Dynamical behavior and multiple optical solitons for the fractional Ginzburg–Landau equation with β-derivative in optical fibers
The main goal of the current work is to study dynamical behavior and dispersive optical solitons for the fractional Ginzburg–Landau equation in optical fibers. Starting with the traveling wave transformations, the fractional Ginzburg–Landau model is converted into an equivalent ordinary differential...
Saved in:
Published in | Optical and quantum electronics Vol. 56; no. 2 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0306-8919 1572-817X |
DOI | 10.1007/s11082-023-05761-1 |
Cover
Abstract | The main goal of the current work is to study dynamical behavior and dispersive optical solitons for the fractional Ginzburg–Landau equation in optical fibers. Starting with the traveling wave transformations, the fractional Ginzburg–Landau model is converted into an equivalent ordinary differential traveling wave system. Then, the Hamiltonian function and orbits phase portraits of this system are found. Here, we derived explicit fractional periodic wave solutions, bell-shaped solitary wave solutions and kink-shaped solitary wave solutions through the bifurcation theory of differential dynamical system. In addition to, some other traveling wave solutions are obtained by using the polynomial complete discriminant method and symbolic computation. Most notably, we give the classification of all single traveling wave solutions of fractional Ginzburg–Landau equation at the same time. The obtained optical soliton solutions in this work may substantially improve or complement the corresponding results in the known references. Finally, we give the comparison between our solutions and other’s results. |
---|---|
AbstractList | The main goal of the current work is to study dynamical behavior and dispersive optical solitons for the fractional Ginzburg–Landau equation in optical fibers. Starting with the traveling wave transformations, the fractional Ginzburg–Landau model is converted into an equivalent ordinary differential traveling wave system. Then, the Hamiltonian function and orbits phase portraits of this system are found. Here, we derived explicit fractional periodic wave solutions, bell-shaped solitary wave solutions and kink-shaped solitary wave solutions through the bifurcation theory of differential dynamical system. In addition to, some other traveling wave solutions are obtained by using the polynomial complete discriminant method and symbolic computation. Most notably, we give the classification of all single traveling wave solutions of fractional Ginzburg–Landau equation at the same time. The obtained optical soliton solutions in this work may substantially improve or complement the corresponding results in the known references. Finally, we give the comparison between our solutions and other’s results. |
ArticleNumber | 175 |
Author | Tang, Lu |
Author_xml | – sequence: 1 givenname: Lu surname: Tang fullname: Tang, Lu email: tanglumath@163.com organization: School of Mathematics and Physics, Chengdu University of Technology |
BookMark | eNp9kEGKFDEUhoOMYM_oBVwFXJeTV0lVJUsZdUZocKPgLiRVL9MZqpOeJNUyrgSP4E08iIfwJGa6RcHFrAL5_-_l5TslJyEGJOQ5sJfA2HCeAZhsG9byhnVDDw08IivohraRMHw6ISvGWd9IBeoJOc35hjHWi46tyLfXd8Fs_WhmanFj9j4masJEt8tc_G5GGnflkOY4-xJDpq42ygapS2YsPoaaXfrwxS7p-tfX7-sKm4Xi7WLuQ_rZlw39-aOZMPl9vdoj9eHvUOctpvyUPHZmzvjsz3lGPr598-Hiqlm_v3x38WrdjBxUaSannMV-AmWNUExMwvR24NIaNznhFEiJIzoOvUW0MArVMy7k0HfQoeCOn5EXx7m7FG8XzEXfxCXVD2TdKgaKczHI2mqPrTHFnBM6vUt-a9KdBqbvZeujbF1l64NsDRWS_0GjLwcDJRk_P4zyI5rrO-Ea07-tHqB-A72UmvY |
CitedBy_id | crossref_primary_10_1007_s12346_024_01022_y crossref_primary_10_3934_math_20241254 crossref_primary_10_3934_math_20241460 crossref_primary_10_1142_S0217984924503809 crossref_primary_10_1515_phys_2024_0093 crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_03031 crossref_primary_10_3934_mbe_2024241 crossref_primary_10_3934_math_2024309 crossref_primary_10_1007_s12596_024_01938_3 crossref_primary_10_3934_math_2024326 crossref_primary_10_3934_math_20241278 crossref_primary_10_3934_math_2024523 crossref_primary_10_1038_s41598_024_74044_w crossref_primary_10_1007_s12596_024_01757_6 crossref_primary_10_1016_j_chaos_2024_115353 crossref_primary_10_1007_s11082_024_06669_0 crossref_primary_10_1142_S021798492450427X crossref_primary_10_3390_fractalfract8060348 crossref_primary_10_47087_mjm_1388427 crossref_primary_10_1016_j_rinp_2024_107626 crossref_primary_10_1016_j_rinp_2024_107667 crossref_primary_10_1007_s12346_024_01213_7 crossref_primary_10_1016_j_rinp_2024_107537 crossref_primary_10_1016_j_rinp_2024_107679 |
Cites_doi | 10.1016/j.ijleo.2017.08.018 10.1515/phys-2016-0010 10.1016/j.ijleo.2022.168626 10.3390/math11040861 10.1016/j.ijleo.2023.170639 10.1016/j.cnsns.2021.106037 10.1016/j.physleta.2023.128943 10.3390/math8071127 10.1007/s11082-021-03496-5 10.1007/s11071-023-08531-6 10.1007/s11071-021-06550-9 10.1016/j.apm.2008.05.018 10.1016/j.cnsns.2019.104903 10.1016/j.cjph.2019.08.009 10.1016/j.ijleo.2022.169555 10.1016/j.ijleo.2017.10.104 10.1016/S1007-5704(03)00049-2 10.1016/j.physleta.2018.06.023 10.1007/s11071-022-07503-6 10.1016/j.physleta.2021.127802 10.1016/j.ijleo.2021.167258 10.1007/s11071-023-08719-w 10.1016/j.cam.2014.01.002 10.1016/j.ijleo.2022.169276 10.1016/j.chaos.2020.110556 10.1103/RevModPhys.74.99 10.1007/s11071-022-07833-5 10.1007/s11071-018-4050-3 10.1007/s11071-022-07884-8 10.1016/j.ijleo.2020.165331 10.1016/j.ijleo.2021.167750 10.1007/s12596-020-00644-0 10.1111/mafi.12024 10.1140/epjp/s13360-020-01001-7 10.1016/j.camwa.2009.08.039 10.1007/s11082-021-03245-8 10.1016/j.cnsns.2013.04.001 10.1016/j.aml.2011.11.041 10.1016/j.aej.2021.04.030 10.1016/j.ijleo.2018.04.015 10.1007/s11071-020-06141-0 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11082-023-05761-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1572-817X |
ExternalDocumentID | 10_1007_s11082_023_05761_1 |
GrantInformation_xml | – fundername: Specialized Research Fund for the Doctoral Program of Higher Education of China grantid: 20115134110001 funderid: http://dx.doi.org/10.13039/501100013286 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 Z8Z Z92 ZMTXR ZY4 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-df9fbe6d19ba4904d4a6b738bafdf4f9188ecef316beeb1c496034876515e43f3 |
IEDL.DBID | U2A |
ISSN | 0306-8919 |
IngestDate | Fri Jul 25 09:02:25 EDT 2025 Tue Jul 01 01:26:40 EDT 2025 Thu Apr 24 23:10:55 EDT 2025 Fri Feb 21 02:39:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Derivative Bifurcations Symbolic computation Fractional Ginzburg–Landau equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-df9fbe6d19ba4904d4a6b738bafdf4f9188ecef316beeb1c496034876515e43f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2901933478 |
PQPubID | 2043598 |
ParticipantIDs | proquest_journals_2901933478 crossref_primary_10_1007_s11082_023_05761_1 crossref_citationtrail_10_1007_s11082_023_05761_1 springer_journals_10_1007_s11082_023_05761_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Optical and quantum electronics |
PublicationTitleAbbrev | Opt Quant Electron |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Malomed (CR36) 2022; 422 Kucche, Sutar (CR31) 2021; 143 Yepez-Martnez, Gomez-Aguilar, Dumitru (CR57) 2018; 155 Ortigueira (CR37) 2009; 33 Tang (CR46) 2022; 262 Hosseini, Salahshour, Mirzazadeh (CR27) 2021; 136 Bo, Wang, Dai (CR13) 2023; 111 Khan, Wu, Faraz (CR30) 2012; 25 Tang, Biswas, Yildirim, Alghamdi (CR49) 2023; 480 Fang, Wang, Dai (CR21) 2021; 105 Corlay, Lebovits, Vhel (CR16) 2014; 24 Graef, Tinc (CR24) 2021; 103 Alquran (CR4) 2021; 53 Alquran, Jaradat (CR7) 2023; 11 Tang (CR45) 2022; 161 Tang (CR42) 2021; 245 Zhou, Triki, Xu (CR59) 2021; 160 Tang (CR44) 2022; 265 Biswas, Alqahtani (CR10) 2017; 147 Tang, Chen (CR48) 2022; 54 Han, Li, Zhang (CR26) 2021; 395 Chen, Xiao (CR14) 2022; 109 Li, Dai (CR33) 2007 Alquran (CR6) 2023; 68 Rosa, de Oliveira (CR39) 2015; 6 Geng, Mou, Dai (CR23) 2023; 111 Ouahid, Owyed, Abdou, Alshehri (CR38) 2021; 60 Chen, Jiang, Wang (CR15) 2020; 222 Tarasov (CR50) 2013; 18 Akram, Sadaf, Mariyam (CR3) 2022; 256 Geng, Zhu, Cao (CR22) 2023; 111 Hammad, Khalil (CR25) 2014; 94 Magin (CR35) 2010; 59 Alquran (CR5) 2023; 7 Biswas, Asma, Guggilla (CR12) 2020; 384 Jaradat, Alquran (CR28) 2020; 8 Biswas, Sonmezoglu, Ekici (CR11) 2019; 199 Eslami (CR20) 2016; 285 Scott (CR40) 2005 Zhou, Zhou, Zhu (CR58) 2020; 141 Aranson, Kramer (CR8) 2002; 74 Yang, Hou, Zeng (CR56) 1996; 26 Li, Xie, Zhu (CR34) 2018; 92 Khalil, Horani, Yousef (CR29) 2014; 264 Das, Biswas, Ekici (CR18) 2019; 61 Weitzner, Zaslavsky (CR52) 2003; 8 Wang, Wang, Dai (CR51) 2022; 152 Li (CR32) 2013 Tang (CR41) 2020; 18 Wen, Jiang, Dai (CR53) 2023; 111 Biswas (CR9) 2020; 49 Abdon, Dumitru, Ahmed (CR1) 2016; 14 Tang (CR43) 2022; 52 Esen, Sulaiman (CR19) 2018; 167 Tang (CR47) 2023; 276 Xie, Yang, Li (CR54) 2018; 382 Akram, Sarfraz (CR2) 2021; 242 Cresson, Szafranska (CR17) 2020; 82 Xie, Li, Kang (CR55) 2021; 103 MD Ortigueira (5761_CR37) 2009; 33 S Corlay (5761_CR16) 2014; 24 L Yang (5761_CR56) 1996; 26 A Biswas (5761_CR12) 2020; 384 L Tang (5761_CR41) 2020; 18 M Alquran (5761_CR6) 2023; 68 JB Li (5761_CR32) 2013 WB Bo (5761_CR13) 2023; 111 TY Han (5761_CR26) 2021; 395 C Rosa (5761_CR39) 2015; 6 M Alquran (5761_CR5) 2023; 7 A Biswas (5761_CR11) 2019; 199 I Jaradat (5761_CR28) 2020; 8 VE Tarasov (5761_CR50) 2013; 18 G Akram (5761_CR3) 2022; 256 G Akram (5761_CR2) 2021; 242 L Tang (5761_CR43) 2022; 52 YX Chen (5761_CR14) 2022; 109 J Cresson (5761_CR17) 2020; 82 L Tang (5761_CR44) 2022; 265 M Alquran (5761_CR4) 2021; 53 MA Hammad (5761_CR25) 2014; 94 KX Wen (5761_CR53) 2023; 111 KD Kucche (5761_CR31) 2021; 143 RL Magin (5761_CR35) 2010; 59 Q Zhou (5761_CR59) 2021; 160 A Biswas (5761_CR10) 2017; 147 RR Wang (5761_CR51) 2022; 152 YY Xie (5761_CR55) 2021; 103 BA Malomed (5761_CR36) 2022; 422 L Tang (5761_CR45) 2022; 161 L Ouahid (5761_CR38) 2021; 60 A Esen (5761_CR19) 2018; 167 L Tang (5761_CR42) 2021; 245 IS Aranson (5761_CR8) 2002; 74 JR Zhou (5761_CR58) 2020; 141 M Alquran (5761_CR7) 2023; 11 Y Fang (5761_CR21) 2021; 105 H Weitzner (5761_CR52) 2003; 8 L Tang (5761_CR49) 2023; 480 H Yepez-Martnez (5761_CR57) 2018; 155 A Abdon (5761_CR1) 2016; 14 A Biswas (5761_CR9) 2020; 49 R Khalil (5761_CR29) 2014; 264 K Hosseini (5761_CR27) 2021; 136 L Tang (5761_CR46) 2022; 262 YY Xie (5761_CR54) 2018; 382 M Eslami (5761_CR20) 2016; 285 A Das (5761_CR18) 2019; 61 L Tang (5761_CR47) 2023; 276 KL Geng (5761_CR22) 2023; 111 JB Li (5761_CR33) 2007 AC Scott (5761_CR40) 2005 JR Graef (5761_CR24) 2021; 103 L Tang (5761_CR48) 2022; 54 LF Li (5761_CR34) 2018; 92 KL Geng (5761_CR23) 2023; 111 C Chen (5761_CR15) 2020; 222 Y Khan (5761_CR30) 2012; 25 |
References_xml | – volume: 60 start-page: 5495 year: 2021 end-page: 5510 ident: CR38 article-title: New optical soliton solutions via generalized Kudryashov’s scheme for Ginzburg-Landau equation in fractal order publication-title: Alex. Eng. J. – volume: 103 start-page: 1011 year: 2021 end-page: 1021 ident: CR55 article-title: New solitons and comditional stability to the high dispersive nonlinear Schrödinger equation with parabolic law noninearity publication-title: Nonlinear Dyn. – volume: 141 year: 2020 ident: CR58 article-title: Peakon, rational function and periodic solutions for Tzitzeica-Dodd-Bullough type equations publication-title: Chaos Solitons Fractals – volume: 276 year: 2023 ident: CR47 article-title: Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg–Landau equation in communication systems publication-title: Optik – volume: 155 start-page: 357 year: 2018 end-page: 365 ident: CR57 article-title: Beta-derivative and subequation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion publication-title: Optik – volume: 111 start-page: 16483 year: 2023 end-page: 16496 ident: CR22 article-title: Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation publication-title: Nonlinear Dyn. – volume: 422 year: 2022 ident: CR36 article-title: New findings for the old problem: Exact solutions for domain walls in coupled real Ginzburg-Landau equations publication-title: Phys. Lett. A – volume: 7 year: 2023 ident: CR5 article-title: The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics and engineering publication-title: Partial Differ. Equ. Appl. Math. – volume: 480 year: 2023 ident: CR49 article-title: Bifurcation analysis and optical solitons for the concatenation model publication-title: Phys. Lett. A – volume: 152 year: 2022 ident: CR51 article-title: Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser publication-title: Opt. Laser Technol. – volume: 199 year: 2019 ident: CR11 article-title: Optical solitons perturbation with Kudryashov’s equation by F-expansion publication-title: Optik – volume: 25 start-page: 1340 year: 2012 end-page: 1346 ident: CR30 article-title: A new fractional analytical approach via a modified Riemann-Liouville derivative publication-title: Appl. Math. Lett. – year: 2013 ident: CR32 publication-title: Singular nonlinear traveling wave equations: bifurcation and exact solutions – volume: 161 year: 2022 ident: CR45 article-title: Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation publication-title: Chaos Solitons Fractals – volume: 6 start-page: 1 year: 2015 end-page: 7 ident: CR39 article-title: Relaxation equations: fractional models publication-title: J. Phys. Math. – volume: 94 start-page: 215 year: 2014 end-page: 221 ident: CR25 article-title: Conformable fractional heat differential equation publication-title: Int. J. Pure Appl. Math. – volume: 265 year: 2022 ident: CR44 article-title: Bifurcations and multiple optical solitons for the dual-mode nonlinear Schrödinger equation with Kerr law nonlinearity publication-title: Optik – volume: 262 year: 2022 ident: CR46 article-title: Bifurcations and dispersive optical solitons for the nonlinear Schrödinger-Hirota equation in DWDM networks publication-title: Optik – volume: 147 start-page: 77 year: 2017 end-page: 81 ident: CR10 article-title: Optical soliton perturbation with complex Ginzburg–Landau equation by semi-inverse variational principle publication-title: Optik – volume: 18 year: 2020 ident: CR41 article-title: Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities publication-title: Res. Phys. – volume: 285 start-page: 141 year: 2016 end-page: 148 ident: CR20 article-title: Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations publication-title: Appl. Math. Comput. – volume: 264 start-page: 65 year: 2014 end-page: 70 ident: CR29 article-title: A new definition of fractional derivative publication-title: J. Comp. Appl. Math. – volume: 92 start-page: 215 year: 2018 end-page: 219 ident: CR34 article-title: New exact solutions for a generalized KDV equation publication-title: Nonlinear Dyn. – volume: 395 year: 2021 ident: CR26 article-title: Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrödinger equation publication-title: Phys. Lett. A – volume: 68 start-page: 106 year: 2023 ident: CR6 article-title: Investigating the revisited generalized stochastic potential-KdV equation: fractional time-derivative against proportional time-delay publication-title: Rom. J. Phys. – year: 2005 ident: CR40 publication-title: Encyclopedia of Nonlinear Science – volume: 111 start-page: 13343 year: 2023 end-page: 13355 ident: CR53 article-title: Abundant vector soliton prediction and model parameter discovery of the coupled mixed derivative nonlinear Schrödinger equation publication-title: Nonlinear Dyn. – volume: 245 year: 2021 ident: CR42 article-title: Dynamical behavior and traveling wave solutions in optical fibers with Schrödinger-Hirota equation publication-title: Optik – volume: 222 year: 2020 ident: CR15 article-title: Dynamical behavior and exact solutions for time-fractional nonlinear Schrödinger equation with parabolic law nonlinearity publication-title: Optik – volume: 18 start-page: 2945 year: 2013 end-page: 2948 ident: CR50 article-title: No violation of the Leibniz rule. No fractional derivative publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 8 start-page: 273 year: 2003 end-page: 281 ident: CR52 article-title: Some applications of fractional equations publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 384 year: 2020 ident: CR12 article-title: Optical solitons with Kudryashov’s equation by Semi-inverse variational principle publication-title: Phys. Lett. A – volume: 136 start-page: 1 year: 2021 end-page: 9 ident: CR27 article-title: The (2+1)-dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions publication-title: Eur. Phys. J. Plus – volume: 53 start-page: 588 year: 2021 ident: CR4 article-title: Optical bidirectional wave-solutions to new two-mode extension of the coupled KdV-Schrödinger equations publication-title: Opt. Quant. Electron. – volume: 49 start-page: 580 year: 2020 end-page: 583 ident: CR9 article-title: Optical soliton cooling with polynomial law of nonlinear refractive index publication-title: J. Opt. – year: 2007 ident: CR33 publication-title: On the study of singular nonlinear traveling wave equations: dynamical system approach – volume: 109 start-page: 2003 year: 2022 end-page: 2012 ident: CR14 article-title: Vector soliton pairs for a coupled nonautonomous NLS model with partially nonlocal coupled nonlinearities under the external potentials publication-title: Nonlinear Dyn. – volume: 59 start-page: 1586 year: 2010 end-page: 1593 ident: CR35 article-title: Fractional calculus models of complex dynamics in biological tissues publication-title: Comput. Math. Appl. – volume: 33 start-page: 2534 year: 2009 end-page: 2537 ident: CR37 article-title: Comments on Modeling fractional stochastic systems as non-random fractional dynamics driven Brownian motions publication-title: Appl. Math. Model. – volume: 54 start-page: 105 year: 2022 ident: CR48 article-title: The classification of single traveling wave solutions for the fractional coupled nonlinear Schrödinger equation publication-title: Opt. Quant. Electron. – volume: 382 start-page: 2506 year: 2018 end-page: 2514 ident: CR54 article-title: New exact solutions to the high dispersive cubic-quintic nonlinear Schrödinger equation publication-title: Phys. Lett. A – volume: 24 start-page: 364 year: 2014 end-page: 402 ident: CR16 article-title: Multifractional stochastic volatility models publication-title: Math. Finance – volume: 8 start-page: 1127 year: 2020 ident: CR28 article-title: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov–Kuznetsov equation publication-title: Mathematics – volume: 26 start-page: 628 year: 1996 end-page: 646 ident: CR56 article-title: Compete discrimation system for polynomial publication-title: Sci. China Ser. E. – volume: 14 start-page: 145 year: 2016 end-page: 149 ident: CR1 article-title: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal publication-title: Open Phys. – volume: 167 start-page: 150 year: 2018 end-page: 156 ident: CR19 article-title: Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation publication-title: Optik – volume: 143 year: 2021 ident: CR31 article-title: Analysis of nonlinear fractional differential equations involving Atangana–Baleanu-Caputo derivative publication-title: Chaos Solitons Fractals – volume: 242 year: 2021 ident: CR2 article-title: Multiple optical soliton solutions for CGL equation with Kerr law nonlinearity via extended modified auxiliary equation mapping method publication-title: Optik – volume: 105 start-page: 603 year: 2021 end-page: 616 ident: CR21 article-title: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN publication-title: Nonlinear Dyn. – volume: 111 start-page: 603 year: 2023 end-page: 617 ident: CR23 article-title: Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations publication-title: Nonlinear Dyn. – volume: 52 start-page: 581 year: 2022 end-page: 592 ident: CR43 article-title: Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings publication-title: J. Opt. – volume: 111 start-page: 1577 year: 2023 end-page: 1588 ident: CR13 article-title: Prediction and dynamical evolution of multipole soliton families in fractIonal Schrödinger equation with the PT-symmetric potential and saturable nonlinearity publication-title: Nonlinear Dyn. – volume: 160 year: 2021 ident: CR59 article-title: Perturbation of chirped localized waves in a dual-power law nonlinear medium publication-title: Chaos Solitons Fractals – volume: 82 year: 2020 ident: CR17 article-title: Comments on various extensions of the RiemannCLiouville fractional derivatives : about the Leibniz and chain rule properties publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 103 year: 2021 ident: CR24 article-title: Razumikhin qualitative analysis of Volterr integro-fractional delay differential equation with Caputo derivatives publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 11 start-page: 861 year: 2023 ident: CR7 article-title: Identifying combination of dark-bright binary-soliton and binary-periodic waves for a new two-mode model derived from the (2 + 1)-Dimensional Nizhnik-Novikov-Veselov equation publication-title: Mathematics – volume: 256 year: 2022 ident: CR3 article-title: A comparative study of the optical solitons for the fractional complex Ginzburg-Landau equation using different fractional differential operators publication-title: Optik – volume: 61 start-page: 255 year: 2019 end-page: 261 ident: CR18 article-title: Optical solitons with complex Ginzburg-Landau equation for two nonlinear forms using F-expansion publication-title: Chinese J. Phys. – volume: 74 start-page: 99 year: 2002 ident: CR8 article-title: The world of the complex Ginzburg-Landau equation publication-title: Rev. Modern Phys. – volume: 147 start-page: 77 year: 2017 ident: 5761_CR10 publication-title: Optik doi: 10.1016/j.ijleo.2017.08.018 – volume: 14 start-page: 145 year: 2016 ident: 5761_CR1 publication-title: Open Phys. doi: 10.1515/phys-2016-0010 – volume: 256 year: 2022 ident: 5761_CR3 publication-title: Optik doi: 10.1016/j.ijleo.2022.168626 – volume: 11 start-page: 861 year: 2023 ident: 5761_CR7 publication-title: Mathematics doi: 10.3390/math11040861 – volume: 7 year: 2023 ident: 5761_CR5 publication-title: Partial Differ. Equ. Appl. Math. – volume: 276 year: 2023 ident: 5761_CR47 publication-title: Optik doi: 10.1016/j.ijleo.2023.170639 – volume: 103 year: 2021 ident: 5761_CR24 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2021.106037 – volume-title: On the study of singular nonlinear traveling wave equations: dynamical system approach year: 2007 ident: 5761_CR33 – volume: 480 year: 2023 ident: 5761_CR49 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2023.128943 – volume: 26 start-page: 628 year: 1996 ident: 5761_CR56 publication-title: Sci. China Ser. E. – volume: 8 start-page: 1127 year: 2020 ident: 5761_CR28 publication-title: Mathematics doi: 10.3390/math8071127 – volume: 160 year: 2021 ident: 5761_CR59 publication-title: Chaos Solitons Fractals – volume: 18 year: 2020 ident: 5761_CR41 publication-title: Res. Phys. – volume: 54 start-page: 105 year: 2022 ident: 5761_CR48 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-021-03496-5 – volume: 395 year: 2021 ident: 5761_CR26 publication-title: Phys. Lett. A – volume: 111 start-page: 13343 year: 2023 ident: 5761_CR53 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08531-6 – volume-title: Encyclopedia of Nonlinear Science year: 2005 ident: 5761_CR40 – volume: 105 start-page: 603 year: 2021 ident: 5761_CR21 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06550-9 – volume: 33 start-page: 2534 year: 2009 ident: 5761_CR37 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2008.05.018 – volume: 82 year: 2020 ident: 5761_CR17 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2019.104903 – volume: 61 start-page: 255 year: 2019 ident: 5761_CR18 publication-title: Chinese J. Phys. doi: 10.1016/j.cjph.2019.08.009 – volume: 265 year: 2022 ident: 5761_CR44 publication-title: Optik doi: 10.1016/j.ijleo.2022.169555 – volume: 155 start-page: 357 year: 2018 ident: 5761_CR57 publication-title: Optik doi: 10.1016/j.ijleo.2017.10.104 – volume: 8 start-page: 273 year: 2003 ident: 5761_CR52 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/S1007-5704(03)00049-2 – volume: 382 start-page: 2506 year: 2018 ident: 5761_CR54 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.06.023 – volume: 109 start-page: 2003 year: 2022 ident: 5761_CR14 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07503-6 – volume: 422 year: 2022 ident: 5761_CR36 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2021.127802 – volume: 242 year: 2021 ident: 5761_CR2 publication-title: Optik doi: 10.1016/j.ijleo.2021.167258 – volume: 111 start-page: 16483 year: 2023 ident: 5761_CR22 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08719-w – volume: 264 start-page: 65 year: 2014 ident: 5761_CR29 publication-title: J. Comp. Appl. Math. doi: 10.1016/j.cam.2014.01.002 – volume-title: Singular nonlinear traveling wave equations: bifurcation and exact solutions year: 2013 ident: 5761_CR32 – volume: 262 year: 2022 ident: 5761_CR46 publication-title: Optik doi: 10.1016/j.ijleo.2022.169276 – volume: 143 year: 2021 ident: 5761_CR31 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110556 – volume: 74 start-page: 99 year: 2002 ident: 5761_CR8 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.74.99 – volume: 111 start-page: 603 year: 2023 ident: 5761_CR23 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07833-5 – volume: 285 start-page: 141 year: 2016 ident: 5761_CR20 publication-title: Appl. Math. Comput. – volume: 92 start-page: 215 year: 2018 ident: 5761_CR34 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4050-3 – volume: 384 year: 2020 ident: 5761_CR12 publication-title: Phys. Lett. A – volume: 94 start-page: 215 year: 2014 ident: 5761_CR25 publication-title: Int. J. Pure Appl. Math. – volume: 111 start-page: 1577 year: 2023 ident: 5761_CR13 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07884-8 – volume: 161 year: 2022 ident: 5761_CR45 publication-title: Chaos Solitons Fractals – volume: 52 start-page: 581 year: 2022 ident: 5761_CR43 publication-title: J. Opt. – volume: 68 start-page: 106 year: 2023 ident: 5761_CR6 publication-title: Rom. J. Phys. – volume: 222 year: 2020 ident: 5761_CR15 publication-title: Optik doi: 10.1016/j.ijleo.2020.165331 – volume: 245 year: 2021 ident: 5761_CR42 publication-title: Optik doi: 10.1016/j.ijleo.2021.167750 – volume: 49 start-page: 580 year: 2020 ident: 5761_CR9 publication-title: J. Opt. doi: 10.1007/s12596-020-00644-0 – volume: 24 start-page: 364 year: 2014 ident: 5761_CR16 publication-title: Math. Finance doi: 10.1111/mafi.12024 – volume: 136 start-page: 1 year: 2021 ident: 5761_CR27 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-01001-7 – volume: 59 start-page: 1586 year: 2010 ident: 5761_CR35 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.08.039 – volume: 53 start-page: 588 year: 2021 ident: 5761_CR4 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-021-03245-8 – volume: 6 start-page: 1 year: 2015 ident: 5761_CR39 publication-title: J. Phys. Math. – volume: 18 start-page: 2945 year: 2013 ident: 5761_CR50 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2013.04.001 – volume: 141 year: 2020 ident: 5761_CR58 publication-title: Chaos Solitons Fractals – volume: 25 start-page: 1340 year: 2012 ident: 5761_CR30 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2011.11.041 – volume: 60 start-page: 5495 year: 2021 ident: 5761_CR38 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.04.030 – volume: 167 start-page: 150 year: 2018 ident: 5761_CR19 publication-title: Optik doi: 10.1016/j.ijleo.2018.04.015 – volume: 103 start-page: 1011 year: 2021 ident: 5761_CR55 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-06141-0 – volume: 199 year: 2019 ident: 5761_CR11 publication-title: Optik – volume: 152 year: 2022 ident: 5761_CR51 publication-title: Opt. Laser Technol. |
SSID | ssj0006450 |
Score | 2.457695 |
Snippet | The main goal of the current work is to study dynamical behavior and dispersive optical solitons for the fractional Ginzburg–Landau equation in optical fibers.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bifurcation theory Characterization and Evaluation of Materials Computer Communication Networks Dynamical systems Electrical Engineering Hamiltonian functions Landau-Ginzburg equations Lasers Optical Devices Optical fibers Optics Photonics Physics Physics and Astronomy Polynomials Solitary waves Traveling waves |
Title | Dynamical behavior and multiple optical solitons for the fractional Ginzburg–Landau equation with β-derivative in optical fibers |
URI | https://link.springer.com/article/10.1007/s11082-023-05761-1 https://www.proquest.com/docview/2901933478 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB4hEBIcoF1AbKHIh97A0nrteO3jil8V6AVWglMU_0lIKPxk6aEnJB6hb9IH6UPwJB07yW6pAKmnHOxMpIzH89kz8w3AF2eKXpAm8lRmfRoZwGgxkJoaLoTtB8lC0vTpN3k0El8vsoumKKxqs93bkGTaqafFbgzdFUUfQxFjSEbxzDOX4dk9muOoP5zsv1KkvqwRDFOlmW5KZV6X8dIdTTHmP2HR5G0OPsBSAxPJsNbrR5jxZQeWG8hIGoOsOrD4F59gB-ZTPqetVuBpr-40jzLaQnxSlI60-YPk5jZdYpMq5r_hyiMIXgmCQRLu61IHHDu8Kn_EKMzz48-TeOHwQPxdzQxO4vUt-f2LOvzy98QdTq7KidAQ01CqVRgd7J_vHtGm3wK1aIhj6oIOxkvHtCmE7gknCmkGXJkiuCCCZkp56wNn0njc4q3A0w_HA0_spu4FD3wNZsub0q8DUdxmVongECEI3tfGGNUzA2eNygp0ll1g7W_PbUNGHntiXOdTGuWoqhxVlSdV5awL25N3bmsqjndnb7bazBuzrPIYNNaci4Hqwk6r4enw29I-_d_0DVjAhSnq7O5NmB3fP_jPCF7GZgvmhnunJ2fxeXh5vL-V1u4fIYLrNQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxEB5VrSrooZQAatpSfOAGluK149jHqhDSkvTUSLmt1n9SpGpbumkPPSHxCH2TPkgfgidh7N1NAAES5_XOSvvZns-emW8A3jpT9II0Uaeyn9GoAEaLgdTUcCFsFiQLCenJmRxNxemsP2uKwqo2270NSaadelXsxtBdUfQxFDmGZBTPPBtIBlTsWzDNjpb7rxSpL2skw1RppptSmT_b-NUdrTjmb2HR5G2GO7Dd0ERyVOP6HNZ82YFnDWUkzYKsOrD1k55gBzZTPqetXsC3D3WnebTRFuKTonSkzR8kl1fpEptUMf8NZx5B8kqQDJJwXZc64LNP8_IuRmG-f70fxwuHG-K_1MrgJF7fkscH6vDLt0k7nMzLpdEQ01CqlzAdfjw_HtGm3wK1uBAX1AUdjJeOaVMI3RNOFNIMuDJFcEEEzZTy1gfOpPG4xVuBpx-OB57YTd0LHvgrWC8vS78LRHHbt0oEhwxB8EwbY1TPDJw1ql-gs-wCa397bhsx8tgT4yJfyShHqHKEKk9Q5awL75bvXNVSHP8cfdCimTfLsspj0FhzLgaqC-9bhFeP_25t7_-Gv4Eno_PJOB-fnH3eh6cZEqE60_sA1hfXN_41EpmFOUzz9gegResA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB5VoKJygHbbiuWn9aE3sFjHXq99RMCWthT10JW4RfGfhFSFhSwcOCHxCLwJD8JD8CSMnWSXorZSz3EmUj7b89kz8w3AJ2eKXpAm6lT2MxoVwGgxkJoaLoTNgmQhIf39SB6MxNfj_vGTKv6U7d6GJOuahqjSVE62xy5szwrfGLouiv6GIt-QjOL5Zx63YxZn-ijbme7FUqQerZEYU6WZbspm_mzjd9c045vPQqTJ8wxfw1JDGclOjfEbeOHLDiw39JE0i7PqwOITbcEOvEy5nbZ6Czd7ddd5tNEW5ZOidKTNJSSn43ShTaqYC4ezkCCRJUgMSTivyx7w2eeT8ipGZB6ubw_j5cMF8We1SjiJV7nk_o46_PJl0hEnJ-XUaIgpKdU7GA33f-4e0Kb3ArW4KCfUBR2Ml45pUwjdE04U0gy4MkVwQQTNlPLWB86k8bjdW4EnIY6Hn9hZ3Qse-HuYK09LvwJEcdu3SgSHbEHwTBtjVM8MnDWqX6Dj7AJrf3tuG2Hy2B_jVz6TVI5Q5QhVnqDKWRc2p--Ma1mOf45eb9HMmyVa5TGArDkXA9WFrRbh2eO_W1v9v-EfYeHH3jA__HL0bQ1eZciJ6qTvdZibnF_4DeQ0E_MhTdtHCt3vPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+behavior+and+multiple+optical+solitons+for+the+fractional+Ginzburg%E2%80%93Landau+equation+with+%24%24%5Cbeta+%24%24-derivative+in+optical+fibers&rft.jtitle=Optical+and+quantum+electronics&rft.au=Tang%2C+Lu&rft.date=2024-02-01&rft.issn=0306-8919&rft.eissn=1572-817X&rft.volume=56&rft.issue=2&rft_id=info:doi/10.1007%2Fs11082-023-05761-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11082_023_05761_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-8919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-8919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-8919&client=summon |