Efficient and doubly-robust methods for variable selection and parameter estimation in longitudinal data analysis

New technologies have produced increasingly complex and massive datasets, such as next generation sequencing and microarray data in biology, dynamic treatment regimes in clinical trials and long-term wide-scale studies in the social sciences. Each study exhibits its unique data structure within indi...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics Vol. 36; no. 2; pp. 781 - 804
Main Authors Fu, Liya, Yang, Zhuoran, Cai, Fengjing, Wang, You-Gan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract New technologies have produced increasingly complex and massive datasets, such as next generation sequencing and microarray data in biology, dynamic treatment regimes in clinical trials and long-term wide-scale studies in the social sciences. Each study exhibits its unique data structure within individuals, clusters and possibly across time and space. In order to draw valid conclusion from such large dimensional data, we must account for intracluster correlations, varying cluster sizes, and outliers in response and/or covariate domains to achieve valid and efficient inferences. A weighted rank-based method is proposed for selecting variables and estimating parameters simultaneously. The main contribution of the proposed method is four fold: (1) variable selection using adaptive lasso is extended to robust rank regression so that protection against outliers in both response and predictor variables is obtained; (2) within-subject correlations are incorporated so that efficiency of parameter estimation is improved; (3) the computation is convenient via the existing function in statistical software R. (4) the proposed method is proved to have desirable asymptotic properties for fixed number of covariates ( p ). Simulation studies are carried out to evaluate the proposed method for a number of scenarios including the cases when p equals to the number of subjects. The simulation results indicate that the proposed method is efficient and robust. A hormone dataset is analyzed for illustration. By adding additional redundant variables as covariates, the penalty approach and weighting schemes are proven to be effective.
AbstractList New technologies have produced increasingly complex and massive datasets, such as next generation sequencing and microarray data in biology, dynamic treatment regimes in clinical trials and long-term wide-scale studies in the social sciences. Each study exhibits its unique data structure within individuals, clusters and possibly across time and space. In order to draw valid conclusion from such large dimensional data, we must account for intracluster correlations, varying cluster sizes, and outliers in response and/or covariate domains to achieve valid and efficient inferences. A weighted rank-based method is proposed for selecting variables and estimating parameters simultaneously. The main contribution of the proposed method is four fold: (1) variable selection using adaptive lasso is extended to robust rank regression so that protection against outliers in both response and predictor variables is obtained; (2) within-subject correlations are incorporated so that efficiency of parameter estimation is improved; (3) the computation is convenient via the existing function in statistical software R. (4) the proposed method is proved to have desirable asymptotic properties for fixed number of covariates ( p ). Simulation studies are carried out to evaluate the proposed method for a number of scenarios including the cases when p equals to the number of subjects. The simulation results indicate that the proposed method is efficient and robust. A hormone dataset is analyzed for illustration. By adding additional redundant variables as covariates, the penalty approach and weighting schemes are proven to be effective.
New technologies have produced increasingly complex and massive datasets, such as next generation sequencing and microarray data in biology, dynamic treatment regimes in clinical trials and long-term wide-scale studies in the social sciences. Each study exhibits its unique data structure within individuals, clusters and possibly across time and space. In order to draw valid conclusion from such large dimensional data, we must account for intracluster correlations, varying cluster sizes, and outliers in response and/or covariate domains to achieve valid and efficient inferences. A weighted rank-based method is proposed for selecting variables and estimating parameters simultaneously. The main contribution of the proposed method is four fold: (1) variable selection using adaptive lasso is extended to robust rank regression so that protection against outliers in both response and predictor variables is obtained; (2) within-subject correlations are incorporated so that efficiency of parameter estimation is improved; (3) the computation is convenient via the existing function in statistical software R. (4) the proposed method is proved to have desirable asymptotic properties for fixed number of covariates (p). Simulation studies are carried out to evaluate the proposed method for a number of scenarios including the cases when p equals to the number of subjects. The simulation results indicate that the proposed method is efficient and robust. A hormone dataset is analyzed for illustration. By adding additional redundant variables as covariates, the penalty approach and weighting schemes are proven to be effective.
Author Cai, Fengjing
Wang, You-Gan
Yang, Zhuoran
Fu, Liya
Author_xml – sequence: 1
  givenname: Liya
  surname: Fu
  fullname: Fu, Liya
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
– sequence: 2
  givenname: Zhuoran
  surname: Yang
  fullname: Yang, Zhuoran
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
– sequence: 3
  givenname: Fengjing
  surname: Cai
  fullname: Cai, Fengjing
  email: cyclie@163.com
  organization: College of Mathematics, Wenzhou University
– sequence: 4
  givenname: You-Gan
  orcidid: 0000-0003-0901-4671
  surname: Wang
  fullname: Wang, You-Gan
  email: you-gan.wang@qut.edu.au
  organization: School of Mathematical Science, Queensland University of Technology
BookMark eNp9kE1LxDAQhoMouK7-AU8Bz9VJ0k3To4hfsOBFz2HapBqpyZqkwv5741YQPOwhzGGeJ7zznpBDH7wl5JzBJQNorhIAU1ABL4-BUJU4IAsmmahauVKHZAFtLaoaJD8mJym9A3DecLYgn7fD4HpnfaboDTVh6sZtFUM3pUw_bH4LJtEhRPqF0WE3WprsaPvsgt8JG4xYMBupTdl94G7hPB2Df3V5Ms7jSA1mLDSO2-TSKTkacEz27Hcuycvd7fPNQ7V-un-8uV5XvWBtrsxQK1yhknJgogPZ171SpjUSDEJbzi3LppNo-xotoGjYYFRtpAHetBIasSQX87-bGD6nkk6_hymWEEnzFa9XsmlYWyg1U30MKUU76N7l3RU5ohs1A_1TsJ4L1qVgvStYi6Lyf-omlgbidr8kZikV2L_a-Jdqj_UNP7KRrA
CitedBy_id crossref_primary_10_1080_03610926_2022_2100421
Cites_doi 10.1017/CBO9780511754098
10.1214/aoms/1177692377
10.1111/j.1541-0420.2008.01099.x
10.1198/016214504000001060
10.1080/01621459.2013.766613
10.1111/j.1541-0420.2007.00842.x
10.1007/s11222-009-9126-y
10.1093/biomet/73.1.13
10.1080/03610928308828522
10.1111/j.1541-0420.2012.01760.x
10.1016/j.csda.2014.08.006
10.1111/1467-9868.00351
10.1080/01621459.1990.10474920
10.1016/j.jmva.2014.09.014
10.1016/j.jmva.2012.03.007
10.1093/biomet/90.1.29
10.1093/biomet/90.3.732
10.1080/01621459.1998.10473723
10.18637/jss.v014.i07
10.1111/j.1541-0420.2009.01240.x
10.1080/10485259408832592
10.1198/016214501753382273
10.1177/0962280216681347
10.1016/j.csda.2009.10.015
10.1359/jbmr.1998.13.7.1191
10.1080/01621459.1999.10473836
10.1111/j.1541-0420.2011.01678.x
10.1016/j.amc.2014.07.086
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8C1
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00180-020-01038-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1613-9658
EndPage 804
ExternalDocumentID 10_1007_s00180_020_01038_3
GrantInformation_xml – fundername: the National Science Foundation of China
  grantid: 11871390
– fundername: the Fundamental Research Funds for the Central Universities
  grantid: xjj2017180
– fundername: Natural Science Foundation of Shaanxi Province
  grantid: 2018JQ1006
  funderid: http://dx.doi.org/10.13039/501100007128
– fundername: the Australian Research Council Discovery Project
  grantid: DP160104292
– fundername: Zhejiang Science Grant
  grantid: KZS1905002
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7WY
88I
8C1
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-df48a5a866f13b06c4c88d9d60da09001a5a7b6aec4ae0a371fd84d6d02796073
IEDL.DBID BENPR
ISSN 0943-4062
IngestDate Fri Jul 25 19:03:52 EDT 2025
Tue Jul 01 04:23:17 EDT 2025
Thu Apr 24 22:51:56 EDT 2025
Fri Feb 21 02:48:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Outliers
Correlated data
Rank-based method
Variable selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-df48a5a866f13b06c4c88d9d60da09001a5a7b6aec4ae0a371fd84d6d02796073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0901-4671
PQID 2524567719
PQPubID 54096
PageCount 24
ParticipantIDs proquest_journals_2524567719
crossref_citationtrail_10_1007_s00180_020_01038_3
crossref_primary_10_1007_s00180_020_01038_3
springer_journals_10_1007_s00180_020_01038_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210600
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational statistics
PublicationTitleAbbrev Comput Stat
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Fu, Wang (CR8) 2018; 27
Fung, Zhu, Wei, He (CR9) 2002; 64
Liang, Zeger (CR14) 1986; 73
Jung, Ying (CR12) 2003; 90
Wang, Zhou, Qu (CR23) 2012; 68
Wang, Jiang, Huang, Zhang (CR24) 2013; 108
Fan, Li (CR3) 2001; 96
Wang, Zhao (CR26) 2008; 64
Yang, Guo, Lv (CR28) 2015; 133
Chang, McKean, Naranjo, Sheather (CR1) 1999; 94
Jaeckel (CR11) 1972; 43
Zhang, Lin, Raz, Sowers (CR29) 1998; 93
Lv, Yang, Guo (CR15) 2015; 82
Wang, Li (CR22) 2009; 65
Zou, Li (CR30) 2008; 36
Ni, Zhang, Zhang (CR17) 2010; 66
Sievers (CR19) 1983; 12
Fu, Wang, Bai (CR6) 2010; 54
Xu, Leng, Ying (CR27) 2010; 20
Fan, Qin, Zhu (CR5) 2012; 109
Wang, Carey (CR25) 2003; 90
Naranjo, Mckean, Sheather, Hettmansperger (CR16) 1994; 3
Fu, Wang (CR7) 2012; 68
Guo, Yang, Lv (CR10) 2014; 245
Sowers, Crutchfield, Randolph, Shapiro, Zhang, Pietra, Schork (CR20) 1998; 13
Koenker (CR13) 2005
Terpstra, McKean (CR21) 2005; 14
Cho, Qu (CR2) 2013; 23
Fan, Li (CR4) 2004; 99
Rousseeuw, Zomeren (CR18) 1990; 85
JF Xu (1038_CR27) 2010; 20
H Zou (1038_CR30) 2008; 36
Y-G Wang (1038_CR25) 2003; 90
PJ Rousseeuw (1038_CR18) 1990; 85
H-K Cho (1038_CR2) 2013; 23
J Fan (1038_CR3) 2001; 96
Y-G Wang (1038_CR26) 2008; 64
Y Fan (1038_CR5) 2012; 109
J Lv (1038_CR15) 2015; 82
X Ni (1038_CR17) 2010; 66
GL Sievers (1038_CR19) 1983; 12
LY Fu (1038_CR8) 2018; 27
J Fan (1038_CR4) 2004; 99
LY Fu (1038_CR7) 2012; 68
WH Chang (1038_CR1) 1999; 94
LY Fu (1038_CR6) 2010; 54
SH Jung (1038_CR12) 2003; 90
D Zhang (1038_CR29) 1998; 93
R Koenker (1038_CR13) 2005
L Wang (1038_CR22) 2009; 65
KY Liang (1038_CR14) 1986; 73
H Yang (1038_CR28) 2015; 133
CH Guo (1038_CR10) 2014; 245
JT Terpstra (1038_CR21) 2005; 14
K-W Fung (1038_CR9) 2002; 64
LA Jaeckel (1038_CR11) 1972; 43
L Wang (1038_CR23) 2012; 68
J Naranjo (1038_CR16) 1994; 3
XQ Wang (1038_CR24) 2013; 108
MF Sowers (1038_CR20) 1998; 13
References_xml – year: 2005
  ident: CR13
  publication-title: Quantile Regression
  doi: 10.1017/CBO9780511754098
– volume: 43
  start-page: 1449
  year: 1972
  end-page: 1458
  ident: CR11
  article-title: Estimating regression coefficients by minimizing the dispersion of the residuals
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177692377
– volume: 65
  start-page: 564
  year: 2009
  end-page: 571
  ident: CR22
  article-title: Weighted Wilcoxon-type smoothly clipped absolute deviation method
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01099.x
– volume: 99
  start-page: 710
  year: 2004
  end-page: 723
  ident: CR4
  article-title: New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000001060
– volume: 108
  start-page: 632
  year: 2013
  end-page: 643
  ident: CR24
  article-title: Robust variable selection with exponential squared loss
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2013.766613
– volume: 64
  start-page: 39
  year: 2008
  end-page: 45
  ident: CR26
  article-title: Weighted rank regression for clustered data analysis
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00842.x
– volume: 20
  start-page: 165
  year: 2010
  end-page: 176
  ident: CR27
  article-title: Rank-based variable selection with censored data
  publication-title: Stat Comput
  doi: 10.1007/s11222-009-9126-y
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  ident: CR14
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
– volume: 12
  start-page: 1161
  year: 1983
  end-page: 1179
  ident: CR19
  article-title: A weighted dispersion function for estimation in linear models
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610928308828522
– volume: 68
  start-page: 1074
  year: 2012
  end-page: 1082
  ident: CR7
  article-title: Efficient estimation for rank-based regression with clustered data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2012.01760.x
– volume: 82
  start-page: 74
  year: 2015
  end-page: 88
  ident: CR15
  article-title: An efficient and robust variable selection method for longitudinal generalized linear models
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2014.08.006
– volume: 64
  start-page: 565
  year: 2002
  end-page: 579
  ident: CR9
  article-title: Inference diagnostics and outlier tests for semiparametric mixed models
  publication-title: J Royal Stat Soc Ser B
  doi: 10.1111/1467-9868.00351
– volume: 85
  start-page: 633
  year: 1990
  end-page: 639
  ident: CR18
  article-title: Unmasking multivariate outliers and leverage points
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1990.10474920
– volume: 133
  start-page: 321
  year: 2015
  end-page: 333
  ident: CR28
  article-title: SCAD penalized rank regression with a diverging number of parameters
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2014.09.014
– volume: 109
  start-page: 156
  year: 2012
  end-page: 167
  ident: CR5
  article-title: Variable selection in robust regression models for longitudinal data
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2012.03.007
– volume: 90
  start-page: 29
  year: 2003
  end-page: 41
  ident: CR25
  article-title: Working correlation structure misspecification, estimation and covariate design: Implications for generalised estimating equations performance
  publication-title: Biometrika
  doi: 10.1093/biomet/90.1.29
– volume: 36
  start-page: 1509
  year: 2008
  end-page: 1566
  ident: CR30
  article-title: One-step sparse estimates in noncave penalized likelihood models
  publication-title: Ann Stat
– volume: 90
  start-page: 732
  year: 2003
  end-page: 740
  ident: CR12
  article-title: Rank-based regression with repeated measurement data
  publication-title: Biometrika
  doi: 10.1093/biomet/90.3.732
– volume: 93
  start-page: 710
  year: 1998
  end-page: 719
  ident: CR29
  article-title: Semiparametric stochastic mixed models for longitudinal data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1998.10473723
– volume: 14
  start-page: 1
  year: 2005
  end-page: 26
  ident: CR21
  article-title: Rank-based reanlaysis of linear models using R
  publication-title: J Stat Softw
  doi: 10.18637/jss.v014.i07
– volume: 66
  start-page: 79
  year: 2010
  end-page: 88
  ident: CR17
  article-title: Variable selection for semiparametric mixed models in longitudinal studies
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2009.01240.x
– volume: 3
  start-page: 323
  year: 1994
  end-page: 341
  ident: CR16
  article-title: The use and interpretation of rank-based residuals
  publication-title: Nonparametr Stat
  doi: 10.1080/10485259408832592
– volume: 245
  start-page: 343
  year: 2014
  end-page: 356
  ident: CR10
  article-title: Robust variable selection in semiparametric mean-covariance regression for longitudinal data analysis
  publication-title: Appl Math Comput
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  ident: CR3
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753382273
– volume: 27
  start-page: 2447
  issue: 8
  year: 2018
  end-page: 2458
  ident: CR8
  article-title: Variable selection in rank regression for analyzing longitudinal data
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280216681347
– volume: 54
  start-page: 1036
  year: 2010
  end-page: 1050
  ident: CR6
  article-title: Rank regression for analysis of clustered data: A natural induced smoothing approach
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.10.015
– volume: 23
  start-page: 901
  year: 2013
  end-page: 927
  ident: CR2
  article-title: Model selection for correlated data with diverging number of parameters
  publication-title: Stat Sinica
– volume: 13
  start-page: 1191
  year: 1998
  end-page: 1202
  ident: CR20
  article-title: Urinary ovarian and gonadotrophin hormone levels in premenopausal women with low bone mass
  publication-title: J Bone Mining Res
  doi: 10.1359/jbmr.1998.13.7.1191
– volume: 94
  start-page: 205
  year: 1999
  end-page: 219
  ident: CR1
  article-title: High-breakdown rank regression
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1999.10473836
– volume: 68
  start-page: 353
  year: 2012
  end-page: 360
  ident: CR23
  article-title: Penalized generalized estimating equations for high-dimensional longitudinal data analysis
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01678.x
– volume: 3
  start-page: 323
  year: 1994
  ident: 1038_CR16
  publication-title: Nonparametr Stat
  doi: 10.1080/10485259408832592
– volume: 109
  start-page: 156
  year: 2012
  ident: 1038_CR5
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2012.03.007
– volume: 68
  start-page: 1074
  year: 2012
  ident: 1038_CR7
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2012.01760.x
– volume: 73
  start-page: 13
  year: 1986
  ident: 1038_CR14
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
– volume: 66
  start-page: 79
  year: 2010
  ident: 1038_CR17
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2009.01240.x
– volume: 12
  start-page: 1161
  year: 1983
  ident: 1038_CR19
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610928308828522
– volume: 64
  start-page: 565
  year: 2002
  ident: 1038_CR9
  publication-title: J Royal Stat Soc Ser B
  doi: 10.1111/1467-9868.00351
– volume-title: Quantile Regression
  year: 2005
  ident: 1038_CR13
  doi: 10.1017/CBO9780511754098
– volume: 93
  start-page: 710
  year: 1998
  ident: 1038_CR29
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1998.10473723
– volume: 65
  start-page: 564
  year: 2009
  ident: 1038_CR22
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01099.x
– volume: 94
  start-page: 205
  year: 1999
  ident: 1038_CR1
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1999.10473836
– volume: 133
  start-page: 321
  year: 2015
  ident: 1038_CR28
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2014.09.014
– volume: 90
  start-page: 29
  year: 2003
  ident: 1038_CR25
  publication-title: Biometrika
  doi: 10.1093/biomet/90.1.29
– volume: 13
  start-page: 1191
  year: 1998
  ident: 1038_CR20
  publication-title: J Bone Mining Res
  doi: 10.1359/jbmr.1998.13.7.1191
– volume: 108
  start-page: 632
  year: 2013
  ident: 1038_CR24
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2013.766613
– volume: 99
  start-page: 710
  year: 2004
  ident: 1038_CR4
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000001060
– volume: 43
  start-page: 1449
  year: 1972
  ident: 1038_CR11
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177692377
– volume: 245
  start-page: 343
  year: 2014
  ident: 1038_CR10
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2014.07.086
– volume: 36
  start-page: 1509
  year: 2008
  ident: 1038_CR30
  publication-title: Ann Stat
– volume: 54
  start-page: 1036
  year: 2010
  ident: 1038_CR6
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.10.015
– volume: 82
  start-page: 74
  year: 2015
  ident: 1038_CR15
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2014.08.006
– volume: 85
  start-page: 633
  year: 1990
  ident: 1038_CR18
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1990.10474920
– volume: 68
  start-page: 353
  year: 2012
  ident: 1038_CR23
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01678.x
– volume: 27
  start-page: 2447
  issue: 8
  year: 2018
  ident: 1038_CR8
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280216681347
– volume: 23
  start-page: 901
  year: 2013
  ident: 1038_CR2
  publication-title: Stat Sinica
– volume: 64
  start-page: 39
  year: 2008
  ident: 1038_CR26
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00842.x
– volume: 96
  start-page: 1348
  year: 2001
  ident: 1038_CR3
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753382273
– volume: 90
  start-page: 732
  year: 2003
  ident: 1038_CR12
  publication-title: Biometrika
  doi: 10.1093/biomet/90.3.732
– volume: 14
  start-page: 1
  year: 2005
  ident: 1038_CR21
  publication-title: J Stat Softw
  doi: 10.18637/jss.v014.i07
– volume: 20
  start-page: 165
  year: 2010
  ident: 1038_CR27
  publication-title: Stat Comput
  doi: 10.1007/s11222-009-9126-y
SSID ssj0022721
Score 2.230103
Snippet New technologies have produced increasingly complex and massive datasets, such as next generation sequencing and microarray data in biology, dynamic treatment...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 781
SubjectTerms Asymptotic methods
Asymptotic properties
Data analysis
Data structures
Datasets
Economic Theory/Quantitative Economics/Mathematical Methods
Feature selection
Massive data points
Mathematics and Statistics
New technology
Original Paper
Outliers (statistics)
Parameter estimation
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Robustness (mathematics)
Statistical analysis
Statistics
Variables
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20XupBtCpWq-zBmwY2u8kmORZpKUI9WegtbHYTEGqiTSL4753ZfIiigrfAfhx2spl5mZn3CLkOlavBK0UO9w0AFJ7BnZMCn1wVRGmWZDaDv3yQi5V3v_bXbVNY2VW7dylJ-6Xum91QP445CHdQmyB0xC7Z8wG7YyHXik97mMUD222FJXOAjiRvW2V-3uOrO_qMMb-lRa23mR-SgzZMpNPGrkdkJ81HZH_Zc6yWIzLEOLGhWT4mrzNLBQEehKrcUFPUyebd2RZJXVa0UYkuKcSn9A2wMXZL0dIK4IBV7AJkAH_GyhiKrBtNOyN9yummQD2j2qB2FsVqUpjdsJickNV89ni3cFo1BUfDNasck3mh8lUoZeaKhEnt6TA0kZHMKBbBwcBgkEiVak-lTInAzUzoGWkAuALMCcQpGeRFnp4RGmYKkJonmZeBcxMsERwCz9T3NAtSV_tj4naHGuuWahwVLzZxT5JsDRGDIWJriFiMyU2_5qUh2vhz9qSzVdxeujLmPmZxg8CNxuS2s9_n8O-7nf9v-gUZcqxssf9iJmRQbev0EkKTKrmyb-IH_jLZBg
  priority: 102
  providerName: Springer Nature
Title Efficient and doubly-robust methods for variable selection and parameter estimation in longitudinal data analysis
URI https://link.springer.com/article/10.1007/s00180-020-01038-3
https://www.proquest.com/docview/2524567719
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vehBfGJ9lD1402Cem81JamkriiJiQU9hs5uAUBM1reC_d2azbVHQSwjZ3RxmHzPfzuMDOBHSU6iVEsePNAIUv8A9xwN682Sc5EVWGA_-7R2_GofXT9GTvXCrbVjl_Ew0B7WuFN2Rn_sRueji2Esu3t4dYo0i76ql0FiFNh7BQrSgfTm4u39YQC4_NplXFD6HSIn7Nm3GJM8RH53rEHwirgPhBD9V09Le_OUiNZpnuAkb1mRkvWaOt2AlL7dh_XZRb7XegfeBqQSBCoTJUjNdzbLJl_NRZbN6yhqS6Jqheco-ERpTshSrDf8NTooZQAXAXykwhlHRjSabkb2UbFIRndFME3UWo2BS7N0UMdmF8XDw2L9yLJmCo3CXTR1dhEJGUnBeeEHmchUqIXSiuaulm6AssDHOuMxVKHNXBrFXaBFqrhG3IsqJgz1olVWZ7wMThUSgFnI3LFC3BW4W-Gh35lGo3Dj3VNQBby7HVNlK40R4MUkXNZKN7FOUfWpknwYdOF2MeWvqbPzb-2g-Pandc3W6XCEdOJtP2bL5778d_P-3Q1jzKZDFXL0cQWv6McuP0RKZZl1YFX2PnsNRF9q90fPNoGuXIH4d-71vyMndmw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ROLQ9VKW06lIKPpQTjZrYjpMcKoSAZflYTiBxSx3bkSptEyC7VPyp_sbOOMmuQIIbt0iOfRiPPTOemfcAvqU6MmiVsoDHFgMUXuKZU4K-Ip1krixKn8Efn6vRpTy5iq-W4F_fC0Nllf2d6C9qWxt6I__BY0rRJUmU7V7fBMQaRdnVnkKjVYtTd_8XQ7bm5_EB7u8258PDi_1R0LEKBAbVbRrYUqY61qlSZSSKUBlp0tRmVoVWhxne2jiYFEo7I7ULtUii0qbSKosBHLr7icB1X8GKFGjJqTN9eDQP8Hji-7yoWA_jMsW7Jh3fqkfsd2FAwRoxK6SBeGgIF97to4Sst3PD9_Cuc1DZXqtRq7Dkqg_wdjxHd23W4ObQ406guWK6sszWs2JyH9zWxayZspaSumHoDLM7DMSpNYs1nm0HVcBPILjxP1SGwwjio-2dZL8rNqmJPGlmiaiLUekq_t1CpnyEyxcR8idYrurKfQaWlhrDQqlCWaIlFWEhOHq5LpYmTFxk4gFEvRxz0-GaE73GJJ8jMnvZ5yj73Ms-FwPYmc-5blE9nv17o9-evDvhTb7QxwF877dsMfz0auvPr7YFr0cX47P87Pj89Au84VRC4x99NmB5ejtzX9EHmhabXvEY_HppTf8PFaEVDg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4oPISCy34ACeImtiJ7RwQqtquWkorDlTqLTh-SJWWpG12Qf1r_DpmnGRXRaK33iI59mE89sx4Zr4P4J02mUWrVCa8cBig8IBnTgr6yowqfahDzOAfn8iD0_zLWXG2Bn_GXhgqqxzvxHhRu9bSG_k2LyhFp1RWboehLOLb3vTzxWVCDFKUaR3pNHoVOfLXvzF86z4d7uFev-d8uv999yAZGAYSi6o3T1zItSmMljJkok6lza3WrnQydSYt8QbHQVVL421ufGqEyoLTuZMOgzl0_ZXAde_BfSWUpjOmd5flJZyr2PNFhXsYo0k-NOzEtj1iwksTCtyIZUEn4qZRXHm6_yRno82bbsDjwVllO712PYE13zyFR8dLpNfuGVzuRwwKNF3MNI65dlHPrpOrtl50c9bTU3cMHWP2C4NyatNiXWTeQXWIEwh6_CeV5DCC--j7KNl5w2YtESktHJF2MSpjxb97-JTncHonQn4B603b-JfAdDAYIuYyzQNaVZHWgqPH64vcpspntphANsqxsgPGOVFtzKolOnOUfYWyr6LsKzGBD8s5Fz3Cx61_b47bUw2nvatWujmBj-OWrYb_v9qr21d7Cw9Qx6uvhydHr-Ehp2qa-P6zCevzq4XfQndoXr-Jesfgx10r-l-g_BkP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+doubly-robust+methods+for+variable+selection+and+parameter+estimation+in+longitudinal+data+analysis&rft.jtitle=Computational+statistics&rft.au=Fu+Liya&rft.au=Yang+Zhuoran&rft.au=Cai+Fengjing&rft.au=You-Gan%2C+Wang&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=36&rft.issue=2&rft.spage=781&rft.epage=804&rft_id=info:doi/10.1007%2Fs00180-020-01038-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon