Fine-grained vehicle type classification using lightweight convolutional neural network with feature optimization and joint learning strategy

Vehicle type classification (VTC) plays an important role in today’s intelligent transportation. Previous VTC systems usually run on a monitoring center’s host machine due to the models’ complexity, which consume lots of computing resources and have poor real-time performance. If these systems are d...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 20; pp. 30803 - 30816
Main Authors Sun, Wei, Zhang, Guoce, Zhang, Xiaorui, Zhang, Xu, Ge, Nannan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vehicle type classification (VTC) plays an important role in today’s intelligent transportation. Previous VTC systems usually run on a monitoring center’s host machine due to the models’ complexity, which consume lots of computing resources and have poor real-time performance. If these systems are deployed to embedded terminals by making the model lightweight while ensuring accuracy, then the problem can be addressed. To this end, we propose a fine-grained VTC method using lightweight convolutional neural network with feature optimization and joint learning strategy. Firstly, a lightweight convolutional network with feature optimization (LWCNN-FO) is designed. We use depthwise separable convolution to reduce network parameters. Besides, the SENet module is added to obtain the important degree of each feature channel automatically through the sample-based self-learning, which can improve recognition accuracy with less network parameters growth. In addition, considering both between-class similarity and intra-class variance, this paper adopts the joint learning strategy combining softmax loss and contrastive-center loss to class vehicle types, thereby improving model’s fine-grained classification ability. We also build a dataset, called Car-159, consisting of 7998 pictures for 159 vehicle types, to evaluate our method. Compared with the state-of-the-art methods, experimental results show that our method can effectively decrease model’s complexity while maintaining accuracy.
AbstractList Vehicle type classification (VTC) plays an important role in today’s intelligent transportation. Previous VTC systems usually run on a monitoring center’s host machine due to the models’ complexity, which consume lots of computing resources and have poor real-time performance. If these systems are deployed to embedded terminals by making the model lightweight while ensuring accuracy, then the problem can be addressed. To this end, we propose a fine-grained VTC method using lightweight convolutional neural network with feature optimization and joint learning strategy. Firstly, a lightweight convolutional network with feature optimization (LWCNN-FO) is designed. We use depthwise separable convolution to reduce network parameters. Besides, the SENet module is added to obtain the important degree of each feature channel automatically through the sample-based self-learning, which can improve recognition accuracy with less network parameters growth. In addition, considering both between-class similarity and intra-class variance, this paper adopts the joint learning strategy combining softmax loss and contrastive-center loss to class vehicle types, thereby improving model’s fine-grained classification ability. We also build a dataset, called Car-159, consisting of 7998 pictures for 159 vehicle types, to evaluate our method. Compared with the state-of-the-art methods, experimental results show that our method can effectively decrease model’s complexity while maintaining accuracy.
Author Sun, Wei
Zhang, Guoce
Zhang, Xiaorui
Zhang, Xu
Ge, Nannan
Author_xml – sequence: 1
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
  email: sunw0125@163.com
  organization: School of Automation, Nanjing University of Information Science & Technology, Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology
– sequence: 2
  givenname: Guoce
  orcidid: 0000-0001-6455-4844
  surname: Zhang
  fullname: Zhang, Guoce
  organization: School of Automation, Nanjing University of Information Science & Technology
– sequence: 3
  givenname: Xiaorui
  surname: Zhang
  fullname: Zhang, Xiaorui
  organization: Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology
– sequence: 4
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
  organization: School of Automation, Nanjing University of Information Science & Technology
– sequence: 5
  givenname: Nannan
  surname: Ge
  fullname: Ge, Nannan
  organization: School of Automation, Nanjing University of Information Science & Technology
BookMark eNp9kM1O3DAUhS1EpQLlBbqy1LWpf5LYWSJUaCUkNrC2Lsl1xkOwB9thNH0H3pnMpBJSF2x8LN3zHd17TslxiAEJ-S74heBc_8xC8EoyLjnjrdCCqSNyImqtmNZSHM9_ZTjTNRdfyWnOa85FU8vqhLxd-4BsSDBLT19x5bsRadltkHYj5Oyd76D4GOiUfRjo6IdV2eL-pV0Mr3Gc9lMYacApHaRsY3qiW19W1CGUKSGNm-Kf_d8lCEJP19GHQkeEFPapuSQoOOy-kS8Oxozn__SMPFz_ur_6zW7vbv5cXd6yTom2sN6pRwCsDIpGoAJhDDQVgKh4j9oBONP2pupAonGgNDQGTMNNK1tnnK7UGfmx5G5SfJkwF7uOU5qvyFbWWmpVtW09u8zi6lLMOaGznS-HG-Z1_WgFt_vy7VK-ncu3h_KtmlH5H7pJ_hnS7nNILVCezWHA9LHVJ9Q7Hg2eGg
CitedBy_id crossref_primary_10_32604_csse_2023_021615
crossref_primary_10_32604_cmc_2023_032363
crossref_primary_10_32604_iasc_2023_030597
crossref_primary_10_32604_cmc_2023_031155
crossref_primary_10_32604_iasc_2023_031200
crossref_primary_10_32604_iasc_2023_031442
crossref_primary_10_32604_cmc_2023_032927
crossref_primary_10_32604_cmc_2023_031834
crossref_primary_10_32604_iasc_2023_032250
crossref_primary_10_32604_csse_2023_030960
crossref_primary_10_32604_csse_2023_030849
crossref_primary_10_32604_csse_2023_030603
crossref_primary_10_32604_iasc_2023_032538
crossref_primary_10_32604_cmc_2023_033327
crossref_primary_10_32604_cmc_2023_032752
crossref_primary_10_32604_csse_2023_031270
crossref_primary_10_32604_iasc_2023_030763
crossref_primary_10_32604_cmc_2023_032595
crossref_primary_10_32604_iasc_2023_030484
crossref_primary_10_32604_csse_2023_030611
crossref_primary_10_32604_iasc_2023_032301
crossref_primary_10_32604_csse_2023_032359
crossref_primary_10_32604_cmc_2022_031376
crossref_primary_10_32604_cmc_2023_032300
crossref_primary_10_32604_iasc_2023_030970
crossref_primary_10_32604_cmc_2023_030924
crossref_primary_10_32604_cmc_2022_030963
crossref_primary_10_1007_s11042_024_18303_y
crossref_primary_10_32604_csse_2023_032449
crossref_primary_10_32604_iasc_2023_032074
crossref_primary_10_32604_cmc_2022_027984
crossref_primary_10_32604_csse_2023_031114
crossref_primary_10_32604_csse_2023_031115
crossref_primary_10_32604_csse_2023_031753
crossref_primary_10_32604_iasc_2023_032239
crossref_primary_10_32604_csse_2023_031116
crossref_primary_10_32604_cmc_2023_032533
crossref_primary_10_32604_cmc_2023_031962
crossref_primary_10_1016_j_phycom_2024_102475
crossref_primary_10_32604_csse_2023_031008
crossref_primary_10_32604_csse_2023_034915
crossref_primary_10_32604_csse_2023_031001
crossref_primary_10_32604_cmc_2023_032020
crossref_primary_10_32604_iasc_2023_039718
crossref_primary_10_32604_cmc_2023_032326
crossref_primary_10_32604_cmc_2023_031352
crossref_primary_10_32604_iasc_2023_031522
crossref_primary_10_32604_cmc_2023_026441
crossref_primary_10_32604_iasc_2023_030394
crossref_primary_10_32604_cmc_2023_032569
crossref_primary_10_1007_s00521_022_07940_9
crossref_primary_10_32604_cmc_2023_034748
crossref_primary_10_32604_iasc_2023_032053
crossref_primary_10_32604_csse_2023_030408
crossref_primary_10_32604_cmc_2022_030392
crossref_primary_10_32604_csse_2023_032786
crossref_primary_10_32604_csse_2023_030647
crossref_primary_10_32604_cmc_2023_032710
crossref_primary_10_32604_iasc_2023_031932
crossref_primary_10_32604_cmc_2023_032557
crossref_primary_10_32604_cmc_2023_032794
crossref_primary_10_32604_cmc_2022_030399
crossref_primary_10_32604_cmc_2022_030432
crossref_primary_10_32604_cmc_2023_032838
crossref_primary_10_32604_cmc_2022_030837
crossref_primary_10_1016_j_aiia_2024_05_003
crossref_primary_10_32604_cmc_2023_031227
crossref_primary_10_32604_cmc_2023_032715
crossref_primary_10_32604_cmc_2023_031867
crossref_primary_10_32604_csse_2023_031988
crossref_primary_10_3390_electronics11142158
crossref_primary_10_32604_cmc_2022_031490
crossref_primary_10_32604_cmc_2023_029719
crossref_primary_10_32604_cmc_2022_029297
crossref_primary_10_1109_ACCESS_2024_3354706
crossref_primary_10_32604_csse_2023_032491
crossref_primary_10_1007_s40031_022_00838_z
crossref_primary_10_1016_j_dib_2024_110264
crossref_primary_10_32604_iasc_2023_030497
crossref_primary_10_32604_cmc_2022_030881
crossref_primary_10_32604_cmc_2022_030806
crossref_primary_10_32604_iasc_2023_032036
crossref_primary_10_32604_csse_2023_032488
crossref_primary_10_32604_csse_2023_032127
crossref_primary_10_32604_cmc_2023_031245
crossref_primary_10_1016_j_asej_2024_103227
crossref_primary_10_32604_cmc_2023_030790
crossref_primary_10_32604_cmc_2023_032694
crossref_primary_10_32604_cmc_2023_032739
crossref_primary_10_32604_cmc_2023_032857
crossref_primary_10_32604_iasc_2023_031470
crossref_primary_10_32604_cmc_2022_030418
crossref_primary_10_32604_cmc_2022_030934
crossref_primary_10_32604_csse_2023_030630
crossref_primary_10_1007_s11042_023_14852_w
crossref_primary_10_32604_csse_2023_032497
crossref_primary_10_3390_math12010073
crossref_primary_10_32604_iasc_2023_032604
Cites_doi 10.1109/BigMM.2018.8499085
10.1109/TITS.2013.2294646
10.1109/ICCV.2015.170
10.1109/CVPR.2015.7298880
10.1109/IROS.2013.6696957
10.2991/isrme-15.2015.86
10.1109/TITS.2015.2402438
10.1109/TITS.2012.2213814
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-020-09171-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 30816
ExternalDocumentID 10_1007_s11042_020_09171_3
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20191401
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 61304205; 61502240
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Innovation and Entrepreneurship Training Project of College Students
  grantid: 201910300050Z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-df3baae48e161e3a188a64aa140de7faaf89d84ca2e8fa37a68a8608929f8f743
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Sat Jul 26 00:02:42 EDT 2025
Tue Jul 01 04:13:04 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Fri Feb 21 02:48:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Fine-grained vehicle type classification
Contrastive-center loss
Lightweight
Feature optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-df3baae48e161e3a188a64aa140de7faaf89d84ca2e8fa37a68a8608929f8f743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6455-4844
PQID 2572734995
PQPubID 54626
PageCount 14
ParticipantIDs proquest_journals_2572734995
crossref_citationtrail_10_1007_s11042_020_09171_3
crossref_primary_10_1007_s11042_020_09171_3
springer_journals_10_1007_s11042_020_09171_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zhang Q, Zhuo L, Zhang S, et al (2018) Fine-grained vehicle recognition using lightweight convolutional neural network with combined learning strategy. 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM) 2018: 1-5.
WenYZhangKLiZA discriminative feature learning approach for deep face recognitionEuropean conference on computer vision20162016499515
KrauseJStarkMDengJ3d object representations for fine-grained categorizationProceedings of the IEEE international conference on computer vision workshops20132013554561
ZhangXZhouXLinMShufflenet: an extremely efficient convolutional neural network for mobile devicesProc IEEE Conf Comput Vis Pattern Recognit2018201868486856
Li M, Tian X, Zhang Y, et al (2015) A review of vision-based vehicle detection and tracking techniques for intelligent vehicle. 2015 international conference on intelligent systems research and mechatronics engineering.
DongZWuYPeiMJiaYVehicle type classification using a semisupervised convolutional neural networkIEEE Trans Intell Transp Syst20151642247225610.1109/TITS.2015.2402438
Xie S, Yang T, Wang X, Lin Y (2015) Hyper-class augmented and regularized deep learning for fine-grained image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 2645–2654.
HuJShenLSunGSqueeze-and-excitation networksProc IEEE Conf Comput Vis Pattern Recognit2018201871327141
HsiehJWChenLCChenDYSymmetrical SURF and its applications to vehicle detection and vehicle make and model recognitionIEEE Trans Intell Transp Syst201415162010.1109/TITS.2013.2294646
CsurkaGDanceCFanLWillamowskiJBrayCVisual categorization with bags of keypointsIn Workshop on statistical learning in computer vision, ECCV200411–2212
QiCSu F (2017) contrastive-center loss for deep neural networksIEEE International Conference on Image Processing (ICIP)2017201728512855
YangLLuoPChange LoyCA large-scale car dataset for fine-grained categorization and verificationProc IEEE Conf Comput Vis Pattern Recognit2015201539733981
Behley J, Steinhage V, Cremers A B (2013) Laser-based segment classification using a mixture of bag-of-words. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 4195–4200.
Kingma D P, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Iandola F N, Han S, Moskewicz M W, et al (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360.
Lin T Y, Roychowdhury, A, Maji S. (2015) Bilinear cnn models for fine-grained visual recognition. In Proceedings of the IEEE international conference on computer vision , pp. 1449–1457.
ZhangBReliable classification of vehicle types based on cascade classifier ensemblesIEEE Trans Intell Transp Syst201214132233210.1109/TITS.2012.2213814
Howard A G, Zhu M, Chen B, et al (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
RenSHeKGirshickRFaster r-cnn: towards real-time object detection with region proposal networksAdv Neural Inf Proces Syst201520159199
XingEPJordanMIRussellSJDistance metric learning with application to clustering with side-informationAdv Neural Inf Proces Syst20032003521528
EP Xing (9171_CR16) 2003; 2003
L Yang (9171_CR17) 2015; 2015
9171_CR19
J Krause (9171_CR9) 2013; 2013
Y Wen (9171_CR14) 2016; 2016
9171_CR15
X Zhang (9171_CR20) 2018; 2018
C Qi (9171_CR12) 2017; 2017
G Csurka (9171_CR2) 2004; 1
J Hu (9171_CR6) 2018; 2018
JW Hsieh (9171_CR5) 2014; 15
9171_CR8
B Zhang (9171_CR18) 2012; 14
9171_CR4
9171_CR7
9171_CR1
9171_CR11
Z Dong (9171_CR3) 2015; 16
S Ren (9171_CR13) 2015; 2015
9171_CR10
References_xml – reference: YangLLuoPChange LoyCA large-scale car dataset for fine-grained categorization and verificationProc IEEE Conf Comput Vis Pattern Recognit2015201539733981
– reference: DongZWuYPeiMJiaYVehicle type classification using a semisupervised convolutional neural networkIEEE Trans Intell Transp Syst20151642247225610.1109/TITS.2015.2402438
– reference: XingEPJordanMIRussellSJDistance metric learning with application to clustering with side-informationAdv Neural Inf Proces Syst20032003521528
– reference: Xie S, Yang T, Wang X, Lin Y (2015) Hyper-class augmented and regularized deep learning for fine-grained image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 2645–2654.
– reference: Li M, Tian X, Zhang Y, et al (2015) A review of vision-based vehicle detection and tracking techniques for intelligent vehicle. 2015 international conference on intelligent systems research and mechatronics engineering.
– reference: KrauseJStarkMDengJ3d object representations for fine-grained categorizationProceedings of the IEEE international conference on computer vision workshops20132013554561
– reference: CsurkaGDanceCFanLWillamowskiJBrayCVisual categorization with bags of keypointsIn Workshop on statistical learning in computer vision, ECCV200411–2212
– reference: Howard A G, Zhu M, Chen B, et al (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
– reference: Zhang Q, Zhuo L, Zhang S, et al (2018) Fine-grained vehicle recognition using lightweight convolutional neural network with combined learning strategy. 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM) 2018: 1-5.
– reference: ZhangBReliable classification of vehicle types based on cascade classifier ensemblesIEEE Trans Intell Transp Syst201214132233210.1109/TITS.2012.2213814
– reference: RenSHeKGirshickRFaster r-cnn: towards real-time object detection with region proposal networksAdv Neural Inf Proces Syst201520159199
– reference: HuJShenLSunGSqueeze-and-excitation networksProc IEEE Conf Comput Vis Pattern Recognit2018201871327141
– reference: Behley J, Steinhage V, Cremers A B (2013) Laser-based segment classification using a mixture of bag-of-words. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 4195–4200.
– reference: Iandola F N, Han S, Moskewicz M W, et al (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360.
– reference: Kingma D P, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
– reference: WenYZhangKLiZA discriminative feature learning approach for deep face recognitionEuropean conference on computer vision20162016499515
– reference: HsiehJWChenLCChenDYSymmetrical SURF and its applications to vehicle detection and vehicle make and model recognitionIEEE Trans Intell Transp Syst201415162010.1109/TITS.2013.2294646
– reference: Lin T Y, Roychowdhury, A, Maji S. (2015) Bilinear cnn models for fine-grained visual recognition. In Proceedings of the IEEE international conference on computer vision , pp. 1449–1457.
– reference: QiCSu F (2017) contrastive-center loss for deep neural networksIEEE International Conference on Image Processing (ICIP)2017201728512855
– reference: ZhangXZhouXLinMShufflenet: an extremely efficient convolutional neural network for mobile devicesProc IEEE Conf Comput Vis Pattern Recognit2018201868486856
– ident: 9171_CR19
  doi: 10.1109/BigMM.2018.8499085
– volume: 1
  start-page: 1
  issue: 1–22
  year: 2004
  ident: 9171_CR2
  publication-title: In Workshop on statistical learning in computer vision, ECCV
– volume: 2018
  start-page: 6848
  year: 2018
  ident: 9171_CR20
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: 9171_CR8
– ident: 9171_CR7
– ident: 9171_CR4
– volume: 2013
  start-page: 554
  year: 2013
  ident: 9171_CR9
  publication-title: Proceedings of the IEEE international conference on computer vision workshops
– volume: 2015
  start-page: 3973
  year: 2015
  ident: 9171_CR17
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– volume: 15
  start-page: 6
  issue: 1
  year: 2014
  ident: 9171_CR5
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2013.2294646
– ident: 9171_CR11
  doi: 10.1109/ICCV.2015.170
– ident: 9171_CR15
  doi: 10.1109/CVPR.2015.7298880
– ident: 9171_CR1
  doi: 10.1109/IROS.2013.6696957
– volume: 2018
  start-page: 7132
  year: 2018
  ident: 9171_CR6
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– volume: 2016
  start-page: 499
  year: 2016
  ident: 9171_CR14
  publication-title: European conference on computer vision
– volume: 2015
  start-page: 91
  year: 2015
  ident: 9171_CR13
  publication-title: Adv Neural Inf Proces Syst
– ident: 9171_CR10
  doi: 10.2991/isrme-15.2015.86
– volume: 2017
  start-page: 2851
  year: 2017
  ident: 9171_CR12
  publication-title: IEEE International Conference on Image Processing (ICIP)
– volume: 16
  start-page: 2247
  issue: 4
  year: 2015
  ident: 9171_CR3
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2015.2402438
– volume: 2003
  start-page: 521
  year: 2003
  ident: 9171_CR16
  publication-title: Adv Neural Inf Proces Syst
– volume: 14
  start-page: 322
  issue: 1
  year: 2012
  ident: 9171_CR18
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2012.2213814
SSID ssj0016524
Score 2.5337274
Snippet Vehicle type classification (VTC) plays an important role in today’s intelligent transportation. Previous VTC systems usually run on a monitoring center’s host...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 30803
SubjectTerms Accuracy
Artificial neural networks
Classification
Complexity
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Learning
Lightweight
Mathematical models
Multimedia Information Systems
Neural networks
Optimization
Parameters
Special Purpose and Application-Based Systems
Transport buildings, stations and terminals
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gXODAY4AYDJQDN4jUrq_0OCGmCQlOTNqtcptkgKBDrID4Efxn7CxdAQESp1Zq0kp1bH-JP9uMHQP5cFCRCJNAiRA8tIOQaOHHCB4oEBTYPO7Lq3g4Ci_G0dglhc1qtnsdkrSWukl28ymVhLY76OMSXwTLbCXCvTsRuUa9_iJ2EEeula30BPpD36XK_PyOr-6owZjfwqLW2ww22bqDibw_l-sWW9Jlm23ULRi408g2W_tUT3CbvQ_wXkyo64NW_EXf0GROp6y8IJRMtCArCU509wm_p535qz0c5UQ_d8sQP0xlLu3FksQ5ndZyo20RUD5FK_Pg0jc5lIrfTW_Lirv-ExM-mxe8fdtho8H59dlQuH4LokBFrIQyQQ6gQ6kRBuoAfCkhDgFwD6Z0YgCMTJUMC-hpaSBIIJYgY08iwjLSIBTZZa1yWuo9xiFRXtErZJ6GRQiRgdTL0ZiYOE1I5b0O8-vfnhWuGDn1xLjPmjLKJKoMRZVZUWVBh50s5jzOS3H8ObpbSzNzajnL0D5ROZ80jTrstJZw8_j3t-3_b_gBW-0R98USBbusVT0960MEL1V-ZNfqB7K857o
  priority: 102
  providerName: Springer Nature
Title Fine-grained vehicle type classification using lightweight convolutional neural network with feature optimization and joint learning strategy
URI https://link.springer.com/article/10.1007/s11042-020-09171-3
https://www.proquest.com/docview/2572734995
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB6V5AIH2vJQQ2nkA7fWYjf78p6qpMqCWjVCVSPBaTVZ26FVugESqPgR_OfOOF5SKpWTV_LaK-2MZ8bz-AbgCFmHo05knEVaxhiQHMTMyDAl44EDQZGr4_46Sk_H8efz5Nw73BY-rbKRiU5Q63nFPvJjYi1GYsnz5OPVteSuURxd9S00NqBNIlipFrQHw9HZt8c4Qpr4trYqkKQbQ182syqeC7k0ha9PpDOzUEZPVdPa3vwnROo0T_EKtr3JKPorGr-GF6begZdNOwbhT-cObP2FLbgLDwU9yyl3gDBa3JlLXizY4yoqtpg5RchRRXDq-1TM-Jb-2zlKBaeie5akDzPkpRtcwrhgz62wxgGCijlJnF--lFNgrcXP-Y96KXwviqlYrMBv7_dgXAy_fzqVvveCrOhQLqW20QTRxMqQSWgiDJXCNEak-5g2mUW0KtcqrrBnlMUow1ShSgNF1pZVlsySfWjV89q8AYGZDqpepSZ5XMWYWMyDCQkWm-YZH_-gA2Hz28vKA5Nzf4xZuYZUZlKVRKrSkaqMOvD-cc3VCpbj2bcPG2qW_oguyjVDdeBDQ-H19P93O3h-t7ew2eO8F5ckeAit5c2teUeGy3LShQ1VnHSh3S8GgxGPJxdfhl3PszQ77vX_AFwq8UY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ReqA99EFB3UJbH-DUWuThJM4BVVXb7VIeJ5C4pbOxvW1Fs8AuIH4Ef4Xf2BnHYWmlcuOUSIkdKTP-ZjyemQ9gDdmGo8mkKlIjFUaEg1hYGefkPPBBUOrruHf38sGB-naYHc7BdVcLw2mVHSZ6oDbjmmPkG6Ra3ImlLLMPxyeSWaP4dLWj0GjVYtteXtCWbbK59Znku54k_S_7nwYysArImtRtKo1Lh4hWaUvOjk0x1hpzhUg7DWMLh-h0abSqMbHaYVpgrlHnkSY_wmlHBpfmfQAPVUqWnCvT-19vTi3yLJDo6kiSJY5DkU5bqhdzIQxv1shCF7FM_zaEM-_2nwNZb-f6z-BJcFDFx1ajnsOcbRbhaUf-IAIWLMLjW50MX8BVn-7liPkmrBHn9gcPFhzfFTX755yQ5HVAcKL9SBxxTODCh2UFJ76HBUAf5gab_uLT0wXHiYWzvv2oGBO-_Q6FowIbI36NfzZTEZgvRmLSttq9XIKDe5HJMsw348a-BIGFieqk1sNS1Qozh2U0JBhzeVkw2EQ9iLvfXtWhDTqzcRxVswbOLKqKRFV5UVVpD97djDlum4Dc-fZqJ80qAMKkmqlvD953Ep49_v9sr-6e7S0sDPZ3d6qdrb3tFXiUcMaNT09chfnp6Zl9TS7TdPjG66mA7_e9MP4A19spYg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgwKNQsVBgDnACq3nHOSAEtKuWwqpCVOotzMb2AirZwi5U_RH8IX4dM47TBSR66ymREjtSZjzvmQ_gEYkOJ5OrrEyNyihiOUilVXHBxoMkglLfx_12XOwcZK8P88MV-NX3wkhZZS8TvaA2s0Zi5JvMWjKJparyTRfKIva3Rs-PvypBkJJMaw-n0bHInj09Yfdt_mx3i2n9OElG2-9f7aiAMKAaZr2FMi6dENlMWzZ8bEqx1lRkROx1GFs6Iqcro7OGEqsdpSUVmnQRabYpnHasfHnfS7Bailc0gNWX2-P9d2c5jCIPkLo6UqyX49Cy0zXuxdIWI64b6-syVunfanFp6_6TnvVab3QDrgVzFV90_HUTVmy7Btd7KAgMkmENrv4x1_AW_BzxvZoK-oQ1-MN-lMUo0V5sxFqX8iTPEShl91M8kgjBiQ_SopTBh-PAH5Zxm_7ii9VRosborB9GijOWdl9CGylSa_Dz7FO7wICDMcV5N3j39DYcXAhV1mHQzlp7B5BKEzVJoydV1mSUO6qiCQs1V1SliJ5oCHH_2-smDEUXbI6jejnOWUhVM6lqT6o6HcKTszXH3UiQc9_e6KlZB_Ewr5fMPISnPYWXj_-_293zd3sIl_lQ1G92x3v34Eoi5Te-VnEDBotv3-19tp8WkweBURE-XPTZ-A18Ay70
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-grained+vehicle+type+classification+using+lightweight+convolutional+neural+network+with+feature+optimization+and+joint+learning+strategy&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sun%2C+Wei&rft.au=Zhang%2C+Guoce&rft.au=Zhang%2C+Xiaorui&rft.au=Zhang%2C+Xu&rft.date=2021-08-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=20&rft.spage=30803&rft.epage=30816&rft_id=info:doi/10.1007%2Fs11042-020-09171-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_020_09171_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon