Joint learning of visual and spatial features for edit propagation from a single image
In this paper, we regard edit propagation as a multi-class classification problem and deep neural network (DNN) is used to solve the problem. We design a shallow and fully convolutional DNN that can be trained end-to-end. To achieve this, our method uses combinations of low-level visual features, wh...
Saved in:
Published in | The Visual computer Vol. 36; no. 3; pp. 469 - 482 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we regard edit propagation as a multi-class classification problem and deep neural network (DNN) is used to solve the problem. We design a shallow and fully convolutional DNN that can be trained end-to-end. To achieve this, our method uses combinations of low-level visual features, which are extracted from the input image, and spatial features, which are computed through transforming user interactions, as input of the DNN, which efficiently performs a joint learning of visual and spatial features. We then train the DNN on many of such combinations in order to build a DNN-based pixel-level classifier. Our DNN is also equipped with patch-by-patch training and whole image estimation, speeding up learning and inference. Finally, we improve classification accuracy of the DNN by employing a fully connected conditional random field. Experimental results show that our method can respond to user interactions well and generate precise results compared with the state-of-art edit propagation approaches. Furthermore, we demonstrate our method on various applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0178-2789 1432-2315 |
DOI: | 10.1007/s00371-019-01633-6 |