Quantum science with optical tweezer arrays of ultracold atoms and molecules

Single atoms and molecules can be trapped in tightly focused beams of light that form ‘optical tweezers’, affording exquisite capabilities for the control and detection of individual particles. This approach has progressed to creating tweezer arrays holding hundreds of atoms, resulting in a platform...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 17; no. 12; pp. 1324 - 1333
Main Authors Kaufman, Adam M., Ni, Kang-Kuen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single atoms and molecules can be trapped in tightly focused beams of light that form ‘optical tweezers’, affording exquisite capabilities for the control and detection of individual particles. This approach has progressed to creating tweezer arrays holding hundreds of atoms, resulting in a platform for controlling large many-particle quantum systems. Here we review this new approach to microscopic control of scalable atomic and molecular neutral quantum systems, its future prospects, and applications in quantum information processing, quantum simulation and metrology. Large arrays of atoms and molecules can be arranged and controlled with high precision using optical tweezers. This Review surveys the latest methodological advances and their applications to quantum technologies.
AbstractList Single atoms and molecules can be trapped in tightly focused beams of light that form ‘optical tweezers’, affording exquisite capabilities for the control and detection of individual particles. This approach has progressed to creating tweezer arrays holding hundreds of atoms, resulting in a platform for controlling large many-particle quantum systems. Here we review this new approach to microscopic control of scalable atomic and molecular neutral quantum systems, its future prospects, and applications in quantum information processing, quantum simulation and metrology. Large arrays of atoms and molecules can be arranged and controlled with high precision using optical tweezers. This Review surveys the latest methodological advances and their applications to quantum technologies.
Single atoms and molecules can be trapped in tightly focused beams of light that form ‘optical tweezers’, affording exquisite capabilities for the control and detection of individual particles. This approach has progressed to creating tweezer arrays holding hundreds of atoms, resulting in a platform for controlling large many-particle quantum systems. Here we review this new approach to microscopic control of scalable atomic and molecular neutral quantum systems, its future prospects, and applications in quantum information processing, quantum simulation and metrology.Large arrays of atoms and molecules can be arranged and controlled with high precision using optical tweezers. This Review surveys the latest methodological advances and their applications to quantum technologies.
Author Ni, Kang-Kuen
Kaufman, Adam M.
Author_xml – sequence: 1
  givenname: Adam M.
  orcidid: 0000-0003-4956-5814
  surname: Kaufman
  fullname: Kaufman, Adam M.
  email: adam.kaufman@colorado.edu
  organization: JILA, NIST and Department of Physics, University of Colorado
– sequence: 2
  givenname: Kang-Kuen
  orcidid: 0000-0002-0537-0719
  surname: Ni
  fullname: Ni, Kang-Kuen
  email: ni@chemistry.harvard.edu
  organization: Department of Chemistry and Chemical Biology, Harvard University
BookMark eNp9kMtKxDAUhoOM4MzoC7gKuK7mJGmTLmXwBgMi6Dqkaaod2mRMUobx6a1WFFzM6pzF_53Lt0Az551F6BzIJRAmryKHvBAZoZARYLnI6BGag-B5RrmE2W8v2AlaxLghhNMC2Bytnwbt0tDjaFrrjMW7Nr1hv02t0R1OO2s_bMA6BL2P2Dd46FLQxnc11sn3EWtX49531gydjafouNFdtGc_dYlebm-eV_fZ-vHuYXW9zgyDMmUWhAbb0EaXhtfAGwDCTU10WQioTWkrTTWVpMwhFwAWKqikyStRk5pL2bAlupjmboN_H2xMauOH4MaVihZElFBKYGNKTikTfIzBNsq0SafWu_GFtlNA1Jc7NblTozv17U7REaX_0G1oex32hyE2QXEMu1cb_q46QH0CQ8eD8w
CitedBy_id crossref_primary_10_1364_JOSAB_522611
crossref_primary_10_1021_acs_jpclett_2c03041
crossref_primary_10_1103_PhysRevLett_131_253603
crossref_primary_10_1038_s41567_022_01550_x
crossref_primary_10_1103_PRXQuantum_5_030316
crossref_primary_10_1103_PhysRevA_108_012803
crossref_primary_10_1007_s11467_022_1249_z
crossref_primary_10_1016_j_coelec_2022_101000
crossref_primary_10_1103_PhysRevA_109_023304
crossref_primary_10_1038_s41567_024_02453_9
crossref_primary_10_3390_electronics12112360
crossref_primary_10_1364_OE_465672
crossref_primary_10_1063_5_0144665
crossref_primary_10_1103_PhysRevA_105_L061101
crossref_primary_10_1103_PhysRevA_110_023327
crossref_primary_10_1103_PhysRevApplied_19_034048
crossref_primary_10_1038_s41467_025_56305_y
crossref_primary_10_1103_PhysRevB_106_134211
crossref_primary_10_1364_OL_551842
crossref_primary_10_1103_PhysRevA_109_032801
crossref_primary_10_1103_PhysRevA_110_053518
crossref_primary_10_1038_d41586_024_01009_4
crossref_primary_10_1002_adma_202415073
crossref_primary_10_1103_PhysRevX_14_011026
crossref_primary_10_1103_PhysRevA_105_053520
crossref_primary_10_1103_PRXQuantum_4_020335
crossref_primary_10_1103_PhysRevA_108_023719
crossref_primary_10_1002_advs_202401418
crossref_primary_10_1103_PhysRevLett_131_160403
crossref_primary_10_1088_2058_9565_ad6286
crossref_primary_10_1103_PhysRevA_108_043308
crossref_primary_10_1103_PhysRevD_105_074505
crossref_primary_10_1021_acs_nanolett_4c00353
crossref_primary_10_1080_23746149_2022_2064231
crossref_primary_10_1103_PhysRevA_108_013313
crossref_primary_10_1002_andp_202300365
crossref_primary_10_1016_j_optlastec_2024_111613
crossref_primary_10_1007_s11128_025_04712_x
crossref_primary_10_1021_acs_jpclett_4c00180
crossref_primary_10_1103_PhysRevResearch_6_033333
crossref_primary_10_1364_OE_547393
crossref_primary_10_1103_PhysRevResearch_6_043272
crossref_primary_10_1038_s41586_023_06438_1
crossref_primary_10_1103_Physics_15_23
crossref_primary_10_1038_s41586_024_07199_1
crossref_primary_10_1103_PhysRevLett_133_223402
crossref_primary_10_1016_j_tcb_2022_05_001
crossref_primary_10_1364_OL_478793
crossref_primary_10_1364_OE_538445
crossref_primary_10_1103_PhysRevResearch_6_033104
crossref_primary_10_1103_PhysRevX_14_011048
crossref_primary_10_1364_OPTICAQ_532260
crossref_primary_10_1103_PhysRevE_109_064125
crossref_primary_10_1063_5_0219170
crossref_primary_10_1103_PhysRevLett_134_013202
crossref_primary_10_1103_PhysRevResearch_7_013031
crossref_primary_10_1103_PhysRevA_109_012608
crossref_primary_10_1103_PhysRevA_106_033302
crossref_primary_10_3390_photonics11111079
crossref_primary_10_1103_PhysRevA_108_053710
crossref_primary_10_1103_PhysRevA_109_053317
crossref_primary_10_1103_PhysRevA_109_033307
crossref_primary_10_1103_PhysRevA_108_033308
crossref_primary_10_1103_PhysRevA_110_013309
crossref_primary_10_1063_5_0100088
crossref_primary_10_1103_PhysRevLett_132_230401
crossref_primary_10_1103_PhysRevA_111_022432
crossref_primary_10_1103_PhysRevResearch_5_L032009
crossref_primary_10_1126_sciadv_adk6369
crossref_primary_10_1021_acs_jpca_3c02835
crossref_primary_10_1103_PhysRevB_111_054311
crossref_primary_10_1103_PhysRevA_111_033314
crossref_primary_10_1103_PhysRevLett_131_093002
crossref_primary_10_1002_adom_202301314
crossref_primary_10_1016_j_optlastec_2024_112056
crossref_primary_10_1103_PhysRevResearch_5_043300
crossref_primary_10_1063_5_0145769
crossref_primary_10_1103_PhysRevLett_131_203401
crossref_primary_10_1103_PhysRevA_110_053308
crossref_primary_10_1038_s41567_021_01403_z
crossref_primary_10_1021_acs_jpca_3c03162
crossref_primary_10_1103_PhysRevB_108_085114
crossref_primary_10_1103_PhysRevLett_133_180601
crossref_primary_10_7498_aps_72_20230642
crossref_primary_10_1002_qute_202300176
crossref_primary_10_1088_1361_648X_adbb9b
crossref_primary_10_1103_PhysRevLett_131_166401
crossref_primary_10_22331_q_2024_12_10_1557
crossref_primary_10_1021_acs_jpca_3c00797
crossref_primary_10_1038_s42005_023_01271_4
crossref_primary_10_1103_PRXQuantum_5_010333
crossref_primary_10_1103_PhysRevLett_131_053001
crossref_primary_10_1103_PhysRevResearch_5_033093
crossref_primary_10_1103_PhysRevA_109_052814
crossref_primary_10_1103_PhysRevA_106_013703
crossref_primary_10_1103_PhysRevA_107_023117
crossref_primary_10_1103_PhysRevResearch_6_L042070
crossref_primary_10_1103_PhysRevLett_130_143002
crossref_primary_10_1103_PhysRevB_106_134506
crossref_primary_10_1103_PhysRevA_108_063314
crossref_primary_10_1103_PhysRevLett_132_150605
crossref_primary_10_1088_1367_2630_acc5ab
crossref_primary_10_1038_s41467_024_55570_7
crossref_primary_10_1103_PhysRevA_108_033108
crossref_primary_10_1103_PhysRevLett_130_243001
crossref_primary_10_1103_PhysRevA_109_043310
crossref_primary_10_1103_PhysRevLett_130_243802
crossref_primary_10_3390_ma16083230
crossref_primary_10_1364_OE_544727
crossref_primary_10_1038_s41586_022_05558_4
crossref_primary_10_1103_PhysRevLett_129_123201
crossref_primary_10_1103_PhysRevApplied_19_054032
crossref_primary_10_1103_PRXQuantum_5_010311
crossref_primary_10_1103_PhysRevLett_130_223401
crossref_primary_10_1103_PhysRevLett_131_170601
crossref_primary_10_1016_j_cap_2024_03_003
crossref_primary_10_1038_s41567_024_02638_2
crossref_primary_10_1103_PhysRevA_109_043320
crossref_primary_10_1103_PhysRevA_106_023318
crossref_primary_10_1103_PhysRevLett_132_183401
crossref_primary_10_1103_PhysRevLett_132_206601
crossref_primary_10_1063_5_0211071
crossref_primary_10_1364_OL_450855
crossref_primary_10_1088_1361_6455_acf3bf
crossref_primary_10_1103_PhysRevLett_129_160501
crossref_primary_10_1103_PhysRevResearch_5_033108
crossref_primary_10_1103_PhysRevB_108_104301
crossref_primary_10_1103_PhysRevLett_131_013401
crossref_primary_10_1103_PhysRevLett_133_013401
crossref_primary_10_1103_PhysRevLett_134_113402
crossref_primary_10_1088_2058_9565_ac796c
crossref_primary_10_1103_PhysRevX_15_011040
crossref_primary_10_1103_PhysRevA_110_022607
crossref_primary_10_1109_TQE_2024_3429451
crossref_primary_10_1364_OPTICA_480535
crossref_primary_10_1103_PhysRevResearch_6_023254
crossref_primary_10_1103_PRXQuantum_4_030337
crossref_primary_10_1103_PhysRevLett_131_043402
crossref_primary_10_1103_PhysRevA_109_013318
crossref_primary_10_1038_s41467_024_46823_6
crossref_primary_10_1038_s41598_024_77596_z
crossref_primary_10_1088_1367_2630_ad2438
crossref_primary_10_1103_PhysRevLett_133_203401
crossref_primary_10_1088_2058_9565_ac676c
crossref_primary_10_1103_PhysRevLett_130_180601
crossref_primary_10_1364_OPTICA_486747
crossref_primary_10_34133_research_0393
crossref_primary_10_1103_PhysRevA_110_052804
crossref_primary_10_1088_2058_9565_ad4c91
crossref_primary_10_1038_s41567_021_01379_w
crossref_primary_10_1038_s41586_024_07883_2
crossref_primary_10_1103_PhysRevLett_128_223202
crossref_primary_10_1088_1367_2630_ad3775
crossref_primary_10_1103_PRXQuantum_5_020333
crossref_primary_10_1103_PhysRevA_109_043105
crossref_primary_10_1103_PhysRevResearch_6_023031
crossref_primary_10_1098_rspa_2022_0806
crossref_primary_10_1016_j_sab_2024_106942
crossref_primary_10_1038_s41567_021_01453_3
crossref_primary_10_1007_s00601_024_01970_w
crossref_primary_10_1103_PhysRevLett_133_083601
crossref_primary_10_1103_PhysRevA_106_042410
crossref_primary_10_1103_PhysRevX_13_041035
crossref_primary_10_1063_5_0091280
crossref_primary_10_1103_PhysRevA_108_012608
crossref_primary_10_1103_PhysRevA_108_063111
crossref_primary_10_1038_s41567_024_02714_7
crossref_primary_10_1103_PhysRevA_105_063111
crossref_primary_10_1103_PhysRevApplied_23_L031002
crossref_primary_10_1103_PhysRevA_108_023107
crossref_primary_10_1103_PhysRevA_109_043111
crossref_primary_10_1088_1367_2630_acd411
crossref_primary_10_1088_1367_2630_ac95b9
crossref_primary_10_1103_PhysRevA_110_013708
crossref_primary_10_1103_PhysRevA_108_043513
crossref_primary_10_1103_PhysRevX_12_021027
crossref_primary_10_1103_PhysRevA_110_043116
crossref_primary_10_1002_marc_202200017
crossref_primary_10_1103_PhysRevA_110_043118
crossref_primary_10_1103_PhysRevLett_130_193402
crossref_primary_10_1364_OPTICA_513551
crossref_primary_10_7498_aps_74_20241783
crossref_primary_10_3390_e26030230
crossref_primary_10_35848_1882_0786_aca9bd
crossref_primary_10_1103_PhysRevA_110_012610
crossref_primary_10_1103_PhysRevX_13_011047
crossref_primary_10_1103_PhysRevResearch_6_033322
crossref_primary_10_1103_PhysRevLett_129_195301
crossref_primary_10_1103_PhysRevA_109_L061304
crossref_primary_10_22331_q_2023_10_16_1140
crossref_primary_10_1088_1742_6596_2653_1_012077
crossref_primary_10_1088_1367_2630_ad80b8
crossref_primary_10_1103_PhysRevA_110_L021302
crossref_primary_10_1103_PhysRevResearch_6_023297
crossref_primary_10_1103_PhysRevLett_129_243401
crossref_primary_10_1002_adma_202201064
crossref_primary_10_1088_1674_1056_ad1172
crossref_primary_10_1126_sciadv_adl1220
crossref_primary_10_1016_j_ijleo_2024_171913
crossref_primary_10_1088_2058_9565_ad33ac
crossref_primary_10_1103_PRXQuantum_6_010353
crossref_primary_10_1103_PhysRevLett_132_133401
crossref_primary_10_1103_PRXQuantum_4_010316
crossref_primary_10_1364_OE_510133
crossref_primary_10_1103_PhysRevA_110_033304
crossref_primary_10_1103_PhysRevApplied_22_024073
crossref_primary_10_1103_PhysRevA_106_022801
crossref_primary_10_1103_PhysRevA_110_043105
crossref_primary_10_1038_s41586_023_06614_3
Cites_doi 10.1103/PhysRevLett.106.160801
10.1103/PhysRevA.89.023411
10.1103/PhysRevLett.124.063001
10.1103/RevModPhys.87.637
10.1103/PhysRevLett.118.065302
10.1038/nphys3487
10.1103/PhysRevLett.123.260505
10.1103/PhysRevLett.122.173201
10.1038/nature09443
10.1126/science.aam5538
10.1103/PhysRevLett.124.253401
10.1038/s41567-017-0030-7
10.1039/C8SC02355G
10.1088/1367-2630/ab428d
10.1103/PhysRevLett.124.073401
10.1038/s41586-020-3009-y
10.1103/RevModPhys.80.885
10.1038/s41467-019-09635-7
10.1088/0953-4075/49/14/144004
10.1103/PhysRevLett.75.4011
10.1103/PhysRevLett.123.230501
10.1088/0953-4075/44/18/184010
10.1038/s41586-018-0450-2
10.1103/PhysRevLett.126.020401
10.1103/PhysRevLett.120.103201
10.1126/science.1250057
10.1103/PhysRevA.101.062308
10.1103/PhysRevA.88.051401
10.1126/science.1113394
10.1103/PhysRevA.100.063429
10.1103/PhysRevLett.125.043401
10.1103/PhysRevLett.62.403
10.1038/nphys1178
10.1126/science.aal5066
10.1126/science.1240516
10.1038/nature22338
10.1103/PhysRevA.97.053803
10.1126/science.1201351
10.1126/science.1237125
10.1103/PhysRevLett.104.070802
10.1103/PhysRevLett.113.120402
10.1103/RevModPhys.82.2313
10.1103/PhysRevLett.110.133001
10.1038/nphys1183
10.1038/s41567-021-01328-7
10.1103/PhysRevA.97.063423
10.1103/PhysRevA.61.062309
10.1038/nphys4241
10.1126/science.abg9502
10.1103/PhysRevA.93.032138
10.1038/35082512
10.1088/1367-2630/aa5a3b
10.1038/442151a
10.1038/nature16073
10.1103/PhysRevLett.104.030402
10.1103/PhysRevLett.108.075303
10.1103/PhysRevLett.85.2208
10.1103/PhysRevLett.123.170503
10.1103/PhysRevLett.125.243602
10.1038/nphys698
10.1126/science.aax1265
10.1088/0953-4075/49/20/202001
10.1038/nphys287
10.1038/nature04628
10.1038/s41566-019-0493-4
10.1038/s41586-018-0599-8
10.1038/s41567-019-0733-z
10.1103/PhysRevLett.89.023005
10.1103/PhysRevLett.101.133005
10.1126/science.aay9531
10.1103/PhysRevLett.81.5768
10.1103/PhysRevLett.102.240502
10.1103/PhysRevLett.114.080402
10.1103/PhysRevLett.104.010503
10.1038/s41567-019-0508-6
10.1103/PhysRevLett.107.115301
10.1126/science.aba7468
10.1103/PhysRevLett.88.067901
10.1103/PhysRevA.75.040301
10.1126/science.1159909
10.1103/PhysRevLett.121.253401
10.1103/PhysRevLett.119.133002
10.1103/PhysRevLett.116.063005
10.1038/s41598-018-21699-x
10.1103/PhysRevLett.115.073003
10.1126/science.aar7797
10.1126/science.aau7230
10.1038/nature24622
10.1103/PhysRevLett.104.010502
10.1126/science.aav9105
10.1364/OPTICA.384408
10.1103/PhysRevLett.125.180402
10.1103/PhysRevResearch.2.023108
10.1126/science.aah3752
10.1038/s41586-018-0738-2
10.1103/PhysRevLett.124.123201
10.1126/science.aah3778
10.1103/PhysRevA.70.040302
10.1103/PhysRevLett.122.143602
10.1002/qute.201800067
10.1140/epjd/e2004-00167-2
10.1103/PhysRevA.46.R6797
10.1103/PhysRevA.92.042710
10.1038/s41567-020-0903-z
10.1126/science.aax9743
10.1103/PhysRevLett.101.243002
10.1038/s41586-018-0458-7
10.1126/science.abc5357
10.1038/nature13634
10.1103/PhysRevLett.112.103601
10.1126/science.1163861
10.1103/PhysRevLett.121.083201
10.1038/nphys1778
10.1103/PhysRevLett.123.033201
10.1038/s41586-020-2936-y
10.1038/s41567-019-0632-3
10.1103/PhysRevLett.122.143002
10.1038/s41586-021-03582-4
10.1126/science.1061171
10.1103/PhysRevLett.114.100503
10.1103/PhysRevLett.126.123402
10.1088/1367-2630/17/2/025001
10.1103/PhysRevLett.127.100504
10.1103/PhysRevLett.119.053202
10.1103/PhysRevLett.120.163201
10.1103/PhysRevA.98.040302
10.1038/ncomms8803
10.1038/nature12941
10.1103/PhysRevLett.85.724
10.1103/PhysRevLett.121.123603
10.1038/nature12483
10.1038/s41586-021-03585-1
10.1103/PhysRevLett.123.213602
10.1103/PhysRevA.97.022508
10.1126/science.aay0644
10.1038/s41586-019-1070-1
10.1103/PhysRevResearch.2.013251
10.1103/PhysRevLett.127.123202
ContentType Journal Article
Copyright Springer Nature Limited 2021
Springer Nature Limited 2021.
Copyright_xml – notice: Springer Nature Limited 2021
– notice: Springer Nature Limited 2021.
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/s41567-021-01357-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 1333
ExternalDocumentID 10_1038_s41567_021_01357_2
GrantInformation_xml – fundername: US AFOSR FA9550-19-1-0089
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-e17a1ef2fa9c4d14f1104cd0a9671dc9eba2a2809515711e1b1b8c5b7d0d488f3
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Sat Aug 23 14:17:41 EDT 2025
Tue Jul 01 00:25:41 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Fri Feb 21 02:37:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e17a1ef2fa9c4d14f1104cd0a9671dc9eba2a2809515711e1b1b8c5b7d0d488f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0537-0719
0000-0003-4956-5814
PQID 2607919813
PQPubID 27545
PageCount 10
ParticipantIDs proquest_journals_2607919813
crossref_citationtrail_10_1038_s41567_021_01357_2
crossref_primary_10_1038_s41567_021_01357_2
springer_journals_10_1038_s41567_021_01357_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Yu, Cheuk, Kozyryev, Doyle (CR136) 2019; 21
Miroshnychenko (CR11) 2006; 442
Park, Yan, Loh, Will, Zwierlein (CR120) 2017; 357
Saskin, Wilson, Grinkemeyer, Thompson (CR80) 2019; 122
Wenz (CR42) 2013; 342
Grünzweig, Hilliard, McGovern, Andersen (CR59) 2010; 6
Serwane (CR41) 2011; 332
Zhang (CR54) 2020; 124
Zhou, Wang, Choi, Pichler, Lukin (CR73) 2020; 10
Preiss (CR45) 2019; 122
Lester, Luick, Kaufman, Reynolds, Regal (CR60) 2015; 115
Topcu, Derevianko (CR96) 2014; 89
Norcia, Young, Kaufman (CR78) 2018; 8
Yu (CR141) 2018; 97
Schlosser, Reymond, Grangier (CR36) 2002; 89
Lienhard (CR20) 2018; 8
Ospelkaus (CR143) 2010; 104
Hood (CR34) 2020; 2
de Léséleuc, Barredo, Lienhard, Browaeys, Lahaye (CR67) 2018; 97
Jaksch (CR62) 2000; 85
Liu (CR138) 2019; 9
Zürn (CR43) 2012; 108
Hutzler, Liu, Yu, Ni (CR140) 2017; 19
Ding, Wu, Finneran, Burau, Ye (CR131) 2020; 10
Williams (CR132) 2018; 120
Robens (CR14) 2017; 118
Keesling (CR21) 2019; 568
Kim, Chang, Fields, Chen, Hung (CR29) 2019; 10
Isenhower (CR3) 2010; 104
Caldwell (CR123) 2020; 124
Graham (CR69) 2019; 123
Micheli, Brennen, Zoller (CR107) 2006; 2
Wilk (CR2) 2010; 104
Kaufman (CR4) 2014; 345
Gil, Mukherjee, Bridge, Jones, Pohl (CR100) 2014; 112
Hu (CR144) 2019; 366
Prehn, Ibrügger, Glöckner, Rempe, Zeppenfeld (CR117) 2016; 116
Mitra (CR134) 2020; 369
Brewer (CR92) 2019; 123
Cairncross (CR10) 2021; 126
Kaufman, Lester, Regal (CR50) 2012; 2
Oelker (CR93) 2019; 13
Gaëtan (CR65) 2009; 5
DeMille (CR106) 2002; 88
Bayha (CR48) 2020; 587
Saffman, Mølmer (CR70) 2009; 102
Shuman, Barry, DeMille (CR116) 2010; 467
Chou, Hume, Koelemeij, Wineland, Rosenband (CR90) 2010; 104
Campbell (CR87) 2017; 358
Pagano, Scazza, Foss-Feig (CR104) 2019; 2
Omran (CR22) 2019; 365
Chou, Hume, Thorpe, Wineland, Rosenband (CR91) 2011; 106
Weiss (CR40) 2004; 70
Bernien (CR6) 2017; 551
Beugnon (CR38) 2007; 3
Schlosser, Reymond, Protsenko, Grangier (CR1) 2001; 411
de Léséleuc (CR23) 2019; 365
Xu (CR32) 2015; 6
Cooper (CR79) 2018; 8
De Marco (CR119) 2019; 363
Han (CR150) 2000; 85
de Léséleuc, Barredo, Lienhard, Browaeys, Lahaye (CR71) 2017; 119
Reynolds (CR33) 2020; 124
Yan (CR109) 2013; 501
Lang, Winkler, Strauss, Grimm, Denschlag (CR115) 2008; 101
Chou (CR118) 2017; 545
Murmann (CR44) 2015; 114
He (CR55) 2020; 370
Saffman (CR75) 2016; 49
Béguin (CR31) 2020; 7
CR142
Kaufman (CR39) 2015; 527
Urban (CR64) 2009; 5
Barredo, de Léséleuc, Lienhard, Lahaye, Browaeys (CR12) 2016; 354
Wineland, Bollinger, Itano, Moore, Heinzen (CR102) 1992; 46
Browaeys, Lahaye (CR24) 2020; 16
Gregory, Blackmore, Bromley, Hutson, Cornish (CR121) 2021; 17
Holten (CR49) 2021; 126
Hudson, Campbell (CR111) 2018; 98
Darquié (CR17) 2005; 309
CR72
Ebadi (CR57) 2021; 595
Ni, Rosenband, Grimes (CR110) 2018; 9
Beugnon (CR18) 2006; 440
Kumar, Wu, Giraldo, Weiss (CR15) 2018; 561
Di Rosa (CR126) 2004; 31
Thompson (CR28) 2013; 340
Mukherjee, Millen, Nath, Jones, Pohl (CR95) 2011; 44
Truppe (CR129) 2017; 13
Nayak, Wang, Keloth (CR30) 2019; 123
Kondov (CR124) 2019; 15
Beterov, Saffman (CR77) 2015; 92
Andreev (CR105) 2018; 562
McGrew (CR85) 2018; 564
Xia (CR5) 2015; 114
Kaubruegger (CR101) 2019; 123
Caldwell, Tarbutt (CR133) 2020; 2
Kozyryev, Hutzler (CR137) 2017; 119
Yao, Zaletel, Stamper-Kurn, Vishwanath (CR147) 2018; 14
Gorshkov (CR108) 2011; 107
Sundar, Gadway, Hazzard (CR146) 2018; 8
Barry, McCarron, Norrgard, Steinecker, DeMille (CR128) 2014; 512
Robicheaux, Booth, Saffman (CR98) 2018; 97
Levine (CR7) 2018; 121
Bergschneider (CR46) 2019; 15
Cappellini (CR103) 2014; 113
CR125
Marti (CR94) 2018; 120
Jones (CR37) 2007; 75
Ni (CR114) 2008; 322
Wall, Maeda, Carr (CR135) 2015; 17
Jau, Hankin, Keating, Deutsch, Biedermann (CR66) 2016; 12
Monroe (CR53) 1995; 75
Saffman, Walker, Molmer (CR19) 2010; 82
Diddams (CR89) 2001; 293
Hughes (CR112) 2020; 101
Cortiñas (CR76) 2020; 124
Cheuk (CR35) 2020; 125
Liu (CR8) 2018; 360
Clements (CR88) 2020; 125
Cheuk (CR130) 2018; 121
Wang (CR139) 2019; 100
Covey, Madjarov, Cooper, Endres (CR81) 2019; 122
Topcu, Derevianko (CR97) 2016; 49
CR99
Anderegg (CR9) 2019; 365
Endres (CR13) 2016; 354
Diedrich, Bergquist, Itano, Wineland (CR52) 1989; 62
Stuhl, Sawyer, Wang, Ye (CR127) 2008; 101
Norcia (CR25) 2019; 366
Thompson, Tiecke, Zibrov, Vuletić, Lukin (CR51) 2013; 110
Brown, Thiele, Kiehl, Hsu, Regal (CR61) 2019; 9
Levine (CR68) 2019; 123
Ludlow, Boyd, Ye, Peik, Schmidt (CR83) 2015; 87
Danzl (CR113) 2008; 321
Bloom (CR84) 2014; 506
Sompet, Carpentier, Fung, McGovern, Andersen (CR148) 2013; 88
Brennen, Deutsch, Jessen (CR63) 2000; 61
Hume, Leibrandt (CR86) 2016; 93
Vuletić, Chin, Kerman, Chu (CR149) 1998; 81
Young (CR27) 2020; 588
Scholl (CR58) 2021; 595
Madjarov (CR82) 2020; 16
Barredo, Lienhard, de Léséleuc, Lahaye, Browaeys (CR56) 2018; 561
Madjarov (CR26) 2019; 9
Seeßelberg (CR122) 2018; 121
Anderegg (CR145) 2021; 373
Becher (CR47) 2020; 125
Wild, Sels, Pichler, Zanoci, Lukin (CR74) 2020; 127
Bloch, Dalibard, Zwerger (CR16) 2008; 80
V Vuletić (1357_CR149) 1998; 81
D Jaksch (1357_CR62) 2000; 85
JH Becher (1357_CR47) 2020; 125
D-J Han (1357_CR150) 2000; 85
L Bayha (1357_CR48) 2020; 587
F Lang (1357_CR115) 2008; 101
JW Park (1357_CR120) 2017; 357
1357_CR125
MO Brown (1357_CR61) 2019; 9
JD Hood (1357_CR34) 2020; 2
D Mitra (1357_CR134) 2020; 369
P Scholl (1357_CR58) 2021; 595
I Bloch (1357_CR16) 2008; 80
L Caldwell (1357_CR123) 2020; 124
C Robens (1357_CR14) 2017; 118
LW Cheuk (1357_CR35) 2020; 125
P Sompet (1357_CR148) 2013; 88
S de Léséleuc (1357_CR23) 2019; 365
T Topcu (1357_CR96) 2014; 89
C-W Chou (1357_CR118) 2017; 545
JF Barry (1357_CR128) 2014; 512
V Andreev (1357_CR105) 2018; 562
D DeMille (1357_CR106) 2002; 88
SS Kondov (1357_CR124) 2019; 15
AM Kaufman (1357_CR50) 2012; 2
HJ Williams (1357_CR132) 2018; 120
1357_CR99
B Yan (1357_CR109) 2013; 501
KP Nayak (1357_CR30) 2019; 123
M Holten (1357_CR49) 2021; 126
T Wilk (1357_CR2) 2010; 104
BJ Bloom (1357_CR84) 2014; 506
A Bergschneider (1357_CR46) 2019; 15
MA Norcia (1357_CR78) 2018; 8
ES Shuman (1357_CR116) 2010; 467
F Diedrich (1357_CR52) 1989; 62
D Barredo (1357_CR12) 2016; 354
AM Kaufman (1357_CR39) 2015; 527
II Beterov (1357_CR77) 2015; 92
B Sundar (1357_CR146) 2018; 8
P Xu (1357_CR32) 2015; 6
JP Covey (1357_CR81) 2019; 122
AD Ludlow (1357_CR83) 2015; 87
H Levine (1357_CR7) 2018; 121
NY Yao (1357_CR147) 2018; 14
1357_CR142
IS Madjarov (1357_CR82) 2020; 16
A Kumar (1357_CR15) 2018; 561
S Ospelkaus (1357_CR143) 2010; 104
LR Liu (1357_CR8) 2018; 360
A Browaeys (1357_CR24) 2020; 16
K-K Ni (1357_CR110) 2018; 9
G Zürn (1357_CR43) 2012; 108
J Beugnon (1357_CR38) 2007; 3
CW Chou (1357_CR91) 2011; 106
LIR Gil (1357_CR100) 2014; 112
NR Hutzler (1357_CR140) 2017; 19
YY Jau (1357_CR66) 2016; 12
E Urban (1357_CR64) 2009; 5
1357_CR72
RG Cortiñas (1357_CR76) 2020; 124
GK Brennen (1357_CR63) 2000; 61
A Cooper (1357_CR79) 2018; 8
ER Hudson (1357_CR111) 2018; 98
BK Stuhl (1357_CR127) 2008; 101
T Xia (1357_CR5) 2015; 114
T Grünzweig (1357_CR59) 2010; 6
L Anderegg (1357_CR9) 2019; 365
Y Yu (1357_CR141) 2018; 97
ER Clements (1357_CR88) 2020; 125
BJ Lester (1357_CR60) 2015; 115
S Murmann (1357_CR44) 2015; 114
J-B Béguin (1357_CR31) 2020; 7
AN Wenz (1357_CR42) 2013; 342
SA Diddams (1357_CR89) 2001; 293
JT Zhang (1357_CR54) 2020; 124
S de Léséleuc (1357_CR67) 2018; 97
E Oelker (1357_CR93) 2019; 13
MA Norcia (1357_CR25) 2019; 366
L Zhou (1357_CR73) 2020; 10
LR Liu (1357_CR138) 2019; 9
I Kozyryev (1357_CR137) 2017; 119
AM Kaufman (1357_CR4) 2014; 345
M Saffman (1357_CR19) 2010; 82
A Gaëtan (1357_CR65) 2009; 5
JG Danzl (1357_CR113) 2008; 321
ME Kim (1357_CR29) 2019; 10
F Robicheaux (1357_CR98) 2018; 97
P Yu (1357_CR136) 2019; 21
J Beugnon (1357_CR18) 2006; 440
IS Madjarov (1357_CR26) 2019; 9
M-G Hu (1357_CR144) 2019; 366
N Schlosser (1357_CR36) 2002; 89
V Lienhard (1357_CR20) 2018; 8
TM Graham (1357_CR69) 2019; 123
MD Di Rosa (1357_CR126) 2004; 31
MPA Jones (1357_CR37) 2007; 75
DJ Wineland (1357_CR102) 1992; 46
A Micheli (1357_CR107) 2006; 2
M Saffman (1357_CR70) 2009; 102
X He (1357_CR55) 2020; 370
F Serwane (1357_CR41) 2011; 332
H Bernien (1357_CR6) 2017; 551
G Pagano (1357_CR104) 2019; 2
JD Thompson (1357_CR51) 2013; 110
WF McGrew (1357_CR85) 2018; 564
WB Cairncross (1357_CR10) 2021; 126
S Saskin (1357_CR80) 2019; 122
GE Marti (1357_CR94) 2018; 120
JD Thompson (1357_CR28) 2013; 340
A Prehn (1357_CR117) 2016; 116
SM Brewer (1357_CR92) 2019; 123
L Caldwell (1357_CR133) 2020; 2
S Ebadi (1357_CR57) 2021; 595
DS Wild (1357_CR74) 2020; 127
AV Gorshkov (1357_CR108) 2011; 107
L De Marco (1357_CR119) 2019; 363
K Wang (1357_CR139) 2019; 100
CW Chou (1357_CR90) 2010; 104
PM Preiss (1357_CR45) 2019; 122
C Monroe (1357_CR53) 1995; 75
LA Reynolds (1357_CR33) 2020; 124
N Schlosser (1357_CR1) 2001; 411
A Keesling (1357_CR21) 2019; 568
M Endres (1357_CR13) 2016; 354
K-K Ni (1357_CR114) 2008; 322
DB Hume (1357_CR86) 2016; 93
PD Gregory (1357_CR121) 2021; 17
L Anderegg (1357_CR145) 2021; 373
AW Young (1357_CR27) 2020; 588
S de Léséleuc (1357_CR71) 2017; 119
S Ding (1357_CR131) 2020; 10
D Barredo (1357_CR56) 2018; 561
R Kaubruegger (1357_CR101) 2019; 123
G Cappellini (1357_CR103) 2014; 113
SL Campbell (1357_CR87) 2017; 358
S Truppe (1357_CR129) 2017; 13
H Levine (1357_CR68) 2019; 123
LW Cheuk (1357_CR130) 2018; 121
L Isenhower (1357_CR3) 2010; 104
M Hughes (1357_CR112) 2020; 101
ML Wall (1357_CR135) 2015; 17
A Omran (1357_CR22) 2019; 365
DS Weiss (1357_CR40) 2004; 70
M Saffman (1357_CR75) 2016; 49
R Mukherjee (1357_CR95) 2011; 44
B Darquié (1357_CR17) 2005; 309
T Topcu (1357_CR97) 2016; 49
Y Miroshnychenko (1357_CR11) 2006; 442
F Seeßelberg (1357_CR122) 2018; 121
References_xml – volume: 106
  start-page: 160801
  year: 2011
  ident: CR91
  article-title: Quantum coherence between two atoms beyond  = 10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.160801
– volume: 89
  start-page: 023411
  year: 2014
  ident: CR96
  article-title: Divalent Rydberg atoms in optical lattices: intensity landscape and magic trapping
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.023411
– volume: 124
  start-page: 063001
  year: 2020
  ident: CR123
  article-title: Long rotational coherence times of molecules in a magnetic trap
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.063001
– volume: 87
  start-page: 637
  year: 2015
  end-page: 701
  ident: CR83
  article-title: Optical atomic clocks
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.637
– volume: 118
  start-page: 065302
  year: 2017
  ident: CR14
  article-title: Low-entropy states of neutral atoms in polarization-synthesized optical lattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.065302
– volume: 12
  start-page: 71
  year: 2016
  end-page: 74
  ident: CR66
  article-title: Entangling atomic spins with a Rydberg-dressed spin-flip blockade
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3487
– volume: 123
  start-page: 260505
  year: 2019
  ident: CR101
  article-title: Variational spin-squeezing algorithms on programmable quantum sensors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.260505
– volume: 122
  start-page: 173201
  year: 2019
  ident: CR81
  article-title: 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.173201
– volume: 467
  start-page: 820
  year: 2010
  end-page: 823
  ident: CR116
  article-title: Laser cooling of a diatomic molecule
  publication-title: Nature
  doi: 10.1038/nature09443
– volume: 358
  start-page: 90
  year: 2017
  end-page: 94
  ident: CR87
  article-title: A Fermi-degenerate three-dimensional optical lattice clock
  publication-title: Science
  doi: 10.1126/science.aam5538
– volume: 124
  start-page: 253401
  year: 2020
  ident: CR54
  article-title: Forming a single molecule by magnetoassociation in an optical tweezer
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.253401
– volume: 14
  start-page: 405
  year: 2018
  end-page: 410
  ident: CR147
  article-title: A quantum dipolar spin liquid
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-017-0030-7
– volume: 9
  start-page: 6830
  year: 2018
  end-page: 6838
  ident: CR110
  article-title: Dipolar exchange quantum logic gate with polar molecules
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02355G
– volume: 21
  start-page: 093049
  year: 2019
  ident: CR136
  article-title: A scalable quantum computing platform using symmetric-top molecules
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab428d
– volume: 124
  start-page: 073401
  year: 2020
  ident: CR33
  article-title: Direct measurements of collisional dynamics in cold atom triads
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.073401
– volume: 588
  start-page: 408
  year: 2020
  end-page: 413
  ident: CR27
  article-title: Half-minute-scale atomic coherence and high relative stability in a tweezer clock
  publication-title: Nature
  doi: 10.1038/s41586-020-3009-y
– volume: 80
  start-page: 885
  year: 2008
  end-page: 964
  ident: CR16
  article-title: Many-body physics with ultracold gases
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.885
– volume: 10
  year: 2019
  ident: CR29
  article-title: Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09635-7
– volume: 49
  start-page: 144004
  year: 2016
  ident: CR97
  article-title: Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/49/14/144004
– volume: 75
  start-page: 4011
  year: 1995
  end-page: 4014
  ident: CR53
  article-title: Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.4011
– volume: 123
  start-page: 230501
  year: 2019
  ident: CR69
  article-title: Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.230501
– volume: 44
  start-page: 184010
  year: 2011
  ident: CR95
  article-title: Many-body physics with alkaline-earth Rydberg lattices
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/44/18/184010
– volume: 561
  start-page: 79
  year: 2018
  end-page: 82
  ident: CR56
  article-title: Synthetic three-dimensional atomic structures assembled atom by atom
  publication-title: Nature
  doi: 10.1038/s41586-018-0450-2
– volume: 126
  start-page: 020401
  year: 2021
  ident: CR49
  article-title: Observation of Pauli crystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.020401
– volume: 120
  start-page: 103201
  year: 2018
  ident: CR94
  article-title: Imaging optical frequencies with 100μHz precision and 1.1μm resolution
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.103201
– volume: 345
  start-page: 306
  year: 2014
  end-page: 309
  ident: CR4
  article-title: Two-particle quantum interference in tunnel-coupled optical tweezers
  publication-title: Science
  doi: 10.1126/science.1250057
– volume: 101
  start-page: 062308
  year: 2020
  ident: CR112
  article-title: Robust entangling gate for polar molecules using magnetic and microwave fields
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.062308
– volume: 88
  start-page: 051401
  year: 2013
  ident: CR148
  article-title: Dynamics of two atoms undergoing light-assisted collisions in an optical microtrap
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.051401
– volume: 309
  start-page: 454
  year: 2005
  end-page: 456
  ident: CR17
  article-title: Controlled single-photon emission from a single trapped two-level atom
  publication-title: Science
  doi: 10.1126/science.1113394
– volume: 100
  start-page: 063429
  year: 2019
  ident: CR139
  article-title: Preparation of a heteronuclear two-atom system in the three-dimensional ground state in an optical tweezer
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.063429
– volume: 125
  start-page: 043401
  year: 2020
  ident: CR35
  article-title: Observation of collisions between two ultracold ground-state caf molecules
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.043401
– volume: 62
  start-page: 403
  year: 1989
  end-page: 406
  ident: CR52
  article-title: Laser cooling to the zero-point energy of motion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.403
– volume: 5
  start-page: 110
  year: 2009
  end-page: 114
  ident: CR64
  article-title: Observation of Rydberg blockade between two atoms
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1178
– volume: 357
  start-page: 372
  year: 2017
  end-page: 375
  ident: CR120
  article-title: Second-scale nuclear spin coherence time of ultracold Na K molecules
  publication-title: Science
  doi: 10.1126/science.aal5066
– volume: 342
  start-page: 457
  year: 2013
  end-page: 460
  ident: CR42
  article-title: From few to many: observing the formation of a Fermi sea one atom at a time
  publication-title: Science
  doi: 10.1126/science.1240516
– volume: 545
  start-page: 203
  year: 2017
  end-page: 207
  ident: CR118
  article-title: Preparation and coherent manipulation of pure quantum states of a single molecular ion
  publication-title: Nature
  doi: 10.1038/nature22338
– volume: 97
  start-page: 053803
  year: 2018
  ident: CR67
  article-title: Analysis of imperfections in the coherent optical excitation of single atoms to rydberg states
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.053803
– volume: 332
  start-page: 336
  year: 2011
  end-page: 338
  ident: CR41
  article-title: Deterministic preparation of a tunable few-fermion system
  publication-title: Science
  doi: 10.1126/science.1201351
– volume: 340
  start-page: 1202
  year: 2013
  end-page: 1205
  ident: CR28
  article-title: Coupling a single trapped atom to a nanoscale optical cavity
  publication-title: Science
  doi: 10.1126/science.1237125
– volume: 104
  start-page: 070802
  year: 2010
  ident: CR90
  article-title: Frequency comparison of two high-accuracy Al optical clocks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.070802
– volume: 113
  start-page: 120402
  year: 2014
  ident: CR103
  article-title: Direct observation of coherent interorbital spin-exchange dynamics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.120402
– volume: 82
  start-page: 2313
  year: 2010
  end-page: 2363
  ident: CR19
  article-title: Quantum information with Rydberg atoms
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.2313
– ident: CR72
– volume: 110
  start-page: 133001
  year: 2013
  ident: CR51
  article-title: Coherence and Raman sideband cooling of a single atom in an optical tweezer
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.133001
– volume: 9
  start-page: 021039
  year: 2019
  ident: CR138
  article-title: Molecular assembly of ground-state cooled single atoms
  publication-title: Phys. Rev. X
– volume: 5
  start-page: 115
  year: 2009
  end-page: 118
  ident: CR65
  article-title: Observation of collective excitation of two individual atoms in the Rydberg blockade regime
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1183
– volume: 17
  start-page: 1149
  year: 2021
  end-page: 1153
  ident: CR121
  article-title: Robust storage qubits in ultracold polar molecules
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01328-7
– volume: 97
  start-page: 063423
  year: 2018
  ident: CR141
  article-title: Motional-ground-state cooling outside the lamb-dicke regime
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.063423
– volume: 61
  start-page: 062309
  year: 2000
  ident: CR63
  article-title: Entangling dipole–dipole interactions for quantum logic with neutral atoms
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.61.062309
– volume: 13
  start-page: 1173
  year: 2017
  end-page: 1176
  ident: CR129
  article-title: Molecules cooled below the doppler limit
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4241
– volume: 10
  start-page: 021049
  year: 2020
  ident: CR131
  article-title: Sub-Doppler cooling and compressed trapping of YO molecules at μK temperatures
  publication-title: Phys. Rev. X
– volume: 373
  start-page: abg9502
  year: 2021
  ident: CR145
  article-title: Observation of microwave shielding of ultracold molecules
  publication-title: Science
  doi: 10.1126/science.abg9502
– volume: 93
  start-page: 032138
  year: 2016
  ident: CR86
  article-title: Probing beyond the laser coherence time in optical clock comparisons
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.032138
– volume: 411
  start-page: 1024
  year: 2001
  end-page: 1027
  ident: CR1
  article-title: Sub-Poissonian loading of single atoms in a microscopic dipole trap
  publication-title: Nature
  doi: 10.1038/35082512
– ident: CR142
– volume: 19
  start-page: 023007
  year: 2017
  ident: CR140
  article-title: Eliminating light shifts for single atom trapping
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa5a3b
– volume: 442
  start-page: 151
  year: 2006
  ident: CR11
  article-title: An atom-sorting machine
  publication-title: Nature
  doi: 10.1038/442151a
– volume: 527
  start-page: 208
  year: 2015
  end-page: 211
  ident: CR39
  article-title: Entangling two transportable neutral atoms via local spin exchange
  publication-title: Nature
  doi: 10.1038/nature16073
– volume: 104
  start-page: 030402
  year: 2010
  ident: CR143
  article-title: Controlling the hyperfine state of rovibronic ground-state polar molecules
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.030402
– volume: 108
  start-page: 075303
  year: 2012
  ident: CR43
  article-title: Fermionization of two distinguishable fermions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.075303
– volume: 85
  start-page: 2208
  year: 2000
  end-page: 2211
  ident: CR62
  article-title: Fast quantum gates for neutral atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.2208
– volume: 123
  start-page: 170503
  year: 2019
  ident: CR68
  article-title: Parallel implementation of high-fidelity multiqubit gates with neutral atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.170503
– volume: 125
  start-page: 243602
  year: 2020
  ident: CR88
  article-title: Lifetime-limited interrogation of two independent Al clocks using correlation spectroscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.243602
– volume: 3
  start-page: 696
  year: 2007
  end-page: 699
  ident: CR38
  article-title: Two-dimensional transport and transfer of a single atomic qubit in optical tweezers
  publication-title: Nat. Phys.
  doi: 10.1038/nphys698
– volume: 365
  start-page: 1156
  year: 2019
  end-page: 1158
  ident: CR9
  article-title: An optical tweezer array of ultracold molecules
  publication-title: Science
  doi: 10.1126/science.aax1265
– volume: 49
  start-page: 202001
  year: 2016
  ident: CR75
  article-title: Quantum computing with atomic qubits and Rydberg interactions: progress and challenges
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/49/20/202001
– volume: 2
  start-page: 341
  year: 2006
  end-page: 347
  ident: CR107
  article-title: A toolbox for lattice-spin models with polar molecules
  publication-title: Nat. Phys.
  doi: 10.1038/nphys287
– volume: 440
  start-page: 779
  year: 2006
  end-page: 782
  ident: CR18
  article-title: Quantum interference between two single photons emitted by independently trapped atoms
  publication-title: Nature
  doi: 10.1038/nature04628
– volume: 13
  start-page: 714
  year: 2019
  end-page: 719
  ident: CR93
  article-title: Demonstration of 4.8 × 10 stability at 1 s for two independent optical clocks
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-019-0493-4
– volume: 562
  start-page: 355
  year: 2018
  end-page: 360
  ident: CR105
  article-title: Improved limit on the electric dipole moment of the electron
  publication-title: Nature
  doi: 10.1038/s41586-018-0599-8
– volume: 16
  start-page: 132
  year: 2020
  end-page: 142
  ident: CR24
  article-title: Many-body physics with individually controlled Rydberg atoms
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0733-z
– volume: 89
  start-page: 023005
  year: 2002
  ident: CR36
  article-title: Collisional blockade in microscopic optical dipole traps
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.023005
– volume: 101
  start-page: 133005
  year: 2008
  ident: CR115
  article-title: Ultracold triplet molecules in the rovibrational ground state
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.133005
– volume: 366
  start-page: 1111
  year: 2019
  end-page: 1115
  ident: CR144
  article-title: Direct observation of bimolecular reactions of ultracold KRb molecules
  publication-title: Science
  doi: 10.1126/science.aay9531
– volume: 81
  start-page: 5768
  year: 1998
  end-page: 5771
  ident: CR149
  article-title: Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.5768
– volume: 102
  start-page: 240502
  year: 2009
  ident: CR70
  article-title: Efficient multiparticle entanglement via asymmetric Rydberg blockade
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.240502
– volume: 114
  start-page: 080402
  year: 2015
  ident: CR44
  article-title: Two fermions in a double well: exploring a fundamental building block of the Hubbard model
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.080402
– volume: 104
  start-page: 010503
  year: 2010
  ident: CR3
  article-title: Demonstration of a neutral atom controlled-NOT quantum gate
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.010503
– volume: 15
  start-page: 640
  year: 2019
  end-page: 644
  ident: CR46
  article-title: Experimental characterization of two-particle entanglement through position and momentum correlations
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0508-6
– volume: 107
  start-page: 115301
  year: 2011
  ident: CR108
  article-title: Tunable superfluidity and quantum magnetism with ultracold polar molecules
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.115301
– ident: CR125
– volume: 370
  start-page: 331
  year: 2020
  end-page: 335
  ident: CR55
  article-title: Coherently forming a single molecule in an optical trap
  publication-title: Science
  doi: 10.1126/science.aba7468
– volume: 88
  start-page: 067901
  year: 2002
  ident: CR106
  article-title: Quantum computation with trapped polar molecules
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.067901
– volume: 75
  start-page: 040301
  year: 2007
  ident: CR37
  article-title: Fast quantum state control of a single trapped neutral atom
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.040301
– volume: 321
  start-page: 1062
  year: 2008
  end-page: 1066
  ident: CR113
  article-title: Quantum gas of deeply bound ground state molecules
  publication-title: Science
  doi: 10.1126/science.1159909
– volume: 121
  start-page: 253401
  year: 2018
  ident: CR122
  article-title: Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.253401
– volume: 119
  start-page: 133002
  year: 2017
  ident: CR137
  article-title: Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.133002
– volume: 116
  start-page: 063005
  year: 2016
  ident: CR117
  article-title: Optoelectrical cooling of polar molecules to submillikelvin temperatures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.063005
– volume: 8
  year: 2018
  ident: CR146
  article-title: Synthetic dimensions in ultracold polar molecules
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21699-x
– volume: 115
  start-page: 073003
  year: 2015
  ident: CR60
  article-title: Rapid production of uniformly filled arrays of neutral atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.073003
– volume: 360
  start-page: 900
  year: 2018
  end-page: 903
  ident: CR8
  article-title: Building one molecule from a reservoir of two atoms
  publication-title: Science
  doi: 10.1126/science.aar7797
– volume: 363
  start-page: 853
  year: 2019
  end-page: 856
  ident: CR119
  article-title: A degenerate Fermi gas of polar molecules
  publication-title: Science
  doi: 10.1126/science.aau7230
– volume: 551
  start-page: 579
  year: 2017
  end-page: 584
  ident: CR6
  article-title: Probing many-body dynamics on a 51-atom quantum simulator
  publication-title: Nature
  doi: 10.1038/nature24622
– volume: 104
  start-page: 010502
  year: 2010
  ident: CR2
  article-title: Entanglement of two individual neutral atoms using Rydberg blockade
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.010502
– volume: 365
  start-page: 775
  year: 2019
  end-page: 780
  ident: CR23
  article-title: Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms
  publication-title: Science
  doi: 10.1126/science.aav9105
– volume: 7
  start-page: 1
  year: 2020
  end-page: 2
  ident: CR31
  article-title: Advanced apparatus for the integration of nanophotonics and cold atoms
  publication-title: Optica
  doi: 10.1364/OPTICA.384408
– volume: 125
  start-page: 180402
  year: 2020
  ident: CR47
  article-title: Measurement of identical particle entanglement and the influence of antisymmetrization
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.180402
– volume: 2
  start-page: 023108
  year: 2020
  ident: CR34
  article-title: Multichannel interactions of two atoms in an optical tweezer
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023108
– volume: 354
  start-page: 1024
  year: 2016
  end-page: 1027
  ident: CR13
  article-title: Atom-by-atom assembly of defect-free one-dimensional cold atom arrays
  publication-title: Science
  doi: 10.1126/science.aah3752
– volume: 9
  start-page: 011057
  year: 2019
  ident: CR61
  article-title: Gray-molasses optical-tweezer loading: controlling collisions for scaling atom-array assembly
  publication-title: Phys. Rev. X
– volume: 564
  start-page: 87
  year: 2018
  end-page: 90
  ident: CR85
  article-title: Atomic clock performance enabling geodesy below the centimetre level
  publication-title: Nature
  doi: 10.1038/s41586-018-0738-2
– volume: 124
  start-page: 123201
  year: 2020
  ident: CR76
  article-title: Laser trapping of circular Rydberg atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.123201
– volume: 9
  start-page: 041052
  year: 2019
  ident: CR26
  article-title: An atomic-array optical clock with single-atom readout
  publication-title: Phys. Rev. X
– volume: 354
  start-page: 1021
  year: 2016
  end-page: 1023
  ident: CR12
  article-title: An atom-by-atom assembler of defect-free arbitrary 2D atomic arrays
  publication-title: Science
  doi: 10.1126/science.aah3778
– volume: 10
  start-page: 021067
  year: 2020
  ident: CR73
  article-title: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices
  publication-title: Phys. Rev. X
– volume: 70
  start-page: 040302
  year: 2004
  ident: CR40
  article-title: Another way to approach zero entropy for a finite system of atoms
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.70.040302
– ident: CR99
– volume: 122
  start-page: 143602
  year: 2019
  ident: CR45
  article-title: High-contrast interference of ultracold fermions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.143602
– volume: 2
  start-page: 041014
  year: 2012
  ident: CR50
  article-title: Cooling a single atom in an optical tweezer to its quantum ground state
  publication-title: Phys. Rev. X
– volume: 2
  start-page: 1800067
  year: 2019
  ident: CR104
  article-title: Fast and scalable quantum information processing with two-electron atoms in optical tweezer arrays
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.201800067
– volume: 31
  start-page: 395
  year: 2004
  end-page: 402
  ident: CR126
  article-title: Laser-cooling molecules—concept, candidates, and supporting hyperfine-resolved measurements of rotational lines in the A–X(0,0) band of CaH
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2004-00167-2
– volume: 46
  start-page: R6797
  year: 1992
  end-page: R6800
  ident: CR102
  article-title: Spin squeezing and reduced quantum noise in spectroscopy
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.46.R6797
– volume: 92
  start-page: 042710
  year: 2015
  ident: CR77
  article-title: Rydberg blockade, förster resonances, and quantum state measurements with different atomic species
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.042710
– volume: 16
  start-page: 857
  year: 2020
  end-page: 861
  ident: CR82
  article-title: High-fidelity entanglement and detection of alkaline-earth Rydberg atoms
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0903-z
– volume: 365
  start-page: 570
  year: 2019
  end-page: 574
  ident: CR22
  article-title: Generation and manipulation of Schrödinger cat states in Rydberg atom arrays
  publication-title: Science
  doi: 10.1126/science.aax9743
– volume: 101
  start-page: 243002
  year: 2008
  ident: CR127
  article-title: Magneto-optical trap for polar molecules
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.243002
– volume: 561
  start-page: 83
  year: 2018
  end-page: 87
  ident: CR15
  article-title: Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon
  publication-title: Nature
  doi: 10.1038/s41586-018-0458-7
– volume: 369
  start-page: 1366
  year: 2020
  end-page: 1369
  ident: CR134
  article-title: Direct laser cooling of a symmetric top molecule
  publication-title: Science
  doi: 10.1126/science.abc5357
– volume: 512
  start-page: 286
  year: 2014
  end-page: 289
  ident: CR128
  article-title: Magneto-optical trapping of a diatomic molecule
  publication-title: Nature
  doi: 10.1038/nature13634
– volume: 112
  start-page: 103601
  year: 2014
  ident: CR100
  article-title: Spin squeezing in a Rydberg lattice clock
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.103601
– volume: 322
  start-page: 231
  year: 2008
  end-page: 235
  ident: CR114
  article-title: A high phase-space-density gas of polar molecules
  publication-title: Science
  doi: 10.1126/science.1163861
– volume: 121
  start-page: 083201
  year: 2018
  ident: CR130
  article-title: Λ-enhanced imaging of molecules in an optical trap
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.083201
– volume: 6
  start-page: 951
  year: 2010
  end-page: 954
  ident: CR59
  article-title: Near-deterministic preparation of a single atom in an optical microtrap
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1778
– volume: 123
  start-page: 033201
  year: 2019
  ident: CR92
  article-title: Al quantum-logic clock with a systematic uncertainty below 10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.033201
– volume: 587
  start-page: 583
  year: 2020
  end-page: 587
  ident: CR48
  article-title: Observing the emergence of a quantum phase transition shell by shell
  publication-title: Nature
  doi: 10.1038/s41586-020-2936-y
– volume: 15
  start-page: 1118
  year: 2019
  end-page: 1122
  ident: CR124
  article-title: Molecular lattice clock with long vibrational coherence
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0632-3
– volume: 122
  start-page: 143002
  year: 2019
  ident: CR80
  article-title: Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.143002
– volume: 595
  start-page: 227
  year: 2021
  end-page: 232
  ident: CR57
  article-title: Quantum phases of matter on a 256-atom programmable quantum simulator
  publication-title: Nature
  doi: 10.1038/s41586-021-03582-4
– volume: 293
  start-page: 825
  year: 2001
  end-page: 828
  ident: CR89
  article-title: An optical clock based on a single trapped Hg ion
  publication-title: Science
  doi: 10.1126/science.1061171
– volume: 114
  start-page: 100503
  year: 2015
  ident: CR5
  article-title: Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.100503
– volume: 8
  start-page: 041054
  year: 2018
  ident: CR78
  article-title: Microscopic control and detection of ultracold strontium in optical-tweezer arrays
  publication-title: Phys. Rev. X
– volume: 126
  start-page: 123402
  year: 2021
  ident: CR10
  article-title: Assembly of a rovibrational ground state molecule in an optical tweezer
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.123402
– volume: 17
  start-page: 025001
  year: 2015
  ident: CR135
  article-title: Realizing unconventional quantum magnetism with symmetric top molecules
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/2/025001
– volume: 127
  start-page: 100504
  year: 2020
  ident: CR74
  article-title: Quantum sampling algorithms for near-term devices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.100504
– volume: 8
  start-page: 021070
  year: 2018
  ident: CR20
  article-title: Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic ising models with antiferromagnetic interactions
  publication-title: Phys. Rev. X
– volume: 119
  start-page: 053202
  year: 2017
  ident: CR71
  article-title: Optical control of the resonant dipole–dipole interaction between Rydberg atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.053202
– volume: 120
  start-page: 163201
  year: 2018
  ident: CR132
  article-title: Magnetic trapping and coherent control of laser-cooled molecules
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.163201
– volume: 98
  start-page: 040302
  year: 2018
  ident: CR111
  article-title: Dipolar quantum logic for freely rotating trapped molecular ions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.040302
– volume: 6
  year: 2015
  ident: CR32
  article-title: Interaction-induced decay of a heteronuclear two-atom system
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8803
– volume: 8
  start-page: 041055
  year: 2018
  ident: CR79
  article-title: Alkaline-earth atoms in optical tweezers
  publication-title: Phys. Rev. X
– volume: 506
  start-page: 71
  year: 2014
  end-page: 75
  ident: CR84
  article-title: An optical lattice clock with accuracy and stability at the 10 level
  publication-title: Nature
  doi: 10.1038/nature12941
– volume: 85
  start-page: 724
  year: 2000
  end-page: 727
  ident: CR150
  article-title: 3D Raman sideband cooling of cesium atoms at high density
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.724
– volume: 121
  start-page: 123603
  year: 2018
  ident: CR7
  article-title: High-fidelity control and entanglement of Rydberg-atom qubits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.123603
– volume: 501
  start-page: 521
  year: 2013
  end-page: 525
  ident: CR109
  article-title: Observation of dipolar spin-exchange interactions with lattice-confined polar molecules
  publication-title: Nature
  doi: 10.1038/nature12483
– volume: 595
  start-page: 233
  year: 2021
  end-page: 238
  ident: CR58
  article-title: Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms
  publication-title: Nature
  doi: 10.1038/s41586-021-03585-1
– volume: 123
  start-page: 213602
  year: 2019
  ident: CR30
  article-title: Real-time observation of single atoms trapped and interfaced to a nanofiber cavity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.213602
– volume: 97
  start-page: 022508
  year: 2018
  ident: CR98
  article-title: Theory of long-range interactions for Rydberg states attached to hyperfine-split cores
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022508
– volume: 366
  start-page: 93
  year: 2019
  end-page: 97
  ident: CR25
  article-title: Seconds-scale coherence on an optical clock transition in a tweezer array
  publication-title: Science
  doi: 10.1126/science.aay0644
– volume: 568
  start-page: 207
  year: 2019
  end-page: 211
  ident: CR21
  article-title: Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator
  publication-title: Nature
  doi: 10.1038/s41586-019-1070-1
– volume: 2
  start-page: 013251
  year: 2020
  ident: CR133
  article-title: Sideband cooling of molecules in optical traps
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.013251
– volume: 321
  start-page: 1062
  year: 2008
  ident: 1357_CR113
  publication-title: Science
  doi: 10.1126/science.1159909
– volume: 122
  start-page: 173201
  year: 2019
  ident: 1357_CR81
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.173201
– volume: 101
  start-page: 243002
  year: 2008
  ident: 1357_CR127
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.243002
– volume: 411
  start-page: 1024
  year: 2001
  ident: 1357_CR1
  publication-title: Nature
  doi: 10.1038/35082512
– volume: 506
  start-page: 71
  year: 2014
  ident: 1357_CR84
  publication-title: Nature
  doi: 10.1038/nature12941
– volume: 97
  start-page: 022508
  year: 2018
  ident: 1357_CR98
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022508
– volume: 363
  start-page: 853
  year: 2019
  ident: 1357_CR119
  publication-title: Science
  doi: 10.1126/science.aau7230
– volume: 587
  start-page: 583
  year: 2020
  ident: 1357_CR48
  publication-title: Nature
  doi: 10.1038/s41586-020-2936-y
– volume: 7
  start-page: 1
  year: 2020
  ident: 1357_CR31
  publication-title: Optica
  doi: 10.1364/OPTICA.384408
– volume: 17
  start-page: 1149
  year: 2021
  ident: 1357_CR121
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01328-7
– volume: 115
  start-page: 073003
  year: 2015
  ident: 1357_CR60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.073003
– volume: 8
  start-page: 021070
  year: 2018
  ident: 1357_CR20
  publication-title: Phys. Rev. X
– volume: 123
  start-page: 230501
  year: 2019
  ident: 1357_CR69
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.230501
– volume: 89
  start-page: 023005
  year: 2002
  ident: 1357_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.023005
– volume: 62
  start-page: 403
  year: 1989
  ident: 1357_CR52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.403
– volume: 354
  start-page: 1021
  year: 2016
  ident: 1357_CR12
  publication-title: Science
  doi: 10.1126/science.aah3778
– volume: 49
  start-page: 144004
  year: 2016
  ident: 1357_CR97
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/49/14/144004
– volume: 61
  start-page: 062309
  year: 2000
  ident: 1357_CR63
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.61.062309
– volume: 357
  start-page: 372
  year: 2017
  ident: 1357_CR120
  publication-title: Science
  doi: 10.1126/science.aal5066
– volume: 568
  start-page: 207
  year: 2019
  ident: 1357_CR21
  publication-title: Nature
  doi: 10.1038/s41586-019-1070-1
– volume: 113
  start-page: 120402
  year: 2014
  ident: 1357_CR103
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.120402
– volume: 9
  start-page: 021039
  year: 2019
  ident: 1357_CR138
  publication-title: Phys. Rev. X
– volume: 75
  start-page: 040301
  year: 2007
  ident: 1357_CR37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.040301
– volume: 88
  start-page: 051401
  year: 2013
  ident: 1357_CR148
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.051401
– volume: 124
  start-page: 123201
  year: 2020
  ident: 1357_CR76
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.123201
– volume: 588
  start-page: 408
  year: 2020
  ident: 1357_CR27
  publication-title: Nature
  doi: 10.1038/s41586-020-3009-y
– volume: 80
  start-page: 885
  year: 2008
  ident: 1357_CR16
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.885
– volume: 595
  start-page: 227
  year: 2021
  ident: 1357_CR57
  publication-title: Nature
  doi: 10.1038/s41586-021-03582-4
– volume: 16
  start-page: 857
  year: 2020
  ident: 1357_CR82
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0903-z
– volume: 545
  start-page: 203
  year: 2017
  ident: 1357_CR118
  publication-title: Nature
  doi: 10.1038/nature22338
– volume: 2
  start-page: 1800067
  year: 2019
  ident: 1357_CR104
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.201800067
– volume: 125
  start-page: 043401
  year: 2020
  ident: 1357_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.043401
– volume: 13
  start-page: 1173
  year: 2017
  ident: 1357_CR129
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4241
– volume: 2
  start-page: 041014
  year: 2012
  ident: 1357_CR50
  publication-title: Phys. Rev. X
– volume: 562
  start-page: 355
  year: 2018
  ident: 1357_CR105
  publication-title: Nature
  doi: 10.1038/s41586-018-0599-8
– volume: 19
  start-page: 023007
  year: 2017
  ident: 1357_CR140
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa5a3b
– volume: 6
  year: 2015
  ident: 1357_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8803
– volume: 75
  start-page: 4011
  year: 1995
  ident: 1357_CR53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.4011
– volume: 102
  start-page: 240502
  year: 2009
  ident: 1357_CR70
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.240502
– volume: 340
  start-page: 1202
  year: 2013
  ident: 1357_CR28
  publication-title: Science
  doi: 10.1126/science.1237125
– volume: 370
  start-page: 331
  year: 2020
  ident: 1357_CR55
  publication-title: Science
  doi: 10.1126/science.aba7468
– volume: 104
  start-page: 010502
  year: 2010
  ident: 1357_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.010502
– volume: 104
  start-page: 030402
  year: 2010
  ident: 1357_CR143
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.030402
– volume: 365
  start-page: 775
  year: 2019
  ident: 1357_CR23
  publication-title: Science
  doi: 10.1126/science.aav9105
– volume: 127
  start-page: 100504
  year: 2020
  ident: 1357_CR74
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.100504
– volume: 120
  start-page: 103201
  year: 2018
  ident: 1357_CR94
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.103201
– volume: 112
  start-page: 103601
  year: 2014
  ident: 1357_CR100
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.103601
– volume: 442
  start-page: 151
  year: 2006
  ident: 1357_CR11
  publication-title: Nature
  doi: 10.1038/442151a
– volume: 101
  start-page: 062308
  year: 2020
  ident: 1357_CR112
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.062308
– volume: 106
  start-page: 160801
  year: 2011
  ident: 1357_CR91
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.160801
– volume: 345
  start-page: 306
  year: 2014
  ident: 1357_CR4
  publication-title: Science
  doi: 10.1126/science.1250057
– volume: 121
  start-page: 123603
  year: 2018
  ident: 1357_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.123603
– volume: 293
  start-page: 825
  year: 2001
  ident: 1357_CR89
  publication-title: Science
  doi: 10.1126/science.1061171
– volume: 81
  start-page: 5768
  year: 1998
  ident: 1357_CR149
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.5768
– ident: 1357_CR125
  doi: 10.1103/PhysRevLett.127.123202
– volume: 114
  start-page: 100503
  year: 2015
  ident: 1357_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.100503
– volume: 122
  start-page: 143602
  year: 2019
  ident: 1357_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.143602
– volume: 561
  start-page: 79
  year: 2018
  ident: 1357_CR56
  publication-title: Nature
  doi: 10.1038/s41586-018-0450-2
– volume: 44
  start-page: 184010
  year: 2011
  ident: 1357_CR95
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/44/18/184010
– volume: 21
  start-page: 093049
  year: 2019
  ident: 1357_CR136
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab428d
– volume: 365
  start-page: 1156
  year: 2019
  ident: 1357_CR9
  publication-title: Science
  doi: 10.1126/science.aax1265
– volume: 501
  start-page: 521
  year: 2013
  ident: 1357_CR109
  publication-title: Nature
  doi: 10.1038/nature12483
– volume: 125
  start-page: 180402
  year: 2020
  ident: 1357_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.180402
– ident: 1357_CR72
– volume: 85
  start-page: 2208
  year: 2000
  ident: 1357_CR62
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.2208
– volume: 5
  start-page: 115
  year: 2009
  ident: 1357_CR65
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1183
– volume: 104
  start-page: 070802
  year: 2010
  ident: 1357_CR90
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.070802
– volume: 440
  start-page: 779
  year: 2006
  ident: 1357_CR18
  publication-title: Nature
  doi: 10.1038/nature04628
– volume: 125
  start-page: 243602
  year: 2020
  ident: 1357_CR88
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.243602
– ident: 1357_CR142
– volume: 332
  start-page: 336
  year: 2011
  ident: 1357_CR41
  publication-title: Science
  doi: 10.1126/science.1201351
– volume: 121
  start-page: 083201
  year: 2018
  ident: 1357_CR130
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.083201
– volume: 14
  start-page: 405
  year: 2018
  ident: 1357_CR147
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-017-0030-7
– volume: 123
  start-page: 260505
  year: 2019
  ident: 1357_CR101
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.260505
– volume: 9
  start-page: 6830
  year: 2018
  ident: 1357_CR110
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02355G
– volume: 85
  start-page: 724
  year: 2000
  ident: 1357_CR150
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.724
– volume: 87
  start-page: 637
  year: 2015
  ident: 1357_CR83
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.637
– volume: 10
  start-page: 021067
  year: 2020
  ident: 1357_CR73
  publication-title: Phys. Rev. X
– volume: 551
  start-page: 579
  year: 2017
  ident: 1357_CR6
  publication-title: Nature
  doi: 10.1038/nature24622
– volume: 123
  start-page: 170503
  year: 2019
  ident: 1357_CR68
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.170503
– volume: 123
  start-page: 033201
  year: 2019
  ident: 1357_CR92
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.033201
– volume: 8
  year: 2018
  ident: 1357_CR146
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21699-x
– volume: 100
  start-page: 063429
  year: 2019
  ident: 1357_CR139
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.063429
– volume: 15
  start-page: 1118
  year: 2019
  ident: 1357_CR124
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0632-3
– volume: 369
  start-page: 1366
  year: 2020
  ident: 1357_CR134
  publication-title: Science
  doi: 10.1126/science.abc5357
– volume: 527
  start-page: 208
  year: 2015
  ident: 1357_CR39
  publication-title: Nature
  doi: 10.1038/nature16073
– volume: 92
  start-page: 042710
  year: 2015
  ident: 1357_CR77
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.042710
– volume: 114
  start-page: 080402
  year: 2015
  ident: 1357_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.080402
– volume: 97
  start-page: 063423
  year: 2018
  ident: 1357_CR141
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.063423
– volume: 126
  start-page: 020401
  year: 2021
  ident: 1357_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.020401
– volume: 2
  start-page: 013251
  year: 2020
  ident: 1357_CR133
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.013251
– volume: 595
  start-page: 233
  year: 2021
  ident: 1357_CR58
  publication-title: Nature
  doi: 10.1038/s41586-021-03585-1
– volume: 12
  start-page: 71
  year: 2016
  ident: 1357_CR66
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3487
– volume: 126
  start-page: 123402
  year: 2021
  ident: 1357_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.123402
– volume: 116
  start-page: 063005
  year: 2016
  ident: 1357_CR117
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.063005
– volume: 366
  start-page: 1111
  year: 2019
  ident: 1357_CR144
  publication-title: Science
  doi: 10.1126/science.aay9531
– volume: 342
  start-page: 457
  year: 2013
  ident: 1357_CR42
  publication-title: Science
  doi: 10.1126/science.1240516
– volume: 9
  start-page: 011057
  year: 2019
  ident: 1357_CR61
  publication-title: Phys. Rev. X
– volume: 467
  start-page: 820
  year: 2010
  ident: 1357_CR116
  publication-title: Nature
  doi: 10.1038/nature09443
– volume: 10
  start-page: 021049
  year: 2020
  ident: 1357_CR131
  publication-title: Phys. Rev. X
– volume: 8
  start-page: 041054
  year: 2018
  ident: 1357_CR78
  publication-title: Phys. Rev. X
– volume: 70
  start-page: 040302
  year: 2004
  ident: 1357_CR40
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.70.040302
– volume: 512
  start-page: 286
  year: 2014
  ident: 1357_CR128
  publication-title: Nature
  doi: 10.1038/nature13634
– volume: 120
  start-page: 163201
  year: 2018
  ident: 1357_CR132
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.163201
– volume: 124
  start-page: 073401
  year: 2020
  ident: 1357_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.073401
– volume: 15
  start-page: 640
  year: 2019
  ident: 1357_CR46
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0508-6
– volume: 2
  start-page: 341
  year: 2006
  ident: 1357_CR107
  publication-title: Nat. Phys.
  doi: 10.1038/nphys287
– volume: 365
  start-page: 570
  year: 2019
  ident: 1357_CR22
  publication-title: Science
  doi: 10.1126/science.aax9743
– volume: 8
  start-page: 041055
  year: 2018
  ident: 1357_CR79
  publication-title: Phys. Rev. X
– ident: 1357_CR99
– volume: 121
  start-page: 253401
  year: 2018
  ident: 1357_CR122
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.253401
– volume: 9
  start-page: 041052
  year: 2019
  ident: 1357_CR26
  publication-title: Phys. Rev. X
– volume: 16
  start-page: 132
  year: 2020
  ident: 1357_CR24
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0733-z
– volume: 122
  start-page: 143002
  year: 2019
  ident: 1357_CR80
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.143002
– volume: 110
  start-page: 133001
  year: 2013
  ident: 1357_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.133001
– volume: 360
  start-page: 900
  year: 2018
  ident: 1357_CR8
  publication-title: Science
  doi: 10.1126/science.aar7797
– volume: 119
  start-page: 133002
  year: 2017
  ident: 1357_CR137
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.133002
– volume: 354
  start-page: 1024
  year: 2016
  ident: 1357_CR13
  publication-title: Science
  doi: 10.1126/science.aah3752
– volume: 3
  start-page: 696
  year: 2007
  ident: 1357_CR38
  publication-title: Nat. Phys.
  doi: 10.1038/nphys698
– volume: 49
  start-page: 202001
  year: 2016
  ident: 1357_CR75
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/49/20/202001
– volume: 104
  start-page: 010503
  year: 2010
  ident: 1357_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.010503
– volume: 107
  start-page: 115301
  year: 2011
  ident: 1357_CR108
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.115301
– volume: 93
  start-page: 032138
  year: 2016
  ident: 1357_CR86
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.032138
– volume: 309
  start-page: 454
  year: 2005
  ident: 1357_CR17
  publication-title: Science
  doi: 10.1126/science.1113394
– volume: 124
  start-page: 253401
  year: 2020
  ident: 1357_CR54
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.253401
– volume: 88
  start-page: 067901
  year: 2002
  ident: 1357_CR106
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.067901
– volume: 108
  start-page: 075303
  year: 2012
  ident: 1357_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.075303
– volume: 118
  start-page: 065302
  year: 2017
  ident: 1357_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.065302
– volume: 358
  start-page: 90
  year: 2017
  ident: 1357_CR87
  publication-title: Science
  doi: 10.1126/science.aam5538
– volume: 373
  start-page: abg9502
  year: 2021
  ident: 1357_CR145
  publication-title: Science
  doi: 10.1126/science.abg9502
– volume: 98
  start-page: 040302
  year: 2018
  ident: 1357_CR111
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.040302
– volume: 6
  start-page: 951
  year: 2010
  ident: 1357_CR59
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1778
– volume: 5
  start-page: 110
  year: 2009
  ident: 1357_CR64
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1178
– volume: 564
  start-page: 87
  year: 2018
  ident: 1357_CR85
  publication-title: Nature
  doi: 10.1038/s41586-018-0738-2
– volume: 322
  start-page: 231
  year: 2008
  ident: 1357_CR114
  publication-title: Science
  doi: 10.1126/science.1163861
– volume: 124
  start-page: 063001
  year: 2020
  ident: 1357_CR123
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.063001
– volume: 46
  start-page: R6797
  year: 1992
  ident: 1357_CR102
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.46.R6797
– volume: 13
  start-page: 714
  year: 2019
  ident: 1357_CR93
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-019-0493-4
– volume: 123
  start-page: 213602
  year: 2019
  ident: 1357_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.213602
– volume: 31
  start-page: 395
  year: 2004
  ident: 1357_CR126
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2004-00167-2
– volume: 10
  year: 2019
  ident: 1357_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09635-7
– volume: 561
  start-page: 83
  year: 2018
  ident: 1357_CR15
  publication-title: Nature
  doi: 10.1038/s41586-018-0458-7
– volume: 82
  start-page: 2313
  year: 2010
  ident: 1357_CR19
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.2313
– volume: 101
  start-page: 133005
  year: 2008
  ident: 1357_CR115
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.133005
– volume: 17
  start-page: 025001
  year: 2015
  ident: 1357_CR135
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/2/025001
– volume: 119
  start-page: 053202
  year: 2017
  ident: 1357_CR71
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.053202
– volume: 2
  start-page: 023108
  year: 2020
  ident: 1357_CR34
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023108
– volume: 97
  start-page: 053803
  year: 2018
  ident: 1357_CR67
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.053803
– volume: 89
  start-page: 023411
  year: 2014
  ident: 1357_CR96
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.023411
– volume: 366
  start-page: 93
  year: 2019
  ident: 1357_CR25
  publication-title: Science
  doi: 10.1126/science.aay0644
SSID ssj0042613
Score 2.7215288
SecondaryResourceType review_article
Snippet Single atoms and molecules can be trapped in tightly focused beams of light that form ‘optical tweezers’, affording exquisite capabilities for the control and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1324
SubjectTerms 639/766/36
639/766/483
Arrays
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Cooling
Data processing
Experiments
Ion beams
Lasers
Light beams
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Optics
Phase transitions
Physics
Physics and Astronomy
Quantum computing
Quantum phenomena
Review Article
Theoretical
Ultracold atoms
Title Quantum science with optical tweezer arrays of ultracold atoms and molecules
URI https://link.springer.com/article/10.1038/s41567-021-01357-2
https://www.proquest.com/docview/2607919813
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BKyQWxFMUSuWBDSxix6ndCVHUUiGoAFGpW-TYzkQfJOkAvx47cahAgjmJh7vcfd89fAdwLpWlxVIrTAXpYiaYtCalGY6ECgRLpIVol4d8HHdHE3Y_jaY-4Zb7tsraJ5aOWi-Uy5FfWd7NezZCJuH18h27rVGuuupXaGxC07pgIRrQ7A_GTy-1L3bxQVhdiYwwZTz012aCUFzlLnTh2LUoWBoUcUx_QtOab_4qkZbIM9yFHU8Z0U2l4z3YMPN92CpbN1V-AA_PKyud1Qx5MEMutYoWyzJJjVwX1qfJkMwy-ZGjRYpWb0XmZlVrZOPtWY7kXKNZtSTX5IcwGQ5eb0fY70jAyhpPgQ3hkpiUprKnmCYstXDOlA5kr8uJVj2TSCqpcEQq4oQYkpBEqCjhOtDWdtPwCBrzxdwcA0ot-5FKRJKRlAWMyZCqQFnwUgnhioUtILV4YuUHiLs9Fm9xWcgORVyJNLYijUuRxrQFF9_fLKvxGf--3a6lHntTyuO14ltwWWti_fjv007-P-0UtqlTftma0oZGka3MmSUYRdKBTTG860DzZtjvjzv-n_oCap_NKw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5REGovCPoQKQF8aE-txfqxsXOoEGpJQwlISCBxc72290Qe3U1UpT-qv7HjfTQCCW6c1-vD-LO_b8YzHoAP1qEstt5RrlmPSi0tbikvaapdomVmkaJjHPLisje8kT9u09s1-NvWwsS0yvZMrA5qP3UxRn6Eulv10UNm4nj2i8auUfF2tW2hUcPiPCx_o8tWfjn7huv7kfPB6fXXIW26ClCHcJvTwJRlIee57TvpmcyRAKXzie33FPOuHzLLLddReqSKscAylmmXZsonHtGeC5z3BWxIgUweK9MH39uTP3ojoi7ATCmXSjRFOonQR2V0lBSNCREoulJF-X0iXKnbBxeyFc8NtmGrEajkpEbUDqyFyWvYrBJFXfkGRlcLXIvFmDTUSWIgl0xnVUicxJyvP6EgtijssiTTnCzu5kV8GdsT9O7HJbETT8Z1S95QvoWbZ7HdO1ifTCdhF0iOWss6nVrJcplIaQV3iUOqdBlTTooOsNY8xjXPlceuGXemujYX2tQmNWhSU5nU8A58-v_PrH6s48nR3dbqptm4pVnBrAOf25VYfX58tvdPz3YIL4fXFyMzOrs834NXPAKhSorpwvq8WIR9lDbz7KDCE4Gfzw3gfw4gBrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JThwxEC2RQYm4IMgihtUHckqsabvdY88BRWEZsWVEoiBxc9y2-8QsdM8IwafxdZR7yQgkuHFutw_lZ79X5XIVwK6xKIuNs5Qr1qVCCYNbygmaKBspkRqk6BCH_DXoHl-K06vkagEemrcwIa2yORPLg9qNbYiRd1B3yx56yCzuZHVaxMVh_8fkhoYOUuGmtWmnUUHkzN_dovtW7J0c4lp_5bx_9PfgmNYdBqhF6E2pZ9Iwn_HM9KxwTGRIhsK6yPS6kjnb86nhhqsgQxLJmGcpS5VNUukih8jPYpz3HSzK4BW1YHH_aHDxp-GB4JvE1XPMhHIh4_rJThSrThHcJklDegRKsERS_pQW51r32fVsyXr9FViu5Sr5WeFrFRb86CO8L9NGbfEJzn_PcGVmQ1ITKQlhXTKelAFyEjLA7n1OTJ6bu4KMMzK7nuahTrYj6OsPC2JGjgyrBr2--AyXb2K9L9AajUd-DUiGystYlRjBMhEJYWJuI4vEaVMmrYjbwBrzaFsXLw89NK51eYkeK12ZVKNJdWlSzdvw7f8_k6p0x6ujNxur63obF3oOujZ8b1Zi_vnl2dZfn20HPiB49fnJ4GwDlnjAQZkhswmtaT7zW6hzpul2DSgC_94aw4_KKAxG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+science+with+optical+tweezer+arrays+of+ultracold+atoms+and+molecules&rft.jtitle=Nature+physics&rft.au=Kaufman%2C+Adam+M&rft.au=Kang-Kuen%2C+Ni&rft.date=2021-12-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=17&rft.issue=12&rft.spage=1324&rft.epage=1333&rft_id=info:doi/10.1038%2Fs41567-021-01357-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon