BDRI: block decomposition based on relational interaction for knowledge graph completion
Knowledge graphs (KGs) are large-scale semantic networks designed to describe real-world facts. However, existing KGs typically contain only a small subset of all possible facts. Knowledge graph completion (KGC) is a task of inferring missing facts based on existing facts, which can help KGs become...
Saved in:
Published in | Data mining and knowledge discovery Vol. 37; no. 2; pp. 767 - 787 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Knowledge graphs (KGs) are large-scale semantic networks designed to describe real-world facts. However, existing KGs typically contain only a small subset of all possible facts. Knowledge graph completion (KGC) is a task of inferring missing facts based on existing facts, which can help KGs become more complete. Tensor decomposition algorithms have proved promising for KGC problems. In this paper, we propose block decomposition based on relational interaction for knowledge graph completion (BDRI), a novel and robust model based on block term decomposition of the binary tensor representation of knowledge graph triples. Further, BDRI considers that the inverse relation, as one of the most important relation types, not only occupies a large proportion in real-world facts but also has an impact on other relation types. Although some existing models also take into account the importance of inverse relations, it is not enough to learn inverse relations independently. BDRI strengthens the fusion of forward relations and inverse relations by introducing inverse relations into the model in an enhanced way. We prove BDRI is full expressiveness and derive the bound on its entity and relation embedding dimensionality and smaller than the bound of SimplE and ComplEx. Experimental results on five public datasets show the effectiveness of BDRI. |
---|---|
AbstractList | Knowledge graphs (KGs) are large-scale semantic networks designed to describe real-world facts. However, existing KGs typically contain only a small subset of all possible facts. Knowledge graph completion (KGC) is a task of inferring missing facts based on existing facts, which can help KGs become more complete. Tensor decomposition algorithms have proved promising for KGC problems. In this paper, we propose block decomposition based on relational interaction for knowledge graph completion (BDRI), a novel and robust model based on block term decomposition of the binary tensor representation of knowledge graph triples. Further, BDRI considers that the inverse relation, as one of the most important relation types, not only occupies a large proportion in real-world facts but also has an impact on other relation types. Although some existing models also take into account the importance of inverse relations, it is not enough to learn inverse relations independently. BDRI strengthens the fusion of forward relations and inverse relations by introducing inverse relations into the model in an enhanced way. We prove BDRI is full expressiveness and derive the bound on its entity and relation embedding dimensionality and smaller than the bound of SimplE and ComplEx. Experimental results on five public datasets show the effectiveness of BDRI. |
Author | Yu, Jian Li, Xuewei Liu, Hongwei Yu, Ruiguo Guo, Jiujiang Yu, Mei Zhao, Mankun Xu, Tianyi |
Author_xml | – sequence: 1 givenname: Mei surname: Yu fullname: Yu, Mei organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application – sequence: 2 givenname: Jiujiang surname: Guo fullname: Guo, Jiujiang organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application – sequence: 3 givenname: Jian surname: Yu fullname: Yu, Jian organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application – sequence: 4 givenname: Tianyi surname: Xu fullname: Xu, Tianyi organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application – sequence: 5 givenname: Mankun surname: Zhao fullname: Zhao, Mankun organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application – sequence: 6 givenname: Hongwei surname: Liu fullname: Liu, Hongwei organization: Foreign Language, Literature and Culture Studies Center, Tianjin Foreign Studies University – sequence: 7 givenname: Xuewei orcidid: 0000-0002-5330-7298 surname: Li fullname: Li, Xuewei email: lixuewei@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application – sequence: 8 givenname: Ruiguo surname: Yu fullname: Yu, Ruiguo organization: College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Advanced Networking (TANKLab), Tianjin Key Laboratory of Cognitive Computing and Application |
BookMark | eNp9kM9LwzAUx4NMcJv-A54CnqsvSdsk3nT-hIEgO-wW0iSd3bpmJh3if2-7CoKHnfIl733ee3wmaNT4xiF0SeCaAPCbSCAnIgHKEgDZJXGCxiTjLOFZvhx1mYk0yQSBMzSJcQ0AGWUwRsv7h_fXW1zU3mywdcZvdz5WbeUbXOjoLO5CcLXuf3SNq6Z1QZtDvfQBbxr_VTu7cngV9O4D93zt-vI5Oi11Hd3F7ztFi6fHxewlmb89v87u5olhRLaJI1an1BjCjCilBk0ZL2kJUmrDU6stKRgtDJWZBid5YXPNSiFkmuepJZZN0dUwdhf8597FVq39PnSnRkU5lxxIKrOuiw5dJvgYgyvVLlRbHb4VAdULVINA1QlUB4FKdJD4B5mqPYhog67q4ygb0NjtaVYu_F11hPoBAXqIRA |
CitedBy_id | crossref_primary_10_1016_j_neucom_2024_128721 |
Cites_doi | 10.5555/2627435.2670313 10.1016/j.knosys.2022.109262 10.1002/sapm192761164 10.1016/j.eswa.2020.114164 10.1186/s12859-018-2167-5 10.1109/JPROC.2015.2483592 10.1109/TASLP.2021.3079812 10.1007/978-3-540-76298-0_52 10.1137/070690729 10.1145/3487553.3524251 10.1609/aaai.v28i1.8870 10.1609/aaai.v29i1.9491 10.18653/v1/P17-1132 10.18653/v1/D19-1522 10.1609/aaai.v32i1.11573 10.1145/1376616.1376746 10.18653/v1/P17-1021 10.18653/v1/P16-1219 10.1609/aaai.v35i8.16850 10.1145/1242572.1242667 10.1145/3308558.3313705 10.1609/aaai.v30i1.10089 10.3115/v1/P15-1067 10.18653/v1/2020.acl-main.241 10.1609/aaai.v35i8.16879 10.1609/aaai.v34i03.5694 10.18653/v1/D15-1174 10.18653/v1/P17-1162 10.1145/2623330.2623623 10.1145/3485447.3512028 10.1609/aaai.v24i1.7519 10.18653/v1/N16-1054 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-023-00918-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 787 |
ExternalDocumentID | 10_1007_s10618_023_00918_8 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PUEGO Q9U |
ID | FETCH-LOGICAL-c319t-e1da42cc13c8f9a0a237f2f099ac74dad1b32bc295a0e97bd6a3f8894664d1d3 |
IEDL.DBID | BENPR |
ISSN | 1384-5810 |
IngestDate | Sat Aug 23 14:29:08 EDT 2025 Tue Jul 01 00:40:32 EDT 2025 Thu Apr 24 22:59:57 EDT 2025 Fri Feb 21 02:44:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Tensor decomposition Inverse relation Knowledge graph completion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e1da42cc13c8f9a0a237f2f099ac74dad1b32bc295a0e97bd6a3f8894664d1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5330-7298 |
PQID | 2779701495 |
PQPubID | 43030 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2779701495 crossref_primary_10_1007_s10618_023_00918_8 crossref_citationtrail_10_1007_s10618_023_00918_8 springer_journals_10_1007_s10618_023_00918_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230300 2023-03-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Lathauwer (CR20) 2008; 30 CR19 Xie, Zhu, Liu, Zhou, Huang (CR40) 2021; 2 CR18 CR17 CR39 CR16 CR38 CR15 CR37 CR14 CR36 CR35 CR12 CR34 CR11 CR33 CR10 CR32 CR31 CR30 Auer, Bizer, Kobilarov, Lehmann, Cyganiak, Ives, Aberer, Choi, Noy, Allemang, Lee, Nixon, Golbeck, Mika, Maynard, Mizoguchi, Schreiber, Cudré-Mauroux (CR1) 2007 Zeb, Ul Haq, Zhang, Chen, Gong (CR43) 2021; 167 CR2 CR4 CR3 Hitchcock (CR13) 1927; 6 CR6 CR5 CR8 Sang, Yang, Wang, Liu, Lin, Wang (CR27) 2018; 19 CR7 CR28 CR9 Li, Zhao, Zhang, Zhang (CR21) 2022; 251 CR26 CR24 CR23 CR22 CR44 CR42 CR41 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR29) 2014; 15 Nickel, Murphy, Tresp, Gabrilovich (CR25) 2016; 104 Z Li (918_CR21) 2022; 251 918_CR19 918_CR17 918_CR39 918_CR18 918_CR15 918_CR37 918_CR16 918_CR38 918_CR35 918_CR14 918_CR36 918_CR11 918_CR33 918_CR12 918_CR34 918_CR31 918_CR10 N Srivastava (918_CR29) 2014; 15 918_CR32 FL Hitchcock (918_CR13) 1927; 6 918_CR30 S Auer (918_CR1) 2007 A Zeb (918_CR43) 2021; 167 M Nickel (918_CR25) 2016; 104 S Sang (918_CR27) 2018; 19 918_CR4 918_CR5 918_CR2 918_CR3 LD Lathauwer (918_CR20) 2008; 30 918_CR8 918_CR9 918_CR6 918_CR28 918_CR7 918_CR26 918_CR24 918_CR22 918_CR44 918_CR23 918_CR42 918_CR41 Z Xie (918_CR40) 2021; 2 |
References_xml | – ident: CR22 – ident: CR18 – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 ident: CR29 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res doi: 10.5555/2627435.2670313 – ident: CR4 – ident: CR14 – ident: CR39 – ident: CR2 – ident: CR16 – ident: CR37 – ident: CR12 – ident: CR30 – volume: 251 start-page: 109 year: 2022 end-page: 262 ident: CR21 article-title: Multi-relational graph attention networks for knowledge graph completion publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.109262 – ident: CR10 – ident: CR33 – ident: CR35 – ident: CR6 – ident: CR8 – volume: 6 start-page: 164 issue: 1–4 year: 1927 end-page: 189 ident: CR13 article-title: The expression of a tensor or a polyadic as a sum of products publication-title: J Math Phys doi: 10.1002/sapm192761164 – ident: CR42 – volume: 167 start-page: 114 year: 2021 end-page: 164 ident: CR43 article-title: KGEL: a novel end-to-end embedding learning framework for knowledge graph completion publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114164 – ident: CR23 – ident: CR19 – volume: 19 start-page: 1 issue: 1 year: 2018 end-page: 11 ident: CR27 article-title: SemaTyP: a knowledge graph based literature mining method for drug discovery publication-title: BMC Bioinform doi: 10.1186/s12859-018-2167-5 – ident: CR44 – volume: 104 start-page: 11 issue: 1 year: 2016 end-page: 33 ident: CR25 article-title: A review of relational machine learning for knowledge graphs publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2483592 – ident: CR3 – ident: CR15 – ident: CR38 – volume: 2 start-page: 1762 year: 2021 end-page: 1773 ident: CR40 article-title: Hierarchical neighbor propagation with bidirectional graph attention network for relation prediction publication-title: IEEE ACM Trans Audio Speech Lang Process doi: 10.1109/TASLP.2021.3079812 – ident: CR17 – ident: CR31 – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR34 – ident: CR36 – ident: CR5 – ident: CR7 – ident: CR28 – ident: CR41 – start-page: 722 year: 2007 end-page: 735 ident: CR1 article-title: DBpedia: a nucleus for a web of open data publication-title: The semantic web doi: 10.1007/978-3-540-76298-0_52 – ident: CR26 – ident: CR24 – volume: 30 start-page: 1033 issue: 3 year: 2008 end-page: 1066 ident: CR20 article-title: Decompositions of a higher-order tensor in block terms - Part II: definitions and uniqueness publication-title: SIAM J Matrix Anal Appl doi: 10.1137/070690729 – ident: 918_CR31 – ident: 918_CR24 doi: 10.1145/3487553.3524251 – ident: 918_CR37 doi: 10.1609/aaai.v28i1.8870 – ident: 918_CR22 doi: 10.1609/aaai.v29i1.9491 – ident: 918_CR41 doi: 10.18653/v1/P17-1132 – ident: 918_CR2 doi: 10.18653/v1/D19-1522 – ident: 918_CR44 – ident: 918_CR9 doi: 10.1609/aaai.v32i1.11573 – ident: 918_CR4 – ident: 918_CR3 doi: 10.1145/1376616.1376746 – volume: 6 start-page: 164 issue: 1–4 year: 1927 ident: 918_CR13 publication-title: J Math Phys doi: 10.1002/sapm192761164 – volume: 251 start-page: 109 year: 2022 ident: 918_CR21 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.109262 – ident: 918_CR11 doi: 10.18653/v1/P17-1021 – ident: 918_CR34 – ident: 918_CR39 doi: 10.18653/v1/P16-1219 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 918_CR29 publication-title: J Mach Learn Res doi: 10.5555/2627435.2670313 – ident: 918_CR17 – volume: 104 start-page: 11 issue: 1 year: 2016 ident: 918_CR25 publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2483592 – ident: 918_CR6 doi: 10.1609/aaai.v35i8.16850 – ident: 918_CR19 – ident: 918_CR30 doi: 10.1145/1242572.1242667 – ident: 918_CR5 doi: 10.1145/3308558.3313705 – ident: 918_CR16 doi: 10.1609/aaai.v30i1.10089 – ident: 918_CR15 doi: 10.3115/v1/P15-1067 – volume: 167 start-page: 114 year: 2021 ident: 918_CR43 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114164 – ident: 918_CR32 doi: 10.18653/v1/2020.acl-main.241 – volume: 19 start-page: 1 issue: 1 year: 2018 ident: 918_CR27 publication-title: BMC Bioinform doi: 10.1186/s12859-018-2167-5 – ident: 918_CR8 doi: 10.1609/aaai.v35i8.16879 – start-page: 722 volume-title: The semantic web year: 2007 ident: 918_CR1 doi: 10.1007/978-3-540-76298-0_52 – ident: 918_CR26 – ident: 918_CR42 – ident: 918_CR28 – ident: 918_CR36 doi: 10.1609/aaai.v34i03.5694 – ident: 918_CR18 – ident: 918_CR33 doi: 10.18653/v1/D15-1174 – volume: 30 start-page: 1033 issue: 3 year: 2008 ident: 918_CR20 publication-title: SIAM J Matrix Anal Appl doi: 10.1137/070690729 – ident: 918_CR12 doi: 10.18653/v1/P17-1162 – volume: 2 start-page: 1762 year: 2021 ident: 918_CR40 publication-title: IEEE ACM Trans Audio Speech Lang Process doi: 10.1109/TASLP.2021.3079812 – ident: 918_CR14 – ident: 918_CR10 doi: 10.1145/2623330.2623623 – ident: 918_CR38 doi: 10.1145/3485447.3512028 – ident: 918_CR7 doi: 10.1609/aaai.v24i1.7519 – ident: 918_CR23 doi: 10.18653/v1/N16-1054 – ident: 918_CR35 |
SSID | ssj0005230 |
Score | 2.4743361 |
Snippet | Knowledge graphs (KGs) are large-scale semantic networks designed to describe real-world facts. However, existing KGs typically contain only a small subset of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 767 |
SubjectTerms | Algorithms Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Decomposition Graphical representations Information Storage and Retrieval Knowledge representation Mathematical analysis Physics Statistics for Engineering Tensors |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60InjxURWrVXLwpoFuHpust_ooVdCDtNDbktdelCpt_f8mabatooK3QLI5zGO_SfLNDMB57lTo3iBwrp3EzJgMF9Ro7HiROUe9XlS4Gnh8yvtD9jDio5QUNq3Z7vWTZPxTryS75ZnEHmOwjwv8SK7DBg9nd2_FQ9JdIXbQeW6wZJjLrJNSZX7e4yscLWPMb8-iEW16u7CdwkTUnet1D9bcuAk7dQsGlDyyCZuRwWmm-zC6vn2-v0Lag9MLsi5QxRMfCwWkssgPJon55ncOZSIm86QG5ONWtLhbQ7GENYpUcxemD2DQuxvc9HFqm4CN96cZdplVjHipUyOrQnUUoaIilQ8FlRHMKptpSrQhBVcdVwhtc0UrKWOheZtZegiN8dvYHQHKeUA4wby1WSYkV5wwrSpKqWYe_UQLslp4pUklxUNni9dyWQw5CLz0Ai-jwEvZgovFN-_zghp_rm7XOimTc01LIkQh4tGuBZe1npbTv-92_L_lJ7BFoqkExlkbGrPJhzv1IchMn0WL-wTauNDN priority: 102 providerName: Springer Nature |
Title | BDRI: block decomposition based on relational interaction for knowledge graph completion |
URI | https://link.springer.com/article/10.1007/s10618-023-00918-8 https://www.proquest.com/docview/2779701495 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED4BXVh4Iwql8sAGFo3txA4LaqHlJRBCIJUp8isLqEAp_59z6lBAgs2KEw93Z39fzvcA2Mu8Dt0bJM2MV1RYm9CcW0N9mifec9SLDq6B65vs_EFcDtNhdLi9x7DK-kysDmr3YoOP_JBJmcuKzx-_vtHQNSrcrsYWGvPQwCNY4c9Xo9e_ub37FuTBp3nCStBUJZ2YNhOT57JEUcQsijwDR-onNM345q8r0gp5BiuwFCkj6U51vApzfrQGy3U7BhJ35zoMe6d3F0fEIDw9EedDsHiMyCIBqxzBwTjGvuF6oVDEeJrWQJC5ki_vGqmKWJMq2NyH6Q24H_TvT85pbJxALe6oCfWJ04Kh3LlVZa47mnFZshLJoLZSOO0Sw5mxLE91x-fSuEzzUqmq1LxLHN-EhdHLyG8BydKAcVKgvTkhVapTJowuOedGIP7JJiS1yAobi4qH3hbPxawcchBzgWIuKjEXqgn7X9-8Tktq_Pt2q9ZEEbfXezEzhiYc1NqZTf-92vb_q-3AIqsMIsSYtWBhMv7wu0g6JqYN82pw1oZG9-zxqt-OdoZPH1j3EwJ_1bw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6l5UAvvNqqKQF8gFNrNWt7114khIASEvo4oFTKzfJrL0VpmwYhfhT_kbHX21AkeuvNkndHq5nPnm_teQC8roKJ3RskrWxQVDhX0Jo7S0NZFyFwtIuJRwMnp9X4THydlbMe_O5yYWJYZbcnpo3aX7h4Rn7ApKxl4vPvL69o7BoVb1e7FhotLI7Cr5_4y3b9bnKI9n3D2Ojz9NOY5q4C1CHcljQU3giGH8WdamozNIzLhjXIlIyTwhtfWM6sY3VphqGW1leGN0qlOuy-8BzFrsEDwXkdF5QaffkrooS3SclK0FIVw5yjkzP1qkJRdJAUSQ2O1G0_uCK3_9zHJjc3egKPMj8lH1pAPYVemD-Dx13vB5K3gk2YfTz8NnlLLPrCc-JDjEzP4V8kOkZPcLDIgXYoL1alWLQ5FARpMrk5yiOpYjZJke0hTm_B9D70uQ3r84t52AFSldGhSoHg9kKq0pRMWNNwzq1AZyv7UHQq0y5XMI-NNL7rVe3lqGaNatZJzVr1Ye_mncu2fsedTw86S-i8lq_1Cnl92O-ss5r-v7Tdu6W9gofj6cmxPp6cHj2HDZbAEYPbBrC-XPwIL5DtLO3LhDEC-p4x_Qf6Tg5Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dSxwxEB_sCdIXtbWlVz-ah_bJBm-T7CZbENGeh1f1ELFwbyFf-1I57Xml-Kf533Wym_VUqG--BbI7LDO_zUyS38wAfC6Cid0bJC1sUFQ4l9GSO0tDXmYhcLSLiUcDp6Pi6Kf4Mc7HC3DX5sJEWmW7JtYLtb9y8Yx8h0lZyjqe36kSLeKsP9i7_k1jB6l409q202ggchxu_-L27WZ32Edbf2FscHjx_YimDgPUIfRmNGTeCIYfyJ2qStMzjMuKVRg1GSeFNz6znFnHytz0QimtLwyvlKprsvvMcxT7ChYlbop6HVg8OBydnT_gl_AmRVkJmquslzJ2Ut5ekSmK7pJiiIMj9dgrzkPdJ7eztdMbrMJyilbJfgOvN7AQJm9hpe0EQdLCsAbjg_758Bux6Bl_ER8iTz2RwUh0k57gYJpodygv1qiYNhkVBINmcn-wR-r62aTmuYc4_Q4uXkKj76EzuZqED0CKPLpXKRDqXkiVm5wJayrOuRXoemUXslZl2qV65rGtxqWeV2KOataoZl2rWasubN-_c91U83j26Y3WEjr92Td6jsMufG2tM5_-v7SPz0v7BEuIZ30yHB2vw2tWYyMy3TagM5v-CZsY-szsVgIZAf3CsP4HIj0T6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BDRI%3A+block+decomposition+based+on+relational+interaction+for+knowledge+graph+completion&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Yu%2C+Mei&rft.au=Guo%2C+Jiujiang&rft.au=Yu%2C+Jian&rft.au=Xu%2C+Tianyi&rft.date=2023-03-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=37&rft.issue=2&rft.spage=767&rft.epage=787&rft_id=info:doi/10.1007%2Fs10618-023-00918-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_023_00918_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |