An efficient adaptive feature selection with deep learning model-based paddy plant leaf disease classification
Agriculture is the essential source of national income for some nations including India. Infections in crops/plants are serious causes of reduced quantity and quality of production, resulting in economic loss. Therefore, the detection of diseases in crops is very essential. Plant disease symptoms ar...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 8; pp. 22639 - 22661 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Agriculture is the essential source of national income for some nations including India. Infections in crops/plants are serious causes of reduced quantity and quality of production, resulting in economic loss. Therefore, the detection of diseases in crops is very essential. Plant disease symptoms are evident in different parts of plants. However, plant leaves are commonly used to diagnose infection. Therefore, in this paper, we focus on automatic leaf disease detection using the deep learning model. The presentedmodel consists of four phases namely, pre-processing, feature extraction, feature selection, and classification. At first, the captured paddy leaf images are converted into an RGB color modelthe median filter is used to remove the noise present in the green band. Then, the texture and color features are extracted from the green band. After the feature extraction, important features are selected using a combination of machine learning and optimization algorithm. Here, initially, the features are selected using support vector machine-recursive feature elimination (SV-RFE) and an adaptive rain optimization algorithm (ARO). Then, the common features are selected. The selected features are given to the adaptive bi-long short-term memory (ABi-LSTM) classifier to classify an image as Blast disease, Bacterial Leaf Blight disease, Tungro, or normal image. The efficiency of the presented technique is estimatedbased on the accuracy, sensitivity, specificity, and performance compared with state-of-the-art works. |
---|---|
AbstractList | Agriculture is the essential source of national income for some nations including India. Infections in crops/plants are serious causes of reduced quantity and quality of production, resulting in economic loss. Therefore, the detection of diseases in crops is very essential. Plant disease symptoms are evident in different parts of plants. However, plant leaves are commonly used to diagnose infection. Therefore, in this paper, we focus on automatic leaf disease detection using the deep learning model. The presentedmodel consists of four phases namely, pre-processing, feature extraction, feature selection, and classification. At first, the captured paddy leaf images are converted into an RGB color modelthe median filter is used to remove the noise present in the green band. Then, the texture and color features are extracted from the green band. After the feature extraction, important features are selected using a combination of machine learning and optimization algorithm. Here, initially, the features are selected using support vector machine-recursive feature elimination (SV-RFE) and an adaptive rain optimization algorithm (ARO). Then, the common features are selected. The selected features are given to the adaptive bi-long short-term memory (ABi-LSTM) classifier to classify an image as Blast disease, Bacterial Leaf Blight disease, Tungro, or normal image. The efficiency of the presented technique is estimatedbased on the accuracy, sensitivity, specificity, and performance compared with state-of-the-art works. |
Author | Choubey, Dilip Kumar Dubey, Ratnesh Kumar |
Author_xml | – sequence: 1 givenname: Ratnesh Kumar surname: Dubey fullname: Dubey, Ratnesh Kumar email: ratneshdub@gmail.com organization: Department of Computer Science and Engineering, Indian Institute of Information Technology Bhagalpur – sequence: 2 givenname: Dilip Kumar surname: Choubey fullname: Choubey, Dilip Kumar organization: Department of Computer Science and Engineering, Indian Institute of Information Technology Bhagalpur |
BookMark | eNp9kEtLAzEUhYNUsK3-AVcB16N5dCadZSm-oOBG1yGT3NSUaWZMUqX_3rQjKC66uhfu-c49nAka-c4DQteU3FJCxF2klMxYQRgvaMVmouBnaExLwQshGB392S_QJMYNIbQq2WyM_MJjsNZpBz5hZVSf3CdgCyrtAuAILejkOo-_XHrHBqDHLajgnV_jbWegLRoVweBeGbPHfauySxZYbFyEfMG6VTG6_EAdbC7RuVVthKufOUVvD_evy6di9fL4vFysCs1pnQqjGwFghGXcmobMbaMFBctJCSWzUJV2ziytgQsgc2014ZWxhtVKsxpACD5FN4NvH7qPHcQkN90u-PxSspoTUjNS8qyaDyoduhgDWKldOuZMQblWUiIP7cqhXZnblcd25QFl_9A-uK0K-9MQH6CYxX4N4TfVCeobyWSRew |
CitedBy_id | crossref_primary_10_1007_s12145_025_01819_8 crossref_primary_10_1079_ab_2025_0022 crossref_primary_10_1371_journal_pone_0315031 crossref_primary_10_1016_j_inpa_2024_09_003 crossref_primary_10_1109_ACCESS_2024_3451557 crossref_primary_10_1007_s11042_024_18524_1 crossref_primary_10_1007_s10462_024_10944_7 |
Cites_doi | 10.17762/turcomat.v12i2.1503 10.3390/jof6040222 10.30630/ijasce.4.2.83 10.21276/ijre.2018.5.9.4 10.3390/hydrology9070123 10.1002/adma.202007764 10.1080/21655979.2019.1649520 10.12928/telkomnika.v19i2.16488 10.1142/S0218001422520024 10.3390/ijerph18094978 10.1007/s11042-022-13425-7 10.3390/su14020914 10.3390/su13031318 10.14569/IJACSA.2021.0120134 10.1007/s11042-023-15107-4 10.1007/s12065-022-00713-2 10.1007/s11042-019-07988-1 10.14569/IJACSA.2020.0110716 10.1109/OTCON56053.2023.10113992 10.1016/j.inpa.2019.09.002 10.1080/10942912.2022.2071295 10.1080/03772063.2023.2195842 10.22271/ed.book.1839 10.1007/s11760-022-02325-w 10.1016/j.procs.2020.03.308 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-023-16247-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 22661 |
ExternalDocumentID | 10_1007_s11042_023_16247_3 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-dcb7eed7f23fdb08fbc71ef305e52fe65f82f19e37e08cfc036dfd29ac29ee773 |
IEDL.DBID | BENPR |
ISSN | 1573-7721 1380-7501 |
IngestDate | Fri Jul 25 21:38:47 EDT 2025 Thu Apr 24 23:07:29 EDT 2025 Tue Jul 01 04:13:25 EDT 2025 Fri Feb 21 02:41:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Deep learning Paddy leaf plant SV-RFE Rain optimization algorithm Median filter ABi-LSTM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-dcb7eed7f23fdb08fbc71ef305e52fe65f82f19e37e08cfc036dfd29ac29ee773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2930092053 |
PQPubID | 54626 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2930092053 crossref_citationtrail_10_1007_s11042_023_16247_3 crossref_primary_10_1007_s11042_023_16247_3 springer_journals_10_1007_s11042_023_16247_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240300 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Wanniarachchi, Sarukkalige (CR27) 2022; 9 CR19 CR16 CR14 Malhi, Kaur, Kaushik (CR15) 2021; 13 Dewangan, Sahu (CR5) 2022; 36 CR11 Rani, Singh (CR21) 2022; 4 Oo, Htun (CR18) 2018; 5 Yin, Cao, Marelli, Zeng, Mason, Cao (CR28) 2021; 33 Azim, Islam, Rahman, Jahan (CR1) 2021; 19 Nilam, Kannan (CR17) 2021; 12 Jain, Sarsaiya, Wu, Yuanfu, Shi (CR12) 2019; 10 Han, Lin (CR10) 2021; 18 CR2 Elbasiouny, El-Ramady, Elbehiry, Vishnu, Rajput, Mandzhieva (CR9) 2022; 14 CR4 CR3 CR8 Vasavi, Punitha, Rao (CR26) 2022; 12 CR7 CR25 CR24 CR23 CR22 CR20 Kalia, Abd-Elsalam, Kuca (CR13) 2020; 6 Dewangan, Sahu (CR6) 2023; 82 P Vasavi (16247_CR26) 2022; 12 16247_CR11 16247_CR25 16247_CR24 PAS Rani (16247_CR21) 2022; 4 H Elbasiouny (16247_CR9) 2022; 14 A Kalia (16247_CR13) 2020; 6 H Han (16247_CR10) 2021; 18 H Yin (16247_CR28) 2021; 33 MA Azim (16247_CR1) 2021; 19 16247_CR8 16247_CR7 SP Nilam (16247_CR17) 2021; 12 16247_CR4 16247_CR3 16247_CR2 DK Dewangan (16247_CR5) 2022; 36 16247_CR20 16247_CR23 16247_CR22 16247_CR14 16247_CR16 GS Malhi (16247_CR15) 2021; 13 A Jain (16247_CR12) 2019; 10 YM Oo (16247_CR18) 2018; 5 16247_CR19 DK Dewangan (16247_CR6) 2023; 82 S Wanniarachchi (16247_CR27) 2022; 9 |
References_xml | – ident: CR22 – volume: 12 start-page: 1672 issue: 2 year: 2021 end-page: 1686 ident: CR17 article-title: Identification of Paddy Leaf Diseases using Evolutionary and Machine Learning Methods publication-title: Turkish J Comput Mathem Educ doi: 10.17762/turcomat.v12i2.1503 – volume: 6 start-page: 222 issue: 4 year: 2020 ident: CR13 article-title: Zinc-based nanomaterials for diagnosis and management of plant diseases: Ecological safety and future prospects publication-title: J Fungi doi: 10.3390/jof6040222 – ident: CR4 – ident: CR14 – ident: CR2 – ident: CR16 – volume: 4 start-page: 88 issue: 2 year: 2022 end-page: 94 ident: CR21 article-title: Paddy leaf symptom-based disease classification using deep CNN with ResNet-50 publication-title: Int J Adv Sci Comput Eng doi: 10.30630/ijasce.4.2.83 – volume: 5 start-page: 516 issue: 9 year: 2018 end-page: 523 ident: CR18 article-title: Plant leaf disease detection and classification using image processing publication-title: Int J Res Eng doi: 10.21276/ijre.2018.5.9.4 – ident: CR8 – volume: 9 start-page: 123 issue: 7 year: 2022 ident: CR27 article-title: A review on evapotranspiration estimation in agricultural water management: Past, present, and future publication-title: Hydrology doi: 10.3390/hydrology9070123 – ident: CR25 – ident: CR23 – ident: CR19 – volume: 33 start-page: 2007764 issue: 20 year: 2021 ident: CR28 article-title: Soil sensors and plant wearables for smart and precision agriculture publication-title: Adv Mater doi: 10.1002/adma.202007764 – volume: 10 start-page: 409 issue: 1 year: 2019 end-page: 424 ident: CR12 article-title: A review of plant leaf fungal diseases and its environment speciation publication-title: Bioengineered doi: 10.1080/21655979.2019.1649520 – volume: 19 start-page: 463 issue: 2 year: 2021 end-page: 470 ident: CR1 article-title: An effective feature extraction method for rice leaf disease classification publication-title: TELKOMNIKA (Telecommunication Computing Electronics and Control) doi: 10.12928/telkomnika.v19i2.16488 – volume: 36 start-page: 2252002 issue: 06 year: 2022 ident: CR5 article-title: Optimized Convolutional Neural Network for Road Detection with Structured Contour and Spatial Information publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001422520024 – ident: CR3 – volume: 18 start-page: 4978 issue: 9 year: 2021 ident: CR10 article-title: Patterns of agricultural diversification in China and its policy implications for agricultural modernization publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph18094978 – ident: CR11 – volume: 82 start-page: 7293 issue: 5 year: 2023 end-page: 7317 ident: CR6 article-title: Lane detection in intelligent vehicle system using optimal 2-tier deep convolutional neural network publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13425-7 – ident: CR7 – volume: 14 start-page: 914 issue: 2 year: 2022 ident: CR9 article-title: Plant nutrition under climate change and soil carbon sequestration publication-title: Sustainability doi: 10.3390/su14020914 – ident: CR24 – volume: 13 start-page: 1318 issue: 3 year: 2021 ident: CR15 article-title: Impact of climate change on agriculture and its mitigation strategies: A review publication-title: Sustainability doi: 10.3390/su13031318 – ident: CR20 – volume: 12 start-page: 2079 issue: 2 year: 2022 ident: CR26 article-title: Crop leaf disease detection and classification using machine learning and deep learning algorithms by visual symptoms: A review publication-title: Int J Elect Comput Eng – volume: 5 start-page: 516 issue: 9 year: 2018 ident: 16247_CR18 publication-title: Int J Res Eng doi: 10.21276/ijre.2018.5.9.4 – ident: 16247_CR22 – ident: 16247_CR11 doi: 10.14569/IJACSA.2021.0120134 – volume: 18 start-page: 4978 issue: 9 year: 2021 ident: 16247_CR10 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph18094978 – ident: 16247_CR8 doi: 10.1007/s11042-023-15107-4 – volume: 33 start-page: 2007764 issue: 20 year: 2021 ident: 16247_CR28 publication-title: Adv Mater doi: 10.1002/adma.202007764 – ident: 16247_CR4 doi: 10.1007/s12065-022-00713-2 – volume: 12 start-page: 1672 issue: 2 year: 2021 ident: 16247_CR17 publication-title: Turkish J Comput Mathem Educ doi: 10.17762/turcomat.v12i2.1503 – volume: 19 start-page: 463 issue: 2 year: 2021 ident: 16247_CR1 publication-title: TELKOMNIKA (Telecommunication Computing Electronics and Control) doi: 10.12928/telkomnika.v19i2.16488 – ident: 16247_CR2 doi: 10.1007/s11042-019-07988-1 – volume: 9 start-page: 123 issue: 7 year: 2022 ident: 16247_CR27 publication-title: Hydrology doi: 10.3390/hydrology9070123 – volume: 82 start-page: 7293 issue: 5 year: 2023 ident: 16247_CR6 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13425-7 – volume: 10 start-page: 409 issue: 1 year: 2019 ident: 16247_CR12 publication-title: Bioengineered doi: 10.1080/21655979.2019.1649520 – volume: 6 start-page: 222 issue: 4 year: 2020 ident: 16247_CR13 publication-title: J Fungi doi: 10.3390/jof6040222 – volume: 36 start-page: 2252002 issue: 06 year: 2022 ident: 16247_CR5 publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001422520024 – volume: 13 start-page: 1318 issue: 3 year: 2021 ident: 16247_CR15 publication-title: Sustainability doi: 10.3390/su13031318 – ident: 16247_CR23 doi: 10.14569/IJACSA.2020.0110716 – ident: 16247_CR16 – ident: 16247_CR19 doi: 10.1109/OTCON56053.2023.10113992 – ident: 16247_CR20 doi: 10.1016/j.inpa.2019.09.002 – ident: 16247_CR25 doi: 10.1080/10942912.2022.2071295 – ident: 16247_CR7 doi: 10.1080/03772063.2023.2195842 – ident: 16247_CR14 doi: 10.22271/ed.book.1839 – ident: 16247_CR3 doi: 10.1007/s11760-022-02325-w – volume: 12 start-page: 2079 issue: 2 year: 2022 ident: 16247_CR26 publication-title: Int J Elect Comput Eng – ident: 16247_CR24 doi: 10.1016/j.procs.2020.03.308 – volume: 4 start-page: 88 issue: 2 year: 2022 ident: 16247_CR21 publication-title: Int J Adv Sci Comput Eng doi: 10.30630/ijasce.4.2.83 – volume: 14 start-page: 914 issue: 2 year: 2022 ident: 16247_CR9 publication-title: Sustainability doi: 10.3390/su14020914 |
SSID | ssj0016524 |
Score | 2.4778202 |
Snippet | Agriculture is the essential source of national income for some nations including India. Infections in crops/plants are serious causes of reduced quantity and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22639 |
SubjectTerms | Adaptive algorithms Blight Color Computer Communication Networks Computer Science Crops Data Structures and Information Theory Deep learning Economic impact Feature extraction Feature selection Image classification Machine learning Medical imaging Multimedia Information Systems Optimization Optimization algorithms Plant diseases Signs and symptoms Special Purpose and Application-Based Systems Support vector machines |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUCUlzywgaXGeTgZK0RVIcFEpW6RY59ZqhDRMvDvObtOAwiQmGN7uM933zn3ArjKDGKV5pYbqVKeKFnwXEnJEZEezbExInaFwg-P2WSa3M_SWSgKW7TZ7m1I0lvqrtgtcqUkxDE8ykRCqrEJWym93V0i11SM1rGDLBVJKI_5ed9XCur8ym-hUM8w433YDa4hG62wPIANrPuw145dYEEL-7DzqYfgIdSjmqHvA0H0wZRRjTNgzKLv2MkWfs4NCZ-5P66MZNawMCnimfkxONwRmWENmaB31sxJ0m6BZSF0w7Tzr11CkcfwCKbju6fbCQ9DFLgm7VpyoytJPCitiK2phrmttIzQkppjKixmqc2FjQqMJQ5zbTUxmrFGFEqLgvCS8TH06pcaT4CRM6I1PalQZyoxRZIPlbVGk9NgRK4iMYColWupQ4dxN-hiXna9kR0WJWFReizKeADX6z3Nqr_Gn6vPW7jKoGuLkhwW1zmKrMkAbloIu8-_n3b6v-VnsE23LVkloJ1Db_n6hhfkkSyrS38BPwABBdsp priority: 102 providerName: Springer Nature |
Title | An efficient adaptive feature selection with deep learning model-based paddy plant leaf disease classification |
URI | https://link.springer.com/article/10.1007/s11042-023-16247-3 https://www.proquest.com/docview/2930092053 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8DAG1EolQc2sGich50JtagFgagQohJMkeMHSxUCLQP_nnPqUECiUwY7Hvz57js_7j6Ak0Qbk8fCUs1lTCPJUyok59QYg5vmUGsWukThu1FyPY5unuInf-A29c8qa59YOWr9qtwZ-TnSkqsPhGvmonyjTjXK3a56CY1VaKILFqIBzf5gdP_wfY-QxF7WVnQpcmPg02bmyXOBS01BzqJBwiI0td_UtIg3_1yRVswz3IINHzKS3hzjbVgxxQ5s1nIMxFvnDqz_qC24C0WvIKaqD4G0QqSWpXNsxJqqkieZVvo3CApxJ7EE57IkXkHihVTyONQRnCYluqZPUk4QAdfBEn-lQ5SLu91DowrbPRgPB4-X19SLK1CFVjejWuUc-ZFbFlqdd4XNFQ-MRfM3MbMmia1gNkhNyE1XKKuQ6bTVLJWKpYgjD_ehUbwW5gAIBilK4VbLqERGOo1EV1qrFQYTmgkZsBYE9bxmylcedwIYk2xRM9lhkSEWWYVFFrbg9Pufcl53Y2nvdg1X5m1wmi1WTAvOaggXzf-Pdrh8tCNYYxjZzB-itaExe_8wxxiZzPIOrIrhVQeavWG_P3Lfq-fbQccvSmwds94X9MHmWA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOvNqK5elDObVWN87DyQEhBCxLeZxA4hYce9wLCoFdhPhT_EbGjsO2leDGOY6leD7PN8545gP4nhnEKs0tN1KlPFGy4LmSkiMiHZpjY0TsCoXPzrPhZfL7Kr2agueuFsZdq-x8onfU5la7f-S_iJZcfyDCzG5zx51qlMuudhIaLSxO8OmRjmyjneMDsu-2EIPDi_0hD6oCXBPcxtzoShIxSCtia6p-bistI7SEe0yFxSy1ubBRgbHEfq6tJhdvrBGF0qKgD5AxzfsJZpKYmNxVpg-OXrMWWRpEdPM-JyaOQpFOW6oXuUIYYkgeZSKhjf0vEU6i2_8Ssp7nBoswHwJUttciagmmsF6GhU78gQVfsAxzf3Uy_AL1Xs3Qd6MgEmPKqMa5UWbR9w1lI6-2QxBg7r8vI8s1LOhV_GFejIc7OjWsIUf4xJobsrcbYFlIIDHtonx3rckj6Stcfsiif4Pp-rbGFWAUEmlNBzvUmUpMkeR9Za3RFLoYkatI9CDq1rXUoc-5k9u4KScdmp0tSrJF6W1Rxj348fpO03b5eHf0emeuMuz4UTnBZw9-diacPH57ttX3Z9uC2eHF2Wl5enx-sgafBcVU7RW4dZge3z_gBsVE42rTA5HB9Ucj_wVAtyAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRULlAJS2Ynn6QE_UYuM8nBwQ4rWCQlcIgcQtdexxLygEdhHir_HrGCcOC0hw4xzHUjyf55F5fADriUEs4tRyI1XMIyUzniopOSJS0BwaI0LXKPx3kBxeRH8u48sJeGx7YVxZZasTa0VtrrX7R75JZsnNByLMbFpfFnG639-ubrhjkHKZ1pZOo4HIMT7cU_g23DraJ1n_EqJ_cL53yD3DANcEvRE3upBkJKQVoTVFL7WFlgFaugMYC4tJbFNhgwxDib1UW03q3lgjMqVFRh8jQ9r3C0xKFxV1YHL3YHB69pzDSGJPqZv2ONnlwLfsNI17gWuLIXvJg0REdM1fm8Wxr_smPVtbvf4czHh3le00-PoGE1jOw2xLBcG8ZpiH6RdzDb9DuVMyrGdTkEljyqjKKVVmsZ4iyoY19w4Bgrm_wIzkWDHPXvGf1dQ83BlXwypSiw-suiLpuwWW-XQS087nd0VONa5-wMWnHPtP6JTXJS4AIwdJawrzUCcqMlmU9pS1RpMjY0SqAtGFoD3XXPup54584yofz2t2sshJFnktizzswsbzO1Uz8-PD1cutuHJ__4f5GK1d-N2KcPz4_d0WP95tDaYI9fnJ0eB4Cb4KcrCaerhl6Ixu73CFHKRRseqRyODfZ4P_CU9yJZI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+adaptive+feature+selection+with+deep+learning+model-based+paddy+plant+leaf+disease+classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Dubey%2C+Ratnesh+Kumar&rft.au=Choubey%2C+Dilip+Kumar&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=8&rft.spage=22639&rft.epage=22661&rft_id=info:doi/10.1007%2Fs11042-023-16247-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |