918_CR2
  doi: 10.18653/v1/D19-1522
– ident: 918_CR44
– ident: 918_CR9
  doi: 10.1609/aaai.v32i1.11573
– ident: 918_CR4
– ident: 918_CR3
  doi: 10.1145/1376616.1376746
– volume: 6
  start-page: 164
  issue: 1–4
  year: 1927
  ident: 918_CR13
  publication-title: J Math Phys
  doi: 10.1002/sapm192761164
– volume: 251
  start-page: 109
  year: 2022
  ident: 918_CR21
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.109262
– ident: 918_CR11
  doi: 10.18653/v1/P17-1021
– ident: 918_CR34
– ident: 918_CR39
  doi: 10.18653/v1/P16-1219
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 918_CR29
  publication-title: J Mach Learn Res
  doi: 10.5555/2627435.2670313
– ident: 918_CR17
– volume: 104
  start-page: 11
  issue: 1
  year: 2016
  ident: 918_CR25
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2483592
– ident: 918_CR6
  doi: 10.1609/aaai.v35i8.16850
– ident: 918_CR19
– ident: 918_CR30
  doi: 10.1145/1242572.1242667
– ident: 918_CR5
  doi: 10.1145/3308558.3313705
– ident: 918_CR16
  doi: 10.1609/aaai.v30i1.10089
– ident: 918_CR15
  doi: 10.3115/v1/P15-1067
– volume: 167
  start-page: 114
  year: 2021
  ident: 918_CR43
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114164
– ident: 918_CR32
  doi: 10.18653/v1/2020.acl-main.241
– volume: 19
  start-page: 1
  issue: 1
  year: 2018
  ident: 918_CR27
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-018-2167-5
– ident: 918_CR8
  doi: 10.1609/aaai.v35i8.16879
– start-page: 722
  volume-title: The semantic web
  year: 2007
  ident: 918_CR1
  doi: 10.1007/978-3-540-76298-0_52
– ident: 918_CR26
– ident: 918_CR42
– ident: 918_CR28
– ident: 918_CR36
  doi: 10.1609/aaai.v34i03.5694
– ident: 918_CR18
– ident: 918_CR33
  doi: 10.18653/v1/D15-1174
– volume: 30
  start-page: 1033
  issue: 3
  year: 2008
  ident: 918_CR20
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/070690729
– ident: 918_CR12
  doi: 10.18653/v1/P17-1162
– volume: 2
  start-page: 1762
  year: 2021
  ident: 918_CR40
  publication-title: IEEE ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2021.3079812
– ident: 918_CR14
– ident: 918_CR10
  doi: 10.1145/2623330.2623623
– ident: 918_CR38
  doi: 10.1145/3485447.3512028
– ident: 918_CR7
  doi: 10.1609/aaai.v24i1.7519
– ident: 918_CR23
  doi: 10.18653/v1/N16-1054
– ident: 918_CR35
SSID ssj0005230
Score 2.4743361
Snippet Knowledge graphs (KGs) are large-scale semantic networks designed to describe real-world facts. However, existing KGs typically contain only a small subset of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 767
SubjectTerms Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Decomposition
Graphical representations
Information Storage and Retrieval
Knowledge representation
Mathematical analysis
Physics
Statistics for Engineering
Tensors
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60InjxURWrVXLwpoFuHpust_ooVdCDtNDbktdelCpt_f8mabatooK3QLI5zGO_SfLNDMB57lTo3iBwrp3EzJgMF9Ro7HiROUe9XlS4Gnh8yvtD9jDio5QUNq3Z7vWTZPxTryS75ZnEHmOwjwv8SK7DBg9nd2_FQ9JdIXbQeW6wZJjLrJNSZX7e4yscLWPMb8-iEW16u7CdwkTUnet1D9bcuAk7dQsGlDyyCZuRwWmm-zC6vn2-v0Lag9MLsi5QxRMfCwWkssgPJon55ncOZSIm86QG5ONWtLhbQ7GENYpUcxemD2DQuxvc9HFqm4CN96cZdplVjHipUyOrQnUUoaIilQ8FlRHMKptpSrQhBVcdVwhtc0UrKWOheZtZegiN8dvYHQHKeUA4wby1WSYkV5wwrSpKqWYe_UQLslp4pUklxUNni9dyWQw5CLz0Ai-jwEvZgovFN-_zghp_rm7XOimTc01LIkQh4tGuBZe1npbTv-92_L_lJ7BFoqkExlkbGrPJhzv1IchMn0WL-wTauNDN
  priority: 102
  providerName: Springer Nature
Title BDRI: block decomposition based on relational interaction for knowledge graph completion
URI https://link.springer.com/article/10.1007/s10618-023-00918-8
https://www.proquest.com/docview/2779701495
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED4BXVh4Iwql8sAGFo3txA4LaqHlJRBCIJUp8isLqEAp_59z6lBAgs2KEw93Z39fzvcA2Mu8Dt0bJM2MV1RYm9CcW0N9mifec9SLDq6B65vs_EFcDtNhdLi9x7DK-kysDmr3YoOP_JBJmcuKzx-_vtHQNSrcrsYWGvPQwCNY4c9Xo9e_ub37FuTBp3nCStBUJZ2YNhOT57JEUcQsijwDR-onNM345q8r0gp5BiuwFCkj6U51vApzfrQGy3U7BhJ35zoMe6d3F0fEIDw9EedDsHiMyCIBqxzBwTjGvuF6oVDEeJrWQJC5ki_vGqmKWJMq2NyH6Q24H_TvT85pbJxALe6oCfWJ04Kh3LlVZa47mnFZshLJoLZSOO0Sw5mxLE91x-fSuEzzUqmq1LxLHN-EhdHLyG8BydKAcVKgvTkhVapTJowuOedGIP7JJiS1yAobi4qH3hbPxawcchBzgWIuKjEXqgn7X9-8Tktq_Pt2q9ZEEbfXezEzhiYc1NqZTf-92vb_q-3AIqsMIsSYtWBhMv7wu0g6JqYN82pw1oZG9-zxqt-OdoZPH1j3EwJ_1bw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6l5UAvvNqqKQF8gFNrNWt7114khIASEvo4oFTKzfJrL0VpmwYhfhT_kbHX21AkeuvNkndHq5nPnm_teQC8roKJ3RskrWxQVDhX0Jo7S0NZFyFwtIuJRwMnp9X4THydlbMe_O5yYWJYZbcnpo3aX7h4Rn7ApKxl4vPvL69o7BoVb1e7FhotLI7Cr5_4y3b9bnKI9n3D2Ojz9NOY5q4C1CHcljQU3giGH8WdamozNIzLhjXIlIyTwhtfWM6sY3VphqGW1leGN0qlOuy-8BzFrsEDwXkdF5QaffkrooS3SclK0FIVw5yjkzP1qkJRdJAUSQ2O1G0_uCK3_9zHJjc3egKPMj8lH1pAPYVemD-Dx13vB5K3gk2YfTz8NnlLLPrCc-JDjEzP4V8kOkZPcLDIgXYoL1alWLQ5FARpMrk5yiOpYjZJke0hTm_B9D70uQ3r84t52AFSldGhSoHg9kKq0pRMWNNwzq1AZyv7UHQq0y5XMI-NNL7rVe3lqGaNatZJzVr1Ye_mncu2fsedTw86S-i8lq_1Cnl92O-ss5r-v7Tdu6W9gofj6cmxPp6cHj2HDZbAEYPbBrC-XPwIL5DtLO3LhDEC-p4x_Qf6Tg5Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dSxwxEB_sCdIXtbWlVz-ah_bJBm-T7CZbENGeh1f1ELFwbyFf-1I57Xml-Kf533Wym_VUqG--BbI7LDO_zUyS38wAfC6Cid0bJC1sUFQ4l9GSO0tDXmYhcLSLiUcDp6Pi6Kf4Mc7HC3DX5sJEWmW7JtYLtb9y8Yx8h0lZyjqe36kSLeKsP9i7_k1jB6l409q202ggchxu_-L27WZ32Edbf2FscHjx_YimDgPUIfRmNGTeCIYfyJ2qStMzjMuKVRg1GSeFNz6znFnHytz0QimtLwyvlKprsvvMcxT7ChYlbop6HVg8OBydnT_gl_AmRVkJmquslzJ2Ut5ekSmK7pJiiIMj9dgrzkPdJ7eztdMbrMJyilbJfgOvN7AQJm9hpe0EQdLCsAbjg_758Bux6Bl_ER8iTz2RwUh0k57gYJpodygv1qiYNhkVBINmcn-wR-r62aTmuYc4_Q4uXkKj76EzuZqED0CKPLpXKRDqXkiVm5wJayrOuRXoemUXslZl2qV65rGtxqWeV2KOataoZl2rWasubN-_c91U83j26Y3WEjr92Td6jsMufG2tM5_-v7SPz0v7BEuIZ30yHB2vw2tWYyMy3TagM5v-CZsY-szsVgIZAf3CsP4HIj0T6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BDRI%3A+block+decomposition+based+on+relational+interaction+for+knowledge+graph+completion&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Yu%2C+Mei&rft.au=Guo%2C+Jiujiang&rft.au=Yu%2C+Jian&rft.au=Xu%2C+Tianyi&rft.date=2023-03-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=37&rft.issue=2&rft.spage=767&rft.epage=787&rft_id=info:doi/10.1007%2Fs10618-023-00918-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_023_00918_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon