Clinically-probed mechanisms of action in Fragile-X syndrome fail to normalize translational EEG phenotypes in Fmr1 knockout mice
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent mod...
Saved in:
Published in | Neuropharmacology Vol. 262; p. 110182 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation.
Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABABR agonists (e.g. arbaclofen) and δ-containing GABAAR agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using “task-free” and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs.
First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes.
We conclude that these compounds have limited ability to normalize these EEG phenotypes.
[Display omitted]
•Fmr1-KO mouse EEG abnormalities resemble those reported in FXS patients.•Pharmacological treatment only partially normalized EEG phenotypes.•CTEP restored coherence and AEP, but not gamma power and VEP abnormalities.•Arbaclofen reduced gamma power but did not restore other key readouts.•Gaboxadol did not normalize any EEG phenotypes. |
---|---|
AbstractList | Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation. Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABABR agonists (e.g. arbaclofen) and δ-containing GABAAR agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using "task-free" and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs. First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes. We conclude that these compounds have limited ability to normalize these EEG phenotypes.Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation. Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABABR agonists (e.g. arbaclofen) and δ-containing GABAAR agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using "task-free" and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs. First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes. We conclude that these compounds have limited ability to normalize these EEG phenotypes. Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation. Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABA R agonists (e.g. arbaclofen) and δ-containing GABA R agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using "task-free" and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs. First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes. We conclude that these compounds have limited ability to normalize these EEG phenotypes. Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation. Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABABR agonists (e.g. arbaclofen) and δ-containing GABAAR agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using “task-free” and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs. First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes. We conclude that these compounds have limited ability to normalize these EEG phenotypes. [Display omitted] •Fmr1-KO mouse EEG abnormalities resemble those reported in FXS patients.•Pharmacological treatment only partially normalized EEG phenotypes.•CTEP restored coherence and AEP, but not gamma power and VEP abnormalities.•Arbaclofen reduced gamma power but did not restore other key readouts.•Gaboxadol did not normalize any EEG phenotypes. |
ArticleNumber | 110182 |
Author | Marashli, Samuel Redondo, Roger L. Janz, Philipp Bainier, Marie Gross, Simon |
Author_xml | – sequence: 1 givenname: Philipp orcidid: 0000-0002-6472-2956 surname: Janz fullname: Janz, Philipp email: philipp.janz@roche.com – sequence: 2 givenname: Marie orcidid: 0000-0001-5832-193X surname: Bainier fullname: Bainier, Marie – sequence: 3 givenname: Samuel orcidid: 0000-0001-7641-7206 surname: Marashli fullname: Marashli, Samuel – sequence: 4 givenname: Simon surname: Gross fullname: Gross, Simon – sequence: 5 givenname: Roger L. orcidid: 0000-0002-3477-689X surname: Redondo fullname: Redondo, Roger L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39396738$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFv4B85JKtHWcd5wirbalUiQtI3KyJPWG99UewE6TtjX9Oli1w5DTS6Hkfaea9IhcxRSSEcrbmjMubwzrinNO4hxzWNaubNV_2qn5BVly1omqZbC7IirFaVaJj6pJclXJgjDWKq1fkUnSik61QK_Jz6110Brw_VmNOPVoa0OwhuhIKTQMFM7kUqYv0NsM357H6Sssx2pwC0gGcp1OiMeUA3j0hnTLE4uGUAU93uzs67jGm6Thi-S0JmdPHmMxjmicanMHX5OUAvuCb53lNvtzuPm8_Vg-f7u637x8qI3g3VXbYgLWdhL5HrjadZC3YAfqODdJgbSQDFLKH3tS24W3Duw4V31ghWrbhrBbX5N3Zu5z5fcYy6eCKQe8hYpqLFpxLIZrFvKBvn9G5D2j1mF2AfNR_3rYA6gyYnErJOPxFONOnhvRB_2tInxrS54aW6IdzFJdbfzjMuhiH0aB1Gc2kbXL_l_wCwlWgmQ |
Cites_doi | 10.1016/j.celrep.2022.110820 10.1111/jnc.15602 10.3390/cells10102610 10.1038/s42003-022-03395-9 10.1016/j.tins.2004.04.009 10.1186/s13229-021-00425-x 10.1038/ejhg.2008.61 10.1038/s41583-021-00432-0 10.1093/ijnp/pyv034 10.1016/j.clinph.2011.08.023 10.1016/j.expneurol.2017.08.008 10.3389/fpsyt.2021.722378 10.3109/00016489109138418 10.1111/j.1399-0004.2011.01723.x 10.1016/j.neuropharm.2005.06.004 10.1016/j.neuroscience.2018.11.047 10.1097/GIM.0b013e3181e38fb6 10.1371/journal.pone.0017073 10.1016/j.nbd.2020.104794 10.1016/j.brainres.2006.08.115 10.1038/nrn3155 10.1016/j.neuron.2007.12.001 10.1172/jci.insight.169650 10.1016/S0306-4522(01)00036-7 10.3389/fnhum.2012.00264 10.1093/cercor/bhn159 10.1016/j.jneumeth.2024.110155 10.1038/nrneurol.2017.15 10.3389/fnbeh.2019.00141 10.1097/00004703-200112000-00008 10.1080/23808993.2021.2008168 10.1124/jpet.111.185660 10.3389/fncel.2014.00245 10.1073/pnas.1013855108 10.3389/fphar.2021.757825 10.3389/fnins.2023.1171895 10.1126/scitranslmed.3004218 10.1016/j.ijdevneu.2014.05.003 10.1523/JNEUROSCI.1714-10.2010 10.1016/j.nbd.2018.03.012 10.1038/s41386-020-0697-9 10.4161/15384101.2014.989114 10.1016/j.nbd.2008.04.002 10.1074/jbc.M116.772541 10.1159/000332884 10.1523/ENEURO.0300-19.2019 10.1007/s00213-010-2130-2 10.1038/s41398-022-01796-2 10.1186/s11689-017-9191-z 10.1186/s13229-022-00527-0 10.3389/fpsyt.2021.720752 10.1523/ENEURO.0380-16.2017 10.1016/j.biopsych.2013.05.038 10.1038/nrd.2017.221 10.1016/j.neuron.2012.03.009 10.1016/j.clinph.2004.04.029 10.1124/jpet.111.183327 10.1038/s41583-021-00445-9 10.1016/j.biopsych.2015.03.010 10.1038/s41593-021-00913-6 10.1038/nrn.2016.141 10.3389/fpsyt.2021.718953 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.neuropharm.2024.110182 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-7064 |
ExternalDocumentID | 39396738 10_1016_j_neuropharm_2024_110182 S0028390824003514 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXLA AAXUO ABCQJ ABFRF ABIVO ABJNI ABMAC ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJOXV AKRWK ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M34 M41 MO0 MOBAO N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SEW SNS SPCBC SSN SSP SSZ T5K TEORI ~G- .55 .GJ 29N 3O- 41~ 53G 5VS AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEUPX AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMQ HMT HVGLF HZ~ R2- RIG SPT SSH WUQ X7M XOL ZGI ZXP NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c319t-df5add96abbe1859607adfab90f6ce2c60ae36babc2d4174199e815d337051023 |
IEDL.DBID | .~1 |
ISSN | 0028-3908 1873-7064 |
IngestDate | Sun Aug 24 04:12:27 EDT 2025 Tue Jun 10 08:58:49 EDT 2025 Tue Jul 01 01:51:59 EDT 2025 Sat Feb 08 15:52:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-df5add96abbe1859607adfab90f6ce2c60ae36babc2d4174199e815d337051023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3477-689X 0000-0001-7641-7206 0000-0002-6472-2956 0000-0001-5832-193X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0028390824003514 |
PMID | 39396738 |
PQID | 3116334596 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3116334596 pubmed_primary_39396738 crossref_primary_10_1016_j_neuropharm_2024_110182 elsevier_sciencedirect_doi_10_1016_j_neuropharm_2024_110182 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Neuropharmacology |
PublicationTitleAlternate | Neuropharmacology |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Toth (bib6) 2001; 103 Garber, Visootsak, Warren (bib16) 2008; 16 Su, Fan, Jiang, Sun, Den, Gao, Chen, Zhao, Yi (bib51) 2011; 215 Marín (bib31) 2012; 13 Richter, Zhao (bib45) 2021; 22 van der Lei, Kooy (bib53) 2022; 7 Dölen, Osterweil, Rao, Smith, Auerbach, Chattarji, Bear (bib14) 2007; 56 Verdura, Pérez-Cano, Sabido-Vera, Guney, Hyvelin, Durham, Gomez-Mancilla (bib55) 2021; 12 Nolte, Bai, Wheaton, Mari, Vorbach, Hallett (bib35) 2004; 115 Braat, D'Hulst, Heulens, De Rubeis, Mientjes, Nelson, Willemsen, Bagni, Van Dam, De Deyn, Kooy (bib3) 2015; 14 Javitt, Siegel, Spencer, Mathalon, Hong, Martinez, Ehlers, Abbas, Teichert, Lakatos, Womelsdorf (bib21) 2020; 45 Wen, Lovelace, Ethell, Binder, Razak (bib57) 2019; 398 de Vrij, Levenga, van der Linde, Koekkoek, De Zeeuw, Nelson, Oostra, Willemsen (bib12) 2008; 31 Jonak, Lovelace, Ethell, Razak, Binder (bib22) 2020; 138 Michalon, Sidorov, Ballard, Ozmen, Spooren, Wettstein, Jaeschke, Bear, Lindemann (bib33) 2012; 74 Krueger, Osterweil, Chen, Tye, Bear (bib27) 2011; 108 Nomura (bib36) 2021; 10 Qin, Huang, Kader, Krych, Xia, Burlin, Zeidler, Zhao, Smith (bib43) 2015; 18 Kenny, Wright, Stanfield (bib24) 2022; 12 Saoud, Fitzgerald, Hartney, Wilkinson (bib47) 2022 Berry-Kravis, Lindemann, Jønch, Apostol, Bear, Carpenter, Crawley, Curie, Des Portes, Hossain, Gasparini, Gomez-Mancilla, Hessl, Loth, Scharf, Wang, Von Raison, Hagerman, Spooren, Jacquemont (bib2) 2018; 17 Cogram, Deacon, Warner-Schmidt, von Schimmelmann, Abrahams, During (bib7) 2019; 13 Bear, Huber, Warren (bib1) 2004; 27 Kang, Chadchankar, Vien, Mighdoll, Hyde, Mather, Deeb, Pangalos, Brandon, Dunlop, Moss (bib66) 2017; 292 Deng, Klyachko (bib10) 2021; 22 Razak, Binder, Ethell (bib44) 2021; 12 Kang, Zhou, Li, Han, Xu, Niu, Li, Liu, Feng, Huang, Duan, Xu, Raj, Zhang, Dou, Xu, Wu, Bassell, Warren, Allen, Jin, Wen (bib65) 2021; 24 Cea-Del Rio, Huntsman (bib5) 2014; 8 Budimirovic, Dominick, Gabis, Adams, Adera, Huang, Ventola, Tartaglia, Berry-Kravis (bib4) 2021; 12 Tempio, Boulksibat, Bardoni, Delhaye (bib52) 2023; 17 Lindemann, Jaeschke, Michalon, Vieira, Honer, Spooren, Porter, Hartung, Kolczewski, Büttelmann, Flament, Diener, Fischer, Gatti, Prinssen, Parrott, Hoffmann, Wettstein (bib29) 2011; 339 Knoth, Lippé (bib25) 2012; 6 McCullagh, Poleg, Greene, Huntsman, Tollin, Klug (bib64) 2020; 7 Cusinato, Gross, Bainier, Janz, Schoenenberger, Redondo (bib9) 2024; 408 Sinclair, Featherstone, Naschek, Nam, Du, Wright, Pance, Melnychenko, Weger, Akuzawa, Matsumoto, Siegel (bib49) 2017; 4 D'Hulst, De Geest, Reeve, Van Dam, De Deyn, Hassan, Kooy (bib13) 2006; 1121 Zhang, Xu, Tu, Wang, Sun, Hu, Hu, Rondard, Liu (bib63) 2015; 5 Curia, Papouin, Séguéla, Avoli (bib8) 2009; 19 Pietropaolo, Guilleminot, Martin, D'Amato, Crusio (bib42) 2011; 6 Yan, Rammal, Tranfaglia, Bauchwitz (bib61) 2005; 49 Deng, Kumar, Cavalli, Klyachko (bib11) 2022; 39 Willemsen, Levenga, Oostra (bib59) 2011; 80 Rogers, Wehner, Hagerman (bib46) 2001; 22 Stoppel, McCamphill, Senter, Heynen, Bear (bib50) 2021; 12 Ethridge, De Stefano, Schmitt, Woodruff, Brown, Tran, Wang, Pedapati, Erickson, Sweeney (bib15) 2019; 13 Janz, Nicolas, Redondo, Valencia (bib20) 2022; 161 Gonzalez-Burgos, Cho, Lewis (bib17) 2015; 77 Olmos-Serrano, Paluszkiewicz, Martin, Kaufmann, Corbin, Huntsman (bib38) 2010; 30 Henderson, Wijetunge, Kinoshita, Shumway, Hammond, Postma, Brynczka, Rush, Thomas, Paylor, Warren, Vanderklish, Kind, Carpenter, Bear, Healy (bib18) 2012; 4 Michalon, Bruns, Risterucci, Honer, Ballard, Ozmen, Jaeschke, Wettstein, von Kienlin, Künnecke, Lindemann (bib32) 2014; 75 Li, Borg (bib28) 1991; 111 Zhang, Peng, Tong, Lindemeyer, Cetina, Huang, Olsen, Otis, Houser (bib62) 2017; 297 Schmitt, Li, Liu, Horn, Sweeney, Erickson, Pedapati (bib48) 2022; 13 Olmos-Serrano, Corbin, Burns (bib37) 2011; 33 Wong, Hooper, Kang, Lee, Zhao, Sadhu, Rawat, Gray, Hampson (bib60) 2023; 8 Modi, Sahin (bib34) 2017; 13 Pedapati, Schmitt, Ethridge, Miyakoshi, Sweeney, Liu, Smith, Shaffer, Dominick, Gilbert, Wu, Horn, Binder, Lamy, Axford, Erickson (bib41) 2022; 5 Lovelace, Ethell, Binder, Razak (bib30) 2018; 115 Wilkinson, Nelson (bib58) 2021; 12 Wang, Ethridge, Mosconi, White, Binder, Pedapati, Erickson, Byerly, Sweeney (bib56) 2017; 9 Hill, Archibald, Cohen, Metcalfe (bib19) 2010; 12 Knoth, Vannasing, Major, Michaud, Lippé (bib26) 2014; 36 Palop, Mucke (bib40) 2016; 17 Pacey, Tharmalingam, Hampson (bib39) 2011; 338 Van der Molen, Van der Molen, Ridderinkhof, Hamel, Curfs, Ramakers (bib54) 2012; 123 Van der Molen (10.1016/j.neuropharm.2024.110182_bib54) 2012; 123 Cogram (10.1016/j.neuropharm.2024.110182_bib7) 2019; 13 Li (10.1016/j.neuropharm.2024.110182_bib28) 1991; 111 Modi (10.1016/j.neuropharm.2024.110182_bib34) 2017; 13 Sinclair (10.1016/j.neuropharm.2024.110182_bib49) 2017; 4 Michalon (10.1016/j.neuropharm.2024.110182_bib33) 2012; 74 Pacey (10.1016/j.neuropharm.2024.110182_bib39) 2011; 338 Kenny (10.1016/j.neuropharm.2024.110182_bib24) 2022; 12 Deng (10.1016/j.neuropharm.2024.110182_bib11) 2022; 39 Braat (10.1016/j.neuropharm.2024.110182_bib3) 2015; 14 Henderson (10.1016/j.neuropharm.2024.110182_bib18) 2012; 4 Curia (10.1016/j.neuropharm.2024.110182_bib8) 2009; 19 Pedapati (10.1016/j.neuropharm.2024.110182_bib41) 2022; 5 Marín (10.1016/j.neuropharm.2024.110182_bib31) 2012; 13 Janz (10.1016/j.neuropharm.2024.110182_bib20) 2022; 161 Palop (10.1016/j.neuropharm.2024.110182_bib40) 2016; 17 Michalon (10.1016/j.neuropharm.2024.110182_bib32) 2014; 75 Hill (10.1016/j.neuropharm.2024.110182_bib19) 2010; 12 Dölen (10.1016/j.neuropharm.2024.110182_bib14) 2007; 56 Olmos-Serrano (10.1016/j.neuropharm.2024.110182_bib38) 2010; 30 Knoth (10.1016/j.neuropharm.2024.110182_bib26) 2014; 36 Budimirovic (10.1016/j.neuropharm.2024.110182_bib4) 2021; 12 Gonzalez-Burgos (10.1016/j.neuropharm.2024.110182_bib17) 2015; 77 Javitt (10.1016/j.neuropharm.2024.110182_bib21) 2020; 45 Richter (10.1016/j.neuropharm.2024.110182_bib45) 2021; 22 Zhang (10.1016/j.neuropharm.2024.110182_bib63) 2015; 5 Nomura (10.1016/j.neuropharm.2024.110182_bib36) 2021; 10 Tempio (10.1016/j.neuropharm.2024.110182_bib52) 2023; 17 Qin (10.1016/j.neuropharm.2024.110182_bib43) 2015; 18 Wen (10.1016/j.neuropharm.2024.110182_bib57) 2019; 398 Kang (10.1016/j.neuropharm.2024.110182_bib65) 2021; 24 Yan (10.1016/j.neuropharm.2024.110182_bib61) 2005; 49 Olmos-Serrano (10.1016/j.neuropharm.2024.110182_bib37) 2011; 33 Pietropaolo (10.1016/j.neuropharm.2024.110182_bib42) 2011; 6 Saoud (10.1016/j.neuropharm.2024.110182_bib47) Lindemann (10.1016/j.neuropharm.2024.110182_bib29) 2011; 339 Nolte (10.1016/j.neuropharm.2024.110182_bib35) 2004; 115 Su (10.1016/j.neuropharm.2024.110182_bib51) 2011; 215 Wong (10.1016/j.neuropharm.2024.110182_bib60) 2023; 8 Ethridge (10.1016/j.neuropharm.2024.110182_bib15) 2019; 13 Zhang (10.1016/j.neuropharm.2024.110182_bib62) 2017; 297 Cea-Del Rio (10.1016/j.neuropharm.2024.110182_bib5) 2014; 8 Berry-Kravis (10.1016/j.neuropharm.2024.110182_bib2) 2018; 17 Garber (10.1016/j.neuropharm.2024.110182_bib16) 2008; 16 Krueger (10.1016/j.neuropharm.2024.110182_bib27) 2011; 108 Wilkinson (10.1016/j.neuropharm.2024.110182_bib58) 2021; 12 D'Hulst (10.1016/j.neuropharm.2024.110182_bib13) 2006; 1121 McCullagh (10.1016/j.neuropharm.2024.110182_bib64) 2020; 7 Willemsen (10.1016/j.neuropharm.2024.110182_bib59) 2011; 80 Kang (10.1016/j.neuropharm.2024.110182_bib66) 2017; 292 Chen (10.1016/j.neuropharm.2024.110182_bib6) 2001; 103 Razak (10.1016/j.neuropharm.2024.110182_bib44) 2021; 12 van der Lei (10.1016/j.neuropharm.2024.110182_bib53) 2022; 7 Knoth (10.1016/j.neuropharm.2024.110182_bib25) 2012; 6 Stoppel (10.1016/j.neuropharm.2024.110182_bib50) 2021; 12 de Vrij (10.1016/j.neuropharm.2024.110182_bib12) 2008; 31 Bear (10.1016/j.neuropharm.2024.110182_bib1) 2004; 27 Lovelace (10.1016/j.neuropharm.2024.110182_bib30) 2018; 115 Jonak (10.1016/j.neuropharm.2024.110182_bib22) 2020; 138 Rogers (10.1016/j.neuropharm.2024.110182_bib46) 2001; 22 Verdura (10.1016/j.neuropharm.2024.110182_bib55) 2021; 12 Schmitt (10.1016/j.neuropharm.2024.110182_bib48) 2022; 13 Cusinato (10.1016/j.neuropharm.2024.110182_bib9) 2024; 408 Wang (10.1016/j.neuropharm.2024.110182_bib56) 2017; 9 Deng (10.1016/j.neuropharm.2024.110182_bib10) 2021; 22 |
References_xml | – volume: 108 start-page: 2587 year: 2011 end-page: 2592 ident: bib27 article-title: Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 398 start-page: 126 year: 2019 end-page: 143 ident: bib57 article-title: Developmental changes in EEG phenotypes in a mouse model of fragile X syndrome publication-title: Neuroscience – volume: 161 start-page: 417 year: 2022 end-page: 434 ident: bib20 article-title: GABAB R activation partially normalizes acute NMDAR hypofunction oscillatory abnormalities but fails to rescue sensory processing deficits publication-title: J. Neurochem. – volume: 74 start-page: 49 year: 2012 end-page: 56 ident: bib33 article-title: Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice publication-title: Neuron – volume: 297 start-page: 168 year: 2017 end-page: 178 ident: bib62 article-title: Decreased surface expression of the δ subunit of the GABAA receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome publication-title: Exp. Neurol. – volume: 12 start-page: 396 year: 2010 end-page: 410 ident: bib19 article-title: A systematic review of population screening for fragile X syndrome publication-title: Genet. Med. – volume: 27 start-page: 370 year: 2004 end-page: 377 ident: bib1 article-title: The mGluR theory of fragile X mental retardation publication-title: Trends Neurosci. – volume: 12 year: 2021 ident: bib50 article-title: mGluR5 negative modulators for fragile X: treatment resistance and persistence publication-title: Front. Psychiatr. – volume: 22 start-page: 409 year: 2001 end-page: 417 ident: bib46 article-title: The behavioral phenotype in fragile X: symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders publication-title: J. Dev. Behav. Pediatr. – volume: 1121 start-page: 238 year: 2006 end-page: 245 ident: bib13 article-title: Decreased expression of the GABAA receptor in fragile X syndrome publication-title: Brain Res. – volume: 22 start-page: 209 year: 2021 end-page: 222 ident: bib45 article-title: The molecular biology of FMRP: new insights into fragile X syndrome publication-title: Nat. Rev. Neurosci. – volume: 115 start-page: 39 year: 2018 end-page: 48 ident: bib30 article-title: Translation-relevant EEG phenotypes in a mouse model of Fragile X Syndrome publication-title: Neurobiol. Dis. – volume: 13 start-page: 47 year: 2022 ident: bib48 article-title: Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome publication-title: Mol. Autism. – volume: 339 start-page: 474 year: 2011 end-page: 486 ident: bib29 article-title: CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor publication-title: J. Pharmacol. Exp. Ther. – volume: 75 start-page: 189 year: 2014 end-page: 197 ident: bib32 article-title: Chronic metabotropic glutamate receptor 5 inhibition corrects local alterations of brain activity and improves cognitive performance in fragile X mice publication-title: Biol. Psychiatr. – volume: 24 start-page: 1377 year: 2021 end-page: 1391 ident: bib65 article-title: A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies publication-title: Nat. Neurosci. – volume: 408 year: 2024 ident: bib9 article-title: Workflow for the unsupervised clustering of sleep stages identifies light and deep sleep in electrophysiological recordings in mice publication-title: J. Neurosci. Methods – volume: 39 year: 2022 ident: bib11 article-title: FMRP regulates GABAA receptor channel activity to control signal integration in hippocampal granule cells publication-title: Cell Rep. – volume: 77 start-page: 1031 year: 2015 end-page: 1040 ident: bib17 article-title: Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia publication-title: Biol. Psychiatr. – volume: 12 year: 2021 ident: bib4 article-title: Gaboxadol in fragile X syndrome: a 12-week randomized, double-blind, parallel-group, Phase 2a study publication-title: Front. Pharmacol. – volume: 56 start-page: 955 year: 2007 end-page: 962 ident: bib14 article-title: Correction of fragile X syndrome in mice publication-title: Neuron – volume: 33 start-page: 395 year: 2011 end-page: 403 ident: bib37 article-title: The GABA(A) receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome publication-title: Dev. Neurosci. – volume: 13 start-page: 141 year: 2019 ident: bib7 article-title: Gaboxadol normalizes behavioral abnormalities in a mouse model of fragile X syndrome publication-title: Front. Behav. Neurosci. – volume: 16 start-page: 666 year: 2008 end-page: 672 ident: bib16 article-title: Fragile X syndrome publication-title: Eur. J. Hum. Genet. – volume: 4 year: 2017 ident: bib49 article-title: GABA-B agonist baclofen normalizes auditory-evoked neural oscillations and behavioral deficits in the Fmr1 knockout mouse model of fragile X syndrome publication-title: eNeuro – volume: 12 start-page: 34 year: 2022 ident: bib24 article-title: EEG as a translational biomarker and outcome measure in fragile X syndrome publication-title: Transl. Psychiatry – volume: 7 year: 2020 ident: bib64 article-title: Characterization of auditory and binaural spatial hearing in a fragile X syndrome mouse model publication-title: eNeuro – volume: 215 start-page: 291 year: 2011 end-page: 300 ident: bib51 article-title: Early continuous inhibition of group 1 mGlu signaling partially rescues dendritic spine abnormalities in the Fmr1 knockout mouse model for fragile X syndrome publication-title: Psychopharmacology – volume: 12 year: 2021 ident: bib55 article-title: Heterogeneity in fragile X syndrome highlights the need for precision medicine-based treatments publication-title: Front. Psychiatr. – volume: 292 start-page: 6621 year: 2017 end-page: 6632 ident: bib66 article-title: Deficits in the activity of presynaptic γ-aminobutyric acid type B receptors contribute to altered neuronal excitability in fragile X syndrome publication-title: J. Biol. Chem. – volume: 123 start-page: 720 year: 2012 end-page: 729 ident: bib54 article-title: Auditory and visual cortical activity during selective attention in fragile X syndrome: a cascade of processing deficiencies publication-title: Clin. Neurophysiol. – volume: 45 start-page: 1411 year: 2020 end-page: 1422 ident: bib21 article-title: A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology publication-title: Neuropsychopharmacology – volume: 80 start-page: 214 year: 2011 end-page: 225 ident: bib59 article-title: CGG repeat in the FMR1 gene: size matters publication-title: Clin. Genet. – volume: 5 start-page: 442 year: 2022 ident: bib41 article-title: Neocortical localization and thalamocortical modulation of neuronal hyperexcitability contribute to Fragile X Syndrome publication-title: Commun. Biol. – volume: 10 year: 2021 ident: bib36 article-title: Interneuron dysfunction and inhibitory deficits in autism and fragile X syndrome publication-title: Cells – year: 2022 ident: bib47 article-title: Altered visual evoked potentials associated with verbal and nonverbal skills in Fragile X syndrome – volume: 338 start-page: 897 year: 2011 end-page: 905 ident: bib39 article-title: Subchronic administration and combination metabotropic glutamate and GABAB receptor drug therapy in fragile X syndrome publication-title: J. Pharmacol. Exp. Ther. – volume: 13 start-page: 60 year: 2019 ident: bib15 article-title: Auditory EEG biomarkers in fragile X syndrome: clinical relevance. Front. Integr publication-title: Neurosci. – volume: 31 start-page: 127 year: 2008 end-page: 132 ident: bib12 article-title: Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice publication-title: Neurobiol. Dis. – volume: 9 start-page: 11 year: 2017 ident: bib56 article-title: A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome publication-title: J. Neurodev. Disord. – volume: 13 start-page: 160 year: 2017 end-page: 170 ident: bib34 article-title: Translational use of event-related potentials to assess circuit integrity in ASD publication-title: Nat. Rev. Neurol. – volume: 30 start-page: 9929 year: 2010 end-page: 9938 ident: bib38 article-title: Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome publication-title: J. Neurosci. – volume: 6 start-page: 264 year: 2012 ident: bib25 article-title: Event-related potential alterations in fragile X syndrome publication-title: Front. Hum. Neurosci. – volume: 115 start-page: 2292 year: 2004 end-page: 2307 ident: bib35 article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency publication-title: Clin. Neurophysiol. – volume: 12 start-page: 17 year: 2021 ident: bib58 article-title: Increased aperiodic gamma power in young boys with Fragile X Syndrome is associated with better language ability publication-title: Mol. Autism. – volume: 49 start-page: 1053 year: 2005 end-page: 1066 ident: bib61 article-title: Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP publication-title: Neuropharmacology – volume: 8 start-page: 245 year: 2014 ident: bib5 article-title: The contribution of inhibitory interneurons to circuit dysfunction in Fragile X Syndrome publication-title: Front. Cell. Neurosci. – volume: 103 start-page: 1043 year: 2001 end-page: 1050 ident: bib6 article-title: Fragile X mice develop sensory hyperreactivity to auditory stimuli publication-title: Neuroscience – volume: 17 start-page: 777 year: 2016 end-page: 792 ident: bib40 article-title: Network abnormalities and interneuron dysfunction in Alzheimer disease publication-title: Nat. Rev. Neurosci. – volume: 19 start-page: 1515 year: 2009 end-page: 1520 ident: bib8 article-title: Downregulation of tonic GABAergic inhibition in a mouse model of fragile X syndrome publication-title: Cereb. Cortex – volume: 22 start-page: 275 year: 2021 end-page: 289 ident: bib10 article-title: Channelopathies in fragile X syndrome publication-title: Nat. Rev. Neurosci. – volume: 17 year: 2023 ident: bib52 article-title: Fragile X Syndrome as an interneuronopathy: a lesson for future studies and treatments publication-title: Front. Neurosci. – volume: 8 year: 2023 ident: bib60 article-title: CNS-dominant human FMRP isoform rescues seizures, fear, and sleep abnormalities in Fmr1-KO mice publication-title: JCI Insight – volume: 14 start-page: 2985 year: 2015 end-page: 2995 ident: bib3 article-title: The GABAA receptor is an FMRP target with therapeutic potential in fragile X syndrome publication-title: Cell Cycle – volume: 4 year: 2012 ident: bib18 article-title: Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen publication-title: Sci. Transl. Med. – volume: 5 year: 2015 ident: bib63 article-title: GABAB receptor upregulates fragile X mental retardation protein expression in neurons publication-title: Sci. Rep. – volume: 13 start-page: 107 year: 2012 end-page: 120 ident: bib31 article-title: Interneuron dysfunction in psychiatric disorders publication-title: Nat. Rev. Neurosci. – volume: 138 year: 2020 ident: bib22 article-title: Multielectrode array analysis of EEG biomarkers in a mouse model of Fragile X Syndrome publication-title: Neurobiol. Dis. – volume: 18 year: 2015 ident: bib43 article-title: R-baclofen reverses a social behavior deficit and elevated protein synthesis in a mouse model of fragile X syndrome publication-title: Int. J. Neuropsychopharmacol. – volume: 17 start-page: 280 year: 2018 end-page: 299 ident: bib2 article-title: Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome publication-title: Nat. Rev. Drug Discov. – volume: 36 start-page: 90 year: 2014 end-page: 97 ident: bib26 article-title: Alterations of visual and auditory evoked potentials in fragile X syndrome publication-title: Int. J. Dev. Neurosci. – volume: 6 year: 2011 ident: bib42 article-title: Genetic-background modulation of core and variable autistic-like symptoms in Fmr1 knock-out mice publication-title: PLoS One – volume: 7 start-page: 105 year: 2022 end-page: 120 ident: bib53 article-title: Therapeutic potential of GABAA receptor subunit expression abnormalities in fragile X syndrome publication-title: Expert Rev. Precis. Med. Drug Dev. – volume: 111 start-page: 827 year: 1991 end-page: 834 ident: bib28 article-title: Age-related loss of auditory sensitivity in two mouse genotypes publication-title: Acta Otolaryngol. – volume: 12 year: 2021 ident: bib44 article-title: Neural correlates of auditory hypersensitivity in fragile X syndrome publication-title: Front. Psychiatr. – volume: 39 year: 2022 ident: 10.1016/j.neuropharm.2024.110182_bib11 article-title: FMRP regulates GABAA receptor channel activity to control signal integration in hippocampal granule cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110820 – volume: 161 start-page: 417 year: 2022 ident: 10.1016/j.neuropharm.2024.110182_bib20 article-title: GABAB R activation partially normalizes acute NMDAR hypofunction oscillatory abnormalities but fails to rescue sensory processing deficits publication-title: J. Neurochem. doi: 10.1111/jnc.15602 – volume: 10 year: 2021 ident: 10.1016/j.neuropharm.2024.110182_bib36 article-title: Interneuron dysfunction and inhibitory deficits in autism and fragile X syndrome publication-title: Cells doi: 10.3390/cells10102610 – volume: 5 start-page: 442 year: 2022 ident: 10.1016/j.neuropharm.2024.110182_bib41 article-title: Neocortical localization and thalamocortical modulation of neuronal hyperexcitability contribute to Fragile X Syndrome publication-title: Commun. Biol. doi: 10.1038/s42003-022-03395-9 – volume: 27 start-page: 370 year: 2004 ident: 10.1016/j.neuropharm.2024.110182_bib1 article-title: The mGluR theory of fragile X mental retardation publication-title: Trends Neurosci. doi: 10.1016/j.tins.2004.04.009 – volume: 12 start-page: 17 year: 2021 ident: 10.1016/j.neuropharm.2024.110182_bib58 article-title: Increased aperiodic gamma power in young boys with Fragile X Syndrome is associated with better language ability publication-title: Mol. Autism. doi: 10.1186/s13229-021-00425-x – volume: 16 start-page: 666 year: 2008 ident: 10.1016/j.neuropharm.2024.110182_bib16 article-title: Fragile X syndrome publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2008.61 – volume: 22 start-page: 209 year: 2021 ident: 10.1016/j.neuropharm.2024.110182_bib45 article-title: The molecular biology of FMRP: new insights into fragile X syndrome publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-021-00432-0 – volume: 18 year: 2015 ident: 10.1016/j.neuropharm.2024.110182_bib43 article-title: R-baclofen reverses a social behavior deficit and elevated protein synthesis in a mouse model of fragile X syndrome publication-title: Int. J. Neuropsychopharmacol. doi: 10.1093/ijnp/pyv034 – volume: 123 start-page: 720 year: 2012 ident: 10.1016/j.neuropharm.2024.110182_bib54 article-title: Auditory and visual cortical activity during selective attention in fragile X syndrome: a cascade of processing deficiencies publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2011.08.023 – volume: 5 year: 2015 ident: 10.1016/j.neuropharm.2024.110182_bib63 article-title: GABAB receptor upregulates fragile X mental retardation protein expression in neurons publication-title: Sci. Rep. – volume: 297 start-page: 168 year: 2017 ident: 10.1016/j.neuropharm.2024.110182_bib62 article-title: Decreased surface expression of the δ subunit of the GABAA receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2017.08.008 – volume: 13 start-page: 60 year: 2019 ident: 10.1016/j.neuropharm.2024.110182_bib15 article-title: Auditory EEG biomarkers in fragile X syndrome: clinical relevance. Front. Integr publication-title: Neurosci. – volume: 12 year: 2021 ident: 10.1016/j.neuropharm.2024.110182_bib55 article-title: Heterogeneity in fragile X syndrome highlights the need for precision medicine-based treatments publication-title: Front. Psychiatr. doi: 10.3389/fpsyt.2021.722378 – volume: 111 start-page: 827 year: 1991 ident: 10.1016/j.neuropharm.2024.110182_bib28 article-title: Age-related loss of auditory sensitivity in two mouse genotypes publication-title: Acta Otolaryngol. doi: 10.3109/00016489109138418 – volume: 80 start-page: 214 year: 2011 ident: 10.1016/j.neuropharm.2024.110182_bib59 article-title: CGG repeat in the FMR1 gene: size matters publication-title: Clin. Genet. doi: 10.1111/j.1399-0004.2011.01723.x – volume: 49 start-page: 1053 year: 2005 ident: 10.1016/j.neuropharm.2024.110182_bib61 article-title: Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2005.06.004 – volume: 398 start-page: 126 year: 2019 ident: 10.1016/j.neuropharm.2024.110182_bib57 article-title: Developmental changes in EEG phenotypes in a mouse model of fragile X syndrome publication-title: Neuroscience doi: 10.1016/j.neuroscience.2018.11.047 – volume: 12 start-page: 396 year: 2010 ident: 10.1016/j.neuropharm.2024.110182_bib19 article-title: A systematic review of population screening for fragile X syndrome publication-title: Genet. Med. doi: 10.1097/GIM.0b013e3181e38fb6 – volume: 6 year: 2011 ident: 10.1016/j.neuropharm.2024.110182_bib42 article-title: Genetic-background modulation of core and variable autistic-like symptoms in Fmr1 knock-out mice publication-title: PLoS One doi: 10.1371/journal.pone.0017073 – volume: 138 year: 2020 ident: 10.1016/j.neuropharm.2024.110182_bib22 article-title: Multielectrode array analysis of EEG biomarkers in a mouse model of Fragile X Syndrome publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2020.104794 – volume: 1121 start-page: 238 year: 2006 ident: 10.1016/j.neuropharm.2024.110182_bib13 article-title: Decreased expression of the GABAA receptor in fragile X syndrome publication-title: Brain Res. doi: 10.1016/j.brainres.2006.08.115 – volume: 13 start-page: 107 year: 2012 ident: 10.1016/j.neuropharm.2024.110182_bib31 article-title: Interneuron dysfunction in psychiatric disorders publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3155 – volume: 56 start-page: 955 year: 2007 ident: 10.1016/j.neuropharm.2024.110182_bib14 article-title: Correction of fragile X syndrome in mice publication-title: Neuron doi: 10.1016/j.neuron.2007.12.001 – volume: 8 year: 2023 ident: 10.1016/j.neuropharm.2024.110182_bib60 article-title: CNS-dominant human FMRP isoform rescues seizures, fear, and sleep abnormalities in Fmr1-KO mice publication-title: JCI Insight doi: 10.1172/jci.insight.169650 – volume: 103 start-page: 1043 year: 2001 ident: 10.1016/j.neuropharm.2024.110182_bib6 article-title: Fragile X mice develop sensory hyperreactivity to auditory stimuli publication-title: Neuroscience doi: 10.1016/S0306-4522(01)00036-7 – volume: 6 start-page: 264 year: 2012 ident: 10.1016/j.neuropharm.2024.110182_bib25 article-title: Event-related potential alterations in fragile X syndrome publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2012.00264 – volume: 19 start-page: 1515 year: 2009 ident: 10.1016/j.neuropharm.2024.110182_bib8 article-title: Downregulation of tonic GABAergic inhibition in a mouse model of fragile X syndrome publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn159 – volume: 408 year: 2024 ident: 10.1016/j.neuropharm.2024.110182_bib9 article-title: Workflow for the unsupervised clustering of sleep stages identifies light and deep sleep in electrophysiological recordings in mice publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2024.110155 – volume: 13 start-page: 160 year: 2017 ident: 10.1016/j.neuropharm.2024.110182_bib34 article-title: Translational use of event-related potentials to assess circuit integrity in ASD publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2017.15 – volume: 13 start-page: 141 year: 2019 ident: 10.1016/j.neuropharm.2024.110182_bib7 article-title: Gaboxadol normalizes behavioral abnormalities in a mouse model of fragile X syndrome publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2019.00141 – volume: 22 start-page: 409 year: 2001 ident: 10.1016/j.neuropharm.2024.110182_bib46 article-title: The behavioral phenotype in fragile X: symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders publication-title: J. Dev. Behav. Pediatr. doi: 10.1097/00004703-200112000-00008 – volume: 7 start-page: 105 year: 2022 ident: 10.1016/j.neuropharm.2024.110182_bib53 article-title: Therapeutic potential of GABAA receptor subunit expression abnormalities in fragile X syndrome publication-title: Expert Rev. Precis. Med. Drug Dev. doi: 10.1080/23808993.2021.2008168 – volume: 339 start-page: 474 year: 2011 ident: 10.1016/j.neuropharm.2024.110182_bib29 article-title: CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.111.185660 – volume: 8 start-page: 245 year: 2014 ident: 10.1016/j.neuropharm.2024.110182_bib5 article-title: The contribution of inhibitory interneurons to circuit dysfunction in Fragile X Syndrome publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2014.00245 – volume: 108 start-page: 2587 year: 2011 ident: 10.1016/j.neuropharm.2024.110182_bib27 article-title: Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1013855108 – volume: 12 year: 2021 ident: 10.1016/j.neuropharm.2024.110182_bib4 article-title: Gaboxadol in fragile X syndrome: a 12-week randomized, double-blind, parallel-group, Phase 2a study publication-title: Front. Pharmacol. doi: 10.3389/fphar.2021.757825 – volume: 17 year: 2023 ident: 10.1016/j.neuropharm.2024.110182_bib52 article-title: Fragile X Syndrome as an interneuronopathy: a lesson for future studies and treatments publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1171895 – volume: 4 year: 2012 ident: 10.1016/j.neuropharm.2024.110182_bib18 article-title: Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3004218 – volume: 36 start-page: 90 year: 2014 ident: 10.1016/j.neuropharm.2024.110182_bib26 article-title: Alterations of visual and auditory evoked potentials in fragile X syndrome publication-title: Int. J. Dev. Neurosci. doi: 10.1016/j.ijdevneu.2014.05.003 – volume: 30 start-page: 9929 year: 2010 ident: 10.1016/j.neuropharm.2024.110182_bib38 article-title: Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1714-10.2010 – ident: 10.1016/j.neuropharm.2024.110182_bib47 – volume: 115 start-page: 39 year: 2018 ident: 10.1016/j.neuropharm.2024.110182_bib30 article-title: Translation-relevant EEG phenotypes in a mouse model of Fragile X Syndrome publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2018.03.012 – volume: 45 start-page: 1411 year: 2020 ident: 10.1016/j.neuropharm.2024.110182_bib21 article-title: A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology publication-title: Neuropsychopharmacology doi: 10.1038/s41386-020-0697-9 – volume: 14 start-page: 2985 year: 2015 ident: 10.1016/j.neuropharm.2024.110182_bib3 article-title: The GABAA receptor is an FMRP target with therapeutic potential in fragile X syndrome publication-title: Cell Cycle doi: 10.4161/15384101.2014.989114 – volume: 31 start-page: 127 year: 2008 ident: 10.1016/j.neuropharm.2024.110182_bib12 article-title: Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2008.04.002 – volume: 292 start-page: 6621 year: 2017 ident: 10.1016/j.neuropharm.2024.110182_bib66 article-title: Deficits in the activity of presynaptic γ-aminobutyric acid type B receptors contribute to altered neuronal excitability in fragile X syndrome publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.772541 – volume: 33 start-page: 395 year: 2011 ident: 10.1016/j.neuropharm.2024.110182_bib37 article-title: The GABA(A) receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome publication-title: Dev. Neurosci. doi: 10.1159/000332884 – volume: 7 year: 2020 ident: 10.1016/j.neuropharm.2024.110182_bib64 article-title: Characterization of auditory and binaural spatial hearing in a fragile X syndrome mouse model publication-title: eNeuro doi: 10.1523/ENEURO.0300-19.2019 – volume: 215 start-page: 291 year: 2011 ident: 10.1016/j.neuropharm.2024.110182_bib51 article-title: Early continuous inhibition of group 1 mGlu signaling partially rescues dendritic spine abnormalities in the Fmr1 knockout mouse model for fragile X syndrome publication-title: Psychopharmacology doi: 10.1007/s00213-010-2130-2 – volume: 12 start-page: 34 year: 2022 ident: 10.1016/j.neuropharm.2024.110182_bib24 article-title: EEG as a translational biomarker and outcome measure in fragile X syndrome publication-title: Transl. Psychiatry doi: 10.1038/s41398-022-01796-2 – volume: 9 start-page: 11 year: 2017 ident: 10.1016/j.neuropharm.2024.110182_bib56 article-title: A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome publication-title: J. Neurodev. Disord. doi: 10.1186/s11689-017-9191-z – volume: 13 start-page: 47 year: 2022 ident: 10.1016/j.neuropharm.2024.110182_bib48 article-title: Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome publication-title: Mol. Autism. doi: 10.1186/s13229-022-00527-0 – volume: 12 year: 2021 ident: 10.1016/j.neuropharm.2024.110182_bib44 article-title: Neural correlates of auditory hypersensitivity in fragile X syndrome publication-title: Front. Psychiatr. doi: 10.3389/fpsyt.2021.720752 – volume: 4 year: 2017 ident: 10.1016/j.neuropharm.2024.110182_bib49 article-title: GABA-B agonist baclofen normalizes auditory-evoked neural oscillations and behavioral deficits in the Fmr1 knockout mouse model of fragile X syndrome publication-title: eNeuro doi: 10.1523/ENEURO.0380-16.2017 – volume: 75 start-page: 189 year: 2014 ident: 10.1016/j.neuropharm.2024.110182_bib32 article-title: Chronic metabotropic glutamate receptor 5 inhibition corrects local alterations of brain activity and improves cognitive performance in fragile X mice publication-title: Biol. Psychiatr. doi: 10.1016/j.biopsych.2013.05.038 – volume: 17 start-page: 280 year: 2018 ident: 10.1016/j.neuropharm.2024.110182_bib2 article-title: Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.221 – volume: 74 start-page: 49 year: 2012 ident: 10.1016/j.neuropharm.2024.110182_bib33 article-title: Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice publication-title: Neuron doi: 10.1016/j.neuron.2012.03.009 – volume: 115 start-page: 2292 year: 2004 ident: 10.1016/j.neuropharm.2024.110182_bib35 article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.04.029 – volume: 338 start-page: 897 year: 2011 ident: 10.1016/j.neuropharm.2024.110182_bib39 article-title: Subchronic administration and combination metabotropic glutamate and GABAB receptor drug therapy in fragile X syndrome publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.111.183327 – volume: 22 start-page: 275 year: 2021 ident: 10.1016/j.neuropharm.2024.110182_bib10 article-title: Channelopathies in fragile X syndrome publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-021-00445-9 – volume: 77 start-page: 1031 year: 2015 ident: 10.1016/j.neuropharm.2024.110182_bib17 article-title: Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia publication-title: Biol. Psychiatr. doi: 10.1016/j.biopsych.2015.03.010 – volume: 24 start-page: 1377 year: 2021 ident: 10.1016/j.neuropharm.2024.110182_bib65 article-title: A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies publication-title: Nat. Neurosci. doi: 10.1038/s41593-021-00913-6 – volume: 17 start-page: 777 year: 2016 ident: 10.1016/j.neuropharm.2024.110182_bib40 article-title: Network abnormalities and interneuron dysfunction in Alzheimer disease publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2016.141 – volume: 12 year: 2021 ident: 10.1016/j.neuropharm.2024.110182_bib50 article-title: mGluR5 negative modulators for fragile X: treatment resistance and persistence publication-title: Front. Psychiatr. doi: 10.3389/fpsyt.2021.718953 |
SSID | ssj0004818 |
Score | 2.4593604 |
Snippet | Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 110182 |
Title | Clinically-probed mechanisms of action in Fragile-X syndrome fail to normalize translational EEG phenotypes in Fmr1 knockout mice |
URI | https://dx.doi.org/10.1016/j.neuropharm.2024.110182 https://www.ncbi.nlm.nih.gov/pubmed/39396738 https://www.proquest.com/docview/3116334596 |
Volume | 262 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQXLig5bFseWmQECeyNImTJuKEUKGAFnEAqTfLduxVIE0qkh7KAYl_zkweVHtAWoljojxsjz3fjD3zDWNH1lqTqFA6oYk5OihB34mCSDtEFa5UEBtZHxf8uQtHj_xmHIyX2EWXC0Nhla3ub3R6ra3bO6ftaJ5O05RyfBEaqWI3r4_DiBOU8wHN8t9vizAPHrlRx8RMT7fRPE2MV80ZOSWOaPQUPU4x8W7kfQVRX5mgNRRd_mBrrQ0J500z19mSyTfY8X1DQj0_gYdFTlV5Asdwv6Cnnm-y95YKNMvmDpWTMQlMDOX_puWkhMJCk-oAaQ5o1f5FreGMoSM2ACvTDKoCcrJ1s_TVQEVol7V7ijAcXgGFjRW0t1vWH5m8uPCco94tZhVMUDFtscfL4cPFyGkLMTgaV2jlJDZANRiHUimD-I5Oz0AmVqq4b6mgmA770vihkkp7CUcXx41jE7lB4vsDWvOe_5Mt50VufjEwOiA6mjBSCeKitpFRUlvNE42Xyng95nZjL6YN34boAtGexEJeguQlGnn12FknJPHP3BEIC__x9mEnV4FLi85LZG6KWSl8F41Vn2N_e2y7Efhnm_zYj6lg6s63_r3LVj2qJ1xv6eyx5eplZvbRyKnUQT2LD9jK-fXt6O4D6roAjQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLZKOcClKu9teRgJ9dTQTTJJE3FC1ZYF2qqHrbS30cxkpgrNJqsme9gekPjn2Hmw4lAJiWOiPMdjf_aM_Rngg3POZjpWXmxTQQFKNPaSKDEeU4VrHaVWtdsF5xfx9Ep8m0fzLTgZamE4rbK3_Z1Nb611f-aoH82jZZ5zjS9BI3fsFu12mHgADwWpL7cx-Phzk-chEj8ZqJj58j6dp0vyakkjl0wSTaFiIDgp3k-C-zDqPh-0xaLTXdjpnUj83H3nE9iy5VM4uOxYqNeHONsUVdWHeICXG37q9TP41XOBFsXa434yNsOF5QLgvF7UWDnsah0wL5Hc2msyG94cB2YDdCovsKmwZGe3yO8sNgx3Rb-oiJPJF-S8sYoXd-v2IYtbH29KMrzVqsEFWabncHU6mZ1Mvb4Tg2dIRRsvcxHZwTRWWlsCeIp6jlXmlE7HjjuKmXisbBhrpU2QCYpx_DS1iR9lYXjMSh-EL2C7rEr7CtCaiPlo4kRnBIzGJVYr44zIDB1qG4zAH8ZeLjvCDTlkov2QG3lJlpfs5DWCT4OQ5F-TRxIu_MPd7we5StIt3jBRpa1WtQx98lZDQf87gpedwP98U5iGKXdM3fuvd7-DR9PZ-Zk8-3rxfR8eB9xcuF3feQ3bze3KviGPp9Fv2xn9G7UuAhs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinically-probed+mechanisms+of+action+in+Fragile-X+syndrome+fail+to+normalize+translational+EEG+phenotypes+in+Fmr1+knockout+mice&rft.jtitle=Neuropharmacology&rft.au=Janz%2C+Philipp&rft.au=Bainier%2C+Marie&rft.au=Marashli%2C+Samuel&rft.au=Gross%2C+Simon&rft.date=2025-01-01&rft.issn=1873-7064&rft.eissn=1873-7064&rft.volume=262&rft.spage=110182&rft_id=info:doi/10.1016%2Fj.neuropharm.2024.110182&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3908&client=summon |