Joint learning of visual and spatial features for edit propagation from a single image

In this paper, we regard edit propagation as a multi-class classification problem and deep neural network (DNN) is used to solve the problem. We design a shallow and fully convolutional DNN that can be trained end-to-end. To achieve this, our method uses combinations of low-level visual features, wh...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 36; no. 3; pp. 469 - 482
Main Authors Gui, Yan, Zeng, Guang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we regard edit propagation as a multi-class classification problem and deep neural network (DNN) is used to solve the problem. We design a shallow and fully convolutional DNN that can be trained end-to-end. To achieve this, our method uses combinations of low-level visual features, which are extracted from the input image, and spatial features, which are computed through transforming user interactions, as input of the DNN, which efficiently performs a joint learning of visual and spatial features. We then train the DNN on many of such combinations in order to build a DNN-based pixel-level classifier. Our DNN is also equipped with patch-by-patch training and whole image estimation, speeding up learning and inference. Finally, we improve classification accuracy of the DNN by employing a fully connected conditional random field. Experimental results show that our method can respond to user interactions well and generate precise results compared with the state-of-art edit propagation approaches. Furthermore, we demonstrate our method on various applications.
AbstractList In this paper, we regard edit propagation as a multi-class classification problem and deep neural network (DNN) is used to solve the problem. We design a shallow and fully convolutional DNN that can be trained end-to-end. To achieve this, our method uses combinations of low-level visual features, which are extracted from the input image, and spatial features, which are computed through transforming user interactions, as input of the DNN, which efficiently performs a joint learning of visual and spatial features. We then train the DNN on many of such combinations in order to build a DNN-based pixel-level classifier. Our DNN is also equipped with patch-by-patch training and whole image estimation, speeding up learning and inference. Finally, we improve classification accuracy of the DNN by employing a fully connected conditional random field. Experimental results show that our method can respond to user interactions well and generate precise results compared with the state-of-art edit propagation approaches. Furthermore, we demonstrate our method on various applications.
Author Zeng, Guang
Gui, Yan
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0001-8323-4571
  surname: Gui
  fullname: Gui, Yan
  email: guiyan@csust.edu.cn, guiyan@csust.edu.com
  organization: School of Computer and Communication Engineering, Changsha University of Science and Technology
– sequence: 2
  givenname: Guang
  surname: Zeng
  fullname: Zeng, Guang
  organization: Changsha University of Science and Technology
BookMark eNp9kEtLxDAUhYOM4MzoH3AVcF3No02apQw-GXCjbkPaJCVDJ6lJK_jvjVNBcDGLcBPu-W7OPSuw8MEbAC4xusYI8ZuEEOW4QFjkwygt2AlY4pKSglBcLcASYV4XhNfiDKxS2qH85qVYgvfn4PwIe6Oid76DwcJPlybVQ-U1TIMaXb5bo8YpmgRtiNBoN8IhhkF1uRs8tDHsoYIp872Bbq86cw5OreqTufita_B2f_e6eSy2Lw9Pm9tt0VIsxkK3WiOqFWeUKMENq2tSNSXWRiDeKK1LoxtLW8RE2VQMV0xgzfKurbV1rSxdg6t5bvbzMZk0yl2Yos9fSiIwF4hgRrKqnlVtDClFY2XrxoP3MSrXS4zkT4pyTlHmFOUhRckySv6hQ8wbxq_jEJ2hlMW-M_HP1RHqG85UhzA
CitedBy_id crossref_primary_10_32604_cmc_2022_031135
crossref_primary_10_1016_j_cag_2024_01_002
crossref_primary_10_3390_electronics10182214
crossref_primary_10_32604_iasc_2023_031561
crossref_primary_10_32604_cmc_2020_011969
crossref_primary_10_32604_cmc_2020_011943
crossref_primary_10_32604_cmc_2022_030806
crossref_primary_10_1007_s00521_020_05327_2
crossref_primary_10_1007_s00530_021_00831_4
crossref_primary_10_1016_j_bspc_2023_105119
crossref_primary_10_1109_JSTARS_2020_3011992
crossref_primary_10_1117_1_JEI_30_3_033018
crossref_primary_10_3390_rs16173250
crossref_primary_10_3390_su13179990
crossref_primary_10_32604_iasc_2021_012268
crossref_primary_10_3390_fractalfract6070370
crossref_primary_10_1002_ett_4159
crossref_primary_10_1016_j_asoc_2019_105778
crossref_primary_10_1109_JSTARS_2020_3008949
crossref_primary_10_32604_cmc_2023_030872
crossref_primary_10_1049_ipr2_12520
crossref_primary_10_32604_cmc_2022_031324
crossref_primary_10_32604_iasc_2023_030763
crossref_primary_10_32604_iasc_2023_031335
crossref_primary_10_1109_ACCESS_2022_3168665
crossref_primary_10_1016_j_patrec_2020_09_009
crossref_primary_10_32604_cmc_2023_030814
crossref_primary_10_3390_s19143145
crossref_primary_10_1016_j_knosys_2021_106789
crossref_primary_10_3390_math12142227
crossref_primary_10_1038_s41598_021_96501_6
crossref_primary_10_1007_s11042_020_10191_2
crossref_primary_10_1109_ACCESS_2019_2930865
crossref_primary_10_1140_epjp_s13360_022_02652_4
crossref_primary_10_32604_cmc_2023_031723
crossref_primary_10_3390_electronics11193133
crossref_primary_10_32604_cmc_2022_030879
crossref_primary_10_32604_cmc_2022_030934
crossref_primary_10_32604_csse_2023_031008
crossref_primary_10_3390_rs13193871
crossref_primary_10_1166_jmihi_2021_3315
crossref_primary_10_3390_rs12182979
crossref_primary_10_3390_math9121417
crossref_primary_10_32604_cmc_2021_012252
crossref_primary_10_32604_csse_2023_031761
crossref_primary_10_1007_s00521_020_05566_3
crossref_primary_10_1109_TII_2019_2962844
Cites_doi 10.1007/s00371-012-0761-5
10.1109/TPAMI.2015.2439281
10.1109/TPAMI.2007.1177
10.1016/j.cag.2012.08.001
10.3724/SP.J.1089.2018.16725
10.1111/j.1467-8659.2011.02059.x
10.1109/TVCG.2010.125
10.1145/2601097.2601188
10.1145/1015706.1015780
10.1007/s00371-017-1422-5
10.1145/1360612.1360639
10.1145/1882261.1866171
10.1109/TPAMI.2017.2699184
10.1111/cgf.12822
10.1111/j.1467-8659.2010.01751.x
10.1111/j.1467-8659.2010.01791.x
10.1007/s00371-015-1094-y
10.1145/1857907.1857910
10.1109/5.726791
10.1145/1141911.1142017
10.1145/1276377.1276444
10.1145/2790296
10.1109/TIP.2005.864231
10.1145/1141911.1141936
10.1145/3072959.3073659
10.1109/TPAMI.2012.120
10.1109/CVPR.2014.81
10.1109/CVPR.2009.5206596
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2016.47
10.1109/CVPR.2015.7298965
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-019-01633-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 482
ExternalDocumentID 10_1007_s00371_019_01633_6
GrantInformation_xml – fundername: the National Natural Science Foundations
  grantid: 61402053; 61772087
– fundername: the Scientific Research Fund of Education Department of Hunan Province
  grantid: 16C0046; 16A008
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-dcdd03da7632a97e68825b41de907badd4edbf3c0694b5615691d6003cff88af3
IEDL.DBID U2A
ISSN 0178-2789
IngestDate Fri Jul 25 23:37:23 EDT 2025
Tue Jul 01 01:05:47 EDT 2025
Thu Apr 24 23:10:01 EDT 2025
Fri Feb 21 02:34:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Image editing
Deep neural network
Edit propagation
Fully connected conditional random field
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-dcdd03da7632a97e68825b41de907badd4edbf3c0694b5615691d6003cff88af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8323-4571
PQID 2917902162
PQPubID 2043737
PageCount 14
ParticipantIDs proquest_journals_2917902162
crossref_citationtrail_10_1007_s00371_019_01633_6
crossref_primary_10_1007_s00371_019_01633_6
springer_journals_10_1007_s00371_019_01633_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200300
2020-3-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Gui, Zeng, Tang (CR43) 2018; 30
Chen, Papandreou, Kokkinos, Murphy, Yuille (CR31) 2018; 40
Levin, Lischinski, Weiss (CR1) 2004; 23
Li, Ju, Hu (CR9) 2010; 29
Li, Adelson, Agarwala (CR19) 2008; 08
Xiao, Nie, Tang (CR11) 2011; 17
Xu, Yan, Jia (CR17) 2013; 32
Dong, Loy, He, Tang (CR32) 2016; 38
CR38
Endo, Iizuka, Kanamori, Mitani (CR34) 2016; 35
CR36
Bie, Huang, Wang (CR10) 2011; 30
Musialski, Cui, Ye, Razdan, Wonka (CR16) 2013; 39
Pellacini, Lawrence (CR6) 2007; 26
CR30
Cho, Lee, Kang, Lee (CR23) 2014; 33
Chen, Zou, Li, Cao, Zhao, Zhang (CR21) 2014; 2014
Cambra, Murillo, Munõz (CR24) 2017; 34
Zhang, Zhu, Isola, Geng, Lin, Yu, Efros (CR37) 2017; 36
LeCun, Bottou, Bengio, Haffner (CR25) 1998; 86
CR4
Chen, Zou, Zhao, Tan (CR15) 2012; 31
CR29
Levin, Lischinski, Weiss (CR22) 2008; 30
CR28
CR27
Yatziv, Sapiro (CR2) 2006; 15
CR26
Lischinski, Farbman, Uyttendaele, Szeliski (CR5) 2006; 25
Dalmau, Rivera, Alarcon (CR20) 2010; 29
Achanta, Shaji, Smith, Lucchi, Fua, Susstrunk (CR39) 2012; 34
Iizuka, Simo-Serra, Ishikawa (CR33) 2017; 36
CR42
CR41
CR40
Criminisi, Sharp, Rother, Perez (CR12) 2010; 29
Farbman, Fattal, Lischinski (CR13) 2010; 29
Yan, Zhang, Wang, Paris, Yu (CR35) 2016; 35
Qu, Wong, Heng (CR3) 2006; 25
Yatagawa, Yamaguchi (CR18) 2015; 31
An, Pellacini (CR7) 2008; 27
Xu, Li, Ju, Hu, Liu (CR8) 2009; 28
Ma, Xu (CR14) 2012; 36
Y Li (1633_CR19) 2008; 08
1633_CR4
D Lischinski (1633_CR5) 2006; 25
AB Cambra (1633_CR24) 2017; 34
X An (1633_CR7) 2008; 27
LQ Ma (1633_CR14) 2012; 36
Y Endo (1633_CR34) 2016; 35
Y LeCun (1633_CR25) 1998; 86
S Iizuka (1633_CR33) 2017; 36
F Pellacini (1633_CR6) 2007; 26
A Criminisi (1633_CR12) 2010; 29
C Xiao (1633_CR11) 2011; 17
1633_CR36
1633_CR38
L Yatziv (1633_CR2) 2006; 15
Y Qu (1633_CR3) 2006; 25
O Dalmau (1633_CR20) 2010; 29
R Zhang (1633_CR37) 2017; 36
1633_CR30
X Chen (1633_CR21) 2014; 2014
A Levin (1633_CR22) 2008; 30
X Bie (1633_CR10) 2011; 30
L Xu (1633_CR17) 2013; 32
Z Yan (1633_CR35) 2016; 35
1633_CR29
X Chen (1633_CR15) 2012; 31
LC Chen (1633_CR31) 2018; 40
H Cho (1633_CR23) 2014; 33
Y Li (1633_CR9) 2010; 29
R Achanta (1633_CR39) 2012; 34
A Levin (1633_CR1) 2004; 23
P Musialski (1633_CR16) 2013; 39
1633_CR26
T Yatagawa (1633_CR18) 2015; 31
1633_CR27
1633_CR28
C Dong (1633_CR32) 2016; 38
Y Gui (1633_CR43) 2018; 30
1633_CR40
1633_CR41
K Xu (1633_CR8) 2009; 28
Z Farbman (1633_CR13) 2010; 29
1633_CR42
References_xml – volume: 39
  start-page: 1173
  issue: 11
  year: 2013
  end-page: 1186
  ident: CR16
  article-title: A framework for interactive image color editing
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-012-0761-5
– volume: 28
  start-page: 118:1
  issue: 5
  year: 2009
  end-page: 118:6
  ident: CR8
  article-title: Efficient affinity-based edit propagation using K-D tree
  publication-title: ACM Trans. Graph.
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  end-page: 307
  ident: CR32
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– ident: CR4
– volume: 32
  start-page: 197:1
  issue: 6
  year: 2013
  end-page: 197:10
  ident: CR17
  article-title: A sparse control model for image and video editing
  publication-title: ACM Trans. Graph.
– ident: CR30
– volume: 30
  start-page: 228
  issue: 2
  year: 2008
  end-page: 242
  ident: CR22
  article-title: A closed form solution to natural image matting
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1177
– volume: 36
  start-page: 1005
  issue: 8
  year: 2012
  end-page: 1012
  ident: CR14
  article-title: Efficient antialiased edit propagation for images and videos
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2012.08.001
– volume: 31
  start-page: 132:1
  issue: 6
  year: 2012
  end-page: 132:7
  ident: CR15
  article-title: Manifold preserving edit propagation
  publication-title: ACM Trans. Graph.
– volume: 30
  start-page: 1284
  issue: 7
  year: 2018
  end-page: 1296
  ident: CR43
  article-title: Fast and robust image cutout using bilateral grid and confidence based color model
  publication-title: J. Comput. Aided Des. Comput. Graph.
  doi: 10.3724/SP.J.1089.2018.16725
– volume: 30
  start-page: 2041
  issue: 7
  year: 2011
  end-page: 2048
  ident: CR10
  article-title: Real time edit propagation by efficient sampling
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2011.02059.x
– volume: 17
  start-page: 1135
  issue: 8
  year: 2011
  end-page: 1147
  ident: CR11
  article-title: Efficient edit propagation using hierarchical data structure
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2010.125
– volume: 33
  start-page: 128:1
  issue: 4
  year: 2014
  end-page: 128:8
  ident: CR23
  article-title: Bilateral texture filtering
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2601097.2601188
– volume: 23
  start-page: 689
  issue: 3
  year: 2004
  end-page: 694
  ident: CR1
  article-title: Colorization using optimization
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1015706.1015780
– volume: 36
  start-page: 119:1
  issue: 4
  year: 2017
  end-page: 119:11
  ident: CR37
  article-title: Real-time user-guided image colorization with learned deep priors
  publication-title: ACM Trans. Graph.
– ident: CR29
– volume: 34
  start-page: 1493
  year: 2017
  end-page: 1505
  ident: CR24
  article-title: A generic tool for interactive complex image editing
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-017-1422-5
– volume: 27
  start-page: 40:1
  issue: 3
  year: 2008
  end-page: 40:9
  ident: CR7
  article-title: AppProp: all-pairs appearance-space edit propagation
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1360612.1360639
– ident: CR40
– volume: 29
  start-page: 145:1
  issue: 6
  year: 2010
  end-page: 145:10
  ident: CR13
  article-title: Diffusion maps for edge-aware image editing
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1882261.1866171
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  end-page: 848
  ident: CR31
  article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: CR27
– volume: 35
  start-page: 189
  year: 2016
  end-page: 201
  ident: CR34
  article-title: DeepProp: extracting deep features from a single image for edit propagation
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12822
– ident: CR42
– volume: 29
  start-page: 2372
  issue: 8
  year: 2010
  end-page: 2386
  ident: CR20
  article-title: Bayesian scheme for interactive colourization, recolourization and image/video editing
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2010.01751.x
– volume: 2014
  start-page: 2854
  year: 2014
  end-page: 2861
  ident: CR21
  article-title: Sparse dictionary learning for edit propagation of high-resolution images
  publication-title: CVPR
– volume: 29
  start-page: 2049
  issue: 7
  year: 2010
  end-page: 2054
  ident: CR9
  article-title: Instant propagation of sparse edits on images and videos
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2010.01791.x
– volume: 31
  start-page: 1101
  year: 2015
  end-page: 1111
  ident: CR18
  article-title: Sparse pixel sampling for appearance edit propagation
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-015-1094-y
– volume: 08
  start-page: 1255
  year: 2008
  end-page: 1264
  ident: CR19
  article-title: Scribbleboost: adding classification to edge-aware interpolation of local image and video adjustments
  publication-title: EGSR
– volume: 29
  start-page: 134:1
  issue: 5
  year: 2010
  end-page: 134:15
  ident: CR12
  article-title: Geodesic image and video editing
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1857907.1857910
– ident: CR38
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  ident: CR25
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 25
  start-page: 1214
  issue: 3
  year: 2006
  end-page: 1220
  ident: CR3
  article-title: Manga colorization
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1141911.1142017
– volume: 26
  start-page: 54
  issue: 3
  year: 2007
  ident: CR6
  article-title: AppWand: editing measured materials using appearance-driven optimization
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1276377.1276444
– ident: CR36
– volume: 35
  start-page: 11:1
  issue: 2
  year: 2016
  end-page: 11:15
  ident: CR35
  article-title: Automatic photo adjustment using deep neural networks
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2790296
– volume: 15
  start-page: 1120
  issue: 5
  year: 2006
  end-page: 1129
  ident: CR2
  article-title: Fast image and video colorization using chrominance blending
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.864231
– volume: 25
  start-page: 646
  issue: 3
  year: 2006
  end-page: 653
  ident: CR5
  article-title: Interactive local adjustment of tonal values
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1141911.1141936
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  end-page: 14
  ident: CR33
  article-title: Globally and locally consistent image completion
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3072959.3073659
– ident: CR28
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  end-page: 2282
  ident: CR39
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– ident: CR41
– ident: CR26
– volume: 36
  start-page: 1005
  issue: 8
  year: 2012
  ident: 1633_CR14
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2012.08.001
– volume: 25
  start-page: 1214
  issue: 3
  year: 2006
  ident: 1633_CR3
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1141911.1142017
– ident: 1633_CR40
– ident: 1633_CR38
– volume: 30
  start-page: 2041
  issue: 7
  year: 2011
  ident: 1633_CR10
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2011.02059.x
– ident: 1633_CR28
  doi: 10.1109/CVPR.2014.81
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  ident: 1633_CR33
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3072959.3073659
– ident: 1633_CR4
– volume: 2014
  start-page: 2854
  year: 2014
  ident: 1633_CR21
  publication-title: CVPR
– volume: 34
  start-page: 1493
  year: 2017
  ident: 1633_CR24
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-017-1422-5
– volume: 33
  start-page: 128:1
  issue: 4
  year: 2014
  ident: 1633_CR23
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2601097.2601188
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 1633_CR31
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 27
  start-page: 40:1
  issue: 3
  year: 2008
  ident: 1633_CR7
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1360612.1360639
– volume: 31
  start-page: 1101
  year: 2015
  ident: 1633_CR18
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-015-1094-y
– ident: 1633_CR27
– volume: 25
  start-page: 646
  issue: 3
  year: 2006
  ident: 1633_CR5
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1141911.1141936
– volume: 17
  start-page: 1135
  issue: 8
  year: 2011
  ident: 1633_CR11
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2010.125
– ident: 1633_CR41
  doi: 10.1109/CVPR.2009.5206596
– volume: 29
  start-page: 145:1
  issue: 6
  year: 2010
  ident: 1633_CR13
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1882261.1866171
– volume: 30
  start-page: 228
  issue: 2
  year: 2008
  ident: 1633_CR22
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1177
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  ident: 1633_CR32
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– ident: 1633_CR42
  doi: 10.1007/978-3-319-10602-1_48
– volume: 26
  start-page: 54
  issue: 3
  year: 2007
  ident: 1633_CR6
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1276377.1276444
– volume: 36
  start-page: 119:1
  issue: 4
  year: 2017
  ident: 1633_CR37
  publication-title: ACM Trans. Graph.
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  ident: 1633_CR39
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– volume: 39
  start-page: 1173
  issue: 11
  year: 2013
  ident: 1633_CR16
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-012-0761-5
– volume: 29
  start-page: 2372
  issue: 8
  year: 2010
  ident: 1633_CR20
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2010.01751.x
– volume: 08
  start-page: 1255
  year: 2008
  ident: 1633_CR19
  publication-title: EGSR
– ident: 1633_CR29
– volume: 29
  start-page: 134:1
  issue: 5
  year: 2010
  ident: 1633_CR12
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1857907.1857910
– volume: 32
  start-page: 197:1
  issue: 6
  year: 2013
  ident: 1633_CR17
  publication-title: ACM Trans. Graph.
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 1633_CR25
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 31
  start-page: 132:1
  issue: 6
  year: 2012
  ident: 1633_CR15
  publication-title: ACM Trans. Graph.
– volume: 35
  start-page: 11:1
  issue: 2
  year: 2016
  ident: 1633_CR35
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2790296
– volume: 23
  start-page: 689
  issue: 3
  year: 2004
  ident: 1633_CR1
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1015706.1015780
– ident: 1633_CR26
– volume: 15
  start-page: 1120
  issue: 5
  year: 2006
  ident: 1633_CR2
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.864231
– ident: 1633_CR36
  doi: 10.1109/CVPR.2016.47
– volume: 35
  start-page: 189
  year: 2016
  ident: 1633_CR34
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12822
– volume: 28
  start-page: 118:1
  issue: 5
  year: 2009
  ident: 1633_CR8
  publication-title: ACM Trans. Graph.
– ident: 1633_CR30
  doi: 10.1109/CVPR.2015.7298965
– volume: 29
  start-page: 2049
  issue: 7
  year: 2010
  ident: 1633_CR9
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2010.01791.x
– volume: 30
  start-page: 1284
  issue: 7
  year: 2018
  ident: 1633_CR43
  publication-title: J. Comput. Aided Des. Comput. Graph.
  doi: 10.3724/SP.J.1089.2018.16725
SSID ssj0017749
Score 2.4608414
Snippet In this paper, we regard edit propagation as a multi-class classification problem and deep neural network (DNN) is used to solve the problem. We design a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 469
SubjectTerms Approximation
Artificial Intelligence
Artificial neural networks
Classification
Colorization
Computer Graphics
Computer Science
Conditional random fields
Deep learning
Editing
Image Processing and Computer Vision
Machine learning
Neural networks
Optimization techniques
Original Article
Propagation
Semantics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6veiD-InTKXnwTYM2SbP2SVQ2xsAh4mRvpc2HDGY7beff7yVLNxXcW6FNCnfJ3e-Su98hdCFppDuhlISC8yVc0JhEjHFCjTCBUOCCnaYfh6I_4oNxOPYHbqVPq6xtojPUqpD2jPyaxpZLigaC3s4-iO0aZW9XfQuNTdQEExxB8NW87w6fnpf3CABuHAAOIFayNZ--bMYVzzm2Ogilbb6QYIyI365phTf_XJE6z9PbRTseMuK7hY730IbO99H2DyLBA_Q6KCZ5hX0LiDdcGPw1KecwKs0VLm3WNDwb7Vg8SwxAFYPTqjD8HQyKUw62hSY4xfbsYKrx5B0MzSEa9bovD33iOyYQCVupIkoqdcNUCkaDpnFHC8DPYcYDpSEGzsCUca0yw6Stds0AOYUiDhRAHiaNiaLUsCPUyItcHyPMUtoBXWWWr4_bKDJTgeFcRhFPpUjDFgpqYSXS04nbrhbTZEmE7AScgIATJ-BEtNDlcsxsQaax9ut2rYPEb6wyWS2DFrqq9bJ6_f9sJ-tnO0Vb1EbSLrusjRrV51yfAdyosnO_pr4BJWPO7A
  priority: 102
  providerName: ProQuest
Title Joint learning of visual and spatial features for edit propagation from a single image
URI https://link.springer.com/article/10.1007/s00371-019-01633-6
https://www.proquest.com/docview/2917902162
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5svejBt1itZQ_eNGB2N9vkWKUPFEXESj2FZB9SqKmY1N_v7DZpVVTwlEA2S5jZnfkmO_MNwImkoW4HUnoUna_HBY28kDHuUSOMLxS6YKfpm1sxGPKrUTAqi8LyKtu9OpJ0lnpR7ObY5TD0tfk9gjFP1GA1sLE7ruIh7SzODhDQONDrY3xk6zzLUpmf5_jqjpYY89uxqPM2vS3YKGEi6cz1ug0rOtuBzaoFAyl35A6sf-IT3IXHq-k4K0jZCeKZTA15H-cznCjJFMlt8jTeG-3IPHOCeJWg7yoIfhDaFacjYutNSELsL4SJJuMXtDd7MOx1Hy4HXtk4wZO4owpPSaXOmUrQdtAkamuBMDpIua80hsIpWjSuVWqYtEWvKQKoQES-QuTDpDFhmBi2D_VsmukDICyhbVRZamn7uA0mU-UbzmUY8kSKJGiAX8kvliWruG1uMYkXfMhO5jHKPHYyj0UDThfvvM45Nf4c3azUEpf7K49pZJnFqC9oA84qVS0f_z7b4f-GH8EatQG2SzprQr14m-ljRCFF2oJa2Ou3YLXTf7ru4vWie3t333JL8QMal9TN
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH_q4MA4TMCY6MaGD-w0rC224yaHCU1spUDh1KLevMQfqBIkbAmb9k_tb-TZTdoNid64RUrsSO_z9-z3AbCvWWJ7sdaUofOlQrKUJpwLypx0kTToggOnzy_kYCxOJ_GkA3_bWhifVtnaxGCoTan9GflHlvpeUiyS7PD2B_VTo_ztajtCYyYWZ_bPbwzZqs8nX5G_7xnrfxsdDWgzVYBqFLeaGm3MJ24yVCyWpT0rEWPGuYiMxTgxR3UX1uSOa18RmiO6iGUaGYQFXDuXJJnjuO8zWBWcp16jkv7x_NYCoVSA2xFGZr7CtCnSCaV6oTceBu4-O0lyTuX_jnCBbh9cyAY_19-AFw1AJV9mErUJHVtswfo_bQtfwuVpOS1q0gycuCKlI7-m1R2uygpDKp-jjc_Ohp6hFUFYTNBF1gT_juYriALxZS0kI_6k4tqS6Q2atW0YPwklX8FKURZ2BwjPWA8lI_fdAYWPWXMTOSF0kohMyyzuQtQSS-mmebmfoXGt5m2XA4EVElgFAivZhQ_zNbez1h1Lv95teaAaNa7UQui6cNDyZfH68d1eL99tD9YGo_OhGp5cnL2B58zH8CGvbRdW6p939i0CnTp_F6SLwPenFud7FR4Lbw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8oJkYf_ECNKGoffNMF13ZlPBKVICrxQQxvy9YPQ4KDyPDv91o2QKMmvi1Z2yx37d3v1rvfAZxLGup6IKVH0fl6XNCGFzLGPWqE8YVCF-w0_dgV7R7v9IP-UhW_y3YvriRnNQ2WpSnNamNlavPCN8c0h2GwzfURjHliFdbQHPt2X_doc36PgODGAWAfYyVb85mXzfy8xlfXtMCb365Inedp7cBWDhlJc6bjXVjRaRm2i3YMJD-dZdhc4hbcg5fOaJBmJO8K8UpGhnwMJlNcKE4VmdhEanw22hF7TghiV4J-LCP4QWhjnL6IrT0hMbG_E4aaDN7Q9uxDr3X7fN328iYKnkRxZJ6SSl0xFaMdoXGjrgVC6iDhvtIYFido3bhWiWHSFsAmCKYC0fAVoiAmjQnD2LADKKWjVB8CYTGto_oSS-HHbWCZKN9wLsOQx1LEQQX8Qn6RzBnGbaOLYTTnRnYyj1DmkZN5JCpwMZ8znvFr_Dm6Wqglys_aJKINyzJGfUErcFmoavH699WO_jf8DNafblrRw133_hg2qI27XS5aFUrZ-1SfIDjJklO3_z4BflzX6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+learning+of+visual+and+spatial+features+for+edit+propagation+from+a+single+image&rft.jtitle=The+Visual+computer&rft.au=Gui%2C+Yan&rft.au=Zeng%2C+Guang&rft.date=2020-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=36&rft.issue=3&rft.spage=469&rft.epage=482&rft_id=info:doi/10.1007%2Fs00371-019-01633-6&rft.externalDocID=10_1007_s00371_019_01633_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon