Dynamical behavior and multiple optical solitons for the fractional Ginzburg–Landau equation with β-derivative in optical fibers

The main goal of the current work is to study dynamical behavior and dispersive optical solitons for the fractional Ginzburg–Landau equation in optical fibers. Starting with the traveling wave transformations, the fractional Ginzburg–Landau model is converted into an equivalent ordinary differential...

Full description

Saved in:
Bibliographic Details
Published inOptical and quantum electronics Vol. 56; no. 2
Main Author Tang, Lu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0306-8919
1572-817X
DOI10.1007/s11082-023-05761-1

Cover

Abstract The main goal of the current work is to study dynamical behavior and dispersive optical solitons for the fractional Ginzburg–Landau equation in optical fibers. Starting with the traveling wave transformations, the fractional Ginzburg–Landau model is converted into an equivalent ordinary differential traveling wave system. Then, the Hamiltonian function and orbits phase portraits of this system are found. Here, we derived explicit fractional periodic wave solutions, bell-shaped solitary wave solutions and kink-shaped solitary wave solutions through the bifurcation theory of differential dynamical system. In addition to, some other traveling wave solutions are obtained by using the polynomial complete discriminant method and symbolic computation. Most notably, we give the classification of all single traveling wave solutions of fractional Ginzburg–Landau equation at the same time. The obtained optical soliton solutions in this work may substantially improve or complement the corresponding results in the known references. Finally, we give the comparison between our solutions and other’s results.
AbstractList The main goal of the current work is to study dynamical behavior and dispersive optical solitons for the fractional Ginzburg–Landau equation in optical fibers. Starting with the traveling wave transformations, the fractional Ginzburg–Landau model is converted into an equivalent ordinary differential traveling wave system. Then, the Hamiltonian function and orbits phase portraits of this system are found. Here, we derived explicit fractional periodic wave solutions, bell-shaped solitary wave solutions and kink-shaped solitary wave solutions through the bifurcation theory of differential dynamical system. In addition to, some other traveling wave solutions are obtained by using the polynomial complete discriminant method and symbolic computation. Most notably, we give the classification of all single traveling wave solutions of fractional Ginzburg–Landau equation at the same time. The obtained optical soliton solutions in this work may substantially improve or complement the corresponding results in the known references. Finally, we give the comparison between our solutions and other’s results.
ArticleNumber 175
Author Tang, Lu
Author_xml – sequence: 1
  givenname: Lu
  surname: Tang
  fullname: Tang, Lu
  email: tanglumath@163.com
  organization: School of Mathematics and Physics, Chengdu University of Technology
BookMark eNp9kEGKFDEUhoOMYM_oBVwFXJeTV0lVJUsZdUZocKPgLiRVL9MZqpOeJNUyrgSP4E08iIfwJGa6RcHFrAL5_-_l5TslJyEGJOQ5sJfA2HCeAZhsG9byhnVDDw08IivohraRMHw6ISvGWd9IBeoJOc35hjHWi46tyLfXd8Fs_WhmanFj9j4masJEt8tc_G5GGnflkOY4-xJDpq42ygapS2YsPoaaXfrwxS7p-tfX7-sKm4Xi7WLuQ_rZlw39-aOZMPl9vdoj9eHvUOctpvyUPHZmzvjsz3lGPr598-Hiqlm_v3x38WrdjBxUaSannMV-AmWNUExMwvR24NIaNznhFEiJIzoOvUW0MArVMy7k0HfQoeCOn5EXx7m7FG8XzEXfxCXVD2TdKgaKczHI2mqPrTHFnBM6vUt-a9KdBqbvZeujbF1l64NsDRWS_0GjLwcDJRk_P4zyI5rrO-Ea07-tHqB-A72UmvY
CitedBy_id crossref_primary_10_1007_s12346_024_01022_y
crossref_primary_10_3934_math_20241254
crossref_primary_10_3934_math_20241460
crossref_primary_10_1142_S0217984924503809
crossref_primary_10_1515_phys_2024_0093
crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_03031
crossref_primary_10_3934_mbe_2024241
crossref_primary_10_3934_math_2024309
crossref_primary_10_1007_s12596_024_01938_3
crossref_primary_10_3934_math_2024326
crossref_primary_10_3934_math_20241278
crossref_primary_10_3934_math_2024523
crossref_primary_10_1038_s41598_024_74044_w
crossref_primary_10_1007_s12596_024_01757_6
crossref_primary_10_1016_j_chaos_2024_115353
crossref_primary_10_1007_s11082_024_06669_0
crossref_primary_10_1142_S021798492450427X
crossref_primary_10_3390_fractalfract8060348
crossref_primary_10_47087_mjm_1388427
crossref_primary_10_1016_j_rinp_2024_107626
crossref_primary_10_1016_j_rinp_2024_107667
crossref_primary_10_1007_s12346_024_01213_7
crossref_primary_10_1016_j_rinp_2024_107537
crossref_primary_10_1016_j_rinp_2024_107679
Cites_doi 10.1016/j.ijleo.2017.08.018
10.1515/phys-2016-0010
10.1016/j.ijleo.2022.168626
10.3390/math11040861
10.1016/j.ijleo.2023.170639
10.1016/j.cnsns.2021.106037
10.1016/j.physleta.2023.128943
10.3390/math8071127
10.1007/s11082-021-03496-5
10.1007/s11071-023-08531-6
10.1007/s11071-021-06550-9
10.1016/j.apm.2008.05.018
10.1016/j.cnsns.2019.104903
10.1016/j.cjph.2019.08.009
10.1016/j.ijleo.2022.169555
10.1016/j.ijleo.2017.10.104
10.1016/S1007-5704(03)00049-2
10.1016/j.physleta.2018.06.023
10.1007/s11071-022-07503-6
10.1016/j.physleta.2021.127802
10.1016/j.ijleo.2021.167258
10.1007/s11071-023-08719-w
10.1016/j.cam.2014.01.002
10.1016/j.ijleo.2022.169276
10.1016/j.chaos.2020.110556
10.1103/RevModPhys.74.99
10.1007/s11071-022-07833-5
10.1007/s11071-018-4050-3
10.1007/s11071-022-07884-8
10.1016/j.ijleo.2020.165331
10.1016/j.ijleo.2021.167750
10.1007/s12596-020-00644-0
10.1111/mafi.12024
10.1140/epjp/s13360-020-01001-7
10.1016/j.camwa.2009.08.039
10.1007/s11082-021-03245-8
10.1016/j.cnsns.2013.04.001
10.1016/j.aml.2011.11.041
10.1016/j.aej.2021.04.030
10.1016/j.ijleo.2018.04.015
10.1007/s11071-020-06141-0
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11082-023-05761-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1572-817X
ExternalDocumentID 10_1007_s11082_023_05761_1
GrantInformation_xml – fundername: Specialized Research Fund for the Doctoral Program of Higher Education of China
  grantid: 20115134110001
  funderid: http://dx.doi.org/10.13039/501100013286
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8Z
Z92
ZMTXR
ZY4
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-df9fbe6d19ba4904d4a6b738bafdf4f9188ecef316beeb1c496034876515e43f3
IEDL.DBID U2A
ISSN 0306-8919
IngestDate Fri Jul 25 09:02:25 EDT 2025
Tue Jul 01 01:26:40 EDT 2025
Thu Apr 24 23:10:55 EDT 2025
Fri Feb 21 02:39:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Derivative
Bifurcations
Symbolic computation
Fractional Ginzburg–Landau equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-df9fbe6d19ba4904d4a6b738bafdf4f9188ecef316beeb1c496034876515e43f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2901933478
PQPubID 2043598
ParticipantIDs proquest_journals_2901933478
crossref_primary_10_1007_s11082_023_05761_1
crossref_citationtrail_10_1007_s11082_023_05761_1
springer_journals_10_1007_s11082_023_05761_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Optical and quantum electronics
PublicationTitleAbbrev Opt Quant Electron
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Malomed (CR36) 2022; 422
Kucche, Sutar (CR31) 2021; 143
Yepez-Martnez, Gomez-Aguilar, Dumitru (CR57) 2018; 155
Ortigueira (CR37) 2009; 33
Tang (CR46) 2022; 262
Hosseini, Salahshour, Mirzazadeh (CR27) 2021; 136
Bo, Wang, Dai (CR13) 2023; 111
Khan, Wu, Faraz (CR30) 2012; 25
Tang, Biswas, Yildirim, Alghamdi (CR49) 2023; 480
Fang, Wang, Dai (CR21) 2021; 105
Corlay, Lebovits, Vhel (CR16) 2014; 24
Graef, Tinc (CR24) 2021; 103
Alquran (CR4) 2021; 53
Alquran, Jaradat (CR7) 2023; 11
Tang (CR45) 2022; 161
Tang (CR42) 2021; 245
Zhou, Triki, Xu (CR59) 2021; 160
Tang (CR44) 2022; 265
Biswas, Alqahtani (CR10) 2017; 147
Tang, Chen (CR48) 2022; 54
Han, Li, Zhang (CR26) 2021; 395
Chen, Xiao (CR14) 2022; 109
Li, Dai (CR33) 2007
Alquran (CR6) 2023; 68
Rosa, de Oliveira (CR39) 2015; 6
Geng, Mou, Dai (CR23) 2023; 111
Ouahid, Owyed, Abdou, Alshehri (CR38) 2021; 60
Chen, Jiang, Wang (CR15) 2020; 222
Tarasov (CR50) 2013; 18
Akram, Sadaf, Mariyam (CR3) 2022; 256
Geng, Zhu, Cao (CR22) 2023; 111
Hammad, Khalil (CR25) 2014; 94
Magin (CR35) 2010; 59
Alquran (CR5) 2023; 7
Biswas, Asma, Guggilla (CR12) 2020; 384
Jaradat, Alquran (CR28) 2020; 8
Biswas, Sonmezoglu, Ekici (CR11) 2019; 199
Eslami (CR20) 2016; 285
Scott (CR40) 2005
Zhou, Zhou, Zhu (CR58) 2020; 141
Aranson, Kramer (CR8) 2002; 74
Yang, Hou, Zeng (CR56) 1996; 26
Li, Xie, Zhu (CR34) 2018; 92
Khalil, Horani, Yousef (CR29) 2014; 264
Das, Biswas, Ekici (CR18) 2019; 61
Weitzner, Zaslavsky (CR52) 2003; 8
Wang, Wang, Dai (CR51) 2022; 152
Li (CR32) 2013
Tang (CR41) 2020; 18
Wen, Jiang, Dai (CR53) 2023; 111
Biswas (CR9) 2020; 49
Abdon, Dumitru, Ahmed (CR1) 2016; 14
Tang (CR43) 2022; 52
Esen, Sulaiman (CR19) 2018; 167
Tang (CR47) 2023; 276
Xie, Yang, Li (CR54) 2018; 382
Akram, Sarfraz (CR2) 2021; 242
Cresson, Szafranska (CR17) 2020; 82
Xie, Li, Kang (CR55) 2021; 103
MD Ortigueira (5761_CR37) 2009; 33
S Corlay (5761_CR16) 2014; 24
L Yang (5761_CR56) 1996; 26
A Biswas (5761_CR12) 2020; 384
L Tang (5761_CR41) 2020; 18
M Alquran (5761_CR6) 2023; 68
JB Li (5761_CR32) 2013
WB Bo (5761_CR13) 2023; 111
TY Han (5761_CR26) 2021; 395
C Rosa (5761_CR39) 2015; 6
M Alquran (5761_CR5) 2023; 7
A Biswas (5761_CR11) 2019; 199
I Jaradat (5761_CR28) 2020; 8
VE Tarasov (5761_CR50) 2013; 18
G Akram (5761_CR3) 2022; 256
G Akram (5761_CR2) 2021; 242
L Tang (5761_CR43) 2022; 52
YX Chen (5761_CR14) 2022; 109
J Cresson (5761_CR17) 2020; 82
L Tang (5761_CR44) 2022; 265
M Alquran (5761_CR4) 2021; 53
MA Hammad (5761_CR25) 2014; 94
KX Wen (5761_CR53) 2023; 111
KD Kucche (5761_CR31) 2021; 143
RL Magin (5761_CR35) 2010; 59
Q Zhou (5761_CR59) 2021; 160
A Biswas (5761_CR10) 2017; 147
RR Wang (5761_CR51) 2022; 152
YY Xie (5761_CR55) 2021; 103
BA Malomed (5761_CR36) 2022; 422
L Tang (5761_CR45) 2022; 161
L Ouahid (5761_CR38) 2021; 60
A Esen (5761_CR19) 2018; 167
L Tang (5761_CR42) 2021; 245
IS Aranson (5761_CR8) 2002; 74
JR Zhou (5761_CR58) 2020; 141
M Alquran (5761_CR7) 2023; 11
Y Fang (5761_CR21) 2021; 105
H Weitzner (5761_CR52) 2003; 8
L Tang (5761_CR49) 2023; 480
H Yepez-Martnez (5761_CR57) 2018; 155
A Abdon (5761_CR1) 2016; 14
A Biswas (5761_CR9) 2020; 49
R Khalil (5761_CR29) 2014; 264
K Hosseini (5761_CR27) 2021; 136
L Tang (5761_CR46) 2022; 262
YY Xie (5761_CR54) 2018; 382
M Eslami (5761_CR20) 2016; 285
A Das (5761_CR18) 2019; 61
L Tang (5761_CR47) 2023; 276
KL Geng (5761_CR22) 2023; 111
JB Li (5761_CR33) 2007
AC Scott (5761_CR40) 2005
JR Graef (5761_CR24) 2021; 103
L Tang (5761_CR48) 2022; 54
LF Li (5761_CR34) 2018; 92
KL Geng (5761_CR23) 2023; 111
C Chen (5761_CR15) 2020; 222
Y Khan (5761_CR30) 2012; 25
References_xml – volume: 60
  start-page: 5495
  year: 2021
  end-page: 5510
  ident: CR38
  article-title: New optical soliton solutions via generalized Kudryashov’s scheme for Ginzburg-Landau equation in fractal order
  publication-title: Alex. Eng. J.
– volume: 103
  start-page: 1011
  year: 2021
  end-page: 1021
  ident: CR55
  article-title: New solitons and comditional stability to the high dispersive nonlinear Schrödinger equation with parabolic law noninearity
  publication-title: Nonlinear Dyn.
– volume: 141
  year: 2020
  ident: CR58
  article-title: Peakon, rational function and periodic solutions for Tzitzeica-Dodd-Bullough type equations
  publication-title: Chaos Solitons Fractals
– volume: 276
  year: 2023
  ident: CR47
  article-title: Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg–Landau equation in communication systems
  publication-title: Optik
– volume: 155
  start-page: 357
  year: 2018
  end-page: 365
  ident: CR57
  article-title: Beta-derivative and subequation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion
  publication-title: Optik
– volume: 111
  start-page: 16483
  year: 2023
  end-page: 16496
  ident: CR22
  article-title: Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation
  publication-title: Nonlinear Dyn.
– volume: 422
  year: 2022
  ident: CR36
  article-title: New findings for the old problem: Exact solutions for domain walls in coupled real Ginzburg-Landau equations
  publication-title: Phys. Lett. A
– volume: 7
  year: 2023
  ident: CR5
  article-title: The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics and engineering
  publication-title: Partial Differ. Equ. Appl. Math.
– volume: 480
  year: 2023
  ident: CR49
  article-title: Bifurcation analysis and optical solitons for the concatenation model
  publication-title: Phys. Lett. A
– volume: 152
  year: 2022
  ident: CR51
  article-title: Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser
  publication-title: Opt. Laser Technol.
– volume: 199
  year: 2019
  ident: CR11
  article-title: Optical solitons perturbation with Kudryashov’s equation by F-expansion
  publication-title: Optik
– volume: 25
  start-page: 1340
  year: 2012
  end-page: 1346
  ident: CR30
  article-title: A new fractional analytical approach via a modified Riemann-Liouville derivative
  publication-title: Appl. Math. Lett.
– year: 2013
  ident: CR32
  publication-title: Singular nonlinear traveling wave equations: bifurcation and exact solutions
– volume: 161
  year: 2022
  ident: CR45
  article-title: Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation
  publication-title: Chaos Solitons Fractals
– volume: 6
  start-page: 1
  year: 2015
  end-page: 7
  ident: CR39
  article-title: Relaxation equations: fractional models
  publication-title: J. Phys. Math.
– volume: 94
  start-page: 215
  year: 2014
  end-page: 221
  ident: CR25
  article-title: Conformable fractional heat differential equation
  publication-title: Int. J. Pure Appl. Math.
– volume: 265
  year: 2022
  ident: CR44
  article-title: Bifurcations and multiple optical solitons for the dual-mode nonlinear Schrödinger equation with Kerr law nonlinearity
  publication-title: Optik
– volume: 262
  year: 2022
  ident: CR46
  article-title: Bifurcations and dispersive optical solitons for the nonlinear Schrödinger-Hirota equation in DWDM networks
  publication-title: Optik
– volume: 147
  start-page: 77
  year: 2017
  end-page: 81
  ident: CR10
  article-title: Optical soliton perturbation with complex Ginzburg–Landau equation by semi-inverse variational principle
  publication-title: Optik
– volume: 18
  year: 2020
  ident: CR41
  article-title: Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities
  publication-title: Res. Phys.
– volume: 285
  start-page: 141
  year: 2016
  end-page: 148
  ident: CR20
  article-title: Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations
  publication-title: Appl. Math. Comput.
– volume: 264
  start-page: 65
  year: 2014
  end-page: 70
  ident: CR29
  article-title: A new definition of fractional derivative
  publication-title: J. Comp. Appl. Math.
– volume: 92
  start-page: 215
  year: 2018
  end-page: 219
  ident: CR34
  article-title: New exact solutions for a generalized KDV equation
  publication-title: Nonlinear Dyn.
– volume: 395
  year: 2021
  ident: CR26
  article-title: Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrödinger equation
  publication-title: Phys. Lett. A
– volume: 68
  start-page: 106
  year: 2023
  ident: CR6
  article-title: Investigating the revisited generalized stochastic potential-KdV equation: fractional time-derivative against proportional time-delay
  publication-title: Rom. J. Phys.
– year: 2005
  ident: CR40
  publication-title: Encyclopedia of Nonlinear Science
– volume: 111
  start-page: 13343
  year: 2023
  end-page: 13355
  ident: CR53
  article-title: Abundant vector soliton prediction and model parameter discovery of the coupled mixed derivative nonlinear Schrödinger equation
  publication-title: Nonlinear Dyn.
– volume: 245
  year: 2021
  ident: CR42
  article-title: Dynamical behavior and traveling wave solutions in optical fibers with Schrödinger-Hirota equation
  publication-title: Optik
– volume: 222
  year: 2020
  ident: CR15
  article-title: Dynamical behavior and exact solutions for time-fractional nonlinear Schrödinger equation with parabolic law nonlinearity
  publication-title: Optik
– volume: 18
  start-page: 2945
  year: 2013
  end-page: 2948
  ident: CR50
  article-title: No violation of the Leibniz rule. No fractional derivative
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 8
  start-page: 273
  year: 2003
  end-page: 281
  ident: CR52
  article-title: Some applications of fractional equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 384
  year: 2020
  ident: CR12
  article-title: Optical solitons with Kudryashov’s equation by Semi-inverse variational principle
  publication-title: Phys. Lett. A
– volume: 136
  start-page: 1
  year: 2021
  end-page: 9
  ident: CR27
  article-title: The (2+1)-dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions
  publication-title: Eur. Phys. J. Plus
– volume: 53
  start-page: 588
  year: 2021
  ident: CR4
  article-title: Optical bidirectional wave-solutions to new two-mode extension of the coupled KdV-Schrödinger equations
  publication-title: Opt. Quant. Electron.
– volume: 49
  start-page: 580
  year: 2020
  end-page: 583
  ident: CR9
  article-title: Optical soliton cooling with polynomial law of nonlinear refractive index
  publication-title: J. Opt.
– year: 2007
  ident: CR33
  publication-title: On the study of singular nonlinear traveling wave equations: dynamical system approach
– volume: 109
  start-page: 2003
  year: 2022
  end-page: 2012
  ident: CR14
  article-title: Vector soliton pairs for a coupled nonautonomous NLS model with partially nonlocal coupled nonlinearities under the external potentials
  publication-title: Nonlinear Dyn.
– volume: 59
  start-page: 1586
  year: 2010
  end-page: 1593
  ident: CR35
  article-title: Fractional calculus models of complex dynamics in biological tissues
  publication-title: Comput. Math. Appl.
– volume: 33
  start-page: 2534
  year: 2009
  end-page: 2537
  ident: CR37
  article-title: Comments on Modeling fractional stochastic systems as non-random fractional dynamics driven Brownian motions
  publication-title: Appl. Math. Model.
– volume: 54
  start-page: 105
  year: 2022
  ident: CR48
  article-title: The classification of single traveling wave solutions for the fractional coupled nonlinear Schrödinger equation
  publication-title: Opt. Quant. Electron.
– volume: 382
  start-page: 2506
  year: 2018
  end-page: 2514
  ident: CR54
  article-title: New exact solutions to the high dispersive cubic-quintic nonlinear Schrödinger equation
  publication-title: Phys. Lett. A
– volume: 24
  start-page: 364
  year: 2014
  end-page: 402
  ident: CR16
  article-title: Multifractional stochastic volatility models
  publication-title: Math. Finance
– volume: 8
  start-page: 1127
  year: 2020
  ident: CR28
  article-title: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov–Kuznetsov equation
  publication-title: Mathematics
– volume: 26
  start-page: 628
  year: 1996
  end-page: 646
  ident: CR56
  article-title: Compete discrimation system for polynomial
  publication-title: Sci. China Ser. E.
– volume: 14
  start-page: 145
  year: 2016
  end-page: 149
  ident: CR1
  article-title: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal
  publication-title: Open Phys.
– volume: 167
  start-page: 150
  year: 2018
  end-page: 156
  ident: CR19
  article-title: Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation
  publication-title: Optik
– volume: 143
  year: 2021
  ident: CR31
  article-title: Analysis of nonlinear fractional differential equations involving Atangana–Baleanu-Caputo derivative
  publication-title: Chaos Solitons Fractals
– volume: 242
  year: 2021
  ident: CR2
  article-title: Multiple optical soliton solutions for CGL equation with Kerr law nonlinearity via extended modified auxiliary equation mapping method
  publication-title: Optik
– volume: 105
  start-page: 603
  year: 2021
  end-page: 616
  ident: CR21
  article-title: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN
  publication-title: Nonlinear Dyn.
– volume: 111
  start-page: 603
  year: 2023
  end-page: 617
  ident: CR23
  article-title: Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations
  publication-title: Nonlinear Dyn.
– volume: 52
  start-page: 581
  year: 2022
  end-page: 592
  ident: CR43
  article-title: Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings
  publication-title: J. Opt.
– volume: 111
  start-page: 1577
  year: 2023
  end-page: 1588
  ident: CR13
  article-title: Prediction and dynamical evolution of multipole soliton families in fractIonal Schrödinger equation with the PT-symmetric potential and saturable nonlinearity
  publication-title: Nonlinear Dyn.
– volume: 160
  year: 2021
  ident: CR59
  article-title: Perturbation of chirped localized waves in a dual-power law nonlinear medium
  publication-title: Chaos Solitons Fractals
– volume: 82
  year: 2020
  ident: CR17
  article-title: Comments on various extensions of the RiemannCLiouville fractional derivatives : about the Leibniz and chain rule properties
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 103
  year: 2021
  ident: CR24
  article-title: Razumikhin qualitative analysis of Volterr integro-fractional delay differential equation with Caputo derivatives
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 11
  start-page: 861
  year: 2023
  ident: CR7
  article-title: Identifying combination of dark-bright binary-soliton and binary-periodic waves for a new two-mode model derived from the (2 + 1)-Dimensional Nizhnik-Novikov-Veselov equation
  publication-title: Mathematics
– volume: 256
  year: 2022
  ident: CR3
  article-title: A comparative study of the optical solitons for the fractional complex Ginzburg-Landau equation using different fractional differential operators
  publication-title: Optik
– volume: 61
  start-page: 255
  year: 2019
  end-page: 261
  ident: CR18
  article-title: Optical solitons with complex Ginzburg-Landau equation for two nonlinear forms using F-expansion
  publication-title: Chinese J. Phys.
– volume: 74
  start-page: 99
  year: 2002
  ident: CR8
  article-title: The world of the complex Ginzburg-Landau equation
  publication-title: Rev. Modern Phys.
– volume: 147
  start-page: 77
  year: 2017
  ident: 5761_CR10
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.08.018
– volume: 14
  start-page: 145
  year: 2016
  ident: 5761_CR1
  publication-title: Open Phys.
  doi: 10.1515/phys-2016-0010
– volume: 256
  year: 2022
  ident: 5761_CR3
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.168626
– volume: 11
  start-page: 861
  year: 2023
  ident: 5761_CR7
  publication-title: Mathematics
  doi: 10.3390/math11040861
– volume: 7
  year: 2023
  ident: 5761_CR5
  publication-title: Partial Differ. Equ. Appl. Math.
– volume: 276
  year: 2023
  ident: 5761_CR47
  publication-title: Optik
  doi: 10.1016/j.ijleo.2023.170639
– volume: 103
  year: 2021
  ident: 5761_CR24
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2021.106037
– volume-title: On the study of singular nonlinear traveling wave equations: dynamical system approach
  year: 2007
  ident: 5761_CR33
– volume: 480
  year: 2023
  ident: 5761_CR49
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2023.128943
– volume: 26
  start-page: 628
  year: 1996
  ident: 5761_CR56
  publication-title: Sci. China Ser. E.
– volume: 8
  start-page: 1127
  year: 2020
  ident: 5761_CR28
  publication-title: Mathematics
  doi: 10.3390/math8071127
– volume: 160
  year: 2021
  ident: 5761_CR59
  publication-title: Chaos Solitons Fractals
– volume: 18
  year: 2020
  ident: 5761_CR41
  publication-title: Res. Phys.
– volume: 54
  start-page: 105
  year: 2022
  ident: 5761_CR48
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-021-03496-5
– volume: 395
  year: 2021
  ident: 5761_CR26
  publication-title: Phys. Lett. A
– volume: 111
  start-page: 13343
  year: 2023
  ident: 5761_CR53
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08531-6
– volume-title: Encyclopedia of Nonlinear Science
  year: 2005
  ident: 5761_CR40
– volume: 105
  start-page: 603
  year: 2021
  ident: 5761_CR21
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06550-9
– volume: 33
  start-page: 2534
  year: 2009
  ident: 5761_CR37
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2008.05.018
– volume: 82
  year: 2020
  ident: 5761_CR17
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2019.104903
– volume: 61
  start-page: 255
  year: 2019
  ident: 5761_CR18
  publication-title: Chinese J. Phys.
  doi: 10.1016/j.cjph.2019.08.009
– volume: 265
  year: 2022
  ident: 5761_CR44
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.169555
– volume: 155
  start-page: 357
  year: 2018
  ident: 5761_CR57
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.10.104
– volume: 8
  start-page: 273
  year: 2003
  ident: 5761_CR52
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/S1007-5704(03)00049-2
– volume: 382
  start-page: 2506
  year: 2018
  ident: 5761_CR54
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.06.023
– volume: 109
  start-page: 2003
  year: 2022
  ident: 5761_CR14
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07503-6
– volume: 422
  year: 2022
  ident: 5761_CR36
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2021.127802
– volume: 242
  year: 2021
  ident: 5761_CR2
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.167258
– volume: 111
  start-page: 16483
  year: 2023
  ident: 5761_CR22
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08719-w
– volume: 264
  start-page: 65
  year: 2014
  ident: 5761_CR29
  publication-title: J. Comp. Appl. Math.
  doi: 10.1016/j.cam.2014.01.002
– volume-title: Singular nonlinear traveling wave equations: bifurcation and exact solutions
  year: 2013
  ident: 5761_CR32
– volume: 262
  year: 2022
  ident: 5761_CR46
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.169276
– volume: 143
  year: 2021
  ident: 5761_CR31
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110556
– volume: 74
  start-page: 99
  year: 2002
  ident: 5761_CR8
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.74.99
– volume: 111
  start-page: 603
  year: 2023
  ident: 5761_CR23
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07833-5
– volume: 285
  start-page: 141
  year: 2016
  ident: 5761_CR20
  publication-title: Appl. Math. Comput.
– volume: 92
  start-page: 215
  year: 2018
  ident: 5761_CR34
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4050-3
– volume: 384
  year: 2020
  ident: 5761_CR12
  publication-title: Phys. Lett. A
– volume: 94
  start-page: 215
  year: 2014
  ident: 5761_CR25
  publication-title: Int. J. Pure Appl. Math.
– volume: 111
  start-page: 1577
  year: 2023
  ident: 5761_CR13
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07884-8
– volume: 161
  year: 2022
  ident: 5761_CR45
  publication-title: Chaos Solitons Fractals
– volume: 52
  start-page: 581
  year: 2022
  ident: 5761_CR43
  publication-title: J. Opt.
– volume: 68
  start-page: 106
  year: 2023
  ident: 5761_CR6
  publication-title: Rom. J. Phys.
– volume: 222
  year: 2020
  ident: 5761_CR15
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165331
– volume: 245
  year: 2021
  ident: 5761_CR42
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.167750
– volume: 49
  start-page: 580
  year: 2020
  ident: 5761_CR9
  publication-title: J. Opt.
  doi: 10.1007/s12596-020-00644-0
– volume: 24
  start-page: 364
  year: 2014
  ident: 5761_CR16
  publication-title: Math. Finance
  doi: 10.1111/mafi.12024
– volume: 136
  start-page: 1
  year: 2021
  ident: 5761_CR27
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-01001-7
– volume: 59
  start-page: 1586
  year: 2010
  ident: 5761_CR35
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.08.039
– volume: 53
  start-page: 588
  year: 2021
  ident: 5761_CR4
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-021-03245-8
– volume: 6
  start-page: 1
  year: 2015
  ident: 5761_CR39
  publication-title: J. Phys. Math.
– volume: 18
  start-page: 2945
  year: 2013
  ident: 5761_CR50
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.04.001
– volume: 141
  year: 2020
  ident: 5761_CR58
  publication-title: Chaos Solitons Fractals
– volume: 25
  start-page: 1340
  year: 2012
  ident: 5761_CR30
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.11.041
– volume: 60
  start-page: 5495
  year: 2021
  ident: 5761_CR38
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.04.030
– volume: 167
  start-page: 150
  year: 2018
  ident: 5761_CR19
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.04.015
– volume: 103
  start-page: 1011
  year: 2021
  ident: 5761_CR55
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06141-0
– volume: 199
  year: 2019
  ident: 5761_CR11
  publication-title: Optik
– volume: 152
  year: 2022
  ident: 5761_CR51
  publication-title: Opt. Laser Technol.
SSID ssj0006450
Score 2.457695
Snippet The main goal of the current work is to study dynamical behavior and dispersive optical solitons for the fractional Ginzburg–Landau equation in optical fibers....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bifurcation theory
Characterization and Evaluation of Materials
Computer Communication Networks
Dynamical systems
Electrical Engineering
Hamiltonian functions
Landau-Ginzburg equations
Lasers
Optical Devices
Optical fibers
Optics
Photonics
Physics
Physics and Astronomy
Polynomials
Solitary waves
Traveling waves
Title Dynamical behavior and multiple optical solitons for the fractional Ginzburg–Landau equation with β-derivative in optical fibers
URI https://link.springer.com/article/10.1007/s11082-023-05761-1
https://www.proquest.com/docview/2901933478
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB4hEBIcoF1AbKHIh97A0nrteO3jil8V6AVWglMU_0lIKPxk6aEnJB6hb9IH6UPwJB07yW6pAKmnHOxMpIzH89kz8w3AF2eKXpAm8lRmfRoZwGgxkJoaLoTtB8lC0vTpN3k0El8vsoumKKxqs93bkGTaqafFbgzdFUUfQxFjSEbxzDOX4dk9muOoP5zsv1KkvqwRDFOlmW5KZV6X8dIdTTHmP2HR5G0OPsBSAxPJsNbrR5jxZQeWG8hIGoOsOrD4F59gB-ZTPqetVuBpr-40jzLaQnxSlI60-YPk5jZdYpMq5r_hyiMIXgmCQRLu61IHHDu8Kn_EKMzz48-TeOHwQPxdzQxO4vUt-f2LOvzy98QdTq7KidAQ01CqVRgd7J_vHtGm3wK1aIhj6oIOxkvHtCmE7gknCmkGXJkiuCCCZkp56wNn0njc4q3A0w_HA0_spu4FD3wNZsub0q8DUdxmVongECEI3tfGGNUzA2eNygp0ll1g7W_PbUNGHntiXOdTGuWoqhxVlSdV5awL25N3bmsqjndnb7bazBuzrPIYNNaci4Hqwk6r4enw29I-_d_0DVjAhSnq7O5NmB3fP_jPCF7GZgvmhnunJ2fxeXh5vL-V1u4fIYLrNQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxEB5VrSrooZQAatpSfOAGluK149jHqhDSkvTUSLmt1n9SpGpbumkPPSHxCH2TPkgfgidh7N1NAAES5_XOSvvZns-emW8A3jpT9II0Uaeyn9GoAEaLgdTUcCFsFiQLCenJmRxNxemsP2uKwqo2270NSaadelXsxtBdUfQxFDmGZBTPPBtIBlTsWzDNjpb7rxSpL2skw1RppptSmT_b-NUdrTjmb2HR5G2GO7Dd0ERyVOP6HNZ82YFnDWUkzYKsOrD1k55gBzZTPqetXsC3D3WnebTRFuKTonSkzR8kl1fpEptUMf8NZx5B8kqQDJJwXZc64LNP8_IuRmG-f70fxwuHG-K_1MrgJF7fkscH6vDLt0k7nMzLpdEQ01CqlzAdfjw_HtGm3wK1uBAX1AUdjJeOaVMI3RNOFNIMuDJFcEEEzZTy1gfOpPG4xVuBpx-OB57YTd0LHvgrWC8vS78LRHHbt0oEhwxB8EwbY1TPDJw1ql-gs-wCa397bhsx8tgT4yJfyShHqHKEKk9Q5awL75bvXNVSHP8cfdCimTfLsspj0FhzLgaqC-9bhFeP_25t7_-Gv4Eno_PJOB-fnH3eh6cZEqE60_sA1hfXN_41EpmFOUzz9gegResA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB5VoKJygHbbiuWn9aE3sFjHXq99RMCWthT10JW4RfGfhFSFhSwcOCHxCLwJD8JD8CSMnWSXorZSz3EmUj7b89kz8w3AJ2eKXpAm6lT2MxoVwGgxkJoaLoTNgmQhIf39SB6MxNfj_vGTKv6U7d6GJOuahqjSVE62xy5szwrfGLouiv6GIt-QjOL5Zx63YxZn-ijbme7FUqQerZEYU6WZbspm_mzjd9c045vPQqTJ8wxfw1JDGclOjfEbeOHLDiw39JE0i7PqwOITbcEOvEy5nbZ6Czd7ddd5tNEW5ZOidKTNJSSn43ShTaqYC4ezkCCRJUgMSTivyx7w2eeT8ipGZB6ubw_j5cMF8We1SjiJV7nk_o46_PJl0hEnJ-XUaIgpKdU7GA33f-4e0Kb3ArW4KCfUBR2Ml45pUwjdE04U0gy4MkVwQQTNlPLWB86k8bjdW4EnIY6Hn9hZ3Qse-HuYK09LvwJEcdu3SgSHbEHwTBtjVM8MnDWqX6Dj7AJrf3tuG2Hy2B_jVz6TVI5Q5QhVnqDKWRc2p--Ma1mOf45eb9HMmyVa5TGArDkXA9WFrRbh2eO_W1v9v-EfYeHH3jA__HL0bQ1eZciJ6qTvdZibnF_4DeQ0E_MhTdtHCt3vPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+behavior+and+multiple+optical+solitons+for+the+fractional+Ginzburg%E2%80%93Landau+equation+with+%24%24%5Cbeta+%24%24-derivative+in+optical+fibers&rft.jtitle=Optical+and+quantum+electronics&rft.au=Tang%2C+Lu&rft.date=2024-02-01&rft.issn=0306-8919&rft.eissn=1572-817X&rft.volume=56&rft.issue=2&rft_id=info:doi/10.1007%2Fs11082-023-05761-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11082_023_05761_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-8919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-8919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-8919&client=summon