Quantum science with optical tweezer arrays of ultracold atoms and molecules
Single atoms and molecules can be trapped in tightly focused beams of light that form ‘optical tweezers’, affording exquisite capabilities for the control and detection of individual particles. This approach has progressed to creating tweezer arrays holding hundreds of atoms, resulting in a platform...
Saved in:
Published in | Nature physics Vol. 17; no. 12; pp. 1324 - 1333 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single atoms and molecules can be trapped in tightly focused beams of light that form ‘optical tweezers’, affording exquisite capabilities for the control and detection of individual particles. This approach has progressed to creating tweezer arrays holding hundreds of atoms, resulting in a platform for controlling large many-particle quantum systems. Here we review this new approach to microscopic control of scalable atomic and molecular neutral quantum systems, its future prospects, and applications in quantum information processing, quantum simulation and metrology.
Large arrays of atoms and molecules can be arranged and controlled with high precision using optical tweezers. This Review surveys the latest methodological advances and their applications to quantum technologies. |
---|---|
AbstractList | Single atoms and molecules can be trapped in tightly focused beams of light that form ‘optical tweezers’, affording exquisite capabilities for the control and detection of individual particles. This approach has progressed to creating tweezer arrays holding hundreds of atoms, resulting in a platform for controlling large many-particle quantum systems. Here we review this new approach to microscopic control of scalable atomic and molecular neutral quantum systems, its future prospects, and applications in quantum information processing, quantum simulation and metrology.
Large arrays of atoms and molecules can be arranged and controlled with high precision using optical tweezers. This Review surveys the latest methodological advances and their applications to quantum technologies. Single atoms and molecules can be trapped in tightly focused beams of light that form ‘optical tweezers’, affording exquisite capabilities for the control and detection of individual particles. This approach has progressed to creating tweezer arrays holding hundreds of atoms, resulting in a platform for controlling large many-particle quantum systems. Here we review this new approach to microscopic control of scalable atomic and molecular neutral quantum systems, its future prospects, and applications in quantum information processing, quantum simulation and metrology.Large arrays of atoms and molecules can be arranged and controlled with high precision using optical tweezers. This Review surveys the latest methodological advances and their applications to quantum technologies. |
Author | Ni, Kang-Kuen Kaufman, Adam M. |
Author_xml | – sequence: 1 givenname: Adam M. orcidid: 0000-0003-4956-5814 surname: Kaufman fullname: Kaufman, Adam M. email: adam.kaufman@colorado.edu organization: JILA, NIST and Department of Physics, University of Colorado – sequence: 2 givenname: Kang-Kuen orcidid: 0000-0002-0537-0719 surname: Ni fullname: Ni, Kang-Kuen email: ni@chemistry.harvard.edu organization: Department of Chemistry and Chemical Biology, Harvard University |
BookMark | eNp9kMtKxDAUhoOM4MzoC7gKuK7mJGmTLmXwBgMi6Dqkaaod2mRMUobx6a1WFFzM6pzF_53Lt0Az551F6BzIJRAmryKHvBAZoZARYLnI6BGag-B5RrmE2W8v2AlaxLghhNMC2Bytnwbt0tDjaFrrjMW7Nr1hv02t0R1OO2s_bMA6BL2P2Dd46FLQxnc11sn3EWtX49531gydjafouNFdtGc_dYlebm-eV_fZ-vHuYXW9zgyDMmUWhAbb0EaXhtfAGwDCTU10WQioTWkrTTWVpMwhFwAWKqikyStRk5pL2bAlupjmboN_H2xMauOH4MaVihZElFBKYGNKTikTfIzBNsq0SafWu_GFtlNA1Jc7NblTozv17U7REaX_0G1oex32hyE2QXEMu1cb_q46QH0CQ8eD8w |
CitedBy_id | crossref_primary_10_1364_JOSAB_522611 crossref_primary_10_1021_acs_jpclett_2c03041 crossref_primary_10_1103_PhysRevLett_131_253603 crossref_primary_10_1038_s41567_022_01550_x crossref_primary_10_1103_PRXQuantum_5_030316 crossref_primary_10_1103_PhysRevA_108_012803 crossref_primary_10_1007_s11467_022_1249_z crossref_primary_10_1016_j_coelec_2022_101000 crossref_primary_10_1103_PhysRevA_109_023304 crossref_primary_10_1038_s41567_024_02453_9 crossref_primary_10_3390_electronics12112360 crossref_primary_10_1364_OE_465672 crossref_primary_10_1063_5_0144665 crossref_primary_10_1103_PhysRevA_105_L061101 crossref_primary_10_1103_PhysRevA_110_023327 crossref_primary_10_1103_PhysRevApplied_19_034048 crossref_primary_10_1038_s41467_025_56305_y crossref_primary_10_1103_PhysRevB_106_134211 crossref_primary_10_1364_OL_551842 crossref_primary_10_1103_PhysRevA_109_032801 crossref_primary_10_1103_PhysRevA_110_053518 crossref_primary_10_1038_d41586_024_01009_4 crossref_primary_10_1002_adma_202415073 crossref_primary_10_1103_PhysRevX_14_011026 crossref_primary_10_1103_PhysRevA_105_053520 crossref_primary_10_1103_PRXQuantum_4_020335 crossref_primary_10_1103_PhysRevA_108_023719 crossref_primary_10_1002_advs_202401418 crossref_primary_10_1103_PhysRevLett_131_160403 crossref_primary_10_1088_2058_9565_ad6286 crossref_primary_10_1103_PhysRevA_108_043308 crossref_primary_10_1103_PhysRevD_105_074505 crossref_primary_10_1021_acs_nanolett_4c00353 crossref_primary_10_1080_23746149_2022_2064231 crossref_primary_10_1103_PhysRevA_108_013313 crossref_primary_10_1002_andp_202300365 crossref_primary_10_1016_j_optlastec_2024_111613 crossref_primary_10_1007_s11128_025_04712_x crossref_primary_10_1021_acs_jpclett_4c00180 crossref_primary_10_1103_PhysRevResearch_6_033333 crossref_primary_10_1364_OE_547393 crossref_primary_10_1103_PhysRevResearch_6_043272 crossref_primary_10_1038_s41586_023_06438_1 crossref_primary_10_1103_Physics_15_23 crossref_primary_10_1038_s41586_024_07199_1 crossref_primary_10_1103_PhysRevLett_133_223402 crossref_primary_10_1016_j_tcb_2022_05_001 crossref_primary_10_1364_OL_478793 crossref_primary_10_1364_OE_538445 crossref_primary_10_1103_PhysRevResearch_6_033104 crossref_primary_10_1103_PhysRevX_14_011048 crossref_primary_10_1364_OPTICAQ_532260 crossref_primary_10_1103_PhysRevE_109_064125 crossref_primary_10_1063_5_0219170 crossref_primary_10_1103_PhysRevLett_134_013202 crossref_primary_10_1103_PhysRevResearch_7_013031 crossref_primary_10_1103_PhysRevA_109_012608 crossref_primary_10_1103_PhysRevA_106_033302 crossref_primary_10_3390_photonics11111079 crossref_primary_10_1103_PhysRevA_108_053710 crossref_primary_10_1103_PhysRevA_109_053317 crossref_primary_10_1103_PhysRevA_109_033307 crossref_primary_10_1103_PhysRevA_108_033308 crossref_primary_10_1103_PhysRevA_110_013309 crossref_primary_10_1063_5_0100088 crossref_primary_10_1103_PhysRevLett_132_230401 crossref_primary_10_1103_PhysRevA_111_022432 crossref_primary_10_1103_PhysRevResearch_5_L032009 crossref_primary_10_1126_sciadv_adk6369 crossref_primary_10_1021_acs_jpca_3c02835 crossref_primary_10_1103_PhysRevB_111_054311 crossref_primary_10_1103_PhysRevA_111_033314 crossref_primary_10_1103_PhysRevLett_131_093002 crossref_primary_10_1002_adom_202301314 crossref_primary_10_1016_j_optlastec_2024_112056 crossref_primary_10_1103_PhysRevResearch_5_043300 crossref_primary_10_1063_5_0145769 crossref_primary_10_1103_PhysRevLett_131_203401 crossref_primary_10_1103_PhysRevA_110_053308 crossref_primary_10_1038_s41567_021_01403_z crossref_primary_10_1021_acs_jpca_3c03162 crossref_primary_10_1103_PhysRevB_108_085114 crossref_primary_10_1103_PhysRevLett_133_180601 crossref_primary_10_7498_aps_72_20230642 crossref_primary_10_1002_qute_202300176 crossref_primary_10_1088_1361_648X_adbb9b crossref_primary_10_1103_PhysRevLett_131_166401 crossref_primary_10_22331_q_2024_12_10_1557 crossref_primary_10_1021_acs_jpca_3c00797 crossref_primary_10_1038_s42005_023_01271_4 crossref_primary_10_1103_PRXQuantum_5_010333 crossref_primary_10_1103_PhysRevLett_131_053001 crossref_primary_10_1103_PhysRevResearch_5_033093 crossref_primary_10_1103_PhysRevA_109_052814 crossref_primary_10_1103_PhysRevA_106_013703 crossref_primary_10_1103_PhysRevA_107_023117 crossref_primary_10_1103_PhysRevResearch_6_L042070 crossref_primary_10_1103_PhysRevLett_130_143002 crossref_primary_10_1103_PhysRevB_106_134506 crossref_primary_10_1103_PhysRevA_108_063314 crossref_primary_10_1103_PhysRevLett_132_150605 crossref_primary_10_1088_1367_2630_acc5ab crossref_primary_10_1038_s41467_024_55570_7 crossref_primary_10_1103_PhysRevA_108_033108 crossref_primary_10_1103_PhysRevLett_130_243001 crossref_primary_10_1103_PhysRevA_109_043310 crossref_primary_10_1103_PhysRevLett_130_243802 crossref_primary_10_3390_ma16083230 crossref_primary_10_1364_OE_544727 crossref_primary_10_1038_s41586_022_05558_4 crossref_primary_10_1103_PhysRevLett_129_123201 crossref_primary_10_1103_PhysRevApplied_19_054032 crossref_primary_10_1103_PRXQuantum_5_010311 crossref_primary_10_1103_PhysRevLett_130_223401 crossref_primary_10_1103_PhysRevLett_131_170601 crossref_primary_10_1016_j_cap_2024_03_003 crossref_primary_10_1038_s41567_024_02638_2 crossref_primary_10_1103_PhysRevA_109_043320 crossref_primary_10_1103_PhysRevA_106_023318 crossref_primary_10_1103_PhysRevLett_132_183401 crossref_primary_10_1103_PhysRevLett_132_206601 crossref_primary_10_1063_5_0211071 crossref_primary_10_1364_OL_450855 crossref_primary_10_1088_1361_6455_acf3bf crossref_primary_10_1103_PhysRevLett_129_160501 crossref_primary_10_1103_PhysRevResearch_5_033108 crossref_primary_10_1103_PhysRevB_108_104301 crossref_primary_10_1103_PhysRevLett_131_013401 crossref_primary_10_1103_PhysRevLett_133_013401 crossref_primary_10_1103_PhysRevLett_134_113402 crossref_primary_10_1088_2058_9565_ac796c crossref_primary_10_1103_PhysRevX_15_011040 crossref_primary_10_1103_PhysRevA_110_022607 crossref_primary_10_1109_TQE_2024_3429451 crossref_primary_10_1364_OPTICA_480535 crossref_primary_10_1103_PhysRevResearch_6_023254 crossref_primary_10_1103_PRXQuantum_4_030337 crossref_primary_10_1103_PhysRevLett_131_043402 crossref_primary_10_1103_PhysRevA_109_013318 crossref_primary_10_1038_s41467_024_46823_6 crossref_primary_10_1038_s41598_024_77596_z crossref_primary_10_1088_1367_2630_ad2438 crossref_primary_10_1103_PhysRevLett_133_203401 crossref_primary_10_1088_2058_9565_ac676c crossref_primary_10_1103_PhysRevLett_130_180601 crossref_primary_10_1364_OPTICA_486747 crossref_primary_10_34133_research_0393 crossref_primary_10_1103_PhysRevA_110_052804 crossref_primary_10_1088_2058_9565_ad4c91 crossref_primary_10_1038_s41567_021_01379_w crossref_primary_10_1038_s41586_024_07883_2 crossref_primary_10_1103_PhysRevLett_128_223202 crossref_primary_10_1088_1367_2630_ad3775 crossref_primary_10_1103_PRXQuantum_5_020333 crossref_primary_10_1103_PhysRevA_109_043105 crossref_primary_10_1103_PhysRevResearch_6_023031 crossref_primary_10_1098_rspa_2022_0806 crossref_primary_10_1016_j_sab_2024_106942 crossref_primary_10_1038_s41567_021_01453_3 crossref_primary_10_1007_s00601_024_01970_w crossref_primary_10_1103_PhysRevLett_133_083601 crossref_primary_10_1103_PhysRevA_106_042410 crossref_primary_10_1103_PhysRevX_13_041035 crossref_primary_10_1063_5_0091280 crossref_primary_10_1103_PhysRevA_108_012608 crossref_primary_10_1103_PhysRevA_108_063111 crossref_primary_10_1038_s41567_024_02714_7 crossref_primary_10_1103_PhysRevA_105_063111 crossref_primary_10_1103_PhysRevApplied_23_L031002 crossref_primary_10_1103_PhysRevA_108_023107 crossref_primary_10_1103_PhysRevA_109_043111 crossref_primary_10_1088_1367_2630_acd411 crossref_primary_10_1088_1367_2630_ac95b9 crossref_primary_10_1103_PhysRevA_110_013708 crossref_primary_10_1103_PhysRevA_108_043513 crossref_primary_10_1103_PhysRevX_12_021027 crossref_primary_10_1103_PhysRevA_110_043116 crossref_primary_10_1002_marc_202200017 crossref_primary_10_1103_PhysRevA_110_043118 crossref_primary_10_1103_PhysRevLett_130_193402 crossref_primary_10_1364_OPTICA_513551 crossref_primary_10_7498_aps_74_20241783 crossref_primary_10_3390_e26030230 crossref_primary_10_35848_1882_0786_aca9bd crossref_primary_10_1103_PhysRevA_110_012610 crossref_primary_10_1103_PhysRevX_13_011047 crossref_primary_10_1103_PhysRevResearch_6_033322 crossref_primary_10_1103_PhysRevLett_129_195301 crossref_primary_10_1103_PhysRevA_109_L061304 crossref_primary_10_22331_q_2023_10_16_1140 crossref_primary_10_1088_1742_6596_2653_1_012077 crossref_primary_10_1088_1367_2630_ad80b8 crossref_primary_10_1103_PhysRevA_110_L021302 crossref_primary_10_1103_PhysRevResearch_6_023297 crossref_primary_10_1103_PhysRevLett_129_243401 crossref_primary_10_1002_adma_202201064 crossref_primary_10_1088_1674_1056_ad1172 crossref_primary_10_1126_sciadv_adl1220 crossref_primary_10_1016_j_ijleo_2024_171913 crossref_primary_10_1088_2058_9565_ad33ac crossref_primary_10_1103_PRXQuantum_6_010353 crossref_primary_10_1103_PhysRevLett_132_133401 crossref_primary_10_1103_PRXQuantum_4_010316 crossref_primary_10_1364_OE_510133 crossref_primary_10_1103_PhysRevA_110_033304 crossref_primary_10_1103_PhysRevApplied_22_024073 crossref_primary_10_1103_PhysRevA_106_022801 crossref_primary_10_1103_PhysRevA_110_043105 crossref_primary_10_1038_s41586_023_06614_3 |
Cites_doi | 10.1103/PhysRevLett.106.160801 10.1103/PhysRevA.89.023411 10.1103/PhysRevLett.124.063001 10.1103/RevModPhys.87.637 10.1103/PhysRevLett.118.065302 10.1038/nphys3487 10.1103/PhysRevLett.123.260505 10.1103/PhysRevLett.122.173201 10.1038/nature09443 10.1126/science.aam5538 10.1103/PhysRevLett.124.253401 10.1038/s41567-017-0030-7 10.1039/C8SC02355G 10.1088/1367-2630/ab428d 10.1103/PhysRevLett.124.073401 10.1038/s41586-020-3009-y 10.1103/RevModPhys.80.885 10.1038/s41467-019-09635-7 10.1088/0953-4075/49/14/144004 10.1103/PhysRevLett.75.4011 10.1103/PhysRevLett.123.230501 10.1088/0953-4075/44/18/184010 10.1038/s41586-018-0450-2 10.1103/PhysRevLett.126.020401 10.1103/PhysRevLett.120.103201 10.1126/science.1250057 10.1103/PhysRevA.101.062308 10.1103/PhysRevA.88.051401 10.1126/science.1113394 10.1103/PhysRevA.100.063429 10.1103/PhysRevLett.125.043401 10.1103/PhysRevLett.62.403 10.1038/nphys1178 10.1126/science.aal5066 10.1126/science.1240516 10.1038/nature22338 10.1103/PhysRevA.97.053803 10.1126/science.1201351 10.1126/science.1237125 10.1103/PhysRevLett.104.070802 10.1103/PhysRevLett.113.120402 10.1103/RevModPhys.82.2313 10.1103/PhysRevLett.110.133001 10.1038/nphys1183 10.1038/s41567-021-01328-7 10.1103/PhysRevA.97.063423 10.1103/PhysRevA.61.062309 10.1038/nphys4241 10.1126/science.abg9502 10.1103/PhysRevA.93.032138 10.1038/35082512 10.1088/1367-2630/aa5a3b 10.1038/442151a 10.1038/nature16073 10.1103/PhysRevLett.104.030402 10.1103/PhysRevLett.108.075303 10.1103/PhysRevLett.85.2208 10.1103/PhysRevLett.123.170503 10.1103/PhysRevLett.125.243602 10.1038/nphys698 10.1126/science.aax1265 10.1088/0953-4075/49/20/202001 10.1038/nphys287 10.1038/nature04628 10.1038/s41566-019-0493-4 10.1038/s41586-018-0599-8 10.1038/s41567-019-0733-z 10.1103/PhysRevLett.89.023005 10.1103/PhysRevLett.101.133005 10.1126/science.aay9531 10.1103/PhysRevLett.81.5768 10.1103/PhysRevLett.102.240502 10.1103/PhysRevLett.114.080402 10.1103/PhysRevLett.104.010503 10.1038/s41567-019-0508-6 10.1103/PhysRevLett.107.115301 10.1126/science.aba7468 10.1103/PhysRevLett.88.067901 10.1103/PhysRevA.75.040301 10.1126/science.1159909 10.1103/PhysRevLett.121.253401 10.1103/PhysRevLett.119.133002 10.1103/PhysRevLett.116.063005 10.1038/s41598-018-21699-x 10.1103/PhysRevLett.115.073003 10.1126/science.aar7797 10.1126/science.aau7230 10.1038/nature24622 10.1103/PhysRevLett.104.010502 10.1126/science.aav9105 10.1364/OPTICA.384408 10.1103/PhysRevLett.125.180402 10.1103/PhysRevResearch.2.023108 10.1126/science.aah3752 10.1038/s41586-018-0738-2 10.1103/PhysRevLett.124.123201 10.1126/science.aah3778 10.1103/PhysRevA.70.040302 10.1103/PhysRevLett.122.143602 10.1002/qute.201800067 10.1140/epjd/e2004-00167-2 10.1103/PhysRevA.46.R6797 10.1103/PhysRevA.92.042710 10.1038/s41567-020-0903-z 10.1126/science.aax9743 10.1103/PhysRevLett.101.243002 10.1038/s41586-018-0458-7 10.1126/science.abc5357 10.1038/nature13634 10.1103/PhysRevLett.112.103601 10.1126/science.1163861 10.1103/PhysRevLett.121.083201 10.1038/nphys1778 10.1103/PhysRevLett.123.033201 10.1038/s41586-020-2936-y 10.1038/s41567-019-0632-3 10.1103/PhysRevLett.122.143002 10.1038/s41586-021-03582-4 10.1126/science.1061171 10.1103/PhysRevLett.114.100503 10.1103/PhysRevLett.126.123402 10.1088/1367-2630/17/2/025001 10.1103/PhysRevLett.127.100504 10.1103/PhysRevLett.119.053202 10.1103/PhysRevLett.120.163201 10.1103/PhysRevA.98.040302 10.1038/ncomms8803 10.1038/nature12941 10.1103/PhysRevLett.85.724 10.1103/PhysRevLett.121.123603 10.1038/nature12483 10.1038/s41586-021-03585-1 10.1103/PhysRevLett.123.213602 10.1103/PhysRevA.97.022508 10.1126/science.aay0644 10.1038/s41586-019-1070-1 10.1103/PhysRevResearch.2.013251 10.1103/PhysRevLett.127.123202 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2021 Springer Nature Limited 2021. |
Copyright_xml | – notice: Springer Nature Limited 2021 – notice: Springer Nature Limited 2021. |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1038/s41567-021-01357-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 1333 |
ExternalDocumentID | 10_1038_s41567_021_01357_2 |
GrantInformation_xml | – fundername: US AFOSR FA9550-19-1-0089 |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-e17a1ef2fa9c4d14f1104cd0a9671dc9eba2a2809515711e1b1b8c5b7d0d488f3 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Sat Aug 23 14:17:41 EDT 2025 Tue Jul 01 00:25:41 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Fri Feb 21 02:37:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e17a1ef2fa9c4d14f1104cd0a9671dc9eba2a2809515711e1b1b8c5b7d0d488f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0537-0719 0000-0003-4956-5814 |
PQID | 2607919813 |
PQPubID | 27545 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2607919813 crossref_citationtrail_10_1038_s41567_021_01357_2 crossref_primary_10_1038_s41567_021_01357_2 springer_journals_10_1038_s41567_021_01357_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nat. Phys |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Yu, Cheuk, Kozyryev, Doyle (CR136) 2019; 21 Miroshnychenko (CR11) 2006; 442 Park, Yan, Loh, Will, Zwierlein (CR120) 2017; 357 Saskin, Wilson, Grinkemeyer, Thompson (CR80) 2019; 122 Wenz (CR42) 2013; 342 Grünzweig, Hilliard, McGovern, Andersen (CR59) 2010; 6 Serwane (CR41) 2011; 332 Zhang (CR54) 2020; 124 Zhou, Wang, Choi, Pichler, Lukin (CR73) 2020; 10 Preiss (CR45) 2019; 122 Lester, Luick, Kaufman, Reynolds, Regal (CR60) 2015; 115 Topcu, Derevianko (CR96) 2014; 89 Norcia, Young, Kaufman (CR78) 2018; 8 Yu (CR141) 2018; 97 Schlosser, Reymond, Grangier (CR36) 2002; 89 Lienhard (CR20) 2018; 8 Ospelkaus (CR143) 2010; 104 Hood (CR34) 2020; 2 de Léséleuc, Barredo, Lienhard, Browaeys, Lahaye (CR67) 2018; 97 Jaksch (CR62) 2000; 85 Liu (CR138) 2019; 9 Zürn (CR43) 2012; 108 Hutzler, Liu, Yu, Ni (CR140) 2017; 19 Ding, Wu, Finneran, Burau, Ye (CR131) 2020; 10 Williams (CR132) 2018; 120 Robens (CR14) 2017; 118 Keesling (CR21) 2019; 568 Kim, Chang, Fields, Chen, Hung (CR29) 2019; 10 Isenhower (CR3) 2010; 104 Caldwell (CR123) 2020; 124 Graham (CR69) 2019; 123 Micheli, Brennen, Zoller (CR107) 2006; 2 Wilk (CR2) 2010; 104 Kaufman (CR4) 2014; 345 Gil, Mukherjee, Bridge, Jones, Pohl (CR100) 2014; 112 Hu (CR144) 2019; 366 Prehn, Ibrügger, Glöckner, Rempe, Zeppenfeld (CR117) 2016; 116 Mitra (CR134) 2020; 369 Brewer (CR92) 2019; 123 Cairncross (CR10) 2021; 126 Kaufman, Lester, Regal (CR50) 2012; 2 Oelker (CR93) 2019; 13 Gaëtan (CR65) 2009; 5 DeMille (CR106) 2002; 88 Bayha (CR48) 2020; 587 Saffman, Mølmer (CR70) 2009; 102 Shuman, Barry, DeMille (CR116) 2010; 467 Chou, Hume, Koelemeij, Wineland, Rosenband (CR90) 2010; 104 Campbell (CR87) 2017; 358 Pagano, Scazza, Foss-Feig (CR104) 2019; 2 Omran (CR22) 2019; 365 Chou, Hume, Thorpe, Wineland, Rosenband (CR91) 2011; 106 Weiss (CR40) 2004; 70 Bernien (CR6) 2017; 551 Beugnon (CR38) 2007; 3 Schlosser, Reymond, Protsenko, Grangier (CR1) 2001; 411 de Léséleuc (CR23) 2019; 365 Xu (CR32) 2015; 6 Cooper (CR79) 2018; 8 De Marco (CR119) 2019; 363 Han (CR150) 2000; 85 de Léséleuc, Barredo, Lienhard, Browaeys, Lahaye (CR71) 2017; 119 Reynolds (CR33) 2020; 124 Yan (CR109) 2013; 501 Lang, Winkler, Strauss, Grimm, Denschlag (CR115) 2008; 101 Chou (CR118) 2017; 545 Murmann (CR44) 2015; 114 He (CR55) 2020; 370 Saffman (CR75) 2016; 49 Béguin (CR31) 2020; 7 CR142 Kaufman (CR39) 2015; 527 Urban (CR64) 2009; 5 Barredo, de Léséleuc, Lienhard, Lahaye, Browaeys (CR12) 2016; 354 Wineland, Bollinger, Itano, Moore, Heinzen (CR102) 1992; 46 Browaeys, Lahaye (CR24) 2020; 16 Gregory, Blackmore, Bromley, Hutson, Cornish (CR121) 2021; 17 Holten (CR49) 2021; 126 Hudson, Campbell (CR111) 2018; 98 Darquié (CR17) 2005; 309 CR72 Ebadi (CR57) 2021; 595 Ni, Rosenband, Grimes (CR110) 2018; 9 Beugnon (CR18) 2006; 440 Kumar, Wu, Giraldo, Weiss (CR15) 2018; 561 Di Rosa (CR126) 2004; 31 Thompson (CR28) 2013; 340 Mukherjee, Millen, Nath, Jones, Pohl (CR95) 2011; 44 Truppe (CR129) 2017; 13 Nayak, Wang, Keloth (CR30) 2019; 123 Kondov (CR124) 2019; 15 Beterov, Saffman (CR77) 2015; 92 Andreev (CR105) 2018; 562 McGrew (CR85) 2018; 564 Xia (CR5) 2015; 114 Kaubruegger (CR101) 2019; 123 Caldwell, Tarbutt (CR133) 2020; 2 Kozyryev, Hutzler (CR137) 2017; 119 Yao, Zaletel, Stamper-Kurn, Vishwanath (CR147) 2018; 14 Gorshkov (CR108) 2011; 107 Sundar, Gadway, Hazzard (CR146) 2018; 8 Barry, McCarron, Norrgard, Steinecker, DeMille (CR128) 2014; 512 Robicheaux, Booth, Saffman (CR98) 2018; 97 Levine (CR7) 2018; 121 Bergschneider (CR46) 2019; 15 Cappellini (CR103) 2014; 113 CR125 Marti (CR94) 2018; 120 Jones (CR37) 2007; 75 Ni (CR114) 2008; 322 Wall, Maeda, Carr (CR135) 2015; 17 Jau, Hankin, Keating, Deutsch, Biedermann (CR66) 2016; 12 Monroe (CR53) 1995; 75 Saffman, Walker, Molmer (CR19) 2010; 82 Diddams (CR89) 2001; 293 Hughes (CR112) 2020; 101 Cortiñas (CR76) 2020; 124 Cheuk (CR35) 2020; 125 Liu (CR8) 2018; 360 Clements (CR88) 2020; 125 Cheuk (CR130) 2018; 121 Wang (CR139) 2019; 100 Covey, Madjarov, Cooper, Endres (CR81) 2019; 122 Topcu, Derevianko (CR97) 2016; 49 CR99 Anderegg (CR9) 2019; 365 Endres (CR13) 2016; 354 Diedrich, Bergquist, Itano, Wineland (CR52) 1989; 62 Stuhl, Sawyer, Wang, Ye (CR127) 2008; 101 Norcia (CR25) 2019; 366 Thompson, Tiecke, Zibrov, Vuletić, Lukin (CR51) 2013; 110 Brown, Thiele, Kiehl, Hsu, Regal (CR61) 2019; 9 Levine (CR68) 2019; 123 Ludlow, Boyd, Ye, Peik, Schmidt (CR83) 2015; 87 Danzl (CR113) 2008; 321 Bloom (CR84) 2014; 506 Sompet, Carpentier, Fung, McGovern, Andersen (CR148) 2013; 88 Brennen, Deutsch, Jessen (CR63) 2000; 61 Hume, Leibrandt (CR86) 2016; 93 Vuletić, Chin, Kerman, Chu (CR149) 1998; 81 Young (CR27) 2020; 588 Scholl (CR58) 2021; 595 Madjarov (CR82) 2020; 16 Barredo, Lienhard, de Léséleuc, Lahaye, Browaeys (CR56) 2018; 561 Madjarov (CR26) 2019; 9 Seeßelberg (CR122) 2018; 121 Anderegg (CR145) 2021; 373 Becher (CR47) 2020; 125 Wild, Sels, Pichler, Zanoci, Lukin (CR74) 2020; 127 Bloch, Dalibard, Zwerger (CR16) 2008; 80 V Vuletić (1357_CR149) 1998; 81 D Jaksch (1357_CR62) 2000; 85 JH Becher (1357_CR47) 2020; 125 D-J Han (1357_CR150) 2000; 85 L Bayha (1357_CR48) 2020; 587 F Lang (1357_CR115) 2008; 101 JW Park (1357_CR120) 2017; 357 1357_CR125 MO Brown (1357_CR61) 2019; 9 JD Hood (1357_CR34) 2020; 2 D Mitra (1357_CR134) 2020; 369 P Scholl (1357_CR58) 2021; 595 I Bloch (1357_CR16) 2008; 80 L Caldwell (1357_CR123) 2020; 124 C Robens (1357_CR14) 2017; 118 LW Cheuk (1357_CR35) 2020; 125 P Sompet (1357_CR148) 2013; 88 S de Léséleuc (1357_CR23) 2019; 365 T Topcu (1357_CR96) 2014; 89 C-W Chou (1357_CR118) 2017; 545 JF Barry (1357_CR128) 2014; 512 V Andreev (1357_CR105) 2018; 562 D DeMille (1357_CR106) 2002; 88 SS Kondov (1357_CR124) 2019; 15 AM Kaufman (1357_CR50) 2012; 2 HJ Williams (1357_CR132) 2018; 120 1357_CR99 B Yan (1357_CR109) 2013; 501 KP Nayak (1357_CR30) 2019; 123 M Holten (1357_CR49) 2021; 126 T Wilk (1357_CR2) 2010; 104 BJ Bloom (1357_CR84) 2014; 506 A Bergschneider (1357_CR46) 2019; 15 MA Norcia (1357_CR78) 2018; 8 ES Shuman (1357_CR116) 2010; 467 F Diedrich (1357_CR52) 1989; 62 D Barredo (1357_CR12) 2016; 354 AM Kaufman (1357_CR39) 2015; 527 II Beterov (1357_CR77) 2015; 92 B Sundar (1357_CR146) 2018; 8 P Xu (1357_CR32) 2015; 6 JP Covey (1357_CR81) 2019; 122 AD Ludlow (1357_CR83) 2015; 87 H Levine (1357_CR7) 2018; 121 NY Yao (1357_CR147) 2018; 14 1357_CR142 IS Madjarov (1357_CR82) 2020; 16 A Kumar (1357_CR15) 2018; 561 S Ospelkaus (1357_CR143) 2010; 104 LR Liu (1357_CR8) 2018; 360 A Browaeys (1357_CR24) 2020; 16 K-K Ni (1357_CR110) 2018; 9 G Zürn (1357_CR43) 2012; 108 J Beugnon (1357_CR38) 2007; 3 CW Chou (1357_CR91) 2011; 106 LIR Gil (1357_CR100) 2014; 112 NR Hutzler (1357_CR140) 2017; 19 YY Jau (1357_CR66) 2016; 12 E Urban (1357_CR64) 2009; 5 1357_CR72 RG Cortiñas (1357_CR76) 2020; 124 GK Brennen (1357_CR63) 2000; 61 A Cooper (1357_CR79) 2018; 8 ER Hudson (1357_CR111) 2018; 98 BK Stuhl (1357_CR127) 2008; 101 T Xia (1357_CR5) 2015; 114 T Grünzweig (1357_CR59) 2010; 6 L Anderegg (1357_CR9) 2019; 365 Y Yu (1357_CR141) 2018; 97 ER Clements (1357_CR88) 2020; 125 BJ Lester (1357_CR60) 2015; 115 S Murmann (1357_CR44) 2015; 114 J-B Béguin (1357_CR31) 2020; 7 AN Wenz (1357_CR42) 2013; 342 SA Diddams (1357_CR89) 2001; 293 JT Zhang (1357_CR54) 2020; 124 S de Léséleuc (1357_CR67) 2018; 97 E Oelker (1357_CR93) 2019; 13 MA Norcia (1357_CR25) 2019; 366 L Zhou (1357_CR73) 2020; 10 LR Liu (1357_CR138) 2019; 9 I Kozyryev (1357_CR137) 2017; 119 AM Kaufman (1357_CR4) 2014; 345 M Saffman (1357_CR19) 2010; 82 A Gaëtan (1357_CR65) 2009; 5 JG Danzl (1357_CR113) 2008; 321 ME Kim (1357_CR29) 2019; 10 F Robicheaux (1357_CR98) 2018; 97 P Yu (1357_CR136) 2019; 21 J Beugnon (1357_CR18) 2006; 440 IS Madjarov (1357_CR26) 2019; 9 M-G Hu (1357_CR144) 2019; 366 N Schlosser (1357_CR36) 2002; 89 V Lienhard (1357_CR20) 2018; 8 TM Graham (1357_CR69) 2019; 123 MD Di Rosa (1357_CR126) 2004; 31 MPA Jones (1357_CR37) 2007; 75 DJ Wineland (1357_CR102) 1992; 46 A Micheli (1357_CR107) 2006; 2 M Saffman (1357_CR70) 2009; 102 X He (1357_CR55) 2020; 370 F Serwane (1357_CR41) 2011; 332 H Bernien (1357_CR6) 2017; 551 G Pagano (1357_CR104) 2019; 2 JD Thompson (1357_CR51) 2013; 110 WF McGrew (1357_CR85) 2018; 564 WB Cairncross (1357_CR10) 2021; 126 S Saskin (1357_CR80) 2019; 122 GE Marti (1357_CR94) 2018; 120 JD Thompson (1357_CR28) 2013; 340 A Prehn (1357_CR117) 2016; 116 SM Brewer (1357_CR92) 2019; 123 L Caldwell (1357_CR133) 2020; 2 S Ebadi (1357_CR57) 2021; 595 DS Wild (1357_CR74) 2020; 127 AV Gorshkov (1357_CR108) 2011; 107 L De Marco (1357_CR119) 2019; 363 K Wang (1357_CR139) 2019; 100 CW Chou (1357_CR90) 2010; 104 PM Preiss (1357_CR45) 2019; 122 C Monroe (1357_CR53) 1995; 75 LA Reynolds (1357_CR33) 2020; 124 N Schlosser (1357_CR1) 2001; 411 A Keesling (1357_CR21) 2019; 568 M Endres (1357_CR13) 2016; 354 K-K Ni (1357_CR114) 2008; 322 DB Hume (1357_CR86) 2016; 93 PD Gregory (1357_CR121) 2021; 17 L Anderegg (1357_CR145) 2021; 373 AW Young (1357_CR27) 2020; 588 S de Léséleuc (1357_CR71) 2017; 119 S Ding (1357_CR131) 2020; 10 D Barredo (1357_CR56) 2018; 561 R Kaubruegger (1357_CR101) 2019; 123 G Cappellini (1357_CR103) 2014; 113 SL Campbell (1357_CR87) 2017; 358 S Truppe (1357_CR129) 2017; 13 H Levine (1357_CR68) 2019; 123 LW Cheuk (1357_CR130) 2018; 121 L Isenhower (1357_CR3) 2010; 104 M Hughes (1357_CR112) 2020; 101 ML Wall (1357_CR135) 2015; 17 A Omran (1357_CR22) 2019; 365 DS Weiss (1357_CR40) 2004; 70 M Saffman (1357_CR75) 2016; 49 R Mukherjee (1357_CR95) 2011; 44 B Darquié (1357_CR17) 2005; 309 T Topcu (1357_CR97) 2016; 49 Y Miroshnychenko (1357_CR11) 2006; 442 F Seeßelberg (1357_CR122) 2018; 121 |
References_xml | – volume: 106 start-page: 160801 year: 2011 ident: CR91 article-title: Quantum coherence between two atoms beyond = 10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.160801 – volume: 89 start-page: 023411 year: 2014 ident: CR96 article-title: Divalent Rydberg atoms in optical lattices: intensity landscape and magic trapping publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.89.023411 – volume: 124 start-page: 063001 year: 2020 ident: CR123 article-title: Long rotational coherence times of molecules in a magnetic trap publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.063001 – volume: 87 start-page: 637 year: 2015 end-page: 701 ident: CR83 article-title: Optical atomic clocks publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.637 – volume: 118 start-page: 065302 year: 2017 ident: CR14 article-title: Low-entropy states of neutral atoms in polarization-synthesized optical lattices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.065302 – volume: 12 start-page: 71 year: 2016 end-page: 74 ident: CR66 article-title: Entangling atomic spins with a Rydberg-dressed spin-flip blockade publication-title: Nat. Phys. doi: 10.1038/nphys3487 – volume: 123 start-page: 260505 year: 2019 ident: CR101 article-title: Variational spin-squeezing algorithms on programmable quantum sensors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.260505 – volume: 122 start-page: 173201 year: 2019 ident: CR81 article-title: 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.173201 – volume: 467 start-page: 820 year: 2010 end-page: 823 ident: CR116 article-title: Laser cooling of a diatomic molecule publication-title: Nature doi: 10.1038/nature09443 – volume: 358 start-page: 90 year: 2017 end-page: 94 ident: CR87 article-title: A Fermi-degenerate three-dimensional optical lattice clock publication-title: Science doi: 10.1126/science.aam5538 – volume: 124 start-page: 253401 year: 2020 ident: CR54 article-title: Forming a single molecule by magnetoassociation in an optical tweezer publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.253401 – volume: 14 start-page: 405 year: 2018 end-page: 410 ident: CR147 article-title: A quantum dipolar spin liquid publication-title: Nat. Phys. doi: 10.1038/s41567-017-0030-7 – volume: 9 start-page: 6830 year: 2018 end-page: 6838 ident: CR110 article-title: Dipolar exchange quantum logic gate with polar molecules publication-title: Chem. Sci. doi: 10.1039/C8SC02355G – volume: 21 start-page: 093049 year: 2019 ident: CR136 article-title: A scalable quantum computing platform using symmetric-top molecules publication-title: New J. Phys. doi: 10.1088/1367-2630/ab428d – volume: 124 start-page: 073401 year: 2020 ident: CR33 article-title: Direct measurements of collisional dynamics in cold atom triads publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.073401 – volume: 588 start-page: 408 year: 2020 end-page: 413 ident: CR27 article-title: Half-minute-scale atomic coherence and high relative stability in a tweezer clock publication-title: Nature doi: 10.1038/s41586-020-3009-y – volume: 80 start-page: 885 year: 2008 end-page: 964 ident: CR16 article-title: Many-body physics with ultracold gases publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.885 – volume: 10 year: 2019 ident: CR29 article-title: Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices publication-title: Nat. Commun. doi: 10.1038/s41467-019-09635-7 – volume: 49 start-page: 144004 year: 2016 ident: CR97 article-title: Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices publication-title: J. Phys. B doi: 10.1088/0953-4075/49/14/144004 – volume: 75 start-page: 4011 year: 1995 end-page: 4014 ident: CR53 article-title: Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.4011 – volume: 123 start-page: 230501 year: 2019 ident: CR69 article-title: Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.230501 – volume: 44 start-page: 184010 year: 2011 ident: CR95 article-title: Many-body physics with alkaline-earth Rydberg lattices publication-title: J. Phys. B doi: 10.1088/0953-4075/44/18/184010 – volume: 561 start-page: 79 year: 2018 end-page: 82 ident: CR56 article-title: Synthetic three-dimensional atomic structures assembled atom by atom publication-title: Nature doi: 10.1038/s41586-018-0450-2 – volume: 126 start-page: 020401 year: 2021 ident: CR49 article-title: Observation of Pauli crystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.020401 – volume: 120 start-page: 103201 year: 2018 ident: CR94 article-title: Imaging optical frequencies with 100μHz precision and 1.1μm resolution publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.103201 – volume: 345 start-page: 306 year: 2014 end-page: 309 ident: CR4 article-title: Two-particle quantum interference in tunnel-coupled optical tweezers publication-title: Science doi: 10.1126/science.1250057 – volume: 101 start-page: 062308 year: 2020 ident: CR112 article-title: Robust entangling gate for polar molecules using magnetic and microwave fields publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.062308 – volume: 88 start-page: 051401 year: 2013 ident: CR148 article-title: Dynamics of two atoms undergoing light-assisted collisions in an optical microtrap publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.051401 – volume: 309 start-page: 454 year: 2005 end-page: 456 ident: CR17 article-title: Controlled single-photon emission from a single trapped two-level atom publication-title: Science doi: 10.1126/science.1113394 – volume: 100 start-page: 063429 year: 2019 ident: CR139 article-title: Preparation of a heteronuclear two-atom system in the three-dimensional ground state in an optical tweezer publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.063429 – volume: 125 start-page: 043401 year: 2020 ident: CR35 article-title: Observation of collisions between two ultracold ground-state caf molecules publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.043401 – volume: 62 start-page: 403 year: 1989 end-page: 406 ident: CR52 article-title: Laser cooling to the zero-point energy of motion publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.403 – volume: 5 start-page: 110 year: 2009 end-page: 114 ident: CR64 article-title: Observation of Rydberg blockade between two atoms publication-title: Nat. Phys. doi: 10.1038/nphys1178 – volume: 357 start-page: 372 year: 2017 end-page: 375 ident: CR120 article-title: Second-scale nuclear spin coherence time of ultracold Na K molecules publication-title: Science doi: 10.1126/science.aal5066 – volume: 342 start-page: 457 year: 2013 end-page: 460 ident: CR42 article-title: From few to many: observing the formation of a Fermi sea one atom at a time publication-title: Science doi: 10.1126/science.1240516 – volume: 545 start-page: 203 year: 2017 end-page: 207 ident: CR118 article-title: Preparation and coherent manipulation of pure quantum states of a single molecular ion publication-title: Nature doi: 10.1038/nature22338 – volume: 97 start-page: 053803 year: 2018 ident: CR67 article-title: Analysis of imperfections in the coherent optical excitation of single atoms to rydberg states publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.053803 – volume: 332 start-page: 336 year: 2011 end-page: 338 ident: CR41 article-title: Deterministic preparation of a tunable few-fermion system publication-title: Science doi: 10.1126/science.1201351 – volume: 340 start-page: 1202 year: 2013 end-page: 1205 ident: CR28 article-title: Coupling a single trapped atom to a nanoscale optical cavity publication-title: Science doi: 10.1126/science.1237125 – volume: 104 start-page: 070802 year: 2010 ident: CR90 article-title: Frequency comparison of two high-accuracy Al optical clocks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.070802 – volume: 113 start-page: 120402 year: 2014 ident: CR103 article-title: Direct observation of coherent interorbital spin-exchange dynamics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.120402 – volume: 82 start-page: 2313 year: 2010 end-page: 2363 ident: CR19 article-title: Quantum information with Rydberg atoms publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.2313 – ident: CR72 – volume: 110 start-page: 133001 year: 2013 ident: CR51 article-title: Coherence and Raman sideband cooling of a single atom in an optical tweezer publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.133001 – volume: 9 start-page: 021039 year: 2019 ident: CR138 article-title: Molecular assembly of ground-state cooled single atoms publication-title: Phys. Rev. X – volume: 5 start-page: 115 year: 2009 end-page: 118 ident: CR65 article-title: Observation of collective excitation of two individual atoms in the Rydberg blockade regime publication-title: Nat. Phys. doi: 10.1038/nphys1183 – volume: 17 start-page: 1149 year: 2021 end-page: 1153 ident: CR121 article-title: Robust storage qubits in ultracold polar molecules publication-title: Nat. Phys. doi: 10.1038/s41567-021-01328-7 – volume: 97 start-page: 063423 year: 2018 ident: CR141 article-title: Motional-ground-state cooling outside the lamb-dicke regime publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.063423 – volume: 61 start-page: 062309 year: 2000 ident: CR63 article-title: Entangling dipole–dipole interactions for quantum logic with neutral atoms publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.61.062309 – volume: 13 start-page: 1173 year: 2017 end-page: 1176 ident: CR129 article-title: Molecules cooled below the doppler limit publication-title: Nat. Phys. doi: 10.1038/nphys4241 – volume: 10 start-page: 021049 year: 2020 ident: CR131 article-title: Sub-Doppler cooling and compressed trapping of YO molecules at μK temperatures publication-title: Phys. Rev. X – volume: 373 start-page: abg9502 year: 2021 ident: CR145 article-title: Observation of microwave shielding of ultracold molecules publication-title: Science doi: 10.1126/science.abg9502 – volume: 93 start-page: 032138 year: 2016 ident: CR86 article-title: Probing beyond the laser coherence time in optical clock comparisons publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.93.032138 – volume: 411 start-page: 1024 year: 2001 end-page: 1027 ident: CR1 article-title: Sub-Poissonian loading of single atoms in a microscopic dipole trap publication-title: Nature doi: 10.1038/35082512 – ident: CR142 – volume: 19 start-page: 023007 year: 2017 ident: CR140 article-title: Eliminating light shifts for single atom trapping publication-title: New J. Phys. doi: 10.1088/1367-2630/aa5a3b – volume: 442 start-page: 151 year: 2006 ident: CR11 article-title: An atom-sorting machine publication-title: Nature doi: 10.1038/442151a – volume: 527 start-page: 208 year: 2015 end-page: 211 ident: CR39 article-title: Entangling two transportable neutral atoms via local spin exchange publication-title: Nature doi: 10.1038/nature16073 – volume: 104 start-page: 030402 year: 2010 ident: CR143 article-title: Controlling the hyperfine state of rovibronic ground-state polar molecules publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.030402 – volume: 108 start-page: 075303 year: 2012 ident: CR43 article-title: Fermionization of two distinguishable fermions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.075303 – volume: 85 start-page: 2208 year: 2000 end-page: 2211 ident: CR62 article-title: Fast quantum gates for neutral atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.2208 – volume: 123 start-page: 170503 year: 2019 ident: CR68 article-title: Parallel implementation of high-fidelity multiqubit gates with neutral atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.170503 – volume: 125 start-page: 243602 year: 2020 ident: CR88 article-title: Lifetime-limited interrogation of two independent Al clocks using correlation spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.243602 – volume: 3 start-page: 696 year: 2007 end-page: 699 ident: CR38 article-title: Two-dimensional transport and transfer of a single atomic qubit in optical tweezers publication-title: Nat. Phys. doi: 10.1038/nphys698 – volume: 365 start-page: 1156 year: 2019 end-page: 1158 ident: CR9 article-title: An optical tweezer array of ultracold molecules publication-title: Science doi: 10.1126/science.aax1265 – volume: 49 start-page: 202001 year: 2016 ident: CR75 article-title: Quantum computing with atomic qubits and Rydberg interactions: progress and challenges publication-title: J. Phys. B doi: 10.1088/0953-4075/49/20/202001 – volume: 2 start-page: 341 year: 2006 end-page: 347 ident: CR107 article-title: A toolbox for lattice-spin models with polar molecules publication-title: Nat. Phys. doi: 10.1038/nphys287 – volume: 440 start-page: 779 year: 2006 end-page: 782 ident: CR18 article-title: Quantum interference between two single photons emitted by independently trapped atoms publication-title: Nature doi: 10.1038/nature04628 – volume: 13 start-page: 714 year: 2019 end-page: 719 ident: CR93 article-title: Demonstration of 4.8 × 10 stability at 1 s for two independent optical clocks publication-title: Nat. Photon. doi: 10.1038/s41566-019-0493-4 – volume: 562 start-page: 355 year: 2018 end-page: 360 ident: CR105 article-title: Improved limit on the electric dipole moment of the electron publication-title: Nature doi: 10.1038/s41586-018-0599-8 – volume: 16 start-page: 132 year: 2020 end-page: 142 ident: CR24 article-title: Many-body physics with individually controlled Rydberg atoms publication-title: Nat. Phys. doi: 10.1038/s41567-019-0733-z – volume: 89 start-page: 023005 year: 2002 ident: CR36 article-title: Collisional blockade in microscopic optical dipole traps publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.023005 – volume: 101 start-page: 133005 year: 2008 ident: CR115 article-title: Ultracold triplet molecules in the rovibrational ground state publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.133005 – volume: 366 start-page: 1111 year: 2019 end-page: 1115 ident: CR144 article-title: Direct observation of bimolecular reactions of ultracold KRb molecules publication-title: Science doi: 10.1126/science.aay9531 – volume: 81 start-page: 5768 year: 1998 end-page: 5771 ident: CR149 article-title: Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.5768 – volume: 102 start-page: 240502 year: 2009 ident: CR70 article-title: Efficient multiparticle entanglement via asymmetric Rydberg blockade publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.240502 – volume: 114 start-page: 080402 year: 2015 ident: CR44 article-title: Two fermions in a double well: exploring a fundamental building block of the Hubbard model publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.080402 – volume: 104 start-page: 010503 year: 2010 ident: CR3 article-title: Demonstration of a neutral atom controlled-NOT quantum gate publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.010503 – volume: 15 start-page: 640 year: 2019 end-page: 644 ident: CR46 article-title: Experimental characterization of two-particle entanglement through position and momentum correlations publication-title: Nat. Phys. doi: 10.1038/s41567-019-0508-6 – volume: 107 start-page: 115301 year: 2011 ident: CR108 article-title: Tunable superfluidity and quantum magnetism with ultracold polar molecules publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.115301 – ident: CR125 – volume: 370 start-page: 331 year: 2020 end-page: 335 ident: CR55 article-title: Coherently forming a single molecule in an optical trap publication-title: Science doi: 10.1126/science.aba7468 – volume: 88 start-page: 067901 year: 2002 ident: CR106 article-title: Quantum computation with trapped polar molecules publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.067901 – volume: 75 start-page: 040301 year: 2007 ident: CR37 article-title: Fast quantum state control of a single trapped neutral atom publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.040301 – volume: 321 start-page: 1062 year: 2008 end-page: 1066 ident: CR113 article-title: Quantum gas of deeply bound ground state molecules publication-title: Science doi: 10.1126/science.1159909 – volume: 121 start-page: 253401 year: 2018 ident: CR122 article-title: Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.253401 – volume: 119 start-page: 133002 year: 2017 ident: CR137 article-title: Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.133002 – volume: 116 start-page: 063005 year: 2016 ident: CR117 article-title: Optoelectrical cooling of polar molecules to submillikelvin temperatures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.063005 – volume: 8 year: 2018 ident: CR146 article-title: Synthetic dimensions in ultracold polar molecules publication-title: Sci. Rep. doi: 10.1038/s41598-018-21699-x – volume: 115 start-page: 073003 year: 2015 ident: CR60 article-title: Rapid production of uniformly filled arrays of neutral atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.073003 – volume: 360 start-page: 900 year: 2018 end-page: 903 ident: CR8 article-title: Building one molecule from a reservoir of two atoms publication-title: Science doi: 10.1126/science.aar7797 – volume: 363 start-page: 853 year: 2019 end-page: 856 ident: CR119 article-title: A degenerate Fermi gas of polar molecules publication-title: Science doi: 10.1126/science.aau7230 – volume: 551 start-page: 579 year: 2017 end-page: 584 ident: CR6 article-title: Probing many-body dynamics on a 51-atom quantum simulator publication-title: Nature doi: 10.1038/nature24622 – volume: 104 start-page: 010502 year: 2010 ident: CR2 article-title: Entanglement of two individual neutral atoms using Rydberg blockade publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.010502 – volume: 365 start-page: 775 year: 2019 end-page: 780 ident: CR23 article-title: Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms publication-title: Science doi: 10.1126/science.aav9105 – volume: 7 start-page: 1 year: 2020 end-page: 2 ident: CR31 article-title: Advanced apparatus for the integration of nanophotonics and cold atoms publication-title: Optica doi: 10.1364/OPTICA.384408 – volume: 125 start-page: 180402 year: 2020 ident: CR47 article-title: Measurement of identical particle entanglement and the influence of antisymmetrization publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.180402 – volume: 2 start-page: 023108 year: 2020 ident: CR34 article-title: Multichannel interactions of two atoms in an optical tweezer publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.023108 – volume: 354 start-page: 1024 year: 2016 end-page: 1027 ident: CR13 article-title: Atom-by-atom assembly of defect-free one-dimensional cold atom arrays publication-title: Science doi: 10.1126/science.aah3752 – volume: 9 start-page: 011057 year: 2019 ident: CR61 article-title: Gray-molasses optical-tweezer loading: controlling collisions for scaling atom-array assembly publication-title: Phys. Rev. X – volume: 564 start-page: 87 year: 2018 end-page: 90 ident: CR85 article-title: Atomic clock performance enabling geodesy below the centimetre level publication-title: Nature doi: 10.1038/s41586-018-0738-2 – volume: 124 start-page: 123201 year: 2020 ident: CR76 article-title: Laser trapping of circular Rydberg atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.123201 – volume: 9 start-page: 041052 year: 2019 ident: CR26 article-title: An atomic-array optical clock with single-atom readout publication-title: Phys. Rev. X – volume: 354 start-page: 1021 year: 2016 end-page: 1023 ident: CR12 article-title: An atom-by-atom assembler of defect-free arbitrary 2D atomic arrays publication-title: Science doi: 10.1126/science.aah3778 – volume: 10 start-page: 021067 year: 2020 ident: CR73 article-title: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices publication-title: Phys. Rev. X – volume: 70 start-page: 040302 year: 2004 ident: CR40 article-title: Another way to approach zero entropy for a finite system of atoms publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.70.040302 – ident: CR99 – volume: 122 start-page: 143602 year: 2019 ident: CR45 article-title: High-contrast interference of ultracold fermions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.143602 – volume: 2 start-page: 041014 year: 2012 ident: CR50 article-title: Cooling a single atom in an optical tweezer to its quantum ground state publication-title: Phys. Rev. X – volume: 2 start-page: 1800067 year: 2019 ident: CR104 article-title: Fast and scalable quantum information processing with two-electron atoms in optical tweezer arrays publication-title: Adv. Quantum Technol. doi: 10.1002/qute.201800067 – volume: 31 start-page: 395 year: 2004 end-page: 402 ident: CR126 article-title: Laser-cooling molecules—concept, candidates, and supporting hyperfine-resolved measurements of rotational lines in the A–X(0,0) band of CaH publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2004-00167-2 – volume: 46 start-page: R6797 year: 1992 end-page: R6800 ident: CR102 article-title: Spin squeezing and reduced quantum noise in spectroscopy publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.46.R6797 – volume: 92 start-page: 042710 year: 2015 ident: CR77 article-title: Rydberg blockade, förster resonances, and quantum state measurements with different atomic species publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.042710 – volume: 16 start-page: 857 year: 2020 end-page: 861 ident: CR82 article-title: High-fidelity entanglement and detection of alkaline-earth Rydberg atoms publication-title: Nat. Phys. doi: 10.1038/s41567-020-0903-z – volume: 365 start-page: 570 year: 2019 end-page: 574 ident: CR22 article-title: Generation and manipulation of Schrödinger cat states in Rydberg atom arrays publication-title: Science doi: 10.1126/science.aax9743 – volume: 101 start-page: 243002 year: 2008 ident: CR127 article-title: Magneto-optical trap for polar molecules publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.243002 – volume: 561 start-page: 83 year: 2018 end-page: 87 ident: CR15 article-title: Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon publication-title: Nature doi: 10.1038/s41586-018-0458-7 – volume: 369 start-page: 1366 year: 2020 end-page: 1369 ident: CR134 article-title: Direct laser cooling of a symmetric top molecule publication-title: Science doi: 10.1126/science.abc5357 – volume: 512 start-page: 286 year: 2014 end-page: 289 ident: CR128 article-title: Magneto-optical trapping of a diatomic molecule publication-title: Nature doi: 10.1038/nature13634 – volume: 112 start-page: 103601 year: 2014 ident: CR100 article-title: Spin squeezing in a Rydberg lattice clock publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.103601 – volume: 322 start-page: 231 year: 2008 end-page: 235 ident: CR114 article-title: A high phase-space-density gas of polar molecules publication-title: Science doi: 10.1126/science.1163861 – volume: 121 start-page: 083201 year: 2018 ident: CR130 article-title: Λ-enhanced imaging of molecules in an optical trap publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.083201 – volume: 6 start-page: 951 year: 2010 end-page: 954 ident: CR59 article-title: Near-deterministic preparation of a single atom in an optical microtrap publication-title: Nat. Phys. doi: 10.1038/nphys1778 – volume: 123 start-page: 033201 year: 2019 ident: CR92 article-title: Al quantum-logic clock with a systematic uncertainty below 10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.033201 – volume: 587 start-page: 583 year: 2020 end-page: 587 ident: CR48 article-title: Observing the emergence of a quantum phase transition shell by shell publication-title: Nature doi: 10.1038/s41586-020-2936-y – volume: 15 start-page: 1118 year: 2019 end-page: 1122 ident: CR124 article-title: Molecular lattice clock with long vibrational coherence publication-title: Nat. Phys. doi: 10.1038/s41567-019-0632-3 – volume: 122 start-page: 143002 year: 2019 ident: CR80 article-title: Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.143002 – volume: 595 start-page: 227 year: 2021 end-page: 232 ident: CR57 article-title: Quantum phases of matter on a 256-atom programmable quantum simulator publication-title: Nature doi: 10.1038/s41586-021-03582-4 – volume: 293 start-page: 825 year: 2001 end-page: 828 ident: CR89 article-title: An optical clock based on a single trapped Hg ion publication-title: Science doi: 10.1126/science.1061171 – volume: 114 start-page: 100503 year: 2015 ident: CR5 article-title: Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.100503 – volume: 8 start-page: 041054 year: 2018 ident: CR78 article-title: Microscopic control and detection of ultracold strontium in optical-tweezer arrays publication-title: Phys. Rev. X – volume: 126 start-page: 123402 year: 2021 ident: CR10 article-title: Assembly of a rovibrational ground state molecule in an optical tweezer publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.123402 – volume: 17 start-page: 025001 year: 2015 ident: CR135 article-title: Realizing unconventional quantum magnetism with symmetric top molecules publication-title: New J. Phys. doi: 10.1088/1367-2630/17/2/025001 – volume: 127 start-page: 100504 year: 2020 ident: CR74 article-title: Quantum sampling algorithms for near-term devices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.100504 – volume: 8 start-page: 021070 year: 2018 ident: CR20 article-title: Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic ising models with antiferromagnetic interactions publication-title: Phys. Rev. X – volume: 119 start-page: 053202 year: 2017 ident: CR71 article-title: Optical control of the resonant dipole–dipole interaction between Rydberg atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.053202 – volume: 120 start-page: 163201 year: 2018 ident: CR132 article-title: Magnetic trapping and coherent control of laser-cooled molecules publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.163201 – volume: 98 start-page: 040302 year: 2018 ident: CR111 article-title: Dipolar quantum logic for freely rotating trapped molecular ions publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.040302 – volume: 6 year: 2015 ident: CR32 article-title: Interaction-induced decay of a heteronuclear two-atom system publication-title: Nat. Commun. doi: 10.1038/ncomms8803 – volume: 8 start-page: 041055 year: 2018 ident: CR79 article-title: Alkaline-earth atoms in optical tweezers publication-title: Phys. Rev. X – volume: 506 start-page: 71 year: 2014 end-page: 75 ident: CR84 article-title: An optical lattice clock with accuracy and stability at the 10 level publication-title: Nature doi: 10.1038/nature12941 – volume: 85 start-page: 724 year: 2000 end-page: 727 ident: CR150 article-title: 3D Raman sideband cooling of cesium atoms at high density publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.724 – volume: 121 start-page: 123603 year: 2018 ident: CR7 article-title: High-fidelity control and entanglement of Rydberg-atom qubits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.123603 – volume: 501 start-page: 521 year: 2013 end-page: 525 ident: CR109 article-title: Observation of dipolar spin-exchange interactions with lattice-confined polar molecules publication-title: Nature doi: 10.1038/nature12483 – volume: 595 start-page: 233 year: 2021 end-page: 238 ident: CR58 article-title: Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms publication-title: Nature doi: 10.1038/s41586-021-03585-1 – volume: 123 start-page: 213602 year: 2019 ident: CR30 article-title: Real-time observation of single atoms trapped and interfaced to a nanofiber cavity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.213602 – volume: 97 start-page: 022508 year: 2018 ident: CR98 article-title: Theory of long-range interactions for Rydberg states attached to hyperfine-split cores publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.022508 – volume: 366 start-page: 93 year: 2019 end-page: 97 ident: CR25 article-title: Seconds-scale coherence on an optical clock transition in a tweezer array publication-title: Science doi: 10.1126/science.aay0644 – volume: 568 start-page: 207 year: 2019 end-page: 211 ident: CR21 article-title: Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator publication-title: Nature doi: 10.1038/s41586-019-1070-1 – volume: 2 start-page: 013251 year: 2020 ident: CR133 article-title: Sideband cooling of molecules in optical traps publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.013251 – volume: 321 start-page: 1062 year: 2008 ident: 1357_CR113 publication-title: Science doi: 10.1126/science.1159909 – volume: 122 start-page: 173201 year: 2019 ident: 1357_CR81 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.173201 – volume: 101 start-page: 243002 year: 2008 ident: 1357_CR127 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.243002 – volume: 411 start-page: 1024 year: 2001 ident: 1357_CR1 publication-title: Nature doi: 10.1038/35082512 – volume: 506 start-page: 71 year: 2014 ident: 1357_CR84 publication-title: Nature doi: 10.1038/nature12941 – volume: 97 start-page: 022508 year: 2018 ident: 1357_CR98 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.022508 – volume: 363 start-page: 853 year: 2019 ident: 1357_CR119 publication-title: Science doi: 10.1126/science.aau7230 – volume: 587 start-page: 583 year: 2020 ident: 1357_CR48 publication-title: Nature doi: 10.1038/s41586-020-2936-y – volume: 7 start-page: 1 year: 2020 ident: 1357_CR31 publication-title: Optica doi: 10.1364/OPTICA.384408 – volume: 17 start-page: 1149 year: 2021 ident: 1357_CR121 publication-title: Nat. Phys. doi: 10.1038/s41567-021-01328-7 – volume: 115 start-page: 073003 year: 2015 ident: 1357_CR60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.073003 – volume: 8 start-page: 021070 year: 2018 ident: 1357_CR20 publication-title: Phys. Rev. X – volume: 123 start-page: 230501 year: 2019 ident: 1357_CR69 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.230501 – volume: 89 start-page: 023005 year: 2002 ident: 1357_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.023005 – volume: 62 start-page: 403 year: 1989 ident: 1357_CR52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.403 – volume: 354 start-page: 1021 year: 2016 ident: 1357_CR12 publication-title: Science doi: 10.1126/science.aah3778 – volume: 49 start-page: 144004 year: 2016 ident: 1357_CR97 publication-title: J. Phys. B doi: 10.1088/0953-4075/49/14/144004 – volume: 61 start-page: 062309 year: 2000 ident: 1357_CR63 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.61.062309 – volume: 357 start-page: 372 year: 2017 ident: 1357_CR120 publication-title: Science doi: 10.1126/science.aal5066 – volume: 568 start-page: 207 year: 2019 ident: 1357_CR21 publication-title: Nature doi: 10.1038/s41586-019-1070-1 – volume: 113 start-page: 120402 year: 2014 ident: 1357_CR103 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.120402 – volume: 9 start-page: 021039 year: 2019 ident: 1357_CR138 publication-title: Phys. Rev. X – volume: 75 start-page: 040301 year: 2007 ident: 1357_CR37 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.040301 – volume: 88 start-page: 051401 year: 2013 ident: 1357_CR148 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.051401 – volume: 124 start-page: 123201 year: 2020 ident: 1357_CR76 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.123201 – volume: 588 start-page: 408 year: 2020 ident: 1357_CR27 publication-title: Nature doi: 10.1038/s41586-020-3009-y – volume: 80 start-page: 885 year: 2008 ident: 1357_CR16 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.885 – volume: 595 start-page: 227 year: 2021 ident: 1357_CR57 publication-title: Nature doi: 10.1038/s41586-021-03582-4 – volume: 16 start-page: 857 year: 2020 ident: 1357_CR82 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0903-z – volume: 545 start-page: 203 year: 2017 ident: 1357_CR118 publication-title: Nature doi: 10.1038/nature22338 – volume: 2 start-page: 1800067 year: 2019 ident: 1357_CR104 publication-title: Adv. Quantum Technol. doi: 10.1002/qute.201800067 – volume: 125 start-page: 043401 year: 2020 ident: 1357_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.043401 – volume: 13 start-page: 1173 year: 2017 ident: 1357_CR129 publication-title: Nat. Phys. doi: 10.1038/nphys4241 – volume: 2 start-page: 041014 year: 2012 ident: 1357_CR50 publication-title: Phys. Rev. X – volume: 562 start-page: 355 year: 2018 ident: 1357_CR105 publication-title: Nature doi: 10.1038/s41586-018-0599-8 – volume: 19 start-page: 023007 year: 2017 ident: 1357_CR140 publication-title: New J. Phys. doi: 10.1088/1367-2630/aa5a3b – volume: 6 year: 2015 ident: 1357_CR32 publication-title: Nat. Commun. doi: 10.1038/ncomms8803 – volume: 75 start-page: 4011 year: 1995 ident: 1357_CR53 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.4011 – volume: 102 start-page: 240502 year: 2009 ident: 1357_CR70 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.240502 – volume: 340 start-page: 1202 year: 2013 ident: 1357_CR28 publication-title: Science doi: 10.1126/science.1237125 – volume: 370 start-page: 331 year: 2020 ident: 1357_CR55 publication-title: Science doi: 10.1126/science.aba7468 – volume: 104 start-page: 010502 year: 2010 ident: 1357_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.010502 – volume: 104 start-page: 030402 year: 2010 ident: 1357_CR143 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.030402 – volume: 365 start-page: 775 year: 2019 ident: 1357_CR23 publication-title: Science doi: 10.1126/science.aav9105 – volume: 127 start-page: 100504 year: 2020 ident: 1357_CR74 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.100504 – volume: 120 start-page: 103201 year: 2018 ident: 1357_CR94 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.103201 – volume: 112 start-page: 103601 year: 2014 ident: 1357_CR100 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.103601 – volume: 442 start-page: 151 year: 2006 ident: 1357_CR11 publication-title: Nature doi: 10.1038/442151a – volume: 101 start-page: 062308 year: 2020 ident: 1357_CR112 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.062308 – volume: 106 start-page: 160801 year: 2011 ident: 1357_CR91 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.160801 – volume: 345 start-page: 306 year: 2014 ident: 1357_CR4 publication-title: Science doi: 10.1126/science.1250057 – volume: 121 start-page: 123603 year: 2018 ident: 1357_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.123603 – volume: 293 start-page: 825 year: 2001 ident: 1357_CR89 publication-title: Science doi: 10.1126/science.1061171 – volume: 81 start-page: 5768 year: 1998 ident: 1357_CR149 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.5768 – ident: 1357_CR125 doi: 10.1103/PhysRevLett.127.123202 – volume: 114 start-page: 100503 year: 2015 ident: 1357_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.100503 – volume: 122 start-page: 143602 year: 2019 ident: 1357_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.143602 – volume: 561 start-page: 79 year: 2018 ident: 1357_CR56 publication-title: Nature doi: 10.1038/s41586-018-0450-2 – volume: 44 start-page: 184010 year: 2011 ident: 1357_CR95 publication-title: J. Phys. B doi: 10.1088/0953-4075/44/18/184010 – volume: 21 start-page: 093049 year: 2019 ident: 1357_CR136 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab428d – volume: 365 start-page: 1156 year: 2019 ident: 1357_CR9 publication-title: Science doi: 10.1126/science.aax1265 – volume: 501 start-page: 521 year: 2013 ident: 1357_CR109 publication-title: Nature doi: 10.1038/nature12483 – volume: 125 start-page: 180402 year: 2020 ident: 1357_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.180402 – ident: 1357_CR72 – volume: 85 start-page: 2208 year: 2000 ident: 1357_CR62 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.2208 – volume: 5 start-page: 115 year: 2009 ident: 1357_CR65 publication-title: Nat. Phys. doi: 10.1038/nphys1183 – volume: 104 start-page: 070802 year: 2010 ident: 1357_CR90 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.070802 – volume: 440 start-page: 779 year: 2006 ident: 1357_CR18 publication-title: Nature doi: 10.1038/nature04628 – volume: 125 start-page: 243602 year: 2020 ident: 1357_CR88 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.243602 – ident: 1357_CR142 – volume: 332 start-page: 336 year: 2011 ident: 1357_CR41 publication-title: Science doi: 10.1126/science.1201351 – volume: 121 start-page: 083201 year: 2018 ident: 1357_CR130 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.083201 – volume: 14 start-page: 405 year: 2018 ident: 1357_CR147 publication-title: Nat. Phys. doi: 10.1038/s41567-017-0030-7 – volume: 123 start-page: 260505 year: 2019 ident: 1357_CR101 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.260505 – volume: 9 start-page: 6830 year: 2018 ident: 1357_CR110 publication-title: Chem. Sci. doi: 10.1039/C8SC02355G – volume: 85 start-page: 724 year: 2000 ident: 1357_CR150 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.724 – volume: 87 start-page: 637 year: 2015 ident: 1357_CR83 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.637 – volume: 10 start-page: 021067 year: 2020 ident: 1357_CR73 publication-title: Phys. Rev. X – volume: 551 start-page: 579 year: 2017 ident: 1357_CR6 publication-title: Nature doi: 10.1038/nature24622 – volume: 123 start-page: 170503 year: 2019 ident: 1357_CR68 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.170503 – volume: 123 start-page: 033201 year: 2019 ident: 1357_CR92 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.033201 – volume: 8 year: 2018 ident: 1357_CR146 publication-title: Sci. Rep. doi: 10.1038/s41598-018-21699-x – volume: 100 start-page: 063429 year: 2019 ident: 1357_CR139 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.063429 – volume: 15 start-page: 1118 year: 2019 ident: 1357_CR124 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0632-3 – volume: 369 start-page: 1366 year: 2020 ident: 1357_CR134 publication-title: Science doi: 10.1126/science.abc5357 – volume: 527 start-page: 208 year: 2015 ident: 1357_CR39 publication-title: Nature doi: 10.1038/nature16073 – volume: 92 start-page: 042710 year: 2015 ident: 1357_CR77 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.042710 – volume: 114 start-page: 080402 year: 2015 ident: 1357_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.080402 – volume: 97 start-page: 063423 year: 2018 ident: 1357_CR141 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.063423 – volume: 126 start-page: 020401 year: 2021 ident: 1357_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.020401 – volume: 2 start-page: 013251 year: 2020 ident: 1357_CR133 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.013251 – volume: 595 start-page: 233 year: 2021 ident: 1357_CR58 publication-title: Nature doi: 10.1038/s41586-021-03585-1 – volume: 12 start-page: 71 year: 2016 ident: 1357_CR66 publication-title: Nat. Phys. doi: 10.1038/nphys3487 – volume: 126 start-page: 123402 year: 2021 ident: 1357_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.123402 – volume: 116 start-page: 063005 year: 2016 ident: 1357_CR117 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.063005 – volume: 366 start-page: 1111 year: 2019 ident: 1357_CR144 publication-title: Science doi: 10.1126/science.aay9531 – volume: 342 start-page: 457 year: 2013 ident: 1357_CR42 publication-title: Science doi: 10.1126/science.1240516 – volume: 9 start-page: 011057 year: 2019 ident: 1357_CR61 publication-title: Phys. Rev. X – volume: 467 start-page: 820 year: 2010 ident: 1357_CR116 publication-title: Nature doi: 10.1038/nature09443 – volume: 10 start-page: 021049 year: 2020 ident: 1357_CR131 publication-title: Phys. Rev. X – volume: 8 start-page: 041054 year: 2018 ident: 1357_CR78 publication-title: Phys. Rev. X – volume: 70 start-page: 040302 year: 2004 ident: 1357_CR40 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.70.040302 – volume: 512 start-page: 286 year: 2014 ident: 1357_CR128 publication-title: Nature doi: 10.1038/nature13634 – volume: 120 start-page: 163201 year: 2018 ident: 1357_CR132 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.163201 – volume: 124 start-page: 073401 year: 2020 ident: 1357_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.073401 – volume: 15 start-page: 640 year: 2019 ident: 1357_CR46 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0508-6 – volume: 2 start-page: 341 year: 2006 ident: 1357_CR107 publication-title: Nat. Phys. doi: 10.1038/nphys287 – volume: 365 start-page: 570 year: 2019 ident: 1357_CR22 publication-title: Science doi: 10.1126/science.aax9743 – volume: 8 start-page: 041055 year: 2018 ident: 1357_CR79 publication-title: Phys. Rev. X – ident: 1357_CR99 – volume: 121 start-page: 253401 year: 2018 ident: 1357_CR122 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.253401 – volume: 9 start-page: 041052 year: 2019 ident: 1357_CR26 publication-title: Phys. Rev. X – volume: 16 start-page: 132 year: 2020 ident: 1357_CR24 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0733-z – volume: 122 start-page: 143002 year: 2019 ident: 1357_CR80 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.143002 – volume: 110 start-page: 133001 year: 2013 ident: 1357_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.133001 – volume: 360 start-page: 900 year: 2018 ident: 1357_CR8 publication-title: Science doi: 10.1126/science.aar7797 – volume: 119 start-page: 133002 year: 2017 ident: 1357_CR137 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.133002 – volume: 354 start-page: 1024 year: 2016 ident: 1357_CR13 publication-title: Science doi: 10.1126/science.aah3752 – volume: 3 start-page: 696 year: 2007 ident: 1357_CR38 publication-title: Nat. Phys. doi: 10.1038/nphys698 – volume: 49 start-page: 202001 year: 2016 ident: 1357_CR75 publication-title: J. Phys. B doi: 10.1088/0953-4075/49/20/202001 – volume: 104 start-page: 010503 year: 2010 ident: 1357_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.010503 – volume: 107 start-page: 115301 year: 2011 ident: 1357_CR108 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.115301 – volume: 93 start-page: 032138 year: 2016 ident: 1357_CR86 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.93.032138 – volume: 309 start-page: 454 year: 2005 ident: 1357_CR17 publication-title: Science doi: 10.1126/science.1113394 – volume: 124 start-page: 253401 year: 2020 ident: 1357_CR54 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.253401 – volume: 88 start-page: 067901 year: 2002 ident: 1357_CR106 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.067901 – volume: 108 start-page: 075303 year: 2012 ident: 1357_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.075303 – volume: 118 start-page: 065302 year: 2017 ident: 1357_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.065302 – volume: 358 start-page: 90 year: 2017 ident: 1357_CR87 publication-title: Science doi: 10.1126/science.aam5538 – volume: 373 start-page: abg9502 year: 2021 ident: 1357_CR145 publication-title: Science doi: 10.1126/science.abg9502 – volume: 98 start-page: 040302 year: 2018 ident: 1357_CR111 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.040302 – volume: 6 start-page: 951 year: 2010 ident: 1357_CR59 publication-title: Nat. Phys. doi: 10.1038/nphys1778 – volume: 5 start-page: 110 year: 2009 ident: 1357_CR64 publication-title: Nat. Phys. doi: 10.1038/nphys1178 – volume: 564 start-page: 87 year: 2018 ident: 1357_CR85 publication-title: Nature doi: 10.1038/s41586-018-0738-2 – volume: 322 start-page: 231 year: 2008 ident: 1357_CR114 publication-title: Science doi: 10.1126/science.1163861 – volume: 124 start-page: 063001 year: 2020 ident: 1357_CR123 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.063001 – volume: 46 start-page: R6797 year: 1992 ident: 1357_CR102 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.46.R6797 – volume: 13 start-page: 714 year: 2019 ident: 1357_CR93 publication-title: Nat. Photon. doi: 10.1038/s41566-019-0493-4 – volume: 123 start-page: 213602 year: 2019 ident: 1357_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.213602 – volume: 31 start-page: 395 year: 2004 ident: 1357_CR126 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2004-00167-2 – volume: 10 year: 2019 ident: 1357_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09635-7 – volume: 561 start-page: 83 year: 2018 ident: 1357_CR15 publication-title: Nature doi: 10.1038/s41586-018-0458-7 – volume: 82 start-page: 2313 year: 2010 ident: 1357_CR19 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.2313 – volume: 101 start-page: 133005 year: 2008 ident: 1357_CR115 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.133005 – volume: 17 start-page: 025001 year: 2015 ident: 1357_CR135 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/2/025001 – volume: 119 start-page: 053202 year: 2017 ident: 1357_CR71 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.053202 – volume: 2 start-page: 023108 year: 2020 ident: 1357_CR34 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.023108 – volume: 97 start-page: 053803 year: 2018 ident: 1357_CR67 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.053803 – volume: 89 start-page: 023411 year: 2014 ident: 1357_CR96 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.89.023411 – volume: 366 start-page: 93 year: 2019 ident: 1357_CR25 publication-title: Science doi: 10.1126/science.aay0644 |
SSID | ssj0042613 |
Score | 2.7215288 |
SecondaryResourceType | review_article |
Snippet | Single atoms and molecules can be trapped in tightly focused beams of light that form ‘optical tweezers’, affording exquisite capabilities for the control and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1324 |
SubjectTerms | 639/766/36 639/766/483 Arrays Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Cooling Data processing Experiments Ion beams Lasers Light beams Mathematical and Computational Physics Molecular Optical and Plasma Physics Optics Phase transitions Physics Physics and Astronomy Quantum computing Quantum phenomena Review Article Theoretical Ultracold atoms |
Title | Quantum science with optical tweezer arrays of ultracold atoms and molecules |
URI | https://link.springer.com/article/10.1038/s41567-021-01357-2 https://www.proquest.com/docview/2607919813 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BKyQWxFMUSuWBDSxix6ndCVHUUiGoAFGpW-TYzkQfJOkAvx47cahAgjmJh7vcfd89fAdwLpWlxVIrTAXpYiaYtCalGY6ECgRLpIVol4d8HHdHE3Y_jaY-4Zb7tsraJ5aOWi-Uy5FfWd7NezZCJuH18h27rVGuuupXaGxC07pgIRrQ7A_GTy-1L3bxQVhdiYwwZTz012aCUFzlLnTh2LUoWBoUcUx_QtOab_4qkZbIM9yFHU8Z0U2l4z3YMPN92CpbN1V-AA_PKyud1Qx5MEMutYoWyzJJjVwX1qfJkMwy-ZGjRYpWb0XmZlVrZOPtWY7kXKNZtSTX5IcwGQ5eb0fY70jAyhpPgQ3hkpiUprKnmCYstXDOlA5kr8uJVj2TSCqpcEQq4oQYkpBEqCjhOtDWdtPwCBrzxdwcA0ot-5FKRJKRlAWMyZCqQFnwUgnhioUtILV4YuUHiLs9Fm9xWcgORVyJNLYijUuRxrQFF9_fLKvxGf--3a6lHntTyuO14ltwWWti_fjv007-P-0UtqlTftma0oZGka3MmSUYRdKBTTG860DzZtjvjzv-n_oCap_NKw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5REGovCPoQKQF8aE-txfqxsXOoEGpJQwlISCBxc72290Qe3U1UpT-qv7HjfTQCCW6c1-vD-LO_b8YzHoAP1qEstt5RrlmPSi0tbikvaapdomVmkaJjHPLisje8kT9u09s1-NvWwsS0yvZMrA5qP3UxRn6Eulv10UNm4nj2i8auUfF2tW2hUcPiPCx_o8tWfjn7huv7kfPB6fXXIW26ClCHcJvTwJRlIee57TvpmcyRAKXzie33FPOuHzLLLddReqSKscAylmmXZsonHtGeC5z3BWxIgUweK9MH39uTP3ojoi7ATCmXSjRFOonQR2V0lBSNCREoulJF-X0iXKnbBxeyFc8NtmGrEajkpEbUDqyFyWvYrBJFXfkGRlcLXIvFmDTUSWIgl0xnVUicxJyvP6EgtijssiTTnCzu5kV8GdsT9O7HJbETT8Z1S95QvoWbZ7HdO1ifTCdhF0iOWss6nVrJcplIaQV3iUOqdBlTTooOsNY8xjXPlceuGXemujYX2tQmNWhSU5nU8A58-v_PrH6s48nR3dbqptm4pVnBrAOf25VYfX58tvdPz3YIL4fXFyMzOrs834NXPAKhSorpwvq8WIR9lDbz7KDCE4Gfzw3gfw4gBrQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JThwxEC2RQYm4IMgihtUHckqsabvdY88BRWEZsWVEoiBxc9y2-8QsdM8IwafxdZR7yQgkuHFutw_lZ79X5XIVwK6xKIuNs5Qr1qVCCYNbygmaKBspkRqk6BCH_DXoHl-K06vkagEemrcwIa2yORPLg9qNbYiRd1B3yx56yCzuZHVaxMVh_8fkhoYOUuGmtWmnUUHkzN_dovtW7J0c4lp_5bx_9PfgmNYdBqhF6E2pZ9Iwn_HM9KxwTGRIhsK6yPS6kjnb86nhhqsgQxLJmGcpS5VNUukih8jPYpz3HSzK4BW1YHH_aHDxp-GB4JvE1XPMhHIh4_rJThSrThHcJklDegRKsERS_pQW51r32fVsyXr9FViu5Sr5WeFrFRb86CO8L9NGbfEJzn_PcGVmQ1ITKQlhXTKelAFyEjLA7n1OTJ6bu4KMMzK7nuahTrYj6OsPC2JGjgyrBr2--AyXb2K9L9AajUd-DUiGystYlRjBMhEJYWJuI4vEaVMmrYjbwBrzaFsXLw89NK51eYkeK12ZVKNJdWlSzdvw7f8_k6p0x6ujNxur63obF3oOujZ8b1Zi_vnl2dZfn20HPiB49fnJ4GwDlnjAQZkhswmtaT7zW6hzpul2DSgC_94aw4_KKAxG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+science+with+optical+tweezer+arrays+of+ultracold+atoms+and+molecules&rft.jtitle=Nature+physics&rft.au=Kaufman%2C+Adam+M&rft.au=Kang-Kuen%2C+Ni&rft.date=2021-12-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=17&rft.issue=12&rft.spage=1324&rft.epage=1333&rft_id=info:doi/10.1038%2Fs41567-021-01357-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |