Efficient and doubly-robust methods for variable selection and parameter estimation in longitudinal data analysis
New technologies have produced increasingly complex and massive datasets, such as next generation sequencing and microarray data in biology, dynamic treatment regimes in clinical trials and long-term wide-scale studies in the social sciences. Each study exhibits its unique data structure within indi...
Saved in:
Published in | Computational statistics Vol. 36; no. 2; pp. 781 - 804 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | New technologies have produced increasingly complex and massive datasets, such as next generation sequencing and microarray data in biology, dynamic treatment regimes in clinical trials and long-term wide-scale studies in the social sciences. Each study exhibits its unique data structure within individuals, clusters and possibly across time and space. In order to draw valid conclusion from such large dimensional data, we must account for intracluster correlations, varying cluster sizes, and outliers in response and/or covariate domains to achieve valid and efficient inferences. A weighted rank-based method is proposed for selecting variables and estimating parameters simultaneously. The main contribution of the proposed method is four fold: (1) variable selection using adaptive lasso is extended to robust rank regression so that protection against outliers in both response and predictor variables is obtained; (2) within-subject correlations are incorporated so that efficiency of parameter estimation is improved; (3) the computation is convenient via the existing function in statistical software R. (4) the proposed method is proved to have desirable asymptotic properties for fixed number of covariates (
p
). Simulation studies are carried out to evaluate the proposed method for a number of scenarios including the cases when
p
equals to the number of subjects. The simulation results indicate that the proposed method is efficient and robust. A hormone dataset is analyzed for illustration. By adding additional redundant variables as covariates, the penalty approach and weighting schemes are proven to be effective. |
---|---|
AbstractList | New technologies have produced increasingly complex and massive datasets, such as next generation sequencing and microarray data in biology, dynamic treatment regimes in clinical trials and long-term wide-scale studies in the social sciences. Each study exhibits its unique data structure within individuals, clusters and possibly across time and space. In order to draw valid conclusion from such large dimensional data, we must account for intracluster correlations, varying cluster sizes, and outliers in response and/or covariate domains to achieve valid and efficient inferences. A weighted rank-based method is proposed for selecting variables and estimating parameters simultaneously. The main contribution of the proposed method is four fold: (1) variable selection using adaptive lasso is extended to robust rank regression so that protection against outliers in both response and predictor variables is obtained; (2) within-subject correlations are incorporated so that efficiency of parameter estimation is improved; (3) the computation is convenient via the existing function in statistical software R. (4) the proposed method is proved to have desirable asymptotic properties for fixed number of covariates (
p
). Simulation studies are carried out to evaluate the proposed method for a number of scenarios including the cases when
p
equals to the number of subjects. The simulation results indicate that the proposed method is efficient and robust. A hormone dataset is analyzed for illustration. By adding additional redundant variables as covariates, the penalty approach and weighting schemes are proven to be effective. New technologies have produced increasingly complex and massive datasets, such as next generation sequencing and microarray data in biology, dynamic treatment regimes in clinical trials and long-term wide-scale studies in the social sciences. Each study exhibits its unique data structure within individuals, clusters and possibly across time and space. In order to draw valid conclusion from such large dimensional data, we must account for intracluster correlations, varying cluster sizes, and outliers in response and/or covariate domains to achieve valid and efficient inferences. A weighted rank-based method is proposed for selecting variables and estimating parameters simultaneously. The main contribution of the proposed method is four fold: (1) variable selection using adaptive lasso is extended to robust rank regression so that protection against outliers in both response and predictor variables is obtained; (2) within-subject correlations are incorporated so that efficiency of parameter estimation is improved; (3) the computation is convenient via the existing function in statistical software R. (4) the proposed method is proved to have desirable asymptotic properties for fixed number of covariates (p). Simulation studies are carried out to evaluate the proposed method for a number of scenarios including the cases when p equals to the number of subjects. The simulation results indicate that the proposed method is efficient and robust. A hormone dataset is analyzed for illustration. By adding additional redundant variables as covariates, the penalty approach and weighting schemes are proven to be effective. |
Author | Cai, Fengjing Wang, You-Gan Yang, Zhuoran Fu, Liya |
Author_xml | – sequence: 1 givenname: Liya surname: Fu fullname: Fu, Liya organization: School of Mathematics and Statistics, Xi’an Jiaotong University – sequence: 2 givenname: Zhuoran surname: Yang fullname: Yang, Zhuoran organization: School of Mathematics and Statistics, Xi’an Jiaotong University – sequence: 3 givenname: Fengjing surname: Cai fullname: Cai, Fengjing email: cyclie@163.com organization: College of Mathematics, Wenzhou University – sequence: 4 givenname: You-Gan orcidid: 0000-0003-0901-4671 surname: Wang fullname: Wang, You-Gan email: you-gan.wang@qut.edu.au organization: School of Mathematical Science, Queensland University of Technology |
BookMark | eNp9kE1LxDAQhoMouK7-AU8Bz9VJ0k3To4hfsOBFz2HapBqpyZqkwv5741YQPOwhzGGeJ7zznpBDH7wl5JzBJQNorhIAU1ABL4-BUJU4IAsmmahauVKHZAFtLaoaJD8mJym9A3DecLYgn7fD4HpnfaboDTVh6sZtFUM3pUw_bH4LJtEhRPqF0WE3WprsaPvsgt8JG4xYMBupTdl94G7hPB2Df3V5Ms7jSA1mLDSO2-TSKTkacEz27Hcuycvd7fPNQ7V-un-8uV5XvWBtrsxQK1yhknJgogPZ171SpjUSDEJbzi3LppNo-xotoGjYYFRtpAHetBIasSQX87-bGD6nkk6_hymWEEnzFa9XsmlYWyg1U30MKUU76N7l3RU5ohs1A_1TsJ4L1qVgvStYi6Lyf-omlgbidr8kZikV2L_a-Jdqj_UNP7KRrA |
CitedBy_id | crossref_primary_10_1080_03610926_2022_2100421 |
Cites_doi | 10.1017/CBO9780511754098 10.1214/aoms/1177692377 10.1111/j.1541-0420.2008.01099.x 10.1198/016214504000001060 10.1080/01621459.2013.766613 10.1111/j.1541-0420.2007.00842.x 10.1007/s11222-009-9126-y 10.1093/biomet/73.1.13 10.1080/03610928308828522 10.1111/j.1541-0420.2012.01760.x 10.1016/j.csda.2014.08.006 10.1111/1467-9868.00351 10.1080/01621459.1990.10474920 10.1016/j.jmva.2014.09.014 10.1016/j.jmva.2012.03.007 10.1093/biomet/90.1.29 10.1093/biomet/90.3.732 10.1080/01621459.1998.10473723 10.18637/jss.v014.i07 10.1111/j.1541-0420.2009.01240.x 10.1080/10485259408832592 10.1198/016214501753382273 10.1177/0962280216681347 10.1016/j.csda.2009.10.015 10.1359/jbmr.1998.13.7.1191 10.1080/01621459.1999.10473836 10.1111/j.1541-0420.2011.01678.x 10.1016/j.amc.2014.07.086 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8C1 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s00180-020-01038-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1613-9658 |
EndPage | 804 |
ExternalDocumentID | 10_1007_s00180_020_01038_3 |
GrantInformation_xml | – fundername: the National Science Foundation of China grantid: 11871390 – fundername: the Fundamental Research Funds for the Central Universities grantid: xjj2017180 – fundername: Natural Science Foundation of Shaanxi Province grantid: 2018JQ1006 funderid: http://dx.doi.org/10.13039/501100007128 – fundername: the Australian Research Council Discovery Project grantid: DP160104292 – fundername: Zhejiang Science Grant grantid: KZS1905002 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7WY 88I 8C1 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- MK~ N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Y Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c319t-df48a5a866f13b06c4c88d9d60da09001a5a7b6aec4ae0a371fd84d6d02796073 |
IEDL.DBID | BENPR |
ISSN | 0943-4062 |
IngestDate | Fri Jul 25 19:03:52 EDT 2025 Tue Jul 01 04:23:17 EDT 2025 Thu Apr 24 22:51:56 EDT 2025 Fri Feb 21 02:48:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Outliers Correlated data Rank-based method Variable selection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-df48a5a866f13b06c4c88d9d60da09001a5a7b6aec4ae0a371fd84d6d02796073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0901-4671 |
PQID | 2524567719 |
PQPubID | 54096 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2524567719 crossref_citationtrail_10_1007_s00180_020_01038_3 crossref_primary_10_1007_s00180_020_01038_3 springer_journals_10_1007_s00180_020_01038_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210600 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 6 year: 2021 text: 20210600 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Computational statistics |
PublicationTitleAbbrev | Comput Stat |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Fu, Wang (CR8) 2018; 27 Fung, Zhu, Wei, He (CR9) 2002; 64 Liang, Zeger (CR14) 1986; 73 Jung, Ying (CR12) 2003; 90 Wang, Zhou, Qu (CR23) 2012; 68 Wang, Jiang, Huang, Zhang (CR24) 2013; 108 Fan, Li (CR3) 2001; 96 Wang, Zhao (CR26) 2008; 64 Yang, Guo, Lv (CR28) 2015; 133 Chang, McKean, Naranjo, Sheather (CR1) 1999; 94 Jaeckel (CR11) 1972; 43 Zhang, Lin, Raz, Sowers (CR29) 1998; 93 Lv, Yang, Guo (CR15) 2015; 82 Wang, Li (CR22) 2009; 65 Zou, Li (CR30) 2008; 36 Ni, Zhang, Zhang (CR17) 2010; 66 Sievers (CR19) 1983; 12 Fu, Wang, Bai (CR6) 2010; 54 Xu, Leng, Ying (CR27) 2010; 20 Fan, Qin, Zhu (CR5) 2012; 109 Wang, Carey (CR25) 2003; 90 Naranjo, Mckean, Sheather, Hettmansperger (CR16) 1994; 3 Fu, Wang (CR7) 2012; 68 Guo, Yang, Lv (CR10) 2014; 245 Sowers, Crutchfield, Randolph, Shapiro, Zhang, Pietra, Schork (CR20) 1998; 13 Koenker (CR13) 2005 Terpstra, McKean (CR21) 2005; 14 Cho, Qu (CR2) 2013; 23 Fan, Li (CR4) 2004; 99 Rousseeuw, Zomeren (CR18) 1990; 85 JF Xu (1038_CR27) 2010; 20 H Zou (1038_CR30) 2008; 36 Y-G Wang (1038_CR25) 2003; 90 PJ Rousseeuw (1038_CR18) 1990; 85 H-K Cho (1038_CR2) 2013; 23 J Fan (1038_CR3) 2001; 96 Y-G Wang (1038_CR26) 2008; 64 Y Fan (1038_CR5) 2012; 109 J Lv (1038_CR15) 2015; 82 X Ni (1038_CR17) 2010; 66 GL Sievers (1038_CR19) 1983; 12 LY Fu (1038_CR8) 2018; 27 J Fan (1038_CR4) 2004; 99 LY Fu (1038_CR7) 2012; 68 WH Chang (1038_CR1) 1999; 94 LY Fu (1038_CR6) 2010; 54 SH Jung (1038_CR12) 2003; 90 D Zhang (1038_CR29) 1998; 93 R Koenker (1038_CR13) 2005 L Wang (1038_CR22) 2009; 65 KY Liang (1038_CR14) 1986; 73 H Yang (1038_CR28) 2015; 133 CH Guo (1038_CR10) 2014; 245 JT Terpstra (1038_CR21) 2005; 14 K-W Fung (1038_CR9) 2002; 64 LA Jaeckel (1038_CR11) 1972; 43 L Wang (1038_CR23) 2012; 68 J Naranjo (1038_CR16) 1994; 3 XQ Wang (1038_CR24) 2013; 108 MF Sowers (1038_CR20) 1998; 13 |
References_xml | – year: 2005 ident: CR13 publication-title: Quantile Regression doi: 10.1017/CBO9780511754098 – volume: 43 start-page: 1449 year: 1972 end-page: 1458 ident: CR11 article-title: Estimating regression coefficients by minimizing the dispersion of the residuals publication-title: Ann Math Stat doi: 10.1214/aoms/1177692377 – volume: 65 start-page: 564 year: 2009 end-page: 571 ident: CR22 article-title: Weighted Wilcoxon-type smoothly clipped absolute deviation method publication-title: Biometrics doi: 10.1111/j.1541-0420.2008.01099.x – volume: 99 start-page: 710 year: 2004 end-page: 723 ident: CR4 article-title: New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis publication-title: J Am Stat Assoc doi: 10.1198/016214504000001060 – volume: 108 start-page: 632 year: 2013 end-page: 643 ident: CR24 article-title: Robust variable selection with exponential squared loss publication-title: J Am Stat Assoc doi: 10.1080/01621459.2013.766613 – volume: 64 start-page: 39 year: 2008 end-page: 45 ident: CR26 article-title: Weighted rank regression for clustered data analysis publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00842.x – volume: 20 start-page: 165 year: 2010 end-page: 176 ident: CR27 article-title: Rank-based variable selection with censored data publication-title: Stat Comput doi: 10.1007/s11222-009-9126-y – volume: 73 start-page: 13 year: 1986 end-page: 22 ident: CR14 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika doi: 10.1093/biomet/73.1.13 – volume: 12 start-page: 1161 year: 1983 end-page: 1179 ident: CR19 article-title: A weighted dispersion function for estimation in linear models publication-title: Commun Stat Theory Methods doi: 10.1080/03610928308828522 – volume: 68 start-page: 1074 year: 2012 end-page: 1082 ident: CR7 article-title: Efficient estimation for rank-based regression with clustered data publication-title: Biometrics doi: 10.1111/j.1541-0420.2012.01760.x – volume: 82 start-page: 74 year: 2015 end-page: 88 ident: CR15 article-title: An efficient and robust variable selection method for longitudinal generalized linear models publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2014.08.006 – volume: 64 start-page: 565 year: 2002 end-page: 579 ident: CR9 article-title: Inference diagnostics and outlier tests for semiparametric mixed models publication-title: J Royal Stat Soc Ser B doi: 10.1111/1467-9868.00351 – volume: 85 start-page: 633 year: 1990 end-page: 639 ident: CR18 article-title: Unmasking multivariate outliers and leverage points publication-title: J Am Stat Assoc doi: 10.1080/01621459.1990.10474920 – volume: 133 start-page: 321 year: 2015 end-page: 333 ident: CR28 article-title: SCAD penalized rank regression with a diverging number of parameters publication-title: J Multivar Anal doi: 10.1016/j.jmva.2014.09.014 – volume: 109 start-page: 156 year: 2012 end-page: 167 ident: CR5 article-title: Variable selection in robust regression models for longitudinal data publication-title: J Multivar Anal doi: 10.1016/j.jmva.2012.03.007 – volume: 90 start-page: 29 year: 2003 end-page: 41 ident: CR25 article-title: Working correlation structure misspecification, estimation and covariate design: Implications for generalised estimating equations performance publication-title: Biometrika doi: 10.1093/biomet/90.1.29 – volume: 36 start-page: 1509 year: 2008 end-page: 1566 ident: CR30 article-title: One-step sparse estimates in noncave penalized likelihood models publication-title: Ann Stat – volume: 90 start-page: 732 year: 2003 end-page: 740 ident: CR12 article-title: Rank-based regression with repeated measurement data publication-title: Biometrika doi: 10.1093/biomet/90.3.732 – volume: 93 start-page: 710 year: 1998 end-page: 719 ident: CR29 article-title: Semiparametric stochastic mixed models for longitudinal data publication-title: J Am Stat Assoc doi: 10.1080/01621459.1998.10473723 – volume: 14 start-page: 1 year: 2005 end-page: 26 ident: CR21 article-title: Rank-based reanlaysis of linear models using R publication-title: J Stat Softw doi: 10.18637/jss.v014.i07 – volume: 66 start-page: 79 year: 2010 end-page: 88 ident: CR17 article-title: Variable selection for semiparametric mixed models in longitudinal studies publication-title: Biometrics doi: 10.1111/j.1541-0420.2009.01240.x – volume: 3 start-page: 323 year: 1994 end-page: 341 ident: CR16 article-title: The use and interpretation of rank-based residuals publication-title: Nonparametr Stat doi: 10.1080/10485259408832592 – volume: 245 start-page: 343 year: 2014 end-page: 356 ident: CR10 article-title: Robust variable selection in semiparametric mean-covariance regression for longitudinal data analysis publication-title: Appl Math Comput – volume: 96 start-page: 1348 year: 2001 end-page: 1360 ident: CR3 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J Am Stat Assoc doi: 10.1198/016214501753382273 – volume: 27 start-page: 2447 issue: 8 year: 2018 end-page: 2458 ident: CR8 article-title: Variable selection in rank regression for analyzing longitudinal data publication-title: Stat Methods Med Res doi: 10.1177/0962280216681347 – volume: 54 start-page: 1036 year: 2010 end-page: 1050 ident: CR6 article-title: Rank regression for analysis of clustered data: A natural induced smoothing approach publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2009.10.015 – volume: 23 start-page: 901 year: 2013 end-page: 927 ident: CR2 article-title: Model selection for correlated data with diverging number of parameters publication-title: Stat Sinica – volume: 13 start-page: 1191 year: 1998 end-page: 1202 ident: CR20 article-title: Urinary ovarian and gonadotrophin hormone levels in premenopausal women with low bone mass publication-title: J Bone Mining Res doi: 10.1359/jbmr.1998.13.7.1191 – volume: 94 start-page: 205 year: 1999 end-page: 219 ident: CR1 article-title: High-breakdown rank regression publication-title: J Am Stat Assoc doi: 10.1080/01621459.1999.10473836 – volume: 68 start-page: 353 year: 2012 end-page: 360 ident: CR23 article-title: Penalized generalized estimating equations for high-dimensional longitudinal data analysis publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01678.x – volume: 3 start-page: 323 year: 1994 ident: 1038_CR16 publication-title: Nonparametr Stat doi: 10.1080/10485259408832592 – volume: 109 start-page: 156 year: 2012 ident: 1038_CR5 publication-title: J Multivar Anal doi: 10.1016/j.jmva.2012.03.007 – volume: 68 start-page: 1074 year: 2012 ident: 1038_CR7 publication-title: Biometrics doi: 10.1111/j.1541-0420.2012.01760.x – volume: 73 start-page: 13 year: 1986 ident: 1038_CR14 publication-title: Biometrika doi: 10.1093/biomet/73.1.13 – volume: 66 start-page: 79 year: 2010 ident: 1038_CR17 publication-title: Biometrics doi: 10.1111/j.1541-0420.2009.01240.x – volume: 12 start-page: 1161 year: 1983 ident: 1038_CR19 publication-title: Commun Stat Theory Methods doi: 10.1080/03610928308828522 – volume: 64 start-page: 565 year: 2002 ident: 1038_CR9 publication-title: J Royal Stat Soc Ser B doi: 10.1111/1467-9868.00351 – volume-title: Quantile Regression year: 2005 ident: 1038_CR13 doi: 10.1017/CBO9780511754098 – volume: 93 start-page: 710 year: 1998 ident: 1038_CR29 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1998.10473723 – volume: 65 start-page: 564 year: 2009 ident: 1038_CR22 publication-title: Biometrics doi: 10.1111/j.1541-0420.2008.01099.x – volume: 94 start-page: 205 year: 1999 ident: 1038_CR1 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1999.10473836 – volume: 133 start-page: 321 year: 2015 ident: 1038_CR28 publication-title: J Multivar Anal doi: 10.1016/j.jmva.2014.09.014 – volume: 90 start-page: 29 year: 2003 ident: 1038_CR25 publication-title: Biometrika doi: 10.1093/biomet/90.1.29 – volume: 13 start-page: 1191 year: 1998 ident: 1038_CR20 publication-title: J Bone Mining Res doi: 10.1359/jbmr.1998.13.7.1191 – volume: 108 start-page: 632 year: 2013 ident: 1038_CR24 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2013.766613 – volume: 99 start-page: 710 year: 2004 ident: 1038_CR4 publication-title: J Am Stat Assoc doi: 10.1198/016214504000001060 – volume: 43 start-page: 1449 year: 1972 ident: 1038_CR11 publication-title: Ann Math Stat doi: 10.1214/aoms/1177692377 – volume: 245 start-page: 343 year: 2014 ident: 1038_CR10 publication-title: Appl Math Comput doi: 10.1016/j.amc.2014.07.086 – volume: 36 start-page: 1509 year: 2008 ident: 1038_CR30 publication-title: Ann Stat – volume: 54 start-page: 1036 year: 2010 ident: 1038_CR6 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2009.10.015 – volume: 82 start-page: 74 year: 2015 ident: 1038_CR15 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2014.08.006 – volume: 85 start-page: 633 year: 1990 ident: 1038_CR18 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1990.10474920 – volume: 68 start-page: 353 year: 2012 ident: 1038_CR23 publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01678.x – volume: 27 start-page: 2447 issue: 8 year: 2018 ident: 1038_CR8 publication-title: Stat Methods Med Res doi: 10.1177/0962280216681347 – volume: 23 start-page: 901 year: 2013 ident: 1038_CR2 publication-title: Stat Sinica – volume: 64 start-page: 39 year: 2008 ident: 1038_CR26 publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00842.x – volume: 96 start-page: 1348 year: 2001 ident: 1038_CR3 publication-title: J Am Stat Assoc doi: 10.1198/016214501753382273 – volume: 90 start-page: 732 year: 2003 ident: 1038_CR12 publication-title: Biometrika doi: 10.1093/biomet/90.3.732 – volume: 14 start-page: 1 year: 2005 ident: 1038_CR21 publication-title: J Stat Softw doi: 10.18637/jss.v014.i07 – volume: 20 start-page: 165 year: 2010 ident: 1038_CR27 publication-title: Stat Comput doi: 10.1007/s11222-009-9126-y |
SSID | ssj0022721 |
Score | 2.230103 |
Snippet | New technologies have produced increasingly complex and massive datasets, such as next generation sequencing and microarray data in biology, dynamic treatment... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 781 |
SubjectTerms | Asymptotic methods Asymptotic properties Data analysis Data structures Datasets Economic Theory/Quantitative Economics/Mathematical Methods Feature selection Massive data points Mathematics and Statistics New technology Original Paper Outliers (statistics) Parameter estimation Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Robustness (mathematics) Statistical analysis Statistics Variables |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20XupBtCpWq-zBmwY2u8kmORZpKUI9WegtbHYTEGqiTSL4753ZfIiigrfAfhx2spl5mZn3CLkOlavBK0UO9w0AFJ7BnZMCn1wVRGmWZDaDv3yQi5V3v_bXbVNY2VW7dylJ-6Xum91QP445CHdQmyB0xC7Z8wG7YyHXik97mMUD222FJXOAjiRvW2V-3uOrO_qMMb-lRa23mR-SgzZMpNPGrkdkJ81HZH_Zc6yWIzLEOLGhWT4mrzNLBQEehKrcUFPUyebd2RZJXVa0UYkuKcSn9A2wMXZL0dIK4IBV7AJkAH_GyhiKrBtNOyN9yummQD2j2qB2FsVqUpjdsJickNV89ni3cFo1BUfDNasck3mh8lUoZeaKhEnt6TA0kZHMKBbBwcBgkEiVak-lTInAzUzoGWkAuALMCcQpGeRFnp4RGmYKkJonmZeBcxMsERwCz9T3NAtSV_tj4naHGuuWahwVLzZxT5JsDRGDIWJriFiMyU2_5qUh2vhz9qSzVdxeujLmPmZxg8CNxuS2s9_n8O-7nf9v-gUZcqxssf9iJmRQbev0EkKTKrmyb-IH_jLZBg priority: 102 providerName: Springer Nature |
Title | Efficient and doubly-robust methods for variable selection and parameter estimation in longitudinal data analysis |
URI | https://link.springer.com/article/10.1007/s00180-020-01038-3 https://www.proquest.com/docview/2524567719 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vehBfGJ9lD1402Cem81JamkriiJiQU9hs5uAUBM1reC_d2azbVHQSwjZ3RxmHzPfzuMDOBHSU6iVEsePNAIUv8A9xwN682Sc5EVWGA_-7R2_GofXT9GTvXCrbVjl_Ew0B7WuFN2Rn_sRueji2Esu3t4dYo0i76ql0FiFNh7BQrSgfTm4u39YQC4_NplXFD6HSIn7Nm3GJM8RH53rEHwirgPhBD9V09Le_OUiNZpnuAkb1mRkvWaOt2AlL7dh_XZRb7XegfeBqQSBCoTJUjNdzbLJl_NRZbN6yhqS6Jqheco-ERpTshSrDf8NTooZQAXAXykwhlHRjSabkb2UbFIRndFME3UWo2BS7N0UMdmF8XDw2L9yLJmCo3CXTR1dhEJGUnBeeEHmchUqIXSiuaulm6AssDHOuMxVKHNXBrFXaBFqrhG3IsqJgz1olVWZ7wMThUSgFnI3LFC3BW4W-Gh35lGo3Dj3VNQBby7HVNlK40R4MUkXNZKN7FOUfWpknwYdOF2MeWvqbPzb-2g-Pandc3W6XCEdOJtP2bL5778d_P-3Q1jzKZDFXL0cQWv6McuP0RKZZl1YFX2PnsNRF9q90fPNoGuXIH4d-71vyMndmw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ROLQ9VKW06lIKPpQTjZrYjpMcKoSAZflYTiBxSx3bkSptEyC7VPyp_sbOOMmuQIIbt0iOfRiPPTOemfcAvqU6MmiVsoDHFgMUXuKZU4K-Ip1krixKn8Efn6vRpTy5iq-W4F_fC0Nllf2d6C9qWxt6I__BY0rRJUmU7V7fBMQaRdnVnkKjVYtTd_8XQ7bm5_EB7u8258PDi_1R0LEKBAbVbRrYUqY61qlSZSSKUBlp0tRmVoVWhxne2jiYFEo7I7ULtUii0qbSKosBHLr7icB1X8GKFGjJqTN9eDQP8Hji-7yoWA_jMsW7Jh3fqkfsd2FAwRoxK6SBeGgIF97to4Sst3PD9_Cuc1DZXqtRq7Dkqg_wdjxHd23W4ObQ406guWK6sszWs2JyH9zWxayZspaSumHoDLM7DMSpNYs1nm0HVcBPILjxP1SGwwjio-2dZL8rNqmJPGlmiaiLUekq_t1CpnyEyxcR8idYrurKfQaWlhrDQqlCWaIlFWEhOHq5LpYmTFxk4gFEvRxz0-GaE73GJJ8jMnvZ5yj73Ms-FwPYmc-5blE9nv17o9-evDvhTb7QxwF877dsMfz0auvPr7YFr0cX47P87Pj89Au84VRC4x99NmB5ejtzX9EHmhabXvEY_HppTf8PFaEVDg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4oPISCy34ACeImtiJ7RwQqtquWkorDlTqLTh-SJWWpG12Qf1r_DpmnGRXRaK33iI59mE89sx4Zr4P4J02mUWrVCa8cBig8IBnTgr6yowqfahDzOAfn8iD0_zLWXG2Bn_GXhgqqxzvxHhRu9bSG_k2LyhFp1RWboehLOLb3vTzxWVCDFKUaR3pNHoVOfLXvzF86z4d7uFev-d8uv999yAZGAYSi6o3T1zItSmMljJkok6lza3WrnQydSYt8QbHQVVL421ufGqEyoLTuZMOgzl0_ZXAde_BfSWUpjOmd5flJZyr2PNFhXsYo0k-NOzEtj1iwksTCtyIZUEn4qZRXHm6_yRno82bbsDjwVllO712PYE13zyFR8dLpNfuGVzuRwwKNF3MNI65dlHPrpOrtl50c9bTU3cMHWP2C4NyatNiXWTeQXWIEwh6_CeV5DCC--j7KNl5w2YtESktHJF2MSpjxb97-JTncHonQn4B603b-JfAdDAYIuYyzQNaVZHWgqPH64vcpspntphANsqxsgPGOVFtzKolOnOUfYWyr6LsKzGBD8s5Fz3Cx61_b47bUw2nvatWujmBj-OWrYb_v9qr21d7Cw9Qx6uvhydHr-Ehp2qa-P6zCevzq4XfQndoXr-Jesfgx10r-l-g_BkP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+doubly-robust+methods+for+variable+selection+and+parameter+estimation+in+longitudinal+data+analysis&rft.jtitle=Computational+statistics&rft.au=Fu+Liya&rft.au=Yang+Zhuoran&rft.au=Cai+Fengjing&rft.au=You-Gan%2C+Wang&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=36&rft.issue=2&rft.spage=781&rft.epage=804&rft_id=info:doi/10.1007%2Fs00180-020-01038-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon |