Joint learning of visual and spatial features for edit propagation from a single image
In this paper, we regard edit propagation as a multi-class classification problem and deep neural network (DNN) is used to solve the problem. We design a shallow and fully convolutional DNN that can be trained end-to-end. To achieve this, our method uses combinations of low-level visual features, wh...
Saved in:
Published in | The Visual computer Vol. 36; no. 3; pp. 469 - 482 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we regard edit propagation as a multi-class classification problem and deep neural network (DNN) is used to solve the problem. We design a shallow and fully convolutional DNN that can be trained end-to-end. To achieve this, our method uses combinations of low-level visual features, which are extracted from the input image, and spatial features, which are computed through transforming user interactions, as input of the DNN, which efficiently performs a joint learning of visual and spatial features. We then train the DNN on many of such combinations in order to build a DNN-based pixel-level classifier. Our DNN is also equipped with patch-by-patch training and whole image estimation, speeding up learning and inference. Finally, we improve classification accuracy of the DNN by employing a fully connected conditional random field. Experimental results show that our method can respond to user interactions well and generate precise results compared with the state-of-art edit propagation approaches. Furthermore, we demonstrate our method on various applications. |
---|---|
AbstractList | In this paper, we regard edit propagation as a multi-class classification problem and deep neural network (DNN) is used to solve the problem. We design a shallow and fully convolutional DNN that can be trained end-to-end. To achieve this, our method uses combinations of low-level visual features, which are extracted from the input image, and spatial features, which are computed through transforming user interactions, as input of the DNN, which efficiently performs a joint learning of visual and spatial features. We then train the DNN on many of such combinations in order to build a DNN-based pixel-level classifier. Our DNN is also equipped with patch-by-patch training and whole image estimation, speeding up learning and inference. Finally, we improve classification accuracy of the DNN by employing a fully connected conditional random field. Experimental results show that our method can respond to user interactions well and generate precise results compared with the state-of-art edit propagation approaches. Furthermore, we demonstrate our method on various applications. |
Author | Zeng, Guang Gui, Yan |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0001-8323-4571 surname: Gui fullname: Gui, Yan email: guiyan@csust.edu.cn, guiyan@csust.edu.com organization: School of Computer and Communication Engineering, Changsha University of Science and Technology – sequence: 2 givenname: Guang surname: Zeng fullname: Zeng, Guang organization: Changsha University of Science and Technology |
BookMark | eNp9kEtLxDAUhYOM4MzoH3AVcF3No02apQw-GXCjbkPaJCVDJ6lJK_jvjVNBcDGLcBPu-W7OPSuw8MEbAC4xusYI8ZuEEOW4QFjkwygt2AlY4pKSglBcLcASYV4XhNfiDKxS2qH85qVYgvfn4PwIe6Oid76DwcJPlybVQ-U1TIMaXb5bo8YpmgRtiNBoN8IhhkF1uRs8tDHsoYIp872Bbq86cw5OreqTufita_B2f_e6eSy2Lw9Pm9tt0VIsxkK3WiOqFWeUKMENq2tSNSXWRiDeKK1LoxtLW8RE2VQMV0xgzfKurbV1rSxdg6t5bvbzMZk0yl2Yos9fSiIwF4hgRrKqnlVtDClFY2XrxoP3MSrXS4zkT4pyTlHmFOUhRckySv6hQ8wbxq_jEJ2hlMW-M_HP1RHqG85UhzA |
CitedBy_id | crossref_primary_10_32604_cmc_2022_031135 crossref_primary_10_1016_j_cag_2024_01_002 crossref_primary_10_3390_electronics10182214 crossref_primary_10_32604_iasc_2023_031561 crossref_primary_10_32604_cmc_2020_011969 crossref_primary_10_32604_cmc_2020_011943 crossref_primary_10_32604_cmc_2022_030806 crossref_primary_10_1007_s00521_020_05327_2 crossref_primary_10_1007_s00530_021_00831_4 crossref_primary_10_1016_j_bspc_2023_105119 crossref_primary_10_1109_JSTARS_2020_3011992 crossref_primary_10_1117_1_JEI_30_3_033018 crossref_primary_10_3390_rs16173250 crossref_primary_10_3390_su13179990 crossref_primary_10_32604_iasc_2021_012268 crossref_primary_10_3390_fractalfract6070370 crossref_primary_10_1002_ett_4159 crossref_primary_10_1016_j_asoc_2019_105778 crossref_primary_10_1109_JSTARS_2020_3008949 crossref_primary_10_32604_cmc_2023_030872 crossref_primary_10_1049_ipr2_12520 crossref_primary_10_32604_cmc_2022_031324 crossref_primary_10_32604_iasc_2023_030763 crossref_primary_10_32604_iasc_2023_031335 crossref_primary_10_1109_ACCESS_2022_3168665 crossref_primary_10_1016_j_patrec_2020_09_009 crossref_primary_10_32604_cmc_2023_030814 crossref_primary_10_3390_s19143145 crossref_primary_10_1016_j_knosys_2021_106789 crossref_primary_10_3390_math12142227 crossref_primary_10_1038_s41598_021_96501_6 crossref_primary_10_1007_s11042_020_10191_2 crossref_primary_10_1109_ACCESS_2019_2930865 crossref_primary_10_1140_epjp_s13360_022_02652_4 crossref_primary_10_32604_cmc_2023_031723 crossref_primary_10_3390_electronics11193133 crossref_primary_10_32604_cmc_2022_030879 crossref_primary_10_32604_cmc_2022_030934 crossref_primary_10_32604_csse_2023_031008 crossref_primary_10_3390_rs13193871 crossref_primary_10_1166_jmihi_2021_3315 crossref_primary_10_3390_rs12182979 crossref_primary_10_3390_math9121417 crossref_primary_10_32604_cmc_2021_012252 crossref_primary_10_32604_csse_2023_031761 crossref_primary_10_1007_s00521_020_05566_3 crossref_primary_10_1109_TII_2019_2962844 |
Cites_doi | 10.1007/s00371-012-0761-5 10.1109/TPAMI.2015.2439281 10.1109/TPAMI.2007.1177 10.1016/j.cag.2012.08.001 10.3724/SP.J.1089.2018.16725 10.1111/j.1467-8659.2011.02059.x 10.1109/TVCG.2010.125 10.1145/2601097.2601188 10.1145/1015706.1015780 10.1007/s00371-017-1422-5 10.1145/1360612.1360639 10.1145/1882261.1866171 10.1109/TPAMI.2017.2699184 10.1111/cgf.12822 10.1111/j.1467-8659.2010.01751.x 10.1111/j.1467-8659.2010.01791.x 10.1007/s00371-015-1094-y 10.1145/1857907.1857910 10.1109/5.726791 10.1145/1141911.1142017 10.1145/1276377.1276444 10.1145/2790296 10.1109/TIP.2005.864231 10.1145/1141911.1141936 10.1145/3072959.3073659 10.1109/TPAMI.2012.120 10.1109/CVPR.2014.81 10.1109/CVPR.2009.5206596 10.1007/978-3-319-10602-1_48 10.1109/CVPR.2016.47 10.1109/CVPR.2015.7298965 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00371-019-01633-6 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 482 |
ExternalDocumentID | 10_1007_s00371_019_01633_6 |
GrantInformation_xml | – fundername: the National Natural Science Foundations grantid: 61402053; 61772087 – fundername: the Scientific Research Fund of Education Department of Hunan Province grantid: 16C0046; 16A008 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-dcdd03da7632a97e68825b41de907badd4edbf3c0694b5615691d6003cff88af3 |
IEDL.DBID | U2A |
ISSN | 0178-2789 |
IngestDate | Fri Jul 25 23:37:23 EDT 2025 Tue Jul 01 01:05:47 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Fri Feb 21 02:34:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Image editing Deep neural network Edit propagation Fully connected conditional random field |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-dcdd03da7632a97e68825b41de907badd4edbf3c0694b5615691d6003cff88af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8323-4571 |
PQID | 2917902162 |
PQPubID | 2043737 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2917902162 crossref_citationtrail_10_1007_s00371_019_01633_6 crossref_primary_10_1007_s00371_019_01633_6 springer_journals_10_1007_s00371_019_01633_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200300 2020-3-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200300 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Gui, Zeng, Tang (CR43) 2018; 30 Chen, Papandreou, Kokkinos, Murphy, Yuille (CR31) 2018; 40 Levin, Lischinski, Weiss (CR1) 2004; 23 Li, Ju, Hu (CR9) 2010; 29 Li, Adelson, Agarwala (CR19) 2008; 08 Xiao, Nie, Tang (CR11) 2011; 17 Xu, Yan, Jia (CR17) 2013; 32 Dong, Loy, He, Tang (CR32) 2016; 38 CR38 Endo, Iizuka, Kanamori, Mitani (CR34) 2016; 35 CR36 Bie, Huang, Wang (CR10) 2011; 30 Musialski, Cui, Ye, Razdan, Wonka (CR16) 2013; 39 Pellacini, Lawrence (CR6) 2007; 26 CR30 Cho, Lee, Kang, Lee (CR23) 2014; 33 Chen, Zou, Li, Cao, Zhao, Zhang (CR21) 2014; 2014 Cambra, Murillo, Munõz (CR24) 2017; 34 Zhang, Zhu, Isola, Geng, Lin, Yu, Efros (CR37) 2017; 36 LeCun, Bottou, Bengio, Haffner (CR25) 1998; 86 CR4 Chen, Zou, Zhao, Tan (CR15) 2012; 31 CR29 Levin, Lischinski, Weiss (CR22) 2008; 30 CR28 CR27 Yatziv, Sapiro (CR2) 2006; 15 CR26 Lischinski, Farbman, Uyttendaele, Szeliski (CR5) 2006; 25 Dalmau, Rivera, Alarcon (CR20) 2010; 29 Achanta, Shaji, Smith, Lucchi, Fua, Susstrunk (CR39) 2012; 34 Iizuka, Simo-Serra, Ishikawa (CR33) 2017; 36 CR42 CR41 CR40 Criminisi, Sharp, Rother, Perez (CR12) 2010; 29 Farbman, Fattal, Lischinski (CR13) 2010; 29 Yan, Zhang, Wang, Paris, Yu (CR35) 2016; 35 Qu, Wong, Heng (CR3) 2006; 25 Yatagawa, Yamaguchi (CR18) 2015; 31 An, Pellacini (CR7) 2008; 27 Xu, Li, Ju, Hu, Liu (CR8) 2009; 28 Ma, Xu (CR14) 2012; 36 Y Li (1633_CR19) 2008; 08 1633_CR4 D Lischinski (1633_CR5) 2006; 25 AB Cambra (1633_CR24) 2017; 34 X An (1633_CR7) 2008; 27 LQ Ma (1633_CR14) 2012; 36 Y Endo (1633_CR34) 2016; 35 Y LeCun (1633_CR25) 1998; 86 S Iizuka (1633_CR33) 2017; 36 F Pellacini (1633_CR6) 2007; 26 A Criminisi (1633_CR12) 2010; 29 C Xiao (1633_CR11) 2011; 17 1633_CR36 1633_CR38 L Yatziv (1633_CR2) 2006; 15 Y Qu (1633_CR3) 2006; 25 O Dalmau (1633_CR20) 2010; 29 R Zhang (1633_CR37) 2017; 36 1633_CR30 X Chen (1633_CR21) 2014; 2014 A Levin (1633_CR22) 2008; 30 X Bie (1633_CR10) 2011; 30 L Xu (1633_CR17) 2013; 32 Z Yan (1633_CR35) 2016; 35 1633_CR29 X Chen (1633_CR15) 2012; 31 LC Chen (1633_CR31) 2018; 40 H Cho (1633_CR23) 2014; 33 Y Li (1633_CR9) 2010; 29 R Achanta (1633_CR39) 2012; 34 A Levin (1633_CR1) 2004; 23 P Musialski (1633_CR16) 2013; 39 1633_CR26 T Yatagawa (1633_CR18) 2015; 31 1633_CR27 1633_CR28 C Dong (1633_CR32) 2016; 38 Y Gui (1633_CR43) 2018; 30 1633_CR40 1633_CR41 K Xu (1633_CR8) 2009; 28 Z Farbman (1633_CR13) 2010; 29 1633_CR42 |
References_xml | – volume: 39 start-page: 1173 issue: 11 year: 2013 end-page: 1186 ident: CR16 article-title: A framework for interactive image color editing publication-title: Vis. Comput. doi: 10.1007/s00371-012-0761-5 – volume: 28 start-page: 118:1 issue: 5 year: 2009 end-page: 118:6 ident: CR8 article-title: Efficient affinity-based edit propagation using K-D tree publication-title: ACM Trans. Graph. – volume: 38 start-page: 295 issue: 2 year: 2016 end-page: 307 ident: CR32 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2439281 – ident: CR4 – volume: 32 start-page: 197:1 issue: 6 year: 2013 end-page: 197:10 ident: CR17 article-title: A sparse control model for image and video editing publication-title: ACM Trans. Graph. – ident: CR30 – volume: 30 start-page: 228 issue: 2 year: 2008 end-page: 242 ident: CR22 article-title: A closed form solution to natural image matting publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1177 – volume: 36 start-page: 1005 issue: 8 year: 2012 end-page: 1012 ident: CR14 article-title: Efficient antialiased edit propagation for images and videos publication-title: Comput. Graph. doi: 10.1016/j.cag.2012.08.001 – volume: 31 start-page: 132:1 issue: 6 year: 2012 end-page: 132:7 ident: CR15 article-title: Manifold preserving edit propagation publication-title: ACM Trans. Graph. – volume: 30 start-page: 1284 issue: 7 year: 2018 end-page: 1296 ident: CR43 article-title: Fast and robust image cutout using bilateral grid and confidence based color model publication-title: J. Comput. Aided Des. Comput. Graph. doi: 10.3724/SP.J.1089.2018.16725 – volume: 30 start-page: 2041 issue: 7 year: 2011 end-page: 2048 ident: CR10 article-title: Real time edit propagation by efficient sampling publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2011.02059.x – volume: 17 start-page: 1135 issue: 8 year: 2011 end-page: 1147 ident: CR11 article-title: Efficient edit propagation using hierarchical data structure publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2010.125 – volume: 33 start-page: 128:1 issue: 4 year: 2014 end-page: 128:8 ident: CR23 article-title: Bilateral texture filtering publication-title: ACM Trans. Graph. doi: 10.1145/2601097.2601188 – volume: 23 start-page: 689 issue: 3 year: 2004 end-page: 694 ident: CR1 article-title: Colorization using optimization publication-title: ACM Trans. Graph. doi: 10.1145/1015706.1015780 – volume: 36 start-page: 119:1 issue: 4 year: 2017 end-page: 119:11 ident: CR37 article-title: Real-time user-guided image colorization with learned deep priors publication-title: ACM Trans. Graph. – ident: CR29 – volume: 34 start-page: 1493 year: 2017 end-page: 1505 ident: CR24 article-title: A generic tool for interactive complex image editing publication-title: Vis. Comput. doi: 10.1007/s00371-017-1422-5 – volume: 27 start-page: 40:1 issue: 3 year: 2008 end-page: 40:9 ident: CR7 article-title: AppProp: all-pairs appearance-space edit propagation publication-title: ACM Trans. Graph. doi: 10.1145/1360612.1360639 – ident: CR40 – volume: 29 start-page: 145:1 issue: 6 year: 2010 end-page: 145:10 ident: CR13 article-title: Diffusion maps for edge-aware image editing publication-title: ACM Trans. Graph. doi: 10.1145/1882261.1866171 – volume: 40 start-page: 834 issue: 4 year: 2018 end-page: 848 ident: CR31 article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: CR27 – volume: 35 start-page: 189 year: 2016 end-page: 201 ident: CR34 article-title: DeepProp: extracting deep features from a single image for edit propagation publication-title: Comput. Graph. Forum doi: 10.1111/cgf.12822 – ident: CR42 – volume: 29 start-page: 2372 issue: 8 year: 2010 end-page: 2386 ident: CR20 article-title: Bayesian scheme for interactive colourization, recolourization and image/video editing publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2010.01751.x – volume: 2014 start-page: 2854 year: 2014 end-page: 2861 ident: CR21 article-title: Sparse dictionary learning for edit propagation of high-resolution images publication-title: CVPR – volume: 29 start-page: 2049 issue: 7 year: 2010 end-page: 2054 ident: CR9 article-title: Instant propagation of sparse edits on images and videos publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2010.01791.x – volume: 31 start-page: 1101 year: 2015 end-page: 1111 ident: CR18 article-title: Sparse pixel sampling for appearance edit propagation publication-title: Vis. Comput. doi: 10.1007/s00371-015-1094-y – volume: 08 start-page: 1255 year: 2008 end-page: 1264 ident: CR19 article-title: Scribbleboost: adding classification to edge-aware interpolation of local image and video adjustments publication-title: EGSR – volume: 29 start-page: 134:1 issue: 5 year: 2010 end-page: 134:15 ident: CR12 article-title: Geodesic image and video editing publication-title: ACM Trans. Graph. doi: 10.1145/1857907.1857910 – ident: CR38 – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 ident: CR25 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 25 start-page: 1214 issue: 3 year: 2006 end-page: 1220 ident: CR3 article-title: Manga colorization publication-title: ACM Trans. Graph. doi: 10.1145/1141911.1142017 – volume: 26 start-page: 54 issue: 3 year: 2007 ident: CR6 article-title: AppWand: editing measured materials using appearance-driven optimization publication-title: ACM Trans. Graph. doi: 10.1145/1276377.1276444 – ident: CR36 – volume: 35 start-page: 11:1 issue: 2 year: 2016 end-page: 11:15 ident: CR35 article-title: Automatic photo adjustment using deep neural networks publication-title: ACM Trans. Graph. doi: 10.1145/2790296 – volume: 15 start-page: 1120 issue: 5 year: 2006 end-page: 1129 ident: CR2 article-title: Fast image and video colorization using chrominance blending publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.864231 – volume: 25 start-page: 646 issue: 3 year: 2006 end-page: 653 ident: CR5 article-title: Interactive local adjustment of tonal values publication-title: ACM Trans. Graph. doi: 10.1145/1141911.1141936 – volume: 36 start-page: 1 issue: 4 year: 2017 end-page: 14 ident: CR33 article-title: Globally and locally consistent image completion publication-title: ACM Trans. Graph. doi: 10.1145/3072959.3073659 – ident: CR28 – volume: 34 start-page: 2274 issue: 11 year: 2012 end-page: 2282 ident: CR39 article-title: SLIC superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – ident: CR41 – ident: CR26 – volume: 36 start-page: 1005 issue: 8 year: 2012 ident: 1633_CR14 publication-title: Comput. Graph. doi: 10.1016/j.cag.2012.08.001 – volume: 25 start-page: 1214 issue: 3 year: 2006 ident: 1633_CR3 publication-title: ACM Trans. Graph. doi: 10.1145/1141911.1142017 – ident: 1633_CR40 – ident: 1633_CR38 – volume: 30 start-page: 2041 issue: 7 year: 2011 ident: 1633_CR10 publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2011.02059.x – ident: 1633_CR28 doi: 10.1109/CVPR.2014.81 – volume: 36 start-page: 1 issue: 4 year: 2017 ident: 1633_CR33 publication-title: ACM Trans. Graph. doi: 10.1145/3072959.3073659 – ident: 1633_CR4 – volume: 2014 start-page: 2854 year: 2014 ident: 1633_CR21 publication-title: CVPR – volume: 34 start-page: 1493 year: 2017 ident: 1633_CR24 publication-title: Vis. Comput. doi: 10.1007/s00371-017-1422-5 – volume: 33 start-page: 128:1 issue: 4 year: 2014 ident: 1633_CR23 publication-title: ACM Trans. Graph. doi: 10.1145/2601097.2601188 – volume: 40 start-page: 834 issue: 4 year: 2018 ident: 1633_CR31 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – volume: 27 start-page: 40:1 issue: 3 year: 2008 ident: 1633_CR7 publication-title: ACM Trans. Graph. doi: 10.1145/1360612.1360639 – volume: 31 start-page: 1101 year: 2015 ident: 1633_CR18 publication-title: Vis. Comput. doi: 10.1007/s00371-015-1094-y – ident: 1633_CR27 – volume: 25 start-page: 646 issue: 3 year: 2006 ident: 1633_CR5 publication-title: ACM Trans. Graph. doi: 10.1145/1141911.1141936 – volume: 17 start-page: 1135 issue: 8 year: 2011 ident: 1633_CR11 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2010.125 – ident: 1633_CR41 doi: 10.1109/CVPR.2009.5206596 – volume: 29 start-page: 145:1 issue: 6 year: 2010 ident: 1633_CR13 publication-title: ACM Trans. Graph. doi: 10.1145/1882261.1866171 – volume: 30 start-page: 228 issue: 2 year: 2008 ident: 1633_CR22 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1177 – volume: 38 start-page: 295 issue: 2 year: 2016 ident: 1633_CR32 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2439281 – ident: 1633_CR42 doi: 10.1007/978-3-319-10602-1_48 – volume: 26 start-page: 54 issue: 3 year: 2007 ident: 1633_CR6 publication-title: ACM Trans. Graph. doi: 10.1145/1276377.1276444 – volume: 36 start-page: 119:1 issue: 4 year: 2017 ident: 1633_CR37 publication-title: ACM Trans. Graph. – volume: 34 start-page: 2274 issue: 11 year: 2012 ident: 1633_CR39 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – volume: 39 start-page: 1173 issue: 11 year: 2013 ident: 1633_CR16 publication-title: Vis. Comput. doi: 10.1007/s00371-012-0761-5 – volume: 29 start-page: 2372 issue: 8 year: 2010 ident: 1633_CR20 publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2010.01751.x – volume: 08 start-page: 1255 year: 2008 ident: 1633_CR19 publication-title: EGSR – ident: 1633_CR29 – volume: 29 start-page: 134:1 issue: 5 year: 2010 ident: 1633_CR12 publication-title: ACM Trans. Graph. doi: 10.1145/1857907.1857910 – volume: 32 start-page: 197:1 issue: 6 year: 2013 ident: 1633_CR17 publication-title: ACM Trans. Graph. – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 1633_CR25 publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 31 start-page: 132:1 issue: 6 year: 2012 ident: 1633_CR15 publication-title: ACM Trans. Graph. – volume: 35 start-page: 11:1 issue: 2 year: 2016 ident: 1633_CR35 publication-title: ACM Trans. Graph. doi: 10.1145/2790296 – volume: 23 start-page: 689 issue: 3 year: 2004 ident: 1633_CR1 publication-title: ACM Trans. Graph. doi: 10.1145/1015706.1015780 – ident: 1633_CR26 – volume: 15 start-page: 1120 issue: 5 year: 2006 ident: 1633_CR2 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.864231 – ident: 1633_CR36 doi: 10.1109/CVPR.2016.47 – volume: 35 start-page: 189 year: 2016 ident: 1633_CR34 publication-title: Comput. Graph. Forum doi: 10.1111/cgf.12822 – volume: 28 start-page: 118:1 issue: 5 year: 2009 ident: 1633_CR8 publication-title: ACM Trans. Graph. – ident: 1633_CR30 doi: 10.1109/CVPR.2015.7298965 – volume: 29 start-page: 2049 issue: 7 year: 2010 ident: 1633_CR9 publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2010.01791.x – volume: 30 start-page: 1284 issue: 7 year: 2018 ident: 1633_CR43 publication-title: J. Comput. Aided Des. Comput. Graph. doi: 10.3724/SP.J.1089.2018.16725 |
SSID | ssj0017749 |
Score | 2.4608414 |
Snippet | In this paper, we regard edit propagation as a multi-class classification problem and deep neural network (DNN) is used to solve the problem. We design a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 469 |
SubjectTerms | Approximation Artificial Intelligence Artificial neural networks Classification Colorization Computer Graphics Computer Science Conditional random fields Deep learning Editing Image Processing and Computer Vision Machine learning Neural networks Optimization techniques Original Article Propagation Semantics |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6veiD-InTKXnwTYM2SbP2SVQ2xsAh4mRvpc2HDGY7beff7yVLNxXcW6FNCnfJ3e-Su98hdCFppDuhlISC8yVc0JhEjHFCjTCBUOCCnaYfh6I_4oNxOPYHbqVPq6xtojPUqpD2jPyaxpZLigaC3s4-iO0aZW9XfQuNTdQEExxB8NW87w6fnpf3CABuHAAOIFayNZ--bMYVzzm2Ogilbb6QYIyI365phTf_XJE6z9PbRTseMuK7hY730IbO99H2DyLBA_Q6KCZ5hX0LiDdcGPw1KecwKs0VLm3WNDwb7Vg8SwxAFYPTqjD8HQyKUw62hSY4xfbsYKrx5B0MzSEa9bovD33iOyYQCVupIkoqdcNUCkaDpnFHC8DPYcYDpSEGzsCUca0yw6Stds0AOYUiDhRAHiaNiaLUsCPUyItcHyPMUtoBXWWWr4_bKDJTgeFcRhFPpUjDFgpqYSXS04nbrhbTZEmE7AScgIATJ-BEtNDlcsxsQaax9ut2rYPEb6wyWS2DFrqq9bJ6_f9sJ-tnO0Vb1EbSLrusjRrV51yfAdyosnO_pr4BJWPO7A priority: 102 providerName: ProQuest |
Title | Joint learning of visual and spatial features for edit propagation from a single image |
URI | https://link.springer.com/article/10.1007/s00371-019-01633-6 https://www.proquest.com/docview/2917902162 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5svejBt1itZQ_eNGB2N9vkWKUPFEXESj2FZB9SqKmY1N_v7DZpVVTwlEA2S5jZnfkmO_MNwImkoW4HUnoUna_HBY28kDHuUSOMLxS6YKfpm1sxGPKrUTAqi8LyKtu9OpJ0lnpR7ObY5TD0tfk9gjFP1GA1sLE7ruIh7SzODhDQONDrY3xk6zzLUpmf5_jqjpYY89uxqPM2vS3YKGEi6cz1ug0rOtuBzaoFAyl35A6sf-IT3IXHq-k4K0jZCeKZTA15H-cznCjJFMlt8jTeG-3IPHOCeJWg7yoIfhDaFacjYutNSELsL4SJJuMXtDd7MOx1Hy4HXtk4wZO4owpPSaXOmUrQdtAkamuBMDpIua80hsIpWjSuVWqYtEWvKQKoQES-QuTDpDFhmBi2D_VsmukDICyhbVRZamn7uA0mU-UbzmUY8kSKJGiAX8kvliWruG1uMYkXfMhO5jHKPHYyj0UDThfvvM45Nf4c3azUEpf7K49pZJnFqC9oA84qVS0f_z7b4f-GH8EatQG2SzprQr14m-ljRCFF2oJa2Ou3YLXTf7ru4vWie3t333JL8QMal9TN |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH_q4MA4TMCY6MaGD-w0rC224yaHCU1spUDh1KLevMQfqBIkbAmb9k_tb-TZTdoNid64RUrsSO_z9-z3AbCvWWJ7sdaUofOlQrKUJpwLypx0kTToggOnzy_kYCxOJ_GkA3_bWhifVtnaxGCoTan9GflHlvpeUiyS7PD2B_VTo_ztajtCYyYWZ_bPbwzZqs8nX5G_7xnrfxsdDWgzVYBqFLeaGm3MJ24yVCyWpT0rEWPGuYiMxTgxR3UX1uSOa18RmiO6iGUaGYQFXDuXJJnjuO8zWBWcp16jkv7x_NYCoVSA2xFGZr7CtCnSCaV6oTceBu4-O0lyTuX_jnCBbh9cyAY_19-AFw1AJV9mErUJHVtswfo_bQtfwuVpOS1q0gycuCKlI7-m1R2uygpDKp-jjc_Ohp6hFUFYTNBF1gT_juYriALxZS0kI_6k4tqS6Q2atW0YPwklX8FKURZ2BwjPWA8lI_fdAYWPWXMTOSF0kohMyyzuQtQSS-mmebmfoXGt5m2XA4EVElgFAivZhQ_zNbez1h1Lv95teaAaNa7UQui6cNDyZfH68d1eL99tD9YGo_OhGp5cnL2B58zH8CGvbRdW6p939i0CnTp_F6SLwPenFud7FR4Lbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8oJkYf_ECNKGoffNMF13ZlPBKVICrxQQxvy9YPQ4KDyPDv91o2QKMmvi1Z2yx37d3v1rvfAZxLGup6IKVH0fl6XNCGFzLGPWqE8YVCF-w0_dgV7R7v9IP-UhW_y3YvriRnNQ2WpSnNamNlavPCN8c0h2GwzfURjHliFdbQHPt2X_doc36PgODGAWAfYyVb85mXzfy8xlfXtMCb365Inedp7cBWDhlJc6bjXVjRaRm2i3YMJD-dZdhc4hbcg5fOaJBmJO8K8UpGhnwMJlNcKE4VmdhEanw22hF7TghiV4J-LCP4QWhjnL6IrT0hMbG_E4aaDN7Q9uxDr3X7fN328iYKnkRxZJ6SSl0xFaMdoXGjrgVC6iDhvtIYFido3bhWiWHSFsAmCKYC0fAVoiAmjQnD2LADKKWjVB8CYTGto_oSS-HHbWCZKN9wLsOQx1LEQQX8Qn6RzBnGbaOLYTTnRnYyj1DmkZN5JCpwMZ8znvFr_Dm6Wqglys_aJKINyzJGfUErcFmoavH699WO_jf8DNafblrRw133_hg2qI27XS5aFUrZ-1SfIDjJklO3_z4BflzX6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+learning+of+visual+and+spatial+features+for+edit+propagation+from+a+single+image&rft.jtitle=The+Visual+computer&rft.au=Gui%2C+Yan&rft.au=Zeng%2C+Guang&rft.date=2020-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=36&rft.issue=3&rft.spage=469&rft.epage=482&rft_id=info:doi/10.1007%2Fs00371-019-01633-6&rft.externalDocID=10_1007_s00371_019_01633_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |