Fine-grained vehicle type classification using lightweight convolutional neural network with feature optimization and joint learning strategy
Vehicle type classification (VTC) plays an important role in today’s intelligent transportation. Previous VTC systems usually run on a monitoring center’s host machine due to the models’ complexity, which consume lots of computing resources and have poor real-time performance. If these systems are d...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 20; pp. 30803 - 30816 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vehicle type classification (VTC) plays an important role in today’s intelligent transportation. Previous VTC systems usually run on a monitoring center’s host machine due to the models’ complexity, which consume lots of computing resources and have poor real-time performance. If these systems are deployed to embedded terminals by making the model lightweight while ensuring accuracy, then the problem can be addressed. To this end, we propose a fine-grained VTC method using lightweight convolutional neural network with feature optimization and joint learning strategy. Firstly, a lightweight convolutional network with feature optimization (LWCNN-FO) is designed. We use depthwise separable convolution to reduce network parameters. Besides, the SENet module is added to obtain the important degree of each feature channel automatically through the sample-based self-learning, which can improve recognition accuracy with less network parameters growth. In addition, considering both between-class similarity and intra-class variance, this paper adopts the joint learning strategy combining softmax loss and contrastive-center loss to class vehicle types, thereby improving model’s fine-grained classification ability. We also build a dataset, called Car-159, consisting of 7998 pictures for 159 vehicle types, to evaluate our method. Compared with the state-of-the-art methods, experimental results show that our method can effectively decrease model’s complexity while maintaining accuracy. |
---|---|
AbstractList | Vehicle type classification (VTC) plays an important role in today’s intelligent transportation. Previous VTC systems usually run on a monitoring center’s host machine due to the models’ complexity, which consume lots of computing resources and have poor real-time performance. If these systems are deployed to embedded terminals by making the model lightweight while ensuring accuracy, then the problem can be addressed. To this end, we propose a fine-grained VTC method using lightweight convolutional neural network with feature optimization and joint learning strategy. Firstly, a lightweight convolutional network with feature optimization (LWCNN-FO) is designed. We use depthwise separable convolution to reduce network parameters. Besides, the SENet module is added to obtain the important degree of each feature channel automatically through the sample-based self-learning, which can improve recognition accuracy with less network parameters growth. In addition, considering both between-class similarity and intra-class variance, this paper adopts the joint learning strategy combining softmax loss and contrastive-center loss to class vehicle types, thereby improving model’s fine-grained classification ability. We also build a dataset, called Car-159, consisting of 7998 pictures for 159 vehicle types, to evaluate our method. Compared with the state-of-the-art methods, experimental results show that our method can effectively decrease model’s complexity while maintaining accuracy. |
Author | Sun, Wei Zhang, Guoce Zhang, Xiaorui Zhang, Xu Ge, Nannan |
Author_xml | – sequence: 1 givenname: Wei surname: Sun fullname: Sun, Wei email: sunw0125@163.com organization: School of Automation, Nanjing University of Information Science & Technology, Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology – sequence: 2 givenname: Guoce orcidid: 0000-0001-6455-4844 surname: Zhang fullname: Zhang, Guoce organization: School of Automation, Nanjing University of Information Science & Technology – sequence: 3 givenname: Xiaorui surname: Zhang fullname: Zhang, Xiaorui organization: Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology – sequence: 4 givenname: Xu surname: Zhang fullname: Zhang, Xu organization: School of Automation, Nanjing University of Information Science & Technology – sequence: 5 givenname: Nannan surname: Ge fullname: Ge, Nannan organization: School of Automation, Nanjing University of Information Science & Technology |
BookMark | eNp9kM1O3DAUhS1EpQLlBbqy1LWpf5LYWSJUaCUkNrC2Lsl1xkOwB9thNH0H3pnMpBJSF2x8LN3zHd17TslxiAEJ-S74heBc_8xC8EoyLjnjrdCCqSNyImqtmNZSHM9_ZTjTNRdfyWnOa85FU8vqhLxd-4BsSDBLT19x5bsRadltkHYj5Oyd76D4GOiUfRjo6IdV2eL-pV0Mr3Gc9lMYacApHaRsY3qiW19W1CGUKSGNm-Kf_d8lCEJP19GHQkeEFPapuSQoOOy-kS8Oxozn__SMPFz_ur_6zW7vbv5cXd6yTom2sN6pRwCsDIpGoAJhDDQVgKh4j9oBONP2pupAonGgNDQGTMNNK1tnnK7UGfmx5G5SfJkwF7uOU5qvyFbWWmpVtW09u8zi6lLMOaGznS-HG-Z1_WgFt_vy7VK-ncu3h_KtmlH5H7pJ_hnS7nNILVCezWHA9LHVJ9Q7Hg2eGg |
CitedBy_id | crossref_primary_10_32604_csse_2023_021615 crossref_primary_10_32604_cmc_2023_032363 crossref_primary_10_32604_iasc_2023_030597 crossref_primary_10_32604_cmc_2023_031155 crossref_primary_10_32604_iasc_2023_031200 crossref_primary_10_32604_iasc_2023_031442 crossref_primary_10_32604_cmc_2023_032927 crossref_primary_10_32604_cmc_2023_031834 crossref_primary_10_32604_iasc_2023_032250 crossref_primary_10_32604_csse_2023_030960 crossref_primary_10_32604_csse_2023_030849 crossref_primary_10_32604_csse_2023_030603 crossref_primary_10_32604_iasc_2023_032538 crossref_primary_10_32604_cmc_2023_033327 crossref_primary_10_32604_cmc_2023_032752 crossref_primary_10_32604_csse_2023_031270 crossref_primary_10_32604_iasc_2023_030763 crossref_primary_10_32604_cmc_2023_032595 crossref_primary_10_32604_iasc_2023_030484 crossref_primary_10_32604_csse_2023_030611 crossref_primary_10_32604_iasc_2023_032301 crossref_primary_10_32604_csse_2023_032359 crossref_primary_10_32604_cmc_2022_031376 crossref_primary_10_32604_cmc_2023_032300 crossref_primary_10_32604_iasc_2023_030970 crossref_primary_10_32604_cmc_2023_030924 crossref_primary_10_32604_cmc_2022_030963 crossref_primary_10_1007_s11042_024_18303_y crossref_primary_10_32604_csse_2023_032449 crossref_primary_10_32604_iasc_2023_032074 crossref_primary_10_32604_cmc_2022_027984 crossref_primary_10_32604_csse_2023_031114 crossref_primary_10_32604_csse_2023_031115 crossref_primary_10_32604_csse_2023_031753 crossref_primary_10_32604_iasc_2023_032239 crossref_primary_10_32604_csse_2023_031116 crossref_primary_10_32604_cmc_2023_032533 crossref_primary_10_32604_cmc_2023_031962 crossref_primary_10_1016_j_phycom_2024_102475 crossref_primary_10_32604_csse_2023_031008 crossref_primary_10_32604_csse_2023_034915 crossref_primary_10_32604_csse_2023_031001 crossref_primary_10_32604_cmc_2023_032020 crossref_primary_10_32604_iasc_2023_039718 crossref_primary_10_32604_cmc_2023_032326 crossref_primary_10_32604_cmc_2023_031352 crossref_primary_10_32604_iasc_2023_031522 crossref_primary_10_32604_cmc_2023_026441 crossref_primary_10_32604_iasc_2023_030394 crossref_primary_10_32604_cmc_2023_032569 crossref_primary_10_1007_s00521_022_07940_9 crossref_primary_10_32604_cmc_2023_034748 crossref_primary_10_32604_iasc_2023_032053 crossref_primary_10_32604_csse_2023_030408 crossref_primary_10_32604_cmc_2022_030392 crossref_primary_10_32604_csse_2023_032786 crossref_primary_10_32604_csse_2023_030647 crossref_primary_10_32604_cmc_2023_032710 crossref_primary_10_32604_iasc_2023_031932 crossref_primary_10_32604_cmc_2023_032557 crossref_primary_10_32604_cmc_2023_032794 crossref_primary_10_32604_cmc_2022_030399 crossref_primary_10_32604_cmc_2022_030432 crossref_primary_10_32604_cmc_2023_032838 crossref_primary_10_32604_cmc_2022_030837 crossref_primary_10_1016_j_aiia_2024_05_003 crossref_primary_10_32604_cmc_2023_031227 crossref_primary_10_32604_cmc_2023_032715 crossref_primary_10_32604_cmc_2023_031867 crossref_primary_10_32604_csse_2023_031988 crossref_primary_10_3390_electronics11142158 crossref_primary_10_32604_cmc_2022_031490 crossref_primary_10_32604_cmc_2023_029719 crossref_primary_10_32604_cmc_2022_029297 crossref_primary_10_1109_ACCESS_2024_3354706 crossref_primary_10_32604_csse_2023_032491 crossref_primary_10_1007_s40031_022_00838_z crossref_primary_10_1016_j_dib_2024_110264 crossref_primary_10_32604_iasc_2023_030497 crossref_primary_10_32604_cmc_2022_030881 crossref_primary_10_32604_cmc_2022_030806 crossref_primary_10_32604_iasc_2023_032036 crossref_primary_10_32604_csse_2023_032488 crossref_primary_10_32604_csse_2023_032127 crossref_primary_10_32604_cmc_2023_031245 crossref_primary_10_1016_j_asej_2024_103227 crossref_primary_10_32604_cmc_2023_030790 crossref_primary_10_32604_cmc_2023_032694 crossref_primary_10_32604_cmc_2023_032739 crossref_primary_10_32604_cmc_2023_032857 crossref_primary_10_32604_iasc_2023_031470 crossref_primary_10_32604_cmc_2022_030418 crossref_primary_10_32604_cmc_2022_030934 crossref_primary_10_32604_csse_2023_030630 crossref_primary_10_1007_s11042_023_14852_w crossref_primary_10_32604_csse_2023_032497 crossref_primary_10_3390_math12010073 crossref_primary_10_32604_iasc_2023_032604 |
Cites_doi | 10.1109/BigMM.2018.8499085 10.1109/TITS.2013.2294646 10.1109/ICCV.2015.170 10.1109/CVPR.2015.7298880 10.1109/IROS.2013.6696957 10.2991/isrme-15.2015.86 10.1109/TITS.2015.2402438 10.1109/TITS.2012.2213814 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-020-09171-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 30816 |
ExternalDocumentID | 10_1007_s11042_020_09171_3 |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20191401 funderid: http://dx.doi.org/10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 61304205; 61502240 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Innovation and Entrepreneurship Training Project of College Students grantid: 201910300050Z |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-df3baae48e161e3a188a64aa140de7faaf89d84ca2e8fa37a68a8608929f8f743 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Sat Jul 26 00:02:42 EDT 2025 Tue Jul 01 04:13:04 EDT 2025 Thu Apr 24 23:10:54 EDT 2025 Fri Feb 21 02:48:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | Fine-grained vehicle type classification Contrastive-center loss Lightweight Feature optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-df3baae48e161e3a188a64aa140de7faaf89d84ca2e8fa37a68a8608929f8f743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6455-4844 |
PQID | 2572734995 |
PQPubID | 54626 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2572734995 crossref_citationtrail_10_1007_s11042_020_09171_3 crossref_primary_10_1007_s11042_020_09171_3 springer_journals_10_1007_s11042_020_09171_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Zhang Q, Zhuo L, Zhang S, et al (2018) Fine-grained vehicle recognition using lightweight convolutional neural network with combined learning strategy. 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM) 2018: 1-5. WenYZhangKLiZA discriminative feature learning approach for deep face recognitionEuropean conference on computer vision20162016499515 KrauseJStarkMDengJ3d object representations for fine-grained categorizationProceedings of the IEEE international conference on computer vision workshops20132013554561 ZhangXZhouXLinMShufflenet: an extremely efficient convolutional neural network for mobile devicesProc IEEE Conf Comput Vis Pattern Recognit2018201868486856 Li M, Tian X, Zhang Y, et al (2015) A review of vision-based vehicle detection and tracking techniques for intelligent vehicle. 2015 international conference on intelligent systems research and mechatronics engineering. DongZWuYPeiMJiaYVehicle type classification using a semisupervised convolutional neural networkIEEE Trans Intell Transp Syst20151642247225610.1109/TITS.2015.2402438 Xie S, Yang T, Wang X, Lin Y (2015) Hyper-class augmented and regularized deep learning for fine-grained image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 2645–2654. HuJShenLSunGSqueeze-and-excitation networksProc IEEE Conf Comput Vis Pattern Recognit2018201871327141 HsiehJWChenLCChenDYSymmetrical SURF and its applications to vehicle detection and vehicle make and model recognitionIEEE Trans Intell Transp Syst201415162010.1109/TITS.2013.2294646 CsurkaGDanceCFanLWillamowskiJBrayCVisual categorization with bags of keypointsIn Workshop on statistical learning in computer vision, ECCV200411–2212 QiCSu F (2017) contrastive-center loss for deep neural networksIEEE International Conference on Image Processing (ICIP)2017201728512855 YangLLuoPChange LoyCA large-scale car dataset for fine-grained categorization and verificationProc IEEE Conf Comput Vis Pattern Recognit2015201539733981 Behley J, Steinhage V, Cremers A B (2013) Laser-based segment classification using a mixture of bag-of-words. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 4195–4200. Kingma D P, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. Iandola F N, Han S, Moskewicz M W, et al (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360. Lin T Y, Roychowdhury, A, Maji S. (2015) Bilinear cnn models for fine-grained visual recognition. In Proceedings of the IEEE international conference on computer vision , pp. 1449–1457. ZhangBReliable classification of vehicle types based on cascade classifier ensemblesIEEE Trans Intell Transp Syst201214132233210.1109/TITS.2012.2213814 Howard A G, Zhu M, Chen B, et al (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. RenSHeKGirshickRFaster r-cnn: towards real-time object detection with region proposal networksAdv Neural Inf Proces Syst201520159199 XingEPJordanMIRussellSJDistance metric learning with application to clustering with side-informationAdv Neural Inf Proces Syst20032003521528 EP Xing (9171_CR16) 2003; 2003 L Yang (9171_CR17) 2015; 2015 9171_CR19 J Krause (9171_CR9) 2013; 2013 Y Wen (9171_CR14) 2016; 2016 9171_CR15 X Zhang (9171_CR20) 2018; 2018 C Qi (9171_CR12) 2017; 2017 G Csurka (9171_CR2) 2004; 1 J Hu (9171_CR6) 2018; 2018 JW Hsieh (9171_CR5) 2014; 15 9171_CR8 B Zhang (9171_CR18) 2012; 14 9171_CR4 9171_CR7 9171_CR1 9171_CR11 Z Dong (9171_CR3) 2015; 16 S Ren (9171_CR13) 2015; 2015 9171_CR10 |
References_xml | – reference: YangLLuoPChange LoyCA large-scale car dataset for fine-grained categorization and verificationProc IEEE Conf Comput Vis Pattern Recognit2015201539733981 – reference: DongZWuYPeiMJiaYVehicle type classification using a semisupervised convolutional neural networkIEEE Trans Intell Transp Syst20151642247225610.1109/TITS.2015.2402438 – reference: XingEPJordanMIRussellSJDistance metric learning with application to clustering with side-informationAdv Neural Inf Proces Syst20032003521528 – reference: Xie S, Yang T, Wang X, Lin Y (2015) Hyper-class augmented and regularized deep learning for fine-grained image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 2645–2654. – reference: Li M, Tian X, Zhang Y, et al (2015) A review of vision-based vehicle detection and tracking techniques for intelligent vehicle. 2015 international conference on intelligent systems research and mechatronics engineering. – reference: KrauseJStarkMDengJ3d object representations for fine-grained categorizationProceedings of the IEEE international conference on computer vision workshops20132013554561 – reference: CsurkaGDanceCFanLWillamowskiJBrayCVisual categorization with bags of keypointsIn Workshop on statistical learning in computer vision, ECCV200411–2212 – reference: Howard A G, Zhu M, Chen B, et al (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. – reference: Zhang Q, Zhuo L, Zhang S, et al (2018) Fine-grained vehicle recognition using lightweight convolutional neural network with combined learning strategy. 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM) 2018: 1-5. – reference: ZhangBReliable classification of vehicle types based on cascade classifier ensemblesIEEE Trans Intell Transp Syst201214132233210.1109/TITS.2012.2213814 – reference: RenSHeKGirshickRFaster r-cnn: towards real-time object detection with region proposal networksAdv Neural Inf Proces Syst201520159199 – reference: HuJShenLSunGSqueeze-and-excitation networksProc IEEE Conf Comput Vis Pattern Recognit2018201871327141 – reference: Behley J, Steinhage V, Cremers A B (2013) Laser-based segment classification using a mixture of bag-of-words. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 4195–4200. – reference: Iandola F N, Han S, Moskewicz M W, et al (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360. – reference: Kingma D P, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. – reference: WenYZhangKLiZA discriminative feature learning approach for deep face recognitionEuropean conference on computer vision20162016499515 – reference: HsiehJWChenLCChenDYSymmetrical SURF and its applications to vehicle detection and vehicle make and model recognitionIEEE Trans Intell Transp Syst201415162010.1109/TITS.2013.2294646 – reference: Lin T Y, Roychowdhury, A, Maji S. (2015) Bilinear cnn models for fine-grained visual recognition. In Proceedings of the IEEE international conference on computer vision , pp. 1449–1457. – reference: QiCSu F (2017) contrastive-center loss for deep neural networksIEEE International Conference on Image Processing (ICIP)2017201728512855 – reference: ZhangXZhouXLinMShufflenet: an extremely efficient convolutional neural network for mobile devicesProc IEEE Conf Comput Vis Pattern Recognit2018201868486856 – ident: 9171_CR19 doi: 10.1109/BigMM.2018.8499085 – volume: 1 start-page: 1 issue: 1–22 year: 2004 ident: 9171_CR2 publication-title: In Workshop on statistical learning in computer vision, ECCV – volume: 2018 start-page: 6848 year: 2018 ident: 9171_CR20 publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: 9171_CR8 – ident: 9171_CR7 – ident: 9171_CR4 – volume: 2013 start-page: 554 year: 2013 ident: 9171_CR9 publication-title: Proceedings of the IEEE international conference on computer vision workshops – volume: 2015 start-page: 3973 year: 2015 ident: 9171_CR17 publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – volume: 15 start-page: 6 issue: 1 year: 2014 ident: 9171_CR5 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2013.2294646 – ident: 9171_CR11 doi: 10.1109/ICCV.2015.170 – ident: 9171_CR15 doi: 10.1109/CVPR.2015.7298880 – ident: 9171_CR1 doi: 10.1109/IROS.2013.6696957 – volume: 2018 start-page: 7132 year: 2018 ident: 9171_CR6 publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – volume: 2016 start-page: 499 year: 2016 ident: 9171_CR14 publication-title: European conference on computer vision – volume: 2015 start-page: 91 year: 2015 ident: 9171_CR13 publication-title: Adv Neural Inf Proces Syst – ident: 9171_CR10 doi: 10.2991/isrme-15.2015.86 – volume: 2017 start-page: 2851 year: 2017 ident: 9171_CR12 publication-title: IEEE International Conference on Image Processing (ICIP) – volume: 16 start-page: 2247 issue: 4 year: 2015 ident: 9171_CR3 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2015.2402438 – volume: 2003 start-page: 521 year: 2003 ident: 9171_CR16 publication-title: Adv Neural Inf Proces Syst – volume: 14 start-page: 322 issue: 1 year: 2012 ident: 9171_CR18 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2012.2213814 |
SSID | ssj0016524 |
Score | 2.5337274 |
Snippet | Vehicle type classification (VTC) plays an important role in today’s intelligent transportation. Previous VTC systems usually run on a monitoring center’s host... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 30803 |
SubjectTerms | Accuracy Artificial neural networks Classification Complexity Computer Communication Networks Computer Science Data Structures and Information Theory Learning Lightweight Mathematical models Multimedia Information Systems Neural networks Optimization Parameters Special Purpose and Application-Based Systems Transport buildings, stations and terminals |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gXODAY4AYDJQDN4jUrq_0OCGmCQlOTNqtcptkgKBDrID4Efxn7CxdAQESp1Zq0kp1bH-JP9uMHQP5cFCRCJNAiRA8tIOQaOHHCB4oEBTYPO7Lq3g4Ci_G0dglhc1qtnsdkrSWukl28ymVhLY76OMSXwTLbCXCvTsRuUa9_iJ2EEeula30BPpD36XK_PyOr-6owZjfwqLW2ww22bqDibw_l-sWW9Jlm23ULRi408g2W_tUT3CbvQ_wXkyo64NW_EXf0GROp6y8IJRMtCArCU509wm_p535qz0c5UQ_d8sQP0xlLu3FksQ5ndZyo20RUD5FK_Pg0jc5lIrfTW_Lirv-ExM-mxe8fdtho8H59dlQuH4LokBFrIQyQQ6gQ6kRBuoAfCkhDgFwD6Z0YgCMTJUMC-hpaSBIIJYgY08iwjLSIBTZZa1yWuo9xiFRXtErZJ6GRQiRgdTL0ZiYOE1I5b0O8-vfnhWuGDn1xLjPmjLKJKoMRZVZUWVBh50s5jzOS3H8ObpbSzNzajnL0D5ROZ80jTrstJZw8_j3t-3_b_gBW-0R98USBbusVT0960MEL1V-ZNfqB7K857o priority: 102 providerName: Springer Nature |
Title | Fine-grained vehicle type classification using lightweight convolutional neural network with feature optimization and joint learning strategy |
URI | https://link.springer.com/article/10.1007/s11042-020-09171-3 https://www.proquest.com/docview/2572734995 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB6V5AIH2vJQQ2nkA7fWYjf78p6qpMqCWjVCVSPBaTVZ26FVugESqPgR_OfOOF5SKpWTV_LaK-2MZ8bz-AbgCFmHo05knEVaxhiQHMTMyDAl44EDQZGr4_46Sk_H8efz5Nw73BY-rbKRiU5Q63nFPvJjYi1GYsnz5OPVteSuURxd9S00NqBNIlipFrQHw9HZt8c4Qpr4trYqkKQbQ182syqeC7k0ha9PpDOzUEZPVdPa3vwnROo0T_EKtr3JKPorGr-GF6begZdNOwbhT-cObP2FLbgLDwU9yyl3gDBa3JlLXizY4yoqtpg5RchRRXDq-1TM-Jb-2zlKBaeie5akDzPkpRtcwrhgz62wxgGCijlJnF--lFNgrcXP-Y96KXwviqlYrMBv7_dgXAy_fzqVvveCrOhQLqW20QTRxMqQSWgiDJXCNEak-5g2mUW0KtcqrrBnlMUow1ShSgNF1pZVlsySfWjV89q8AYGZDqpepSZ5XMWYWMyDCQkWm-YZH_-gA2Hz28vKA5Nzf4xZuYZUZlKVRKrSkaqMOvD-cc3VCpbj2bcPG2qW_oguyjVDdeBDQ-H19P93O3h-t7ew2eO8F5ckeAit5c2teUeGy3LShQ1VnHSh3S8GgxGPJxdfhl3PszQ77vX_AFwq8UY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ReqA99EFB3UJbH-DUWuThJM4BVVXb7VIeJ5C4pbOxvW1Fs8AuIH4Ef4Xf2BnHYWmlcuOUSIkdKTP-ZjyemQ9gDdmGo8mkKlIjFUaEg1hYGefkPPBBUOrruHf38sGB-naYHc7BdVcLw2mVHSZ6oDbjmmPkG6Ra3ImlLLMPxyeSWaP4dLWj0GjVYtteXtCWbbK59Znku54k_S_7nwYysArImtRtKo1Lh4hWaUvOjk0x1hpzhUg7DWMLh-h0abSqMbHaYVpgrlHnkSY_wmlHBpfmfQAPVUqWnCvT-19vTi3yLJDo6kiSJY5DkU5bqhdzIQxv1shCF7FM_zaEM-_2nwNZb-f6z-BJcFDFx1ajnsOcbRbhaUf-IAIWLMLjW50MX8BVn-7liPkmrBHn9gcPFhzfFTX755yQ5HVAcKL9SBxxTODCh2UFJ76HBUAf5gab_uLT0wXHiYWzvv2oGBO-_Q6FowIbI36NfzZTEZgvRmLSttq9XIKDe5HJMsw348a-BIGFieqk1sNS1Qozh2U0JBhzeVkw2EQ9iLvfXtWhDTqzcRxVswbOLKqKRFV5UVVpD97djDlum4Dc-fZqJ80qAMKkmqlvD953Ep49_v9sr-6e7S0sDPZ3d6qdrb3tFXiUcMaNT09chfnp6Zl9TS7TdPjG66mA7_e9MP4A19spYg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgwKNQsVBgDnACq3nHOSAEtKuWwqpCVOotzMb2AirZwi5U_RH8IX4dM47TBSR66ymREjtSZjzvmQ_gEYkOJ5OrrEyNyihiOUilVXHBxoMkglLfx_12XOwcZK8P88MV-NX3wkhZZS8TvaA2s0Zi5JvMWjKJparyTRfKIva3Rs-PvypBkJJMaw-n0bHInj09Yfdt_mx3i2n9OElG2-9f7aiAMKAaZr2FMi6dENlMWzZ8bEqx1lRkROx1GFs6Iqcro7OGEqsdpSUVmnQRabYpnHasfHnfS7Bailc0gNWX2-P9d2c5jCIPkLo6UqyX49Cy0zXuxdIWI64b6-syVunfanFp6_6TnvVab3QDrgVzFV90_HUTVmy7Btd7KAgMkmENrv4x1_AW_BzxvZoK-oQ1-MN-lMUo0V5sxFqX8iTPEShl91M8kgjBiQ_SopTBh-PAH5Zxm_7ii9VRosborB9GijOWdl9CGylSa_Dz7FO7wICDMcV5N3j39DYcXAhV1mHQzlp7B5BKEzVJoydV1mSUO6qiCQs1V1SliJ5oCHH_2-smDEUXbI6jejnOWUhVM6lqT6o6HcKTszXH3UiQc9_e6KlZB_Ewr5fMPISnPYWXj_-_293zd3sIl_lQ1G92x3v34Eoi5Te-VnEDBotv3-19tp8WkweBURE-XPTZ-A18Ay70 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-grained+vehicle+type+classification+using+lightweight+convolutional+neural+network+with+feature+optimization+and+joint+learning+strategy&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sun%2C+Wei&rft.au=Zhang%2C+Guoce&rft.au=Zhang%2C+Xiaorui&rft.au=Zhang%2C+Xu&rft.date=2021-08-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=20&rft.spage=30803&rft.epage=30816&rft_id=info:doi/10.1007%2Fs11042-020-09171-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_020_09171_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |