Clinically-probed mechanisms of action in Fragile-X syndrome fail to normalize translational EEG phenotypes in Fmr1 knockout mice

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent mod...

Full description

Saved in:
Bibliographic Details
Published inNeuropharmacology Vol. 262; p. 110182
Main Authors Janz, Philipp, Bainier, Marie, Marashli, Samuel, Gross, Simon, Redondo, Roger L.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2025
Online AccessGet full text

Cover

Loading…
Abstract Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation. Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABABR agonists (e.g. arbaclofen) and δ-containing GABAAR agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using “task-free” and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs. First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes. We conclude that these compounds have limited ability to normalize these EEG phenotypes. [Display omitted] •Fmr1-KO mouse EEG abnormalities resemble those reported in FXS patients.•Pharmacological treatment only partially normalized EEG phenotypes.•CTEP restored coherence and AEP, but not gamma power and VEP abnormalities.•Arbaclofen reduced gamma power but did not restore other key readouts.•Gaboxadol did not normalize any EEG phenotypes.
AbstractList Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation. Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABABR agonists (e.g. arbaclofen) and δ-containing GABAAR agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using "task-free" and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs. First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes. We conclude that these compounds have limited ability to normalize these EEG phenotypes.Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation. Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABABR agonists (e.g. arbaclofen) and δ-containing GABAAR agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using "task-free" and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs. First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes. We conclude that these compounds have limited ability to normalize these EEG phenotypes.
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation. Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABA R agonists (e.g. arbaclofen) and δ-containing GABA R agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using "task-free" and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs. First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes. We conclude that these compounds have limited ability to normalize these EEG phenotypes.
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation. Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABABR agonists (e.g. arbaclofen) and δ-containing GABAAR agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using “task-free” and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs. First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes. We conclude that these compounds have limited ability to normalize these EEG phenotypes. [Display omitted] •Fmr1-KO mouse EEG abnormalities resemble those reported in FXS patients.•Pharmacological treatment only partially normalized EEG phenotypes.•CTEP restored coherence and AEP, but not gamma power and VEP abnormalities.•Arbaclofen reduced gamma power but did not restore other key readouts.•Gaboxadol did not normalize any EEG phenotypes.
ArticleNumber 110182
Author Marashli, Samuel
Redondo, Roger L.
Janz, Philipp
Bainier, Marie
Gross, Simon
Author_xml – sequence: 1
  givenname: Philipp
  orcidid: 0000-0002-6472-2956
  surname: Janz
  fullname: Janz, Philipp
  email: philipp.janz@roche.com
– sequence: 2
  givenname: Marie
  orcidid: 0000-0001-5832-193X
  surname: Bainier
  fullname: Bainier, Marie
– sequence: 3
  givenname: Samuel
  orcidid: 0000-0001-7641-7206
  surname: Marashli
  fullname: Marashli, Samuel
– sequence: 4
  givenname: Simon
  surname: Gross
  fullname: Gross, Simon
– sequence: 5
  givenname: Roger L.
  orcidid: 0000-0002-3477-689X
  surname: Redondo
  fullname: Redondo, Roger L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39396738$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFv4B85JKtHWcd5wirbalUiQtI3KyJPWG99UewE6TtjX9Oli1w5DTS6Hkfaea9IhcxRSSEcrbmjMubwzrinNO4hxzWNaubNV_2qn5BVly1omqZbC7IirFaVaJj6pJclXJgjDWKq1fkUnSik61QK_Jz6110Brw_VmNOPVoa0OwhuhIKTQMFM7kUqYv0NsM357H6Sssx2pwC0gGcp1OiMeUA3j0hnTLE4uGUAU93uzs67jGm6Thi-S0JmdPHmMxjmicanMHX5OUAvuCb53lNvtzuPm8_Vg-f7u637x8qI3g3VXbYgLWdhL5HrjadZC3YAfqODdJgbSQDFLKH3tS24W3Duw4V31ghWrbhrBbX5N3Zu5z5fcYy6eCKQe8hYpqLFpxLIZrFvKBvn9G5D2j1mF2AfNR_3rYA6gyYnErJOPxFONOnhvRB_2tInxrS54aW6IdzFJdbfzjMuhiH0aB1Gc2kbXL_l_wCwlWgmQ
Cites_doi 10.1016/j.celrep.2022.110820
10.1111/jnc.15602
10.3390/cells10102610
10.1038/s42003-022-03395-9
10.1016/j.tins.2004.04.009
10.1186/s13229-021-00425-x
10.1038/ejhg.2008.61
10.1038/s41583-021-00432-0
10.1093/ijnp/pyv034
10.1016/j.clinph.2011.08.023
10.1016/j.expneurol.2017.08.008
10.3389/fpsyt.2021.722378
10.3109/00016489109138418
10.1111/j.1399-0004.2011.01723.x
10.1016/j.neuropharm.2005.06.004
10.1016/j.neuroscience.2018.11.047
10.1097/GIM.0b013e3181e38fb6
10.1371/journal.pone.0017073
10.1016/j.nbd.2020.104794
10.1016/j.brainres.2006.08.115
10.1038/nrn3155
10.1016/j.neuron.2007.12.001
10.1172/jci.insight.169650
10.1016/S0306-4522(01)00036-7
10.3389/fnhum.2012.00264
10.1093/cercor/bhn159
10.1016/j.jneumeth.2024.110155
10.1038/nrneurol.2017.15
10.3389/fnbeh.2019.00141
10.1097/00004703-200112000-00008
10.1080/23808993.2021.2008168
10.1124/jpet.111.185660
10.3389/fncel.2014.00245
10.1073/pnas.1013855108
10.3389/fphar.2021.757825
10.3389/fnins.2023.1171895
10.1126/scitranslmed.3004218
10.1016/j.ijdevneu.2014.05.003
10.1523/JNEUROSCI.1714-10.2010
10.1016/j.nbd.2018.03.012
10.1038/s41386-020-0697-9
10.4161/15384101.2014.989114
10.1016/j.nbd.2008.04.002
10.1074/jbc.M116.772541
10.1159/000332884
10.1523/ENEURO.0300-19.2019
10.1007/s00213-010-2130-2
10.1038/s41398-022-01796-2
10.1186/s11689-017-9191-z
10.1186/s13229-022-00527-0
10.3389/fpsyt.2021.720752
10.1523/ENEURO.0380-16.2017
10.1016/j.biopsych.2013.05.038
10.1038/nrd.2017.221
10.1016/j.neuron.2012.03.009
10.1016/j.clinph.2004.04.029
10.1124/jpet.111.183327
10.1038/s41583-021-00445-9
10.1016/j.biopsych.2015.03.010
10.1038/s41593-021-00913-6
10.1038/nrn.2016.141
10.3389/fpsyt.2021.718953
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neuropharm.2024.110182
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-7064
ExternalDocumentID 39396738
10_1016_j_neuropharm_2024_110182
S0028390824003514
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXLA
AAXUO
ABCQJ
ABFRF
ABIVO
ABJNI
ABMAC
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M34
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSP
SSZ
T5K
TEORI
~G-
.55
.GJ
29N
3O-
41~
53G
5VS
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HMT
HVGLF
HZ~
R2-
RIG
SPT
SSH
WUQ
X7M
XOL
ZGI
ZXP
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c319t-df5add96abbe1859607adfab90f6ce2c60ae36babc2d4174199e815d337051023
IEDL.DBID .~1
ISSN 0028-3908
1873-7064
IngestDate Sun Aug 24 04:12:27 EDT 2025
Tue Jun 10 08:58:49 EDT 2025
Tue Jul 01 01:51:59 EDT 2025
Sat Feb 08 15:52:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-df5add96abbe1859607adfab90f6ce2c60ae36babc2d4174199e815d337051023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3477-689X
0000-0001-7641-7206
0000-0002-6472-2956
0000-0001-5832-193X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0028390824003514
PMID 39396738
PQID 3116334596
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3116334596
pubmed_primary_39396738
crossref_primary_10_1016_j_neuropharm_2024_110182
elsevier_sciencedirect_doi_10_1016_j_neuropharm_2024_110182
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Neuropharmacology
PublicationTitleAlternate Neuropharmacology
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Toth (bib6) 2001; 103
Garber, Visootsak, Warren (bib16) 2008; 16
Su, Fan, Jiang, Sun, Den, Gao, Chen, Zhao, Yi (bib51) 2011; 215
Marín (bib31) 2012; 13
Richter, Zhao (bib45) 2021; 22
van der Lei, Kooy (bib53) 2022; 7
Dölen, Osterweil, Rao, Smith, Auerbach, Chattarji, Bear (bib14) 2007; 56
Verdura, Pérez-Cano, Sabido-Vera, Guney, Hyvelin, Durham, Gomez-Mancilla (bib55) 2021; 12
Nolte, Bai, Wheaton, Mari, Vorbach, Hallett (bib35) 2004; 115
Braat, D'Hulst, Heulens, De Rubeis, Mientjes, Nelson, Willemsen, Bagni, Van Dam, De Deyn, Kooy (bib3) 2015; 14
Javitt, Siegel, Spencer, Mathalon, Hong, Martinez, Ehlers, Abbas, Teichert, Lakatos, Womelsdorf (bib21) 2020; 45
Wen, Lovelace, Ethell, Binder, Razak (bib57) 2019; 398
de Vrij, Levenga, van der Linde, Koekkoek, De Zeeuw, Nelson, Oostra, Willemsen (bib12) 2008; 31
Jonak, Lovelace, Ethell, Razak, Binder (bib22) 2020; 138
Michalon, Sidorov, Ballard, Ozmen, Spooren, Wettstein, Jaeschke, Bear, Lindemann (bib33) 2012; 74
Krueger, Osterweil, Chen, Tye, Bear (bib27) 2011; 108
Nomura (bib36) 2021; 10
Qin, Huang, Kader, Krych, Xia, Burlin, Zeidler, Zhao, Smith (bib43) 2015; 18
Kenny, Wright, Stanfield (bib24) 2022; 12
Saoud, Fitzgerald, Hartney, Wilkinson (bib47) 2022
Berry-Kravis, Lindemann, Jønch, Apostol, Bear, Carpenter, Crawley, Curie, Des Portes, Hossain, Gasparini, Gomez-Mancilla, Hessl, Loth, Scharf, Wang, Von Raison, Hagerman, Spooren, Jacquemont (bib2) 2018; 17
Cogram, Deacon, Warner-Schmidt, von Schimmelmann, Abrahams, During (bib7) 2019; 13
Bear, Huber, Warren (bib1) 2004; 27
Kang, Chadchankar, Vien, Mighdoll, Hyde, Mather, Deeb, Pangalos, Brandon, Dunlop, Moss (bib66) 2017; 292
Deng, Klyachko (bib10) 2021; 22
Razak, Binder, Ethell (bib44) 2021; 12
Kang, Zhou, Li, Han, Xu, Niu, Li, Liu, Feng, Huang, Duan, Xu, Raj, Zhang, Dou, Xu, Wu, Bassell, Warren, Allen, Jin, Wen (bib65) 2021; 24
Cea-Del Rio, Huntsman (bib5) 2014; 8
Budimirovic, Dominick, Gabis, Adams, Adera, Huang, Ventola, Tartaglia, Berry-Kravis (bib4) 2021; 12
Tempio, Boulksibat, Bardoni, Delhaye (bib52) 2023; 17
Lindemann, Jaeschke, Michalon, Vieira, Honer, Spooren, Porter, Hartung, Kolczewski, Büttelmann, Flament, Diener, Fischer, Gatti, Prinssen, Parrott, Hoffmann, Wettstein (bib29) 2011; 339
Knoth, Lippé (bib25) 2012; 6
McCullagh, Poleg, Greene, Huntsman, Tollin, Klug (bib64) 2020; 7
Cusinato, Gross, Bainier, Janz, Schoenenberger, Redondo (bib9) 2024; 408
Sinclair, Featherstone, Naschek, Nam, Du, Wright, Pance, Melnychenko, Weger, Akuzawa, Matsumoto, Siegel (bib49) 2017; 4
D'Hulst, De Geest, Reeve, Van Dam, De Deyn, Hassan, Kooy (bib13) 2006; 1121
Zhang, Xu, Tu, Wang, Sun, Hu, Hu, Rondard, Liu (bib63) 2015; 5
Curia, Papouin, Séguéla, Avoli (bib8) 2009; 19
Pietropaolo, Guilleminot, Martin, D'Amato, Crusio (bib42) 2011; 6
Yan, Rammal, Tranfaglia, Bauchwitz (bib61) 2005; 49
Deng, Kumar, Cavalli, Klyachko (bib11) 2022; 39
Willemsen, Levenga, Oostra (bib59) 2011; 80
Rogers, Wehner, Hagerman (bib46) 2001; 22
Stoppel, McCamphill, Senter, Heynen, Bear (bib50) 2021; 12
Ethridge, De Stefano, Schmitt, Woodruff, Brown, Tran, Wang, Pedapati, Erickson, Sweeney (bib15) 2019; 13
Janz, Nicolas, Redondo, Valencia (bib20) 2022; 161
Gonzalez-Burgos, Cho, Lewis (bib17) 2015; 77
Olmos-Serrano, Paluszkiewicz, Martin, Kaufmann, Corbin, Huntsman (bib38) 2010; 30
Henderson, Wijetunge, Kinoshita, Shumway, Hammond, Postma, Brynczka, Rush, Thomas, Paylor, Warren, Vanderklish, Kind, Carpenter, Bear, Healy (bib18) 2012; 4
Michalon, Bruns, Risterucci, Honer, Ballard, Ozmen, Jaeschke, Wettstein, von Kienlin, Künnecke, Lindemann (bib32) 2014; 75
Li, Borg (bib28) 1991; 111
Zhang, Peng, Tong, Lindemeyer, Cetina, Huang, Olsen, Otis, Houser (bib62) 2017; 297
Schmitt, Li, Liu, Horn, Sweeney, Erickson, Pedapati (bib48) 2022; 13
Olmos-Serrano, Corbin, Burns (bib37) 2011; 33
Wong, Hooper, Kang, Lee, Zhao, Sadhu, Rawat, Gray, Hampson (bib60) 2023; 8
Modi, Sahin (bib34) 2017; 13
Pedapati, Schmitt, Ethridge, Miyakoshi, Sweeney, Liu, Smith, Shaffer, Dominick, Gilbert, Wu, Horn, Binder, Lamy, Axford, Erickson (bib41) 2022; 5
Lovelace, Ethell, Binder, Razak (bib30) 2018; 115
Wilkinson, Nelson (bib58) 2021; 12
Wang, Ethridge, Mosconi, White, Binder, Pedapati, Erickson, Byerly, Sweeney (bib56) 2017; 9
Hill, Archibald, Cohen, Metcalfe (bib19) 2010; 12
Knoth, Vannasing, Major, Michaud, Lippé (bib26) 2014; 36
Palop, Mucke (bib40) 2016; 17
Pacey, Tharmalingam, Hampson (bib39) 2011; 338
Van der Molen, Van der Molen, Ridderinkhof, Hamel, Curfs, Ramakers (bib54) 2012; 123
Van der Molen (10.1016/j.neuropharm.2024.110182_bib54) 2012; 123
Cogram (10.1016/j.neuropharm.2024.110182_bib7) 2019; 13
Li (10.1016/j.neuropharm.2024.110182_bib28) 1991; 111
Modi (10.1016/j.neuropharm.2024.110182_bib34) 2017; 13
Sinclair (10.1016/j.neuropharm.2024.110182_bib49) 2017; 4
Michalon (10.1016/j.neuropharm.2024.110182_bib33) 2012; 74
Pacey (10.1016/j.neuropharm.2024.110182_bib39) 2011; 338
Kenny (10.1016/j.neuropharm.2024.110182_bib24) 2022; 12
Deng (10.1016/j.neuropharm.2024.110182_bib11) 2022; 39
Braat (10.1016/j.neuropharm.2024.110182_bib3) 2015; 14
Henderson (10.1016/j.neuropharm.2024.110182_bib18) 2012; 4
Curia (10.1016/j.neuropharm.2024.110182_bib8) 2009; 19
Pedapati (10.1016/j.neuropharm.2024.110182_bib41) 2022; 5
Marín (10.1016/j.neuropharm.2024.110182_bib31) 2012; 13
Janz (10.1016/j.neuropharm.2024.110182_bib20) 2022; 161
Palop (10.1016/j.neuropharm.2024.110182_bib40) 2016; 17
Michalon (10.1016/j.neuropharm.2024.110182_bib32) 2014; 75
Hill (10.1016/j.neuropharm.2024.110182_bib19) 2010; 12
Dölen (10.1016/j.neuropharm.2024.110182_bib14) 2007; 56
Olmos-Serrano (10.1016/j.neuropharm.2024.110182_bib38) 2010; 30
Knoth (10.1016/j.neuropharm.2024.110182_bib26) 2014; 36
Budimirovic (10.1016/j.neuropharm.2024.110182_bib4) 2021; 12
Gonzalez-Burgos (10.1016/j.neuropharm.2024.110182_bib17) 2015; 77
Javitt (10.1016/j.neuropharm.2024.110182_bib21) 2020; 45
Richter (10.1016/j.neuropharm.2024.110182_bib45) 2021; 22
Zhang (10.1016/j.neuropharm.2024.110182_bib63) 2015; 5
Nomura (10.1016/j.neuropharm.2024.110182_bib36) 2021; 10
Tempio (10.1016/j.neuropharm.2024.110182_bib52) 2023; 17
Qin (10.1016/j.neuropharm.2024.110182_bib43) 2015; 18
Wen (10.1016/j.neuropharm.2024.110182_bib57) 2019; 398
Kang (10.1016/j.neuropharm.2024.110182_bib65) 2021; 24
Yan (10.1016/j.neuropharm.2024.110182_bib61) 2005; 49
Olmos-Serrano (10.1016/j.neuropharm.2024.110182_bib37) 2011; 33
Pietropaolo (10.1016/j.neuropharm.2024.110182_bib42) 2011; 6
Saoud (10.1016/j.neuropharm.2024.110182_bib47)
Lindemann (10.1016/j.neuropharm.2024.110182_bib29) 2011; 339
Nolte (10.1016/j.neuropharm.2024.110182_bib35) 2004; 115
Su (10.1016/j.neuropharm.2024.110182_bib51) 2011; 215
Wong (10.1016/j.neuropharm.2024.110182_bib60) 2023; 8
Ethridge (10.1016/j.neuropharm.2024.110182_bib15) 2019; 13
Zhang (10.1016/j.neuropharm.2024.110182_bib62) 2017; 297
Cea-Del Rio (10.1016/j.neuropharm.2024.110182_bib5) 2014; 8
Berry-Kravis (10.1016/j.neuropharm.2024.110182_bib2) 2018; 17
Garber (10.1016/j.neuropharm.2024.110182_bib16) 2008; 16
Krueger (10.1016/j.neuropharm.2024.110182_bib27) 2011; 108
Wilkinson (10.1016/j.neuropharm.2024.110182_bib58) 2021; 12
D'Hulst (10.1016/j.neuropharm.2024.110182_bib13) 2006; 1121
McCullagh (10.1016/j.neuropharm.2024.110182_bib64) 2020; 7
Willemsen (10.1016/j.neuropharm.2024.110182_bib59) 2011; 80
Kang (10.1016/j.neuropharm.2024.110182_bib66) 2017; 292
Chen (10.1016/j.neuropharm.2024.110182_bib6) 2001; 103
Razak (10.1016/j.neuropharm.2024.110182_bib44) 2021; 12
van der Lei (10.1016/j.neuropharm.2024.110182_bib53) 2022; 7
Knoth (10.1016/j.neuropharm.2024.110182_bib25) 2012; 6
Stoppel (10.1016/j.neuropharm.2024.110182_bib50) 2021; 12
de Vrij (10.1016/j.neuropharm.2024.110182_bib12) 2008; 31
Bear (10.1016/j.neuropharm.2024.110182_bib1) 2004; 27
Lovelace (10.1016/j.neuropharm.2024.110182_bib30) 2018; 115
Jonak (10.1016/j.neuropharm.2024.110182_bib22) 2020; 138
Rogers (10.1016/j.neuropharm.2024.110182_bib46) 2001; 22
Verdura (10.1016/j.neuropharm.2024.110182_bib55) 2021; 12
Schmitt (10.1016/j.neuropharm.2024.110182_bib48) 2022; 13
Cusinato (10.1016/j.neuropharm.2024.110182_bib9) 2024; 408
Wang (10.1016/j.neuropharm.2024.110182_bib56) 2017; 9
Deng (10.1016/j.neuropharm.2024.110182_bib10) 2021; 22
References_xml – volume: 108
  start-page: 2587
  year: 2011
  end-page: 2592
  ident: bib27
  article-title: Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 398
  start-page: 126
  year: 2019
  end-page: 143
  ident: bib57
  article-title: Developmental changes in EEG phenotypes in a mouse model of fragile X syndrome
  publication-title: Neuroscience
– volume: 161
  start-page: 417
  year: 2022
  end-page: 434
  ident: bib20
  article-title: GABAB R activation partially normalizes acute NMDAR hypofunction oscillatory abnormalities but fails to rescue sensory processing deficits
  publication-title: J. Neurochem.
– volume: 74
  start-page: 49
  year: 2012
  end-page: 56
  ident: bib33
  article-title: Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice
  publication-title: Neuron
– volume: 297
  start-page: 168
  year: 2017
  end-page: 178
  ident: bib62
  article-title: Decreased surface expression of the δ subunit of the GABAA receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome
  publication-title: Exp. Neurol.
– volume: 12
  start-page: 396
  year: 2010
  end-page: 410
  ident: bib19
  article-title: A systematic review of population screening for fragile X syndrome
  publication-title: Genet. Med.
– volume: 27
  start-page: 370
  year: 2004
  end-page: 377
  ident: bib1
  article-title: The mGluR theory of fragile X mental retardation
  publication-title: Trends Neurosci.
– volume: 12
  year: 2021
  ident: bib50
  article-title: mGluR5 negative modulators for fragile X: treatment resistance and persistence
  publication-title: Front. Psychiatr.
– volume: 22
  start-page: 409
  year: 2001
  end-page: 417
  ident: bib46
  article-title: The behavioral phenotype in fragile X: symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders
  publication-title: J. Dev. Behav. Pediatr.
– volume: 1121
  start-page: 238
  year: 2006
  end-page: 245
  ident: bib13
  article-title: Decreased expression of the GABAA receptor in fragile X syndrome
  publication-title: Brain Res.
– volume: 22
  start-page: 209
  year: 2021
  end-page: 222
  ident: bib45
  article-title: The molecular biology of FMRP: new insights into fragile X syndrome
  publication-title: Nat. Rev. Neurosci.
– volume: 115
  start-page: 39
  year: 2018
  end-page: 48
  ident: bib30
  article-title: Translation-relevant EEG phenotypes in a mouse model of Fragile X Syndrome
  publication-title: Neurobiol. Dis.
– volume: 13
  start-page: 47
  year: 2022
  ident: bib48
  article-title: Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome
  publication-title: Mol. Autism.
– volume: 339
  start-page: 474
  year: 2011
  end-page: 486
  ident: bib29
  article-title: CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 75
  start-page: 189
  year: 2014
  end-page: 197
  ident: bib32
  article-title: Chronic metabotropic glutamate receptor 5 inhibition corrects local alterations of brain activity and improves cognitive performance in fragile X mice
  publication-title: Biol. Psychiatr.
– volume: 24
  start-page: 1377
  year: 2021
  end-page: 1391
  ident: bib65
  article-title: A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies
  publication-title: Nat. Neurosci.
– volume: 408
  year: 2024
  ident: bib9
  article-title: Workflow for the unsupervised clustering of sleep stages identifies light and deep sleep in electrophysiological recordings in mice
  publication-title: J. Neurosci. Methods
– volume: 39
  year: 2022
  ident: bib11
  article-title: FMRP regulates GABAA receptor channel activity to control signal integration in hippocampal granule cells
  publication-title: Cell Rep.
– volume: 77
  start-page: 1031
  year: 2015
  end-page: 1040
  ident: bib17
  article-title: Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia
  publication-title: Biol. Psychiatr.
– volume: 12
  year: 2021
  ident: bib4
  article-title: Gaboxadol in fragile X syndrome: a 12-week randomized, double-blind, parallel-group, Phase 2a study
  publication-title: Front. Pharmacol.
– volume: 56
  start-page: 955
  year: 2007
  end-page: 962
  ident: bib14
  article-title: Correction of fragile X syndrome in mice
  publication-title: Neuron
– volume: 33
  start-page: 395
  year: 2011
  end-page: 403
  ident: bib37
  article-title: The GABA(A) receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome
  publication-title: Dev. Neurosci.
– volume: 13
  start-page: 141
  year: 2019
  ident: bib7
  article-title: Gaboxadol normalizes behavioral abnormalities in a mouse model of fragile X syndrome
  publication-title: Front. Behav. Neurosci.
– volume: 16
  start-page: 666
  year: 2008
  end-page: 672
  ident: bib16
  article-title: Fragile X syndrome
  publication-title: Eur. J. Hum. Genet.
– volume: 4
  year: 2017
  ident: bib49
  article-title: GABA-B agonist baclofen normalizes auditory-evoked neural oscillations and behavioral deficits in the Fmr1 knockout mouse model of fragile X syndrome
  publication-title: eNeuro
– volume: 12
  start-page: 34
  year: 2022
  ident: bib24
  article-title: EEG as a translational biomarker and outcome measure in fragile X syndrome
  publication-title: Transl. Psychiatry
– volume: 7
  year: 2020
  ident: bib64
  article-title: Characterization of auditory and binaural spatial hearing in a fragile X syndrome mouse model
  publication-title: eNeuro
– volume: 215
  start-page: 291
  year: 2011
  end-page: 300
  ident: bib51
  article-title: Early continuous inhibition of group 1 mGlu signaling partially rescues dendritic spine abnormalities in the Fmr1 knockout mouse model for fragile X syndrome
  publication-title: Psychopharmacology
– volume: 12
  year: 2021
  ident: bib55
  article-title: Heterogeneity in fragile X syndrome highlights the need for precision medicine-based treatments
  publication-title: Front. Psychiatr.
– volume: 292
  start-page: 6621
  year: 2017
  end-page: 6632
  ident: bib66
  article-title: Deficits in the activity of presynaptic γ-aminobutyric acid type B receptors contribute to altered neuronal excitability in fragile X syndrome
  publication-title: J. Biol. Chem.
– volume: 123
  start-page: 720
  year: 2012
  end-page: 729
  ident: bib54
  article-title: Auditory and visual cortical activity during selective attention in fragile X syndrome: a cascade of processing deficiencies
  publication-title: Clin. Neurophysiol.
– volume: 45
  start-page: 1411
  year: 2020
  end-page: 1422
  ident: bib21
  article-title: A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology
  publication-title: Neuropsychopharmacology
– volume: 80
  start-page: 214
  year: 2011
  end-page: 225
  ident: bib59
  article-title: CGG repeat in the FMR1 gene: size matters
  publication-title: Clin. Genet.
– volume: 5
  start-page: 442
  year: 2022
  ident: bib41
  article-title: Neocortical localization and thalamocortical modulation of neuronal hyperexcitability contribute to Fragile X Syndrome
  publication-title: Commun. Biol.
– volume: 10
  year: 2021
  ident: bib36
  article-title: Interneuron dysfunction and inhibitory deficits in autism and fragile X syndrome
  publication-title: Cells
– year: 2022
  ident: bib47
  article-title: Altered visual evoked potentials associated with verbal and nonverbal skills in Fragile X syndrome
– volume: 338
  start-page: 897
  year: 2011
  end-page: 905
  ident: bib39
  article-title: Subchronic administration and combination metabotropic glutamate and GABAB receptor drug therapy in fragile X syndrome
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 13
  start-page: 60
  year: 2019
  ident: bib15
  article-title: Auditory EEG biomarkers in fragile X syndrome: clinical relevance. Front. Integr
  publication-title: Neurosci.
– volume: 31
  start-page: 127
  year: 2008
  end-page: 132
  ident: bib12
  article-title: Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice
  publication-title: Neurobiol. Dis.
– volume: 9
  start-page: 11
  year: 2017
  ident: bib56
  article-title: A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome
  publication-title: J. Neurodev. Disord.
– volume: 13
  start-page: 160
  year: 2017
  end-page: 170
  ident: bib34
  article-title: Translational use of event-related potentials to assess circuit integrity in ASD
  publication-title: Nat. Rev. Neurol.
– volume: 30
  start-page: 9929
  year: 2010
  end-page: 9938
  ident: bib38
  article-title: Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome
  publication-title: J. Neurosci.
– volume: 6
  start-page: 264
  year: 2012
  ident: bib25
  article-title: Event-related potential alterations in fragile X syndrome
  publication-title: Front. Hum. Neurosci.
– volume: 115
  start-page: 2292
  year: 2004
  end-page: 2307
  ident: bib35
  article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency
  publication-title: Clin. Neurophysiol.
– volume: 12
  start-page: 17
  year: 2021
  ident: bib58
  article-title: Increased aperiodic gamma power in young boys with Fragile X Syndrome is associated with better language ability
  publication-title: Mol. Autism.
– volume: 49
  start-page: 1053
  year: 2005
  end-page: 1066
  ident: bib61
  article-title: Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP
  publication-title: Neuropharmacology
– volume: 8
  start-page: 245
  year: 2014
  ident: bib5
  article-title: The contribution of inhibitory interneurons to circuit dysfunction in Fragile X Syndrome
  publication-title: Front. Cell. Neurosci.
– volume: 103
  start-page: 1043
  year: 2001
  end-page: 1050
  ident: bib6
  article-title: Fragile X mice develop sensory hyperreactivity to auditory stimuli
  publication-title: Neuroscience
– volume: 17
  start-page: 777
  year: 2016
  end-page: 792
  ident: bib40
  article-title: Network abnormalities and interneuron dysfunction in Alzheimer disease
  publication-title: Nat. Rev. Neurosci.
– volume: 19
  start-page: 1515
  year: 2009
  end-page: 1520
  ident: bib8
  article-title: Downregulation of tonic GABAergic inhibition in a mouse model of fragile X syndrome
  publication-title: Cereb. Cortex
– volume: 22
  start-page: 275
  year: 2021
  end-page: 289
  ident: bib10
  article-title: Channelopathies in fragile X syndrome
  publication-title: Nat. Rev. Neurosci.
– volume: 17
  year: 2023
  ident: bib52
  article-title: Fragile X Syndrome as an interneuronopathy: a lesson for future studies and treatments
  publication-title: Front. Neurosci.
– volume: 8
  year: 2023
  ident: bib60
  article-title: CNS-dominant human FMRP isoform rescues seizures, fear, and sleep abnormalities in Fmr1-KO mice
  publication-title: JCI Insight
– volume: 14
  start-page: 2985
  year: 2015
  end-page: 2995
  ident: bib3
  article-title: The GABAA receptor is an FMRP target with therapeutic potential in fragile X syndrome
  publication-title: Cell Cycle
– volume: 4
  year: 2012
  ident: bib18
  article-title: Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen
  publication-title: Sci. Transl. Med.
– volume: 5
  year: 2015
  ident: bib63
  article-title: GABAB receptor upregulates fragile X mental retardation protein expression in neurons
  publication-title: Sci. Rep.
– volume: 13
  start-page: 107
  year: 2012
  end-page: 120
  ident: bib31
  article-title: Interneuron dysfunction in psychiatric disorders
  publication-title: Nat. Rev. Neurosci.
– volume: 138
  year: 2020
  ident: bib22
  article-title: Multielectrode array analysis of EEG biomarkers in a mouse model of Fragile X Syndrome
  publication-title: Neurobiol. Dis.
– volume: 18
  year: 2015
  ident: bib43
  article-title: R-baclofen reverses a social behavior deficit and elevated protein synthesis in a mouse model of fragile X syndrome
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 17
  start-page: 280
  year: 2018
  end-page: 299
  ident: bib2
  article-title: Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome
  publication-title: Nat. Rev. Drug Discov.
– volume: 36
  start-page: 90
  year: 2014
  end-page: 97
  ident: bib26
  article-title: Alterations of visual and auditory evoked potentials in fragile X syndrome
  publication-title: Int. J. Dev. Neurosci.
– volume: 6
  year: 2011
  ident: bib42
  article-title: Genetic-background modulation of core and variable autistic-like symptoms in Fmr1 knock-out mice
  publication-title: PLoS One
– volume: 7
  start-page: 105
  year: 2022
  end-page: 120
  ident: bib53
  article-title: Therapeutic potential of GABAA receptor subunit expression abnormalities in fragile X syndrome
  publication-title: Expert Rev. Precis. Med. Drug Dev.
– volume: 111
  start-page: 827
  year: 1991
  end-page: 834
  ident: bib28
  article-title: Age-related loss of auditory sensitivity in two mouse genotypes
  publication-title: Acta Otolaryngol.
– volume: 12
  year: 2021
  ident: bib44
  article-title: Neural correlates of auditory hypersensitivity in fragile X syndrome
  publication-title: Front. Psychiatr.
– volume: 39
  year: 2022
  ident: 10.1016/j.neuropharm.2024.110182_bib11
  article-title: FMRP regulates GABAA receptor channel activity to control signal integration in hippocampal granule cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110820
– volume: 161
  start-page: 417
  year: 2022
  ident: 10.1016/j.neuropharm.2024.110182_bib20
  article-title: GABAB R activation partially normalizes acute NMDAR hypofunction oscillatory abnormalities but fails to rescue sensory processing deficits
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.15602
– volume: 10
  year: 2021
  ident: 10.1016/j.neuropharm.2024.110182_bib36
  article-title: Interneuron dysfunction and inhibitory deficits in autism and fragile X syndrome
  publication-title: Cells
  doi: 10.3390/cells10102610
– volume: 5
  start-page: 442
  year: 2022
  ident: 10.1016/j.neuropharm.2024.110182_bib41
  article-title: Neocortical localization and thalamocortical modulation of neuronal hyperexcitability contribute to Fragile X Syndrome
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-022-03395-9
– volume: 27
  start-page: 370
  year: 2004
  ident: 10.1016/j.neuropharm.2024.110182_bib1
  article-title: The mGluR theory of fragile X mental retardation
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2004.04.009
– volume: 12
  start-page: 17
  year: 2021
  ident: 10.1016/j.neuropharm.2024.110182_bib58
  article-title: Increased aperiodic gamma power in young boys with Fragile X Syndrome is associated with better language ability
  publication-title: Mol. Autism.
  doi: 10.1186/s13229-021-00425-x
– volume: 16
  start-page: 666
  year: 2008
  ident: 10.1016/j.neuropharm.2024.110182_bib16
  article-title: Fragile X syndrome
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/ejhg.2008.61
– volume: 22
  start-page: 209
  year: 2021
  ident: 10.1016/j.neuropharm.2024.110182_bib45
  article-title: The molecular biology of FMRP: new insights into fragile X syndrome
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-021-00432-0
– volume: 18
  year: 2015
  ident: 10.1016/j.neuropharm.2024.110182_bib43
  article-title: R-baclofen reverses a social behavior deficit and elevated protein synthesis in a mouse model of fragile X syndrome
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1093/ijnp/pyv034
– volume: 123
  start-page: 720
  year: 2012
  ident: 10.1016/j.neuropharm.2024.110182_bib54
  article-title: Auditory and visual cortical activity during selective attention in fragile X syndrome: a cascade of processing deficiencies
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2011.08.023
– volume: 5
  year: 2015
  ident: 10.1016/j.neuropharm.2024.110182_bib63
  article-title: GABAB receptor upregulates fragile X mental retardation protein expression in neurons
  publication-title: Sci. Rep.
– volume: 297
  start-page: 168
  year: 2017
  ident: 10.1016/j.neuropharm.2024.110182_bib62
  article-title: Decreased surface expression of the δ subunit of the GABAA receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2017.08.008
– volume: 13
  start-page: 60
  year: 2019
  ident: 10.1016/j.neuropharm.2024.110182_bib15
  article-title: Auditory EEG biomarkers in fragile X syndrome: clinical relevance. Front. Integr
  publication-title: Neurosci.
– volume: 12
  year: 2021
  ident: 10.1016/j.neuropharm.2024.110182_bib55
  article-title: Heterogeneity in fragile X syndrome highlights the need for precision medicine-based treatments
  publication-title: Front. Psychiatr.
  doi: 10.3389/fpsyt.2021.722378
– volume: 111
  start-page: 827
  year: 1991
  ident: 10.1016/j.neuropharm.2024.110182_bib28
  article-title: Age-related loss of auditory sensitivity in two mouse genotypes
  publication-title: Acta Otolaryngol.
  doi: 10.3109/00016489109138418
– volume: 80
  start-page: 214
  year: 2011
  ident: 10.1016/j.neuropharm.2024.110182_bib59
  article-title: CGG repeat in the FMR1 gene: size matters
  publication-title: Clin. Genet.
  doi: 10.1111/j.1399-0004.2011.01723.x
– volume: 49
  start-page: 1053
  year: 2005
  ident: 10.1016/j.neuropharm.2024.110182_bib61
  article-title: Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2005.06.004
– volume: 398
  start-page: 126
  year: 2019
  ident: 10.1016/j.neuropharm.2024.110182_bib57
  article-title: Developmental changes in EEG phenotypes in a mouse model of fragile X syndrome
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2018.11.047
– volume: 12
  start-page: 396
  year: 2010
  ident: 10.1016/j.neuropharm.2024.110182_bib19
  article-title: A systematic review of population screening for fragile X syndrome
  publication-title: Genet. Med.
  doi: 10.1097/GIM.0b013e3181e38fb6
– volume: 6
  year: 2011
  ident: 10.1016/j.neuropharm.2024.110182_bib42
  article-title: Genetic-background modulation of core and variable autistic-like symptoms in Fmr1 knock-out mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017073
– volume: 138
  year: 2020
  ident: 10.1016/j.neuropharm.2024.110182_bib22
  article-title: Multielectrode array analysis of EEG biomarkers in a mouse model of Fragile X Syndrome
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2020.104794
– volume: 1121
  start-page: 238
  year: 2006
  ident: 10.1016/j.neuropharm.2024.110182_bib13
  article-title: Decreased expression of the GABAA receptor in fragile X syndrome
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2006.08.115
– volume: 13
  start-page: 107
  year: 2012
  ident: 10.1016/j.neuropharm.2024.110182_bib31
  article-title: Interneuron dysfunction in psychiatric disorders
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3155
– volume: 56
  start-page: 955
  year: 2007
  ident: 10.1016/j.neuropharm.2024.110182_bib14
  article-title: Correction of fragile X syndrome in mice
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.12.001
– volume: 8
  year: 2023
  ident: 10.1016/j.neuropharm.2024.110182_bib60
  article-title: CNS-dominant human FMRP isoform rescues seizures, fear, and sleep abnormalities in Fmr1-KO mice
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.169650
– volume: 103
  start-page: 1043
  year: 2001
  ident: 10.1016/j.neuropharm.2024.110182_bib6
  article-title: Fragile X mice develop sensory hyperreactivity to auditory stimuli
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(01)00036-7
– volume: 6
  start-page: 264
  year: 2012
  ident: 10.1016/j.neuropharm.2024.110182_bib25
  article-title: Event-related potential alterations in fragile X syndrome
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2012.00264
– volume: 19
  start-page: 1515
  year: 2009
  ident: 10.1016/j.neuropharm.2024.110182_bib8
  article-title: Downregulation of tonic GABAergic inhibition in a mouse model of fragile X syndrome
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn159
– volume: 408
  year: 2024
  ident: 10.1016/j.neuropharm.2024.110182_bib9
  article-title: Workflow for the unsupervised clustering of sleep stages identifies light and deep sleep in electrophysiological recordings in mice
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2024.110155
– volume: 13
  start-page: 160
  year: 2017
  ident: 10.1016/j.neuropharm.2024.110182_bib34
  article-title: Translational use of event-related potentials to assess circuit integrity in ASD
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2017.15
– volume: 13
  start-page: 141
  year: 2019
  ident: 10.1016/j.neuropharm.2024.110182_bib7
  article-title: Gaboxadol normalizes behavioral abnormalities in a mouse model of fragile X syndrome
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2019.00141
– volume: 22
  start-page: 409
  year: 2001
  ident: 10.1016/j.neuropharm.2024.110182_bib46
  article-title: The behavioral phenotype in fragile X: symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders
  publication-title: J. Dev. Behav. Pediatr.
  doi: 10.1097/00004703-200112000-00008
– volume: 7
  start-page: 105
  year: 2022
  ident: 10.1016/j.neuropharm.2024.110182_bib53
  article-title: Therapeutic potential of GABAA receptor subunit expression abnormalities in fragile X syndrome
  publication-title: Expert Rev. Precis. Med. Drug Dev.
  doi: 10.1080/23808993.2021.2008168
– volume: 339
  start-page: 474
  year: 2011
  ident: 10.1016/j.neuropharm.2024.110182_bib29
  article-title: CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.111.185660
– volume: 8
  start-page: 245
  year: 2014
  ident: 10.1016/j.neuropharm.2024.110182_bib5
  article-title: The contribution of inhibitory interneurons to circuit dysfunction in Fragile X Syndrome
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2014.00245
– volume: 108
  start-page: 2587
  year: 2011
  ident: 10.1016/j.neuropharm.2024.110182_bib27
  article-title: Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1013855108
– volume: 12
  year: 2021
  ident: 10.1016/j.neuropharm.2024.110182_bib4
  article-title: Gaboxadol in fragile X syndrome: a 12-week randomized, double-blind, parallel-group, Phase 2a study
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2021.757825
– volume: 17
  year: 2023
  ident: 10.1016/j.neuropharm.2024.110182_bib52
  article-title: Fragile X Syndrome as an interneuronopathy: a lesson for future studies and treatments
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2023.1171895
– volume: 4
  year: 2012
  ident: 10.1016/j.neuropharm.2024.110182_bib18
  article-title: Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3004218
– volume: 36
  start-page: 90
  year: 2014
  ident: 10.1016/j.neuropharm.2024.110182_bib26
  article-title: Alterations of visual and auditory evoked potentials in fragile X syndrome
  publication-title: Int. J. Dev. Neurosci.
  doi: 10.1016/j.ijdevneu.2014.05.003
– volume: 30
  start-page: 9929
  year: 2010
  ident: 10.1016/j.neuropharm.2024.110182_bib38
  article-title: Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1714-10.2010
– ident: 10.1016/j.neuropharm.2024.110182_bib47
– volume: 115
  start-page: 39
  year: 2018
  ident: 10.1016/j.neuropharm.2024.110182_bib30
  article-title: Translation-relevant EEG phenotypes in a mouse model of Fragile X Syndrome
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2018.03.012
– volume: 45
  start-page: 1411
  year: 2020
  ident: 10.1016/j.neuropharm.2024.110182_bib21
  article-title: A roadmap for development of neuro-oscillations as translational biomarkers for treatment development in neuropsychopharmacology
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-020-0697-9
– volume: 14
  start-page: 2985
  year: 2015
  ident: 10.1016/j.neuropharm.2024.110182_bib3
  article-title: The GABAA receptor is an FMRP target with therapeutic potential in fragile X syndrome
  publication-title: Cell Cycle
  doi: 10.4161/15384101.2014.989114
– volume: 31
  start-page: 127
  year: 2008
  ident: 10.1016/j.neuropharm.2024.110182_bib12
  article-title: Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2008.04.002
– volume: 292
  start-page: 6621
  year: 2017
  ident: 10.1016/j.neuropharm.2024.110182_bib66
  article-title: Deficits in the activity of presynaptic γ-aminobutyric acid type B receptors contribute to altered neuronal excitability in fragile X syndrome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.772541
– volume: 33
  start-page: 395
  year: 2011
  ident: 10.1016/j.neuropharm.2024.110182_bib37
  article-title: The GABA(A) receptor agonist THIP ameliorates specific behavioral deficits in the mouse model of fragile X syndrome
  publication-title: Dev. Neurosci.
  doi: 10.1159/000332884
– volume: 7
  year: 2020
  ident: 10.1016/j.neuropharm.2024.110182_bib64
  article-title: Characterization of auditory and binaural spatial hearing in a fragile X syndrome mouse model
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0300-19.2019
– volume: 215
  start-page: 291
  year: 2011
  ident: 10.1016/j.neuropharm.2024.110182_bib51
  article-title: Early continuous inhibition of group 1 mGlu signaling partially rescues dendritic spine abnormalities in the Fmr1 knockout mouse model for fragile X syndrome
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-010-2130-2
– volume: 12
  start-page: 34
  year: 2022
  ident: 10.1016/j.neuropharm.2024.110182_bib24
  article-title: EEG as a translational biomarker and outcome measure in fragile X syndrome
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-022-01796-2
– volume: 9
  start-page: 11
  year: 2017
  ident: 10.1016/j.neuropharm.2024.110182_bib56
  article-title: A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome
  publication-title: J. Neurodev. Disord.
  doi: 10.1186/s11689-017-9191-z
– volume: 13
  start-page: 47
  year: 2022
  ident: 10.1016/j.neuropharm.2024.110182_bib48
  article-title: Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome
  publication-title: Mol. Autism.
  doi: 10.1186/s13229-022-00527-0
– volume: 12
  year: 2021
  ident: 10.1016/j.neuropharm.2024.110182_bib44
  article-title: Neural correlates of auditory hypersensitivity in fragile X syndrome
  publication-title: Front. Psychiatr.
  doi: 10.3389/fpsyt.2021.720752
– volume: 4
  year: 2017
  ident: 10.1016/j.neuropharm.2024.110182_bib49
  article-title: GABA-B agonist baclofen normalizes auditory-evoked neural oscillations and behavioral deficits in the Fmr1 knockout mouse model of fragile X syndrome
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0380-16.2017
– volume: 75
  start-page: 189
  year: 2014
  ident: 10.1016/j.neuropharm.2024.110182_bib32
  article-title: Chronic metabotropic glutamate receptor 5 inhibition corrects local alterations of brain activity and improves cognitive performance in fragile X mice
  publication-title: Biol. Psychiatr.
  doi: 10.1016/j.biopsych.2013.05.038
– volume: 17
  start-page: 280
  year: 2018
  ident: 10.1016/j.neuropharm.2024.110182_bib2
  article-title: Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2017.221
– volume: 74
  start-page: 49
  year: 2012
  ident: 10.1016/j.neuropharm.2024.110182_bib33
  article-title: Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.009
– volume: 115
  start-page: 2292
  year: 2004
  ident: 10.1016/j.neuropharm.2024.110182_bib35
  article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.04.029
– volume: 338
  start-page: 897
  year: 2011
  ident: 10.1016/j.neuropharm.2024.110182_bib39
  article-title: Subchronic administration and combination metabotropic glutamate and GABAB receptor drug therapy in fragile X syndrome
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.111.183327
– volume: 22
  start-page: 275
  year: 2021
  ident: 10.1016/j.neuropharm.2024.110182_bib10
  article-title: Channelopathies in fragile X syndrome
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-021-00445-9
– volume: 77
  start-page: 1031
  year: 2015
  ident: 10.1016/j.neuropharm.2024.110182_bib17
  article-title: Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia
  publication-title: Biol. Psychiatr.
  doi: 10.1016/j.biopsych.2015.03.010
– volume: 24
  start-page: 1377
  year: 2021
  ident: 10.1016/j.neuropharm.2024.110182_bib65
  article-title: A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-021-00913-6
– volume: 17
  start-page: 777
  year: 2016
  ident: 10.1016/j.neuropharm.2024.110182_bib40
  article-title: Network abnormalities and interneuron dysfunction in Alzheimer disease
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2016.141
– volume: 12
  year: 2021
  ident: 10.1016/j.neuropharm.2024.110182_bib50
  article-title: mGluR5 negative modulators for fragile X: treatment resistance and persistence
  publication-title: Front. Psychiatr.
  doi: 10.3389/fpsyt.2021.718953
SSID ssj0004818
Score 2.4593604
Snippet Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 110182
Title Clinically-probed mechanisms of action in Fragile-X syndrome fail to normalize translational EEG phenotypes in Fmr1 knockout mice
URI https://dx.doi.org/10.1016/j.neuropharm.2024.110182
https://www.ncbi.nlm.nih.gov/pubmed/39396738
https://www.proquest.com/docview/3116334596
Volume 262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQXLig5bFseWmQECeyNImTJuKEUKGAFnEAqTfLduxVIE0qkh7KAYl_zkweVHtAWoljojxsjz3fjD3zDWNH1lqTqFA6oYk5OihB34mCSDtEFa5UEBtZHxf8uQtHj_xmHIyX2EWXC0Nhla3ub3R6ra3bO6ftaJ5O05RyfBEaqWI3r4_DiBOU8wHN8t9vizAPHrlRx8RMT7fRPE2MV80ZOSWOaPQUPU4x8W7kfQVRX5mgNRRd_mBrrQ0J500z19mSyTfY8X1DQj0_gYdFTlV5Asdwv6Cnnm-y95YKNMvmDpWTMQlMDOX_puWkhMJCk-oAaQ5o1f5FreGMoSM2ACvTDKoCcrJ1s_TVQEVol7V7ijAcXgGFjRW0t1vWH5m8uPCco94tZhVMUDFtscfL4cPFyGkLMTgaV2jlJDZANRiHUimD-I5Oz0AmVqq4b6mgmA770vihkkp7CUcXx41jE7lB4vsDWvOe_5Mt50VufjEwOiA6mjBSCeKitpFRUlvNE42Xyng95nZjL6YN34boAtGexEJeguQlGnn12FknJPHP3BEIC__x9mEnV4FLi85LZG6KWSl8F41Vn2N_e2y7Efhnm_zYj6lg6s63_r3LVj2qJ1xv6eyx5eplZvbRyKnUQT2LD9jK-fXt6O4D6roAjQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLZKOcClKu9teRgJ9dTQTTJJE3FC1ZYF2qqHrbS30cxkpgrNJqsme9gekPjn2Hmw4lAJiWOiPMdjf_aM_Rngg3POZjpWXmxTQQFKNPaSKDEeU4VrHaVWtdsF5xfx9Ep8m0fzLTgZamE4rbK3_Z1Nb611f-aoH82jZZ5zjS9BI3fsFu12mHgADwWpL7cx-Phzk-chEj8ZqJj58j6dp0vyakkjl0wSTaFiIDgp3k-C-zDqPh-0xaLTXdjpnUj83H3nE9iy5VM4uOxYqNeHONsUVdWHeICXG37q9TP41XOBFsXa434yNsOF5QLgvF7UWDnsah0wL5Hc2msyG94cB2YDdCovsKmwZGe3yO8sNgx3Rb-oiJPJF-S8sYoXd-v2IYtbH29KMrzVqsEFWabncHU6mZ1Mvb4Tg2dIRRsvcxHZwTRWWlsCeIp6jlXmlE7HjjuKmXisbBhrpU2QCYpx_DS1iR9lYXjMSh-EL2C7rEr7CtCaiPlo4kRnBIzGJVYr44zIDB1qG4zAH8ZeLjvCDTlkov2QG3lJlpfs5DWCT4OQ5F-TRxIu_MPd7we5StIt3jBRpa1WtQx98lZDQf87gpedwP98U5iGKXdM3fuvd7-DR9PZ-Zk8-3rxfR8eB9xcuF3feQ3bze3KviGPp9Fv2xn9G7UuAhs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinically-probed+mechanisms+of+action+in+Fragile-X+syndrome+fail+to+normalize+translational+EEG+phenotypes+in+Fmr1+knockout+mice&rft.jtitle=Neuropharmacology&rft.au=Janz%2C+Philipp&rft.au=Bainier%2C+Marie&rft.au=Marashli%2C+Samuel&rft.au=Gross%2C+Simon&rft.date=2025-01-01&rft.issn=1873-7064&rft.eissn=1873-7064&rft.volume=262&rft.spage=110182&rft_id=info:doi/10.1016%2Fj.neuropharm.2024.110182&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3908&client=summon