Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: a review
Supercapacitors are gaining popularity as energy storage devices because of their quick charge/discharge rates, prolonged cycle stability, and high specific power. Low-cost active electrode materials have piqued the interest of researchers in energy storage applications, notably supercapacitor appli...
Saved in:
Published in | Chemical papers Vol. 76; no. 6; pp. 3371 - 3385 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Warsaw
Versita
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Supercapacitors are gaining popularity as energy storage devices because of their quick charge/discharge rates, prolonged cycle stability, and high specific power. Low-cost active electrode materials have piqued the interest of researchers in energy storage applications, notably supercapacitor applications. Carbon-based electrode materials have demonstrated excellent performance for electrochemical double-layer capacitors because of outstanding chemical and physical properties, low cost, large expanse, conduction, and extended life at high temperatures. Notably, graphene compound materials performed well for supercapacitors and had a long life of 335 000 cycles. Conducting polymers have exceptional and critical characteristics, such as metal-like conduction and reversible ability between redox states. Recent research interests include the creation of novel materials, namely mixed metal oxides and metal sulfides, for supercapacitors applications. The electrodes of supercapacitors, which are mostly made of metal oxides (Co
3
O
4
, MnO
2
, WO
3
, NiO, and TiO
2
), have a high degree of stability and retention (up to 94%). Currently, metal sulfide-based materials, including CoNi
2
S
4
and Ni
3
S
2
, have attained specific capacitance values of up to 3296 F/g. When compared to standard capacitors, the supercapacitors outperformed them and employed high power density storage devices. The electrodes of supercapacitors, which are mostly made of metal oxides (Co
3
O
4
, MnO
2
, WO
3
, NiO, and TiO
2
), have a high degree of stability and retention (up to 94 percent). Presently, the review focuses on active electrode materials for supercapacitors such as carbon-based materials, conducting polymers, metal oxides, and metal sulfide compounds. The objective of this review is fivefold: (1) to present the fabrication of symmetric and asymmetric supercapacitor cells; (2) to describe the performance of carbon-based materials for electrochemical double-layer capacitor; (3) to describe the performance of conducting polymers for supercapacitors in the aqueous and non-aqueous electrolyte; (4) to describe the high-performance metal oxide and metal sulfide for supercapacitor; (5) to outline the major challenges in the technology development and this technology is far more advanced than batteries and has been utilized in a wide range of sectors, including electronics, industries, medicine, and the military. |
---|---|
AbstractList | Supercapacitors are gaining popularity as energy storage devices because of their quick charge/discharge rates, prolonged cycle stability, and high specific power. Low-cost active electrode materials have piqued the interest of researchers in energy storage applications, notably supercapacitor applications. Carbon-based electrode materials have demonstrated excellent performance for electrochemical double-layer capacitors because of outstanding chemical and physical properties, low cost, large expanse, conduction, and extended life at high temperatures. Notably, graphene compound materials performed well for supercapacitors and had a long life of 335 000 cycles. Conducting polymers have exceptional and critical characteristics, such as metal-like conduction and reversible ability between redox states. Recent research interests include the creation of novel materials, namely mixed metal oxides and metal sulfides, for supercapacitors applications. The electrodes of supercapacitors, which are mostly made of metal oxides (Co
3
O
4
, MnO
2
, WO
3
, NiO, and TiO
2
), have a high degree of stability and retention (up to 94%). Currently, metal sulfide-based materials, including CoNi
2
S
4
and Ni
3
S
2
, have attained specific capacitance values of up to 3296 F/g. When compared to standard capacitors, the supercapacitors outperformed them and employed high power density storage devices. The electrodes of supercapacitors, which are mostly made of metal oxides (Co
3
O
4
, MnO
2
, WO
3
, NiO, and TiO
2
), have a high degree of stability and retention (up to 94 percent). Presently, the review focuses on active electrode materials for supercapacitors such as carbon-based materials, conducting polymers, metal oxides, and metal sulfide compounds. The objective of this review is fivefold: (1) to present the fabrication of symmetric and asymmetric supercapacitor cells; (2) to describe the performance of carbon-based materials for electrochemical double-layer capacitor; (3) to describe the performance of conducting polymers for supercapacitors in the aqueous and non-aqueous electrolyte; (4) to describe the high-performance metal oxide and metal sulfide for supercapacitor; (5) to outline the major challenges in the technology development and this technology is far more advanced than batteries and has been utilized in a wide range of sectors, including electronics, industries, medicine, and the military. Supercapacitors are gaining popularity as energy storage devices because of their quick charge/discharge rates, prolonged cycle stability, and high specific power. Low-cost active electrode materials have piqued the interest of researchers in energy storage applications, notably supercapacitor applications. Carbon-based electrode materials have demonstrated excellent performance for electrochemical double-layer capacitors because of outstanding chemical and physical properties, low cost, large expanse, conduction, and extended life at high temperatures. Notably, graphene compound materials performed well for supercapacitors and had a long life of 335 000 cycles. Conducting polymers have exceptional and critical characteristics, such as metal-like conduction and reversible ability between redox states. Recent research interests include the creation of novel materials, namely mixed metal oxides and metal sulfides, for supercapacitors applications. The electrodes of supercapacitors, which are mostly made of metal oxides (Co3O4, MnO2, WO3, NiO, and TiO2), have a high degree of stability and retention (up to 94%). Currently, metal sulfide-based materials, including CoNi2S4 and Ni3S2, have attained specific capacitance values of up to 3296 F/g. When compared to standard capacitors, the supercapacitors outperformed them and employed high power density storage devices. The electrodes of supercapacitors, which are mostly made of metal oxides (Co3O4, MnO2, WO3, NiO, and TiO2), have a high degree of stability and retention (up to 94 percent). Presently, the review focuses on active electrode materials for supercapacitors such as carbon-based materials, conducting polymers, metal oxides, and metal sulfide compounds. The objective of this review is fivefold: (1) to present the fabrication of symmetric and asymmetric supercapacitor cells; (2) to describe the performance of carbon-based materials for electrochemical double-layer capacitor; (3) to describe the performance of conducting polymers for supercapacitors in the aqueous and non-aqueous electrolyte; (4) to describe the high-performance metal oxide and metal sulfide for supercapacitor; (5) to outline the major challenges in the technology development and this technology is far more advanced than batteries and has been utilized in a wide range of sectors, including electronics, industries, medicine, and the military. |
Author | Nagarani, S. Dhinakaran, V. Dhilip Kumar, R. Sethuraman, V. Andra, Swetha |
Author_xml | – sequence: 1 givenname: R. surname: Dhilip Kumar fullname: Dhilip Kumar, R. email: rajaiahdhilip@gmail.com, dhilipkumarr@citchennai.net organization: Center for Nanoscience and Technology, Chennai Institute of Technology – sequence: 2 givenname: S. surname: Nagarani fullname: Nagarani, S. organization: Center for Nanoscience and Technology, Chennai Institute of Technology – sequence: 3 givenname: V. surname: Sethuraman fullname: Sethuraman, V. organization: Center for Research, SSN College of Engineering – sequence: 4 givenname: Swetha surname: Andra fullname: Andra, Swetha email: swethavenkatesh3891@gmail.com organization: Center for Nanoscience and Technology, Chennai Institute of Technology – sequence: 5 givenname: V. surname: Dhinakaran fullname: Dhinakaran, V. organization: Center for Applied Research Mechanical Engineering, Chennai Institute of Technology Kundrathur |
BookMark | eNp9kEtPAyEUhYmpiW31D7gicesojxmYcWcaH02auNE1oQw0NFMYYabajb9d2jGauOiCAIf73cM9EzBy3mkALjG6wQjx24gxq1iGCEkLkzxDJ2BMirLIOKnQCIwRZSxjtCBnYBLjGqE8RwUag6-52-rY2ZXsrHcRegOVd3WvOutWsPXNbqNDvIZKhqV3cCM7HaxskuI_ba2hdDWMfWP2599HaHxIaquDkq1UtktX2baNVYPLHZQw6K3VH-fg1CRAX_zsU_D2-PA6e84WL0_z2f0iUxRXXVYrjk2FWImN5iZJlOVLWRlFFFaY1EYWGqmKFlhyWnOOi1oZLZelZtQgqukUXA192-Df-zSwWPs-uGQpCGM8L1JrnKrIUKWCjzFoI9pgNzLsBEZin7MYchYpZ3HIWaAElf-gNPBhzi5I2xxH6YDG5ONWOvz96gj1Dda-l2c |
CitedBy_id | crossref_primary_10_1016_j_mseb_2023_116776 crossref_primary_10_1016_j_aca_2024_343317 crossref_primary_10_3390_jcs6120376 crossref_primary_10_1080_25740881_2022_2121223 crossref_primary_10_3390_inorganics11040169 crossref_primary_10_1016_j_mseb_2024_117340 crossref_primary_10_1063_5_0177740 crossref_primary_10_1063_5_0175478 crossref_primary_10_1016_j_jpowsour_2025_236818 crossref_primary_10_1016_j_cej_2024_157533 crossref_primary_10_1007_s11581_024_05378_8 crossref_primary_10_1016_j_reactfunctpolym_2024_106101 crossref_primary_10_1007_s11696_024_03375_9 crossref_primary_10_1007_s10800_023_02051_2 crossref_primary_10_1016_j_est_2024_112572 crossref_primary_10_1002_jccs_202300412 crossref_primary_10_1016_j_est_2024_113040 crossref_primary_10_1016_j_jallcom_2025_179604 crossref_primary_10_1002_pssa_202300986 crossref_primary_10_1007_s11706_024_0695_7 crossref_primary_10_1016_j_inoche_2024_113588 crossref_primary_10_1002_app_54612 crossref_primary_10_1007_s00289_023_05014_x crossref_primary_10_1016_j_jelechem_2022_116204 crossref_primary_10_1016_j_electacta_2023_143395 crossref_primary_10_1007_s42823_023_00478_3 crossref_primary_10_1039_D3TA06374G crossref_primary_10_1007_s11696_023_03107_5 crossref_primary_10_1016_j_est_2024_111638 crossref_primary_10_1007_s11664_023_10532_5 crossref_primary_10_1038_s41598_024_80243_2 crossref_primary_10_1080_09593330_2024_2376288 crossref_primary_10_1016_j_jpowsour_2023_233181 crossref_primary_10_1002_elan_202400002 crossref_primary_10_1002_cey2_680 crossref_primary_10_1007_s10854_023_11622_0 crossref_primary_10_1016_j_renene_2024_120209 crossref_primary_10_1016_j_est_2024_113297 crossref_primary_10_1002_cnma_202400011 crossref_primary_10_1007_s42247_023_00547_3 crossref_primary_10_1007_s10800_023_01969_x crossref_primary_10_1007_s42823_025_00857_y crossref_primary_10_1088_2053_1591_ad04ae crossref_primary_10_1016_j_est_2024_113151 crossref_primary_10_1007_s11581_023_04900_8 crossref_primary_10_1016_j_jpcs_2024_112025 crossref_primary_10_1007_s10854_022_09195_5 crossref_primary_10_1007_s12648_023_02840_7 |
Cites_doi | 10.1016/j.scitotenv.2020.139288 10.1149/1.1339036 10.1021/jp304809r 10.1016/S0925-4005(03)00198-9 10.1149/1.1571530 10.1021/am5035494 10.1016/j.apsusc.2014.01.186 10.1016/j.jpowsour.2008.11.012 10.1016/j.jpowsour.2009.06.068 10.1142/S0217984913502151 10.1039/c2jm34066f 10.1002/advs.201600289 10.1021/am503783t 10.1016/j.jpowsour.2012.11.040 10.1039/c2dt31916k 10.1016/j.electacta.2012.03.060 10.5796/electrochemistry.75.345 10.1039/c0jm04085a 10.1021/acs.energyfuels.0c00430 10.1149/1.3236500 10.1039/c4cp01200c 10.1021/nn1017457 10.1016/j.cap.2008.01.005 10.1021/jp908739q 10.1016/j.synthmet.2012.03.020 10.1016/j.micromeso.2014.11.021 10.1002/cssc.201902071 10.1016/S0013-4686(00)00466-7 10.1016/S0038-1098(03)00373-9 10.1021/nn101754k 10.1016/j.jpowsour.2012.04.076 10.1021/nn100592d 10.1038/s41598-019-56847-4 10.1016/j.synthmet.2014.04.014 10.1016/S0378-7753(97)02468-3 10.1021/jp9097155 10.1021/am100343a 10.1016/j.eurpolymj.2013.08.001 10.1021/ie301642g 10.1149/1.1485773 10.1021/jp8027353 10.1021/am200294k 10.1021/jp806454r 10.1016/j.micromeso.2008.09.004 10.1039/b924247c 10.1166/asem.2015.1648 10.1021/ic200309t 10.1016/j.jpowsour.2012.09.004 10.1016/j.elecom.2006.03.035 10.1039/c0jm01573c 10.1039/c3ta00981e 10.1016/S0927-0248(00)00369-X 10.1063/1.5116146 10.1016/j.msea.2007.03.087 10.1016/j.jallcom.2013.02.015 10.1039/C2TA00055E 10.1023/A:1024439023251 10.1149/1.2085829 10.1016/j.electacta.2014.11.127 10.1039/c0ee00669f 10.1021/jp201200e 10.1016/0022-3697(64)90156-8 10.1021/am400012h 10.1149/1.1342166 10.1021/am507656q 10.1016/j.electacta.2010.07.042 10.1039/c0cp02054k 10.1016/j.apsusc.2005.09.004 10.1016/j.jpowsour.2010.06.036 10.1016/j.jpowsour.2014.09.013 10.1016/j.jallcom.2017.02.301 10.1021/nl300173j 10.1149/1.1449951 10.1021/cm010744r 10.1016/j.cap.2018.01.019 10.1021/nn4040734 10.1039/D1RA04341B 10.1021/jp7108785 10.1016/j.matlet.2011.05.114 10.1007/s13204-014-0327-0 10.1016/S0378-7753(00)00485-7 10.1021/jp2036982 10.1007/s10853-012-6929-6 10.1016/S0378-3820(02)00078-4 10.1016/j.carbon.2012.08.009 10.1016/j.jpowsour.2014.09.015 10.1007/s10311-021-01268-x 10.1016/j.rser.2015.12.249 10.1016/j.vacuum.2006.09.013 10.1021/nn405595r 10.1016/j.synthmet.2005.08.003 10.4028/www.scientific.net/AMM.787.3 10.1021/jp0543330 10.3390/en14227779 10.1016/j.jpowsour.2005.10.090 10.1039/b418835g 10.1016/j.apsusc.2012.09.036 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G 10.1016/j.jtte.2021.09.001 10.1049/mnl.2020.0400 10.1016/S0013-4686(02)00727-2 10.1016/j.jphotochem.2007.02.014 10.1016/j.ceramint.2013.07.025 10.1021/nn5001386 10.1021/acsami.8b07082 10.1007/s11581-008-0227-y 10.1021/nn101595y 10.1007/s10971-009-2098-8 10.1021/am3021894 10.1016/j.jpowsour.2010.09.078 10.1016/j.matchemphys.2007.01.022 10.1016/j.electacta.2013.07.138 10.1021/jp2049684 10.1016/j.matlet.2014.03.124 10.1039/b916666a 10.1002/adfm.201102839 10.1016/j.jcis.2020.10.032 10.1016/j.ssc.2007.01.011 10.1088/0957-4484/20/17/175602 10.1016/j.cap.2008.02.004 10.1016/j.elecom.2006.08.037 10.1016/j.jpcs.2003.10.051 10.1016/j.synthmet.2011.01.011 10.1002/sus2.8 10.1016/S0167-2738(00)00725-6 10.1021/am500421r 10.1021/am402686r 10.1002/jctb.6220 10.1016/j.matdes.2019.108199 10.1021/cm3012205 10.1073/pnas.0706508104 10.1149/1.1391005 10.1016/j.ceramint.2013.07.134 10.1039/C0CC03594G 10.1007/s10853-006-0394-z 10.1016/j.reactfunctpolym.2014.07.014 10.1016/j.vacuum.2007.06.002 10.1016/j.jallcom.2021.160301 10.1016/j.jiec.2018.02.014 10.1016/j.jallcom.2012.05.113 10.1016/j.mseb.2006.08.047 10.1016/j.electacta.2013.02.094 10.1016/j.electacta.2020.136277 10.1016/j.vacuum.2006.09.012 10.1016/j.electacta.2012.05.139 10.1016/j.jallcom.2008.01.050 10.1016/S0378-7753(98)00258-4 10.3390/coatings8100340 10.1007/s12034-012-0315-5 10.1016/j.cej.2014.03.083 10.1021/am5053784 10.1021/am405849n 10.1016/j.electacta.2004.02.055 10.1016/j.matchemphys.2008.01.032 10.1016/j.cap.2008.05.006 10.1039/pc095163 10.1038/srep07274 10.1142/9789814287005_0033 10.1016/j.mset.2020.10.012 10.1038/s41598-020-59481-7 |
ContentType | Journal Article |
Copyright | Institute of Chemistry, Slovak Academy of Sciences 2022 Institute of Chemistry, Slovak Academy of Sciences 2022. |
Copyright_xml | – notice: Institute of Chemistry, Slovak Academy of Sciences 2022 – notice: Institute of Chemistry, Slovak Academy of Sciences 2022. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1007/s11696-022-02124-0 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2585-7290 1336-9075 |
EndPage | 3385 |
ExternalDocumentID | 10_1007_s11696_022_02124_0 |
GroupedDBID | -58 -5G -BR -Y2 .86 .VR 06D 0VY 1N0 29B 2JY 2LR 2VQ 2WC 2~H 30V 4.4 406 408 40D 53G 5GY 5VS 67Z 6J9 6NX 8FE 8FG 8TC 8UJ 95. 95~ AAAVM AACDK AAFPC AAJBT AAQCX AASML AASQH AATNV AATVU AAXMT AAYQN AAYZH ABAKF ABAQN ABFKT ABFTV ABJCF ABJNI ABJOX ABKCH ABMNI ABOCM ABQBU ABRQL ABTEG ABTKH ABTMW ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACOMO ACPIV ACREN ACZBO ACZOJ ADGYE ADHHG ADINQ ADKNI ADOZN ADTPH ADURQ ADYFF AEBTG AEFQL AEGNC AEMSY AENEX AEOHA AEPYU AESKC AEXYK AFBAA AFBBN AFCXV AFGCZ AFKRA AFQWF AFWTZ AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AIGIU AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR BA0 BENPR BGLVJ BGNMA CAG CCPQU COF CS3 DPUIP EBLON FIGPU G-Y G-Z GJIRD GQ6 GQ7 H13 HCIFZ HG6 HLICF HMJXF HZ~ IAO IEA IHE IJ- IKXTQ ISR ITC IWAJR IXC IXE IY9 IZQ I~X I~Z JZLTJ KDC KOV L6V LLZTM M4Y M7S MA- NPVJJ NQJWS NU0 O9- O9J OAM OK1 P2P P9N PF0 PT4 PTHSS QD8 QOS R9I RNS ROL RPX RSV S1Z S27 S3B SCM SDH SHX SJYHP SNE SOJ SZN T13 TSK TSV TUC U2A UG4 VC2 WK8 ~A9 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEXIE AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SR 7U5 8BQ 8FD ABRTQ JG9 L7M |
ID | FETCH-LOGICAL-c319t-dc71f90681fe7f319364ba9fc2c1c12dfa5e0c9351a73d7715dcfeab8e63f03e3 |
IEDL.DBID | U2A |
ISSN | 0366-6352 |
IngestDate | Wed Aug 13 04:33:00 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 Tue Jul 01 03:17:10 EDT 2025 Fri Feb 21 02:45:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Conducting polymers Metal oxides Carbon materials Metal sulfides |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-dc71f90681fe7f319364ba9fc2c1c12dfa5e0c9351a73d7715dcfeab8e63f03e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2667456811 |
PQPubID | 2039839 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2667456811 crossref_primary_10_1007_s11696_022_02124_0 crossref_citationtrail_10_1007_s11696_022_02124_0 springer_journals_10_1007_s11696_022_02124_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220600 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 6 year: 2022 text: 20220600 |
PublicationDecade | 2020 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw – name: Heidelberg |
PublicationTitle | Chemical papers |
PublicationTitleAbbrev | Chem. Pap |
PublicationYear | 2022 |
Publisher | Versita Springer Nature B.V |
Publisher_xml | – name: Versita – name: Springer Nature B.V |
References | Brown, Swain, Hiltwine, Brooks, Zhou (CR12) 2014; 272 Laforgue, Simon, Sarrazin, Fauvarque (CR71) 1999; 80 Osman, O’Connor, McSpadden, Abu-Dahrieh, Farrell, Al-Muhtaseb, Harrison, Rooney (CR101) 2019; 95 Wang, Li, Cheng, Xu, Zhan, Wang, He (CR137) 2014; 16 Binitha, Suraja, Yaakob, Resmi, Silija (CR10) 2010; 53 Miyazaki, Matsui, Kita, Karuppuchamy, Ito, Yoshihara (CR94) 2009; 9 CR38 Yan, Khoo, Sumboja, Lee (CR153) 2010; 4 Algharaibeh, Liu, Pickup (CR2) 2009; 187 Roberts, Wheeler, McKenzie, Bunker (CR111) 2009; 19 Chang, Hu, Huang, Liu, Chang (CR16) 2011; 196 Matsui, Karuppuchamy, Yamaguchi, Yoshihara (CR83) 2007; 189 Zhou, Liu, Sang, Zhao, Zhou, Liu, Chen (CR165) 2014; 6 Stenger-Smith, Webber, Anderson, Chafin, Zong, Reynolds (CR127) 2002; 149 Wang, Xu, Wang, Du (CR140) 2011; 161 Wu, Ren, Wang, Li, Liu, Cheng (CR146) 2010; 4 Rakhi, Chen, Hedhili, Cha, Alshareef (CR106) 2014; 6 Azam, Ramli, Nor, Nawi (CR7) 2021; 45 Rao, Muthukannan, Vijayan (CR108) 2012; 35 Dubal, Patil, Kim, Lokhande (CR26) 2011; 65 She, Tang, Li, Tang, Qiu, Shang, Hu (CR122) 2018; 8 Nithya, Selvan, Kalpana, Vasylechko, Sanjeeviraja (CR99) 2013; 109 Hong, Yeo, Paik (CR40) 2001; 148 Roberts, Slade (CR110) 2010; 20 Osman, Farrell, Ala’a, H., Harrison, J., & Rooney, D. W. (CR102) 2020; 10 Pang, Ma, Li, Chen, Zhang, Zheng, Du (CR103) 2012; 41 Huang, Li, Zhao, Luo, You, Zhang, Li (CR43) 2015; 152 Zhang, Miao, Niu, Wei (CR162) 2014; 8 Karthikeyan, Kalpana, Renganathan (CR55) 2009; 15 Karuppuchamy, Iwasaki, Minoura (CR58) 2007; 81 Conway, Pell, Liu (CR22) 1997; 65 Arauzo, Maziarka, Olszewski, Isemin, Muratova, Ronsse, Kruse (CR5) 2020; 732 Kawahara, Miyazaki, Karuppuchamy, Matsui, Ito, Yoshihara (CR61) 2007; 81 You, Jiang, Fan (CR161) 2014; 6 Kumar, Andou, Sathish, Karuppuchamy (CR68) 2016; 27 Karuppuchamy, Ito (CR57) 2008; 82 Barakat, Khil, Sheikh, Kim (CR8) 2008; 112 Miyazaki, Matsui, Kuwamoto, Ito, Karuppuchamy, Yoshihara (CR95) 2009; 118 Xie, Du, Xia (CR149) 2015; 204 Chen, Zhitomirsky (CR18) 2014; 125 Yeager, Du, Si, Su, Marinkovic, Teng (CR158) 2012; 116 Ganesh, Pitchumani, Lakshminarayanan (CR31) 2006; 158 Karuppuchamy, Suzuki, Ito, Endo (CR59) 2009; 9 Çelik, Çelik, Dolaş, Görçay, Şahin, Sarac, Pekmez (CR15) 2014; 83 Yao, Yang, Sun, Wang (CR156) 2012; 51 Chavhan, Sethi, Ganguly (CR17) 2020; 347 Sahoo, Nguyen, Shim (CR114) 2018; 63 Yoon, Bang, Prakash, Sun (CR159) 2008; 110 Nandhini, Mubeen, Kumar, Nithya (CR97) 2019; 8 Matsui, Okajima, Karuppuchamy, Yoshihara (CR85) 2009; 468 An, Kim, Park, Moon, Bae, Lim, Lee, Lee (CR3) 2001; 11 Yan, Fan, Sun, Ning, Wei, Zhang, Zhang, Zhi, Wei (CR152) 2012; 22 Fusalba, Gouérec, Villers, Bélanger (CR30) 2001; 148 Huang, Zhu, Sarkar, Zhao (CR44) 2019; 7 Meher, Justin, Ranga Rao (CR90) 2011; 3 Frackowiak, Jurewicz, Szostak, Delpeux, Beguin (CR28) 2002; 77 Shaheen, Ahmad, Zequine, Gupta, Thomas, Malik (CR121) 2021; 11 Ma, Li, Shi, Song, Liu (CR80) 2014; 249 Ramadoss, Kim (CR107) 2013; 561 Qu, Shi, Tian, Chen, Wu, Holze (CR105) 2009; 194 Santhi, Manikandan, Rani, Karuppuchamy (CR117) 2015; 5 Joseph, Shafi, Bose (CR52) 2020; 34 Matsui, Santhi, Sugiyama, Yoshihara, Karuppuchamy (CR87) 2014; 40 Hu, Chen, Xie, Zou, Qin, Bao (CR41) 2014; 6 Ni, Lu, Zhang, Yue, Shang, Lv (CR98) 2009; 113 Kim, Lee, Ahn, Song, Jang (CR64) 2013; 5 Jagadale, Kumbhar, Dhawale, Lokhande (CR49) 2013; 98 Yang, Gao, Song, Zhang, Yang, Wang (CR155) 2014; 272 Biswas, Drzal (CR11) 2010; 2 Kung, Chen, Lin, Vittal, Ho (CR70) 2012; 214 Lin, Dai, Hung (CR75) 2014; 4 Jimenez, Arbiol, Dezanneau, Cornet, Morante (CR50) 2003; 93 Ghenaatian, Mousavi, Rahmanifar (CR35) 2012; 78 Lu, Wang, Zhai, Yu, Gan, Tong, Li (CR78) 2012; 12 CR67 Meher, Rao (CR92) 2011; 115 Behm, Brokaw, Overson, Peloquin, Poler (CR9) 2013; 48 Talbi, Just, Dao (CR130) 2003; 33 Villers, Jobin, Soucy, Cossement, Chahine, Breau, Bélanger (CR135) 2003; 150 CR62 He, Li, Wang, Su, Tong (CR39) 2011; 4 Hu, Wei, She, Tang, Zhou, Zang, Du, Gao, Guo, Bao (CR42) 2017; 708 Miao, Han, Zhang, Chen, Zhang, Li, Han (CR93) 2021; 877 Izadi-Najafabadi, Yamada, Futaba, Yudasaka, Takagi, Hatori, Iijima, Hata (CR48) 2011; 5 Jo, Hwang, Lee, Lee, Yoon (CR51) 2011; 115 Pushparaj, Shaijumon, Kumar, Murugesan, Ci, Vajtai, Linhardt, Nalamasu, Ajayan (CR104) 2007; 104 González, Goikolea, Barrena, Mysyk (CR37) 2016; 58 Reddy, Shaijumon, Gowda, Ajayan (CR109) 2010; 114 Cai, Huang, Wang, Liu, Wang, Liu, Li, Wang (CR14) 2014; 6 Matsui, Yamamoto, Sasai, Karuppuchamy, Yoshihara (CR89) 2007; 75 Inagaki, Konno, Tanaike (CR47) 2010; 195 Gao, Zhou, Qian, He, Redepenning, Goodman, Li, Jiang, Lu (CR33) 2013; 51 Matsui, Saitou, Karuppuchamy, Hassan, Yoshihara (CR86) 2012; 538 Gao, Wang, Rong, Jiang, Zhang, Yu (CR32) 2018; 10 Justin, Meher, Rao (CR53) 2010; 114 Yaseen, Khattak, Humayun, Usman, Shah, Bibi, Hasnain, Ahmad, Khan, Shah (CR157) 2021; 14 Toufiq, Wang, Javed, Li (CR132) 2013; 27 Xiong, Hembram, Reifenberger, Fisher (CR150) 2013; 227 Fan, Maier (CR27) 2006; 8 Kawahara, Kuroda, Matsui, Mishima, Karuppuchamy, Seguchi, Yoshihara (CR60) 2007; 42 Karuppuchamy, Brundha (CR56) 2015; 787 Xiao, Tan, Zhu, Tan, Rui, Dong, Yan (CR147) 2013; 5 Wang, Zhang, Tan, Holt, Zahiri, Olsen, Mitlin (CR138) 2011; 115 Suematsu, Oura, Tsujimoto, Kanno, Naoi (CR129) 2000; 45 D’Arcy, El-Kady, Khine, Zhang, Lee, Davis, Liu, Yeung, Kim, Turner (CR23) 2014; 8 Ghosh, Inganäs (CR36) 2000; 3 CR119 Wei, Wei, Wang, He, Gao, Zhao (CR144) 2013; 49 Ariyanayagamkumarappa, Zhitomirsky (CR6) 2012; 162 Kong, Liu, Lang, Luo, Kang (CR65) 2009; 156 Maksoud, Bedir, Bekhit, Abouelela, Fahim, Awed, Attia, Kassem, Abd Elkodous, El-Sayyad (CR81) 2021; 19 Nam, Kim (CR96) 2002; 149 Huggins (CR45) 2000; 134 Nyström, Strømme, Sjödin, Nyholm (CR100) 2012; 70 Wang, Wang, Wang (CR136) 2011; 50 Conway (CR21) 1991; 138 Salari, Konstantinov, Liu (CR116) 2011; 21 Abdah, Azman, Kulandaivalu, Sulaiman (CR1) 2020; 186 Selvakumar, Bhat (CR120) 2012; 263 Shinde, Mahadik, Gujar, Lokhande (CR124) 2006; 252 Wang, Chen, Pang, Xue, Yu (CR143) 2017; 4 Deng, Huang, Sun, Tsai, Chang (CR24) 2009; 20 Ryu, Lee, Hong, Park, Wu, Kim, Kang, Park, Chang (CR113) 2004; 50 Matsui, Yamamoto, Izawa, Karuppuchamy, Yoshihara (CR88) 2007; 103 CR125 Snook, Peng, Fray, Chen (CR126) 2007; 9 Xiao, Zhou (CR148) 2003; 48 Lota, Khomenko, Frackowiak (CR77) 2004; 65 Matsui, Kira, Karuppuchamy, Yoshihara (CR84) 2009; 9 Thamima, Karuppuchamy (CR131) 2015; 7 Chen, Wang (CR19) 2010; 20 Wang, Duong, Mai, Kim, Kim, Seo, Kim, Jang, Lee, Suhr (CR141) 2015; 7 Sarma, Ray, Mohanty, Misra (CR118) 2014; 300 Subramanian, Zhu, Vajtai, Ajayan, Wei (CR128) 2005; 109 Yoon, Kang, Kim, Lee, Lee (CR160) 2011; 47 Yang, Yao, Liu, He, Zhou, Xiao, Zhang (CR154) 2013; 1 An, Park, Ko, Lee (CR4) 2014; 40 Wang, Yan (CR142) 2014; 4 Lee, Park, Kim, Jung, Im, Hur, Choi (CR72) 2013; 7 Kadam, Mane, Tirmali, Kulkarni (CR54) 2018; 18 Zhang, Li (CR163) 2020; 15 Yamamoto, Matsui, Ishiyama, Karuppuchamy, Yoshihara (CR151) 2006; 135 Kumar, Karuppuchamy (CR69) 2015; 26 Verma, Mishra, Gaur, Chowdhury, Mohapatra, Dwivedi, Verma (CR133) 2021; 8 Luo, Chen, Hu, Chen, Li (CR79) 2021; 1 Li, Rong, Wei (CR73) 2010; 4 Roth (CR112) 1964; 25 Furukawa, Matsui, Hasegawa, Karuppuchamy, Yoshihara (CR29) 2007; 142 Devaraj, Munichandraiah (CR25) 2008; 112 Manibalan, Govindaraj, Yesuraj, Kuppusami, Murugadoss, Murugavel, Kumar (CR82) 2021; 585 Wang, Kaskel (CR139) 2012; 22 Zhou, Wu (CR166) 2013; 222 Zhang, Zhao, Zhao, Tang, Shen, Xu, Li, Xiao (CR164) 2013; 1 Salari, Aboutalebi, Konstantinov, Liu (CR115) 2011; 13 Hughes, Chen, Shaffer, Fray, Windle (CR46) 2002; 14 Shinde, Jun (CR123) 2020; 13 Vijayakumar, Nagamuthu, Muralidharan (CR134) 2013; 5 Geetha, Trivedi (CR34) 2005; 155 Liang, Li, Zhang (CR74) 2008; 473 Meher, Justin, Rao (CR91) 2010; 55 Wu, Snook, Gupta, Shaffer, Fray, Chen (CR145) 2005; 15 Koza, He, Miller, Switzer (CR66) 2012; 24 Chou, Huang, Doong (CR20) 2014; 194 Kim, Park (CR63) 2003; 127 Burke (CR13) 2000; 91 Livage, Ganguli (CR76) 2001; 68 H Miyazaki (2124_CR94) 2009; 9 W Roth (2124_CR112) 1964; 25 B Sarma (2124_CR118) 2014; 300 P Zhang (2124_CR163) 2020; 15 MP Chavhan (2124_CR17) 2020; 347 X Zhang (2124_CR164) 2013; 1 KS Ryu (2124_CR113) 2004; 50 F Wang (2124_CR137) 2014; 16 AJ Roberts (2124_CR110) 2010; 20 V Shinde (2124_CR124) 2006; 252 J Livage (2124_CR76) 2001; 68 MA Azam (2124_CR7) 2021; 45 Y-B He (2124_CR39) 2011; 4 A Ramadoss (2124_CR107) 2013; 561 D Villers (2124_CR135) 2003; 150 Y Yao (2124_CR156) 2012; 51 H Matsui (2124_CR84) 2009; 9 M Wu (2124_CR145) 2005; 15 F Yang (2124_CR154) 2013; 1 S-I Kim (2124_CR64) 2013; 5 T-W Lin (2124_CR75) 2014; 4 KJ Kim (2124_CR63) 2003; 127 I Jimenez (2124_CR50) 2003; 93 BE Conway (2124_CR21) 1991; 138 B Çelik (2124_CR15) 2014; 83 M Inagaki (2124_CR47) 2010; 195 W Miao (2124_CR93) 2021; 877 V Subramanian (2124_CR128) 2005; 109 T Kawahara (2124_CR61) 2007; 81 S Huang (2124_CR44) 2019; 7 K Lota (2124_CR77) 2004; 65 M Hughes (2124_CR46) 2002; 14 X Lu (2124_CR78) 2012; 12 C-W Kung (2124_CR70) 2012; 214 H Matsui (2124_CR89) 2007; 75 G Nyström (2124_CR100) 2012; 70 B Brown (2124_CR12) 2014; 272 A Izadi-Najafabadi (2124_CR48) 2011; 5 S Verma (2124_CR133) 2021; 8 X Li (2124_CR73) 2010; 4 S Karuppuchamy (2124_CR57) 2008; 82 T Wang (2124_CR143) 2017; 4 2124_CR125 N Xiao (2124_CR147) 2013; 5 N Binitha (2124_CR10) 2010; 53 RD Kumar (2124_CR68) 2016; 27 Y Xie (2124_CR149) 2015; 204 K-W Nam (2124_CR96) 2002; 149 M Wang (2124_CR141) 2015; 7 C Jo (2124_CR51) 2011; 115 M Thamima (2124_CR131) 2015; 7 Z Zhou (2124_CR166) 2013; 222 SK Meher (2124_CR92) 2011; 115 M-J Deng (2124_CR24) 2009; 20 S Vijayakumar (2124_CR134) 2013; 5 G Xiong (2124_CR150) 2013; 227 2124_CR38 S Devaraj (2124_CR25) 2008; 112 H Talbi (2124_CR130) 2003; 33 T-C Chou (2124_CR20) 2014; 194 RD Kumar (2124_CR69) 2015; 26 H Pang (2124_CR103) 2012; 41 T Furukawa (2124_CR29) 2007; 142 S Karuppuchamy (2124_CR56) 2015; 787 J Wang (2124_CR139) 2012; 22 H Matsui (2124_CR83) 2007; 189 J-H Yoon (2124_CR159) 2008; 110 I Shaheen (2124_CR121) 2021; 11 J Wang (2124_CR140) 2011; 161 L-B Kong (2124_CR65) 2009; 156 2124_CR119 A Jagadale (2124_CR49) 2013; 98 A Osman (2124_CR101) 2019; 95 S Geetha (2124_CR34) 2005; 155 K Karthikeyan (2124_CR55) 2009; 15 V Nithya (2124_CR99) 2013; 109 AM Toufiq (2124_CR132) 2013; 27 M Yeager (2124_CR158) 2012; 116 S Biswas (2124_CR11) 2010; 2 GA Snook (2124_CR126) 2007; 9 W Yang (2124_CR155) 2014; 272 Q Qu (2124_CR105) 2009; 194 R Rakhi (2124_CR106) 2014; 6 H Ghenaatian (2124_CR35) 2012; 78 T Kawahara (2124_CR60) 2007; 42 M Salari (2124_CR116) 2011; 21 KH An (2124_CR3) 2001; 11 S Yoon (2124_CR160) 2011; 47 P Arauzo (2124_CR5) 2020; 732 M Gao (2124_CR32) 2018; 10 S Karuppuchamy (2124_CR59) 2009; 9 H Matsui (2124_CR87) 2014; 40 M Yaseen (2124_CR157) 2021; 14 W Hu (2124_CR42) 2017; 708 CR Rao (2124_CR108) 2012; 35 S Chen (2124_CR18) 2014; 125 N Joseph (2124_CR52) 2020; 34 SK Meher (2124_CR91) 2010; 55 G Manibalan (2124_CR82) 2021; 585 M Salari (2124_CR115) 2011; 13 A Burke (2124_CR13) 2000; 91 P Justin (2124_CR53) 2010; 114 E Frackowiak (2124_CR28) 2002; 77 BE Conway (2124_CR22) 1997; 65 J Yan (2124_CR152) 2012; 22 JH Lee (2124_CR72) 2013; 7 ME Roberts (2124_CR111) 2009; 19 H Matsui (2124_CR86) 2012; 538 X Luo (2124_CR79) 2021; 1 AI Osman (2124_CR102) 2020; 10 L-Z Fan (2124_CR27) 2006; 8 JM D’Arcy (2124_CR23) 2014; 8 S Karuppuchamy (2124_CR58) 2007; 81 SK Meher (2124_CR90) 2011; 3 S Sahoo (2124_CR114) 2018; 63 S Suematsu (2124_CR129) 2000; 45 JD Stenger-Smith (2124_CR127) 2002; 149 Y She (2124_CR122) 2018; 8 D Cai (2124_CR14) 2014; 6 2124_CR67 S Yamamoto (2124_CR151) 2006; 135 2124_CR62 H Matsui (2124_CR85) 2009; 468 D Dubal (2124_CR26) 2011; 65 RA Huggins (2124_CR45) 2000; 134 R Wang (2124_CR142) 2014; 4 K Santhi (2124_CR117) 2015; 5 Q Xiao (2124_CR148) 2003; 48 B You (2124_CR161) 2014; 6 M Selvakumar (2124_CR120) 2012; 263 M Huang (2124_CR43) 2015; 152 NA Barakat (2124_CR8) 2008; 112 S Ghosh (2124_CR36) 2000; 3 H Matsui (2124_CR88) 2007; 103 H Wang (2124_CR138) 2011; 115 J-I Hong (2124_CR40) 2001; 148 A González (2124_CR37) 2016; 58 H Miyazaki (2124_CR95) 2009; 118 J Wei (2124_CR144) 2013; 49 F Fusalba (2124_CR30) 2001; 148 RS Nandhini (2124_CR97) 2019; 8 D Wang (2124_CR136) 2011; 50 A Laforgue (2124_CR71) 1999; 80 MA Maksoud (2124_CR81) 2021; 19 W Zhou (2124_CR165) 2014; 6 K-H Chang (2124_CR16) 2011; 196 D Zhang (2124_CR162) 2014; 8 MAAM Abdah (2124_CR1) 2020; 186 VL Pushparaj (2124_CR104) 2007; 104 C Ma (2124_CR80) 2014; 249 J Yan (2124_CR153) 2010; 4 Z Algharaibeh (2124_CR2) 2009; 187 JA Koza (2124_CR66) 2012; 24 V Ganesh (2124_CR31) 2006; 158 Y-Y Liang (2124_CR74) 2008; 473 SQ Chen (2124_CR19) 2010; 20 S Kadam (2124_CR54) 2018; 18 ALM Reddy (2124_CR109) 2010; 114 S An (2124_CR4) 2014; 40 N Behm (2124_CR9) 2013; 48 PA Shinde (2124_CR123) 2020; 13 Y Gao (2124_CR33) 2013; 51 Z-S Wu (2124_CR146) 2010; 4 D Ariyanayagamkumarappa (2124_CR6) 2012; 162 J Ni (2124_CR98) 2009; 113 W Hu (2124_CR41) 2014; 6 |
References_xml | – volume: 732 start-page: 139288 year: 2020 ident: CR5 article-title: Valorization of the poultry litter through wet torrefaction and different activation treatments publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.139288 – volume: 8 start-page: 211 issue: 9 year: 2019 end-page: 217 ident: CR97 article-title: Synthesis and characterization of CuO/NiO and CuO/Fe3O4 nanocomposite for super capacitor application publication-title: Int J Eng Tech – volume: 148 start-page: A1 issue: 1 year: 2001 ident: CR30 article-title: Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors publication-title: J Electrochem Soc doi: 10.1149/1.1339036 – volume: 116 start-page: 20173 issue: 38 year: 2012 end-page: 20181 ident: CR158 article-title: Highly efficient K0. 15MnO2 birnessite nanosheets for stable pseudocapacitive cathodes publication-title: The J Phys Chem C doi: 10.1021/jp304809r – volume: 93 start-page: 475 issue: 1–3 year: 2003 end-page: 485 ident: CR50 article-title: Crystalline structure, defects and gas sensor response to NO2 and H2S of tungsten trioxide nanopowders publication-title: Sens Actuators B Chem doi: 10.1016/S0925-4005(03)00198-9 – volume: 150 start-page: A747 issue: 6 year: 2003 ident: CR135 article-title: The influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor publication-title: J Electrochem Soc doi: 10.1149/1.1571530 – volume: 6 start-page: 15905 issue: 18 year: 2014 end-page: 15912 ident: CR14 article-title: High-performance supercapacitor electrode based on the unique ZnO@ Co3O4 core/shell heterostructures on nickel foam publication-title: ACS Appl Mater Interfaces doi: 10.1021/am5035494 – volume: 300 start-page: 29 year: 2014 end-page: 36 ident: CR118 article-title: Synergistic enhancement in the capacitance of nickel and cobalt based mixed oxide supercapacitor prepared by electrodeposition publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2014.01.186 – volume: 187 start-page: 640 issue: 2 year: 2009 end-page: 643 ident: CR2 article-title: An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor publication-title: J Power Sour doi: 10.1016/j.jpowsour.2008.11.012 – volume: 194 start-page: 1222 issue: 2 year: 2009 end-page: 1225 ident: CR105 article-title: A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2009.06.068 – volume: 27 start-page: 1350215 issue: 29 year: 2013 ident: CR132 article-title: Magnetic properties of MnO2 shrimps-like nanostructures synthesized by hydrothermal route publication-title: Mod Phys Lett B doi: 10.1142/S0217984913502151 – volume: 22 start-page: 23710 issue: 45 year: 2012 end-page: 23725 ident: CR139 article-title: KOH activation of carbon-based materials for energy storage publication-title: J Mater Chem doi: 10.1039/c2jm34066f – volume: 4 start-page: 1600289 issue: 2 year: 2017 ident: CR143 article-title: MoS2-based nanocomposites for electrochemical energy storage publication-title: Adv Sci doi: 10.1002/advs.201600289 – volume: 6 start-page: 15302 issue: 17 year: 2014 end-page: 15308 ident: CR161 article-title: Three-dimensional hierarchically porous all-carbon foams for supercapacitor publication-title: ACS Appl Mater Interfaces doi: 10.1021/am503783t – volume: 227 start-page: 254 year: 2013 end-page: 259 ident: CR150 article-title: MnO2-coated graphitic petals for supercapacitor electrodes publication-title: J Power Sour doi: 10.1016/j.jpowsour.2012.11.040 – volume: 41 start-page: 13284 issue: 43 year: 2012 end-page: 13291 ident: CR103 article-title: Facile synthesis of porous ZnO–NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials publication-title: Dalton Trans doi: 10.1039/c2dt31916k – volume: 70 start-page: 91 year: 2012 end-page: 97 ident: CR100 article-title: Rapid potential step charging of paper-based polypyrrole energy storage devices publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.03.060 – volume: 75 start-page: 345 issue: 4 year: 2007 end-page: 348 ident: CR89 article-title: Electronic behavior of WO2/carbon clusters composite materials publication-title: Electrochemistry doi: 10.5796/electrochemistry.75.345 – volume: 21 start-page: 5128 issue: 13 year: 2011 end-page: 5133 ident: CR116 article-title: Enhancement of the capacitance in TiO 2 nanotubes through controlled introduction of oxygen vacancies publication-title: J Mater Chem doi: 10.1039/c0jm04085a – volume: 34 start-page: 6558 issue: 6 year: 2020 end-page: 6597 ident: CR52 article-title: Recent advances in 2D-MoS and its composite nanostructures for supercapacitor electrode application publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c00430 – volume: 156 start-page: A1000 issue: 12 year: 2009 ident: CR65 article-title: Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon publication-title: J Electrochem Soc doi: 10.1149/1.3236500 – volume: 16 start-page: 12214 issue: 24 year: 2014 end-page: 12220 ident: CR137 article-title: Construction of 3D V 2 O 5/hydrogenated-WO 3 nanotrees on tungsten foil for high-performance pseudocapacitors publication-title: Phys Chem Chem Phys doi: 10.1039/c4cp01200c – volume: 5 start-page: 811 issue: 2 year: 2011 end-page: 819 ident: CR48 article-title: High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite publication-title: ACS Nano doi: 10.1021/nn1017457 – volume: 9 start-page: 155 issue: 1 year: 2009 end-page: 160 ident: CR94 article-title: Electronic behavior of visible light sensitive ZrO /Cr O /carbon clusters composite materials publication-title: Curr Appl Phys doi: 10.1016/j.cap.2008.01.005 – volume: 114 start-page: 658 issue: 1 year: 2010 end-page: 663 ident: CR109 article-title: Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications publication-title: The J Phys Chem C doi: 10.1021/jp908739q – volume: 162 start-page: 868 issue: 9–10 year: 2012 end-page: 872 ident: CR6 article-title: Electropolymerization of polypyrrole films on stainless steel substrates for electrodes of electrochemical supercapacitors publication-title: Synth Met doi: 10.1016/j.synthmet.2012.03.020 – volume: 204 start-page: 163 year: 2015 end-page: 172 ident: CR149 article-title: Porous poly (3, 4-ethylenedioxythiophene) nanoarray used for flexible supercapacitor publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2014.11.021 – volume: 13 start-page: 11 issue: 1 year: 2020 end-page: 38 ident: CR123 article-title: Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage publication-title: Chem Sus Chem doi: 10.1002/cssc.201902071 – volume: 45 start-page: 3813 issue: 22–23 year: 2000 end-page: 3821 ident: CR129 article-title: Conducting polymer films of cross-linked structure and their QCM analysis publication-title: Electrochim Acta doi: 10.1016/S0013-4686(00)00466-7 – volume: 127 start-page: 25 issue: 1 year: 2003 end-page: 28 ident: CR63 article-title: Optical investigation of charge-transfer transitions in spinel Co3O4 publication-title: Solid State Commun doi: 10.1016/S0038-1098(03)00373-9 – volume: 4 start-page: 5835 issue: 10 year: 2010 end-page: 5842 ident: CR146 article-title: High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors publication-title: ACS Nano doi: 10.1021/nn101754k – volume: 214 start-page: 91 year: 2012 end-page: 99 ident: CR70 article-title: Synthesis of Co3O4 nanosheets via electrodeposition followed by ozone treatment and their application to high-performance supercapacitors publication-title: J Power Sour doi: 10.1016/j.jpowsour.2012.04.076 – volume: 4 start-page: 4247 issue: 7 year: 2010 end-page: 4255 ident: CR153 article-title: Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior publication-title: ACS Nano doi: 10.1021/nn100592d – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 13 ident: CR102 article-title: The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass publication-title: Sci Rep doi: 10.1038/s41598-019-56847-4 – volume: 194 start-page: 29 year: 2014 end-page: 37 ident: CR20 article-title: Fabrication of hierarchically ordered porous carbons using sugarcane bagasse as the scaffold for supercapacitor applications publication-title: Synth Met doi: 10.1016/j.synthmet.2014.04.014 – volume: 65 start-page: 53 issue: 1–2 year: 1997 end-page: 59 ident: CR22 article-title: Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries publication-title: J Power Sour doi: 10.1016/S0378-7753(97)02468-3 – volume: 114 start-page: 5203 issue: 11 year: 2010 end-page: 5210 ident: CR53 article-title: Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis publication-title: The J Phys Chem C doi: 10.1021/jp9097155 – volume: 2 start-page: 2293 issue: 8 year: 2010 end-page: 2300 ident: CR11 article-title: Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance publication-title: ACS Appl Mater Interfaces doi: 10.1021/am100343a – volume: 49 start-page: 3651 issue: 11 year: 2013 end-page: 3656 ident: CR144 article-title: PPy modified titanium foam electrode with high performance for supercapacitor publication-title: Eur Polymer J doi: 10.1016/j.eurpolymj.2013.08.001 – volume: 51 start-page: 14958 issue: 46 year: 2012 end-page: 14965 ident: CR156 article-title: Hydrothermal synthesis of Co3O4–graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol publication-title: Ind Eng Chem Res doi: 10.1021/ie301642g – volume: 149 start-page: A973 issue: 8 year: 2002 ident: CR127 article-title: Poly (3, 4-alkylenedioxythiophene)-based supercapacitors using ionic liquids as supporting electrolytes publication-title: J Electrochem Soc doi: 10.1149/1.1485773 – volume: 112 start-page: 12225 issue: 32 year: 2008 end-page: 12233 ident: CR8 article-title: Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process publication-title: The J Phys Chem C doi: 10.1021/jp8027353 – volume: 3 start-page: 2063 issue: 6 year: 2011 end-page: 2073 ident: CR90 article-title: Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide publication-title: ACS Appl Mater Interfaces doi: 10.1021/am200294k – volume: 113 start-page: 54 issue: 1 year: 2009 end-page: 60 ident: CR98 article-title: Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties publication-title: The J Phys Chem C doi: 10.1021/jp806454r – volume: 118 start-page: 518 issue: 1–3 year: 2009 end-page: 522 ident: CR95 article-title: Synthesis and photocatalytic activities of MnO2-loaded Nb2O5/carbon clusters composite material publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2008.09.004 – volume: 20 start-page: 3221 issue: 16 year: 2010 end-page: 3226 ident: CR110 article-title: Controlled synthesis of ε-MnO and its application in hybrid supercapacitor devices publication-title: J Mater Chem doi: 10.1039/b924247c – volume: 7 start-page: 18 issue: 1 year: 2015 end-page: 25 ident: CR131 article-title: Biosynthesis of titanium dioxide and zinc oxide nanoparticles from natural sources: a review publication-title: Adv Sci Eng Med doi: 10.1166/asem.2015.1648 – volume: 50 start-page: 6482 issue: 14 year: 2011 end-page: 6492 ident: CR136 article-title: Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors publication-title: Inorg Chem doi: 10.1021/ic200309t – volume: 222 start-page: 410 year: 2013 end-page: 416 ident: CR166 article-title: Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: synthesis and electrochemical characterization publication-title: J Power Sour doi: 10.1016/j.jpowsour.2012.09.004 – volume: 8 start-page: 937 issue: 6 year: 2006 end-page: 940 ident: CR27 article-title: High-performance polypyrrole electrode materials for redox supercapacitors publication-title: Electrochem Commun doi: 10.1016/j.elecom.2006.03.035 – volume: 20 start-page: 9735 issue: 43 year: 2010 end-page: 9739 ident: CR19 article-title: Microwave-assisted synthesis of a Co O –graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries publication-title: J Mater Chem doi: 10.1039/c0jm01573c – volume: 1 start-page: 3706 issue: 11 year: 2013 end-page: 3712 ident: CR164 article-title: High performance asymmetric supercapacitor based on MnO 2 electrode in ionic liquid electrolyte publication-title: J Mater Chem A doi: 10.1039/c3ta00981e – volume: 68 start-page: 365 issue: 3–4 year: 2001 end-page: 381 ident: CR76 article-title: Sol–gel electrochromic coatings and devices: a review publication-title: Sol Energy Mater Sol Cells doi: 10.1016/S0927-0248(00)00369-X – volume: 7 start-page: 100901 issue: 10 year: 2019 ident: CR44 article-title: Challenges and opportunities for supercapacitors publication-title: APL Mater doi: 10.1063/1.5116146 – volume: 27 start-page: 2926 issue: 3 year: 2016 end-page: 2932 ident: CR68 article-title: Synthesis of nanostructured Cu-WO 3 and CuWO 4 for supercapacitor applications publication-title: J Mater Sci: Mater Electron – volume: 473 start-page: 317 issue: 1–2 year: 2008 end-page: 322 ident: CR74 article-title: A novel asymmetric capacitor based on Co (OH) 2/USY composite and activated carbon electrodes publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2007.03.087 – volume: 561 start-page: 262 year: 2013 end-page: 267 ident: CR107 article-title: Vertically aligned TiO2 nanorod arrays for electrochemical supercapacitor publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2013.02.015 – volume: 1 start-page: 594 issue: 3 year: 2013 end-page: 601 ident: CR154 article-title: Ni–Co oxides nanowire arrays grown on ordered TiO 2 nanotubes with high performance in supercapacitors publication-title: J Mater Chem A doi: 10.1039/C2TA00055E – volume: 33 start-page: 465 issue: 6 year: 2003 end-page: 473 ident: CR130 article-title: Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: applications for supercapacitors publication-title: J Appl Electrochem doi: 10.1023/A:1024439023251 – volume: 138 start-page: 1539 issue: 6 year: 1991 ident: CR21 article-title: Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage publication-title: J Electrochem Soc doi: 10.1149/1.2085829 – volume: 152 start-page: 172 year: 2015 end-page: 177 ident: CR43 article-title: Hierarchical ZnO@ MnO2 core-shell pillar arrays on Ni foam for binder-free supercapacitor electrodes publication-title: Electrochim Acta doi: 10.1016/j.electacta.2014.11.127 – volume: 4 start-page: 1288 issue: 4 year: 2011 end-page: 1292 ident: CR39 article-title: Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: controllable electrochemical synthesis and enhanced supercapacitor performances publication-title: Energy Environ Sci doi: 10.1039/c0ee00669f – volume: 115 start-page: 15646 issue: 31 year: 2011 end-page: 15654 ident: CR92 article-title: Ultralayered Co3O4 for high-performance supercapacitor applications publication-title: The J Phys Chem C doi: 10.1021/jp201200e – volume: 25 start-page: 1 issue: 1 year: 1964 end-page: 10 ident: CR112 article-title: The magnetic structure of Co3O4 publication-title: J Phys Chem Solids doi: 10.1016/0022-3697(64)90156-8 – volume: 5 start-page: 2188 issue: 6 year: 2013 end-page: 2196 ident: CR134 article-title: Supercapacitor studies on NiO nanoflakes synthesized through a microwave route publication-title: ACS Appl Mater Interfaces doi: 10.1021/am400012h – volume: 148 start-page: A156 issue: 2 year: 2001 ident: CR40 article-title: Conducting polymer with metal oxide for electrochemical capacitor: poly (3, 4-ethylenedioxythiophene) RuO x electrode publication-title: J Electrochem Soc doi: 10.1149/1.1342166 – volume: 7 start-page: 1348 issue: 2 year: 2015 end-page: 1354 ident: CR141 article-title: All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method publication-title: ACS Appl Mater Interfaces doi: 10.1021/am507656q – volume: 55 start-page: 8388 issue: 28 year: 2010 end-page: 8396 ident: CR91 article-title: Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide publication-title: Electrochim Acta doi: 10.1016/j.electacta.2010.07.042 – volume: 13 start-page: 5038 issue: 11 year: 2011 end-page: 5041 ident: CR115 article-title: A highly ordered titania nanotube array as a supercapacitor electrode publication-title: Phys Chem Chem Phys doi: 10.1039/c0cp02054k – volume: 252 start-page: 7487 issue: 20 year: 2006 end-page: 7492 ident: CR124 article-title: Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2005.09.004 – volume: 195 start-page: 7880 issue: 24 year: 2010 end-page: 7903 ident: CR47 article-title: Carbon materials for electrochemical capacitors publication-title: J Power Sour doi: 10.1016/j.jpowsour.2010.06.036 – volume: 272 start-page: 915 year: 2014 end-page: 921 ident: CR155 article-title: Synthesis of hollow polyaniline nano-capsules and their supercapacitor application publication-title: J Power Sour doi: 10.1016/j.jpowsour.2014.09.013 – volume: 708 start-page: 146 year: 2017 end-page: 153 ident: CR42 article-title: Flower-like nickel-zinc-cobalt mixed metal oxide nanowire arrays for electrochemical capacitor applications publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2017.02.301 – ident: CR38 – volume: 12 start-page: 1690 issue: 3 year: 2012 end-page: 1696 ident: CR78 article-title: Hydrogenated TiO2 nanotube arrays for supercapacitors publication-title: Nano Lett doi: 10.1021/nl300173j – volume: 149 start-page: A346 issue: 3 year: 2002 ident: CR96 article-title: A study of the preparation of NiO x electrode via electrochemical route for supercapacitor applications and their charge storage mechanism publication-title: J Electrochem Soc doi: 10.1149/1.1449951 – volume: 14 start-page: 1610 issue: 4 year: 2002 end-page: 1613 ident: CR46 article-title: Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole publication-title: Chem Mater doi: 10.1021/cm010744r – volume: 18 start-page: 397 issue: 4 year: 2018 end-page: 404 ident: CR54 article-title: Electrochemical synthesis of flower like Mn-Co mixed metal oxides as electrode material for supercapacitor application publication-title: Curr Appl Phys doi: 10.1016/j.cap.2018.01.019 – volume: 7 start-page: 9366 issue: 10 year: 2013 end-page: 9374 ident: CR72 article-title: Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes publication-title: ACS Nano doi: 10.1021/nn4040734 – volume: 11 start-page: 23374 issue: 38 year: 2021 end-page: 23384 ident: CR121 article-title: Facile ZnO-based nanomaterial and its fabrication as a supercapacitor electrode: synthesis, characterization and electrochemical studies publication-title: RSC Adv doi: 10.1039/D1RA04341B – volume: 112 start-page: 4406 issue: 11 year: 2008 end-page: 4417 ident: CR25 article-title: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties publication-title: The J Phys Chem C doi: 10.1021/jp7108785 – volume: 65 start-page: 2628 issue: 17–18 year: 2011 end-page: 2631 ident: CR26 article-title: Supercapacitors based on electrochemically deposited polypyrrole nanobricks publication-title: Mater Lett doi: 10.1016/j.matlet.2011.05.114 – volume: 5 start-page: 373 issue: 3 year: 2015 end-page: 378 ident: CR117 article-title: Synthesis of nanocrystalline titanium dioxide for photodegradation treatment of remazol brown dye publication-title: Appl Nanosci doi: 10.1007/s13204-014-0327-0 – volume: 91 start-page: 37 issue: 1 year: 2000 end-page: 50 ident: CR13 article-title: Ultracapacitors: why, how, and where is the technology publication-title: J Power Sour doi: 10.1016/S0378-7753(00)00485-7 – volume: 115 start-page: 11880 issue: 23 year: 2011 end-page: 11886 ident: CR51 article-title: Investigation of pseudocapacitive charge-storage behavior in highly conductive ordered mesoporous tungsten oxide electrodes publication-title: The J Phys Chem C doi: 10.1021/jp2036982 – volume: 48 start-page: 1711 issue: 4 year: 2013 end-page: 1716 ident: CR9 article-title: High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices publication-title: J Mater Sci doi: 10.1007/s10853-012-6929-6 – volume: 77 start-page: 213 year: 2002 end-page: 219 ident: CR28 article-title: Nanotubular materials as electrodes for supercapacitors publication-title: Fuel Process Technol doi: 10.1016/S0378-3820(02)00078-4 – volume: 51 start-page: 52 year: 2013 end-page: 58 ident: CR33 article-title: Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes publication-title: Carbon doi: 10.1016/j.carbon.2012.08.009 – volume: 272 start-page: 979 year: 2014 end-page: 986 ident: CR12 article-title: Carbon nanosheet buckypaper: A graphene-carbon nanotube hybrid material for enhanced supercapacitor performance publication-title: J Power Sour doi: 10.1016/j.jpowsour.2014.09.015 – volume: 19 start-page: 3645 year: 2021 end-page: 3681 ident: CR81 article-title: MoS -based nanocomposites: synthesis, structure, and applications in water remediation and energy storage: a review publication-title: Environ Chem Lett doi: 10.1007/s10311-021-01268-x – volume: 58 start-page: 1189 year: 2016 end-page: 1206 ident: CR37 article-title: Review on supercapacitors: technologies and materials publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.12.249 – ident: CR125 – volume: 81 start-page: 708 issue: 5 year: 2007 end-page: 712 ident: CR58 article-title: Physico-chemical, photoelectrochemical and photocatalytic properties of electrodeposited nanocrystalline titanium dioxide thin films publication-title: Vacuum doi: 10.1016/j.vacuum.2006.09.013 – volume: 8 start-page: 1500 issue: 2 year: 2014 end-page: 1510 ident: CR23 article-title: Vapor-phase polymerization of nanofibrillar poly (3, 4-ethylenedioxythiophene) for supercapacitors publication-title: ACS Nano doi: 10.1021/nn405595r – volume: 155 start-page: 232 issue: 1 year: 2005 end-page: 239 ident: CR34 article-title: A new route to synthesize high degree polythiophene in a room temperature melt medium publication-title: Synth Met doi: 10.1016/j.synthmet.2005.08.003 – volume: 787 start-page: 3 year: 2015 end-page: 7 ident: CR56 article-title: Fabrication of core-shell structured TiO2/MgO electrodes for dye-sensitized solar cells publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.787.3 – volume: 109 start-page: 20207 issue: 43 year: 2005 end-page: 20214 ident: CR128 article-title: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures publication-title: J Phys Chem B doi: 10.1021/jp0543330 – volume: 14 start-page: 7779 issue: 22 year: 2021 ident: CR157 article-title: A review of supercapacitors: materials design, modification, and applications publication-title: Energies doi: 10.3390/en14227779 – volume: 158 start-page: 1523 issue: 2 year: 2006 end-page: 1532 ident: CR31 article-title: New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon publication-title: J Power Sour doi: 10.1016/j.jpowsour.2005.10.090 – volume: 15 start-page: 2297 issue: 23 year: 2005 end-page: 2303 ident: CR145 article-title: Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline publication-title: J Mater Chem doi: 10.1039/b418835g – volume: 263 start-page: 236 year: 2012 end-page: 241 ident: CR120 article-title: Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2012.09.036 – volume: 11 start-page: 387 issue: 5 year: 2001 end-page: 392 ident: CR3 article-title: Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes publication-title: Adv Func Mater doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G – volume: 8 start-page: 621 issue: 5 year: 2021 end-page: 637 ident: CR133 article-title: A comprehensive review on energy storage in hybrid electric vehicle publication-title: J Traffic Transp Eng (english Edition) doi: 10.1016/j.jtte.2021.09.001 – volume: 15 start-page: 938 issue: 13 year: 2020 end-page: 942 ident: CR163 article-title: Microwave-assisted synthesis of CuO/MnO2 nanocomposites for supercapacitor application publication-title: Micro Nano Lett doi: 10.1049/mnl.2020.0400 – ident: CR119 – volume: 48 start-page: 575 issue: 5 year: 2003 end-page: 580 ident: CR148 article-title: The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor publication-title: Electrochim Acta doi: 10.1016/S0013-4686(02)00727-2 – volume: 189 start-page: 280 issue: 2–3 year: 2007 end-page: 285 ident: CR83 article-title: Electronic behavior of calcined materials obtained from SnO2 hydrosol/starch composite materials publication-title: J Photochem Photobiol A doi: 10.1016/j.jphotochem.2007.02.014 – volume: 40 start-page: 1423 issue: 1 year: 2014 end-page: 1429 ident: CR4 article-title: Fabrication of WO nanotube sensors and their gas sensing properties publication-title: Ceram Int doi: 10.1016/j.ceramint.2013.07.025 – volume: 8 start-page: 4571 issue: 5 year: 2014 end-page: 4579 ident: CR162 article-title: Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles publication-title: ACS Nano doi: 10.1021/nn5001386 – volume: 10 start-page: 23163 issue: 27 year: 2018 end-page: 23173 ident: CR32 article-title: Porous ZnO-coated Co3O4 nanorod as a high-energy-density supercapacitor material publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b07082 – volume: 15 start-page: 107 issue: 1 year: 2009 end-page: 110 ident: CR55 article-title: Synthesis and characterization of ZnCo 2 O 4 nanomaterial for symmetric supercapacitor applications publication-title: Ionics doi: 10.1007/s11581-008-0227-y – volume: 4 start-page: 6039 issue: 10 year: 2010 end-page: 6049 ident: CR73 article-title: Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress publication-title: ACS Nano doi: 10.1021/nn101595y – volume: 53 start-page: 466 issue: 2 year: 2010 end-page: 469 ident: CR10 article-title: Simple synthesis of Co 3 O 4 nanoflakes using a low temperature sol–gel method suitable for photodegradation of dyes publication-title: J Sol-Gel Sci Technol doi: 10.1007/s10971-009-2098-8 – volume: 5 start-page: 1596 issue: 5 year: 2013 end-page: 1603 ident: CR64 article-title: Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology publication-title: ACS Appl Mater Interfaces doi: 10.1021/am3021894 – volume: 196 start-page: 2387 issue: 4 year: 2011 end-page: 2392 ident: CR16 article-title: Microwave-assisted hydrothermal synthesis of crystalline WO3–WO3· 0.5 H2O mixtures for pseudocapacitors of the asymmetric type publication-title: J Power Sour doi: 10.1016/j.jpowsour.2010.09.078 – volume: 103 start-page: 127 issue: 1 year: 2007 end-page: 131 ident: CR88 article-title: Electron transfer behavior of calcined material obtained from a samarium-O–phenylene-S–nickel-S–phenylene-O hybrid copolymer publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2007.01.022 – volume: 109 start-page: 720 year: 2013 end-page: 731 ident: CR99 article-title: Synthesis of Bi2WO6 nanoparticles and its electrochemical properties in different electrolytes for pseudocapacitor electrodes publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.07.138 – volume: 115 start-page: 17599 issue: 35 year: 2011 end-page: 17605 ident: CR138 article-title: Supercapacitive properties of hydrothermally synthesized Co3O4 nanostructures publication-title: The J Phys Chem C doi: 10.1021/jp2049684 – volume: 125 start-page: 92 year: 2014 end-page: 95 ident: CR18 article-title: Capacitive behaviour of polypyrrole, prepared by electrochemical and chemical methods publication-title: Mater Lett doi: 10.1016/j.matlet.2014.03.124 – volume: 19 start-page: 6977 issue: 38 year: 2009 end-page: 6979 ident: CR111 article-title: High specific capacitance conducting polymer supercapacitor electrodes based on poly (tris (thiophenylphenyl) amine) publication-title: J Mater Chem doi: 10.1039/b916666a – volume: 22 start-page: 2632 issue: 12 year: 2012 end-page: 2641 ident: CR152 article-title: Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density publication-title: Adv Func Mater doi: 10.1002/adfm.201102839 – volume: 585 start-page: 505 year: 2021 end-page: 518 ident: CR82 article-title: Facile synthesis of NiO@ Ni (OH)2-α-MoO nanocomposite for enhanced solid-state symmetric supercapacitor application publication-title: J Coll Interface Sci doi: 10.1016/j.jcis.2020.10.032 – volume: 142 start-page: 99 issue: 1–2 year: 2007 end-page: 103 ident: CR29 article-title: Electronic behaviours of calcined materials from a (S-nickel-S-phenylene-O)-strontium-(O-phenylene-S-selenium-S) hybrid copolymer publication-title: Solid State Commun doi: 10.1016/j.ssc.2007.01.011 – ident: CR67 – volume: 20 start-page: 175602 issue: 17 year: 2009 ident: CR24 article-title: An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity publication-title: Nanotechnology doi: 10.1088/0957-4484/20/17/175602 – volume: 9 start-page: 243 issue: 1 year: 2009 end-page: 248 ident: CR59 article-title: A novel one-step electrochemical method to obtain crystalline titanium dioxide films at low temperature publication-title: Curr Appl Phys doi: 10.1016/j.cap.2008.02.004 – volume: 4 start-page: 1 issue: 1 year: 2014 end-page: 10 ident: CR75 article-title: High energy density asymmetric supercapacitor based on NiOOH/Ni 3 S 2/3D graphene and Fe 3 O 4/graphene composite electrodes publication-title: Sci Rep – volume: 9 start-page: 83 issue: 1 year: 2007 end-page: 88 ident: CR126 article-title: Achieving high electrode specific capacitance with materials of low mass specific capacitance: potentiostatically grown thick micro-nanoporous PEDOT films publication-title: Electrochem Commun doi: 10.1016/j.elecom.2006.08.037 – volume: 65 start-page: 295 issue: 2–3 year: 2004 end-page: 301 ident: CR77 article-title: Capacitance properties of poly (3, 4-ethylenedioxythiophene)/carbon nanotubes composites publication-title: J Phys Chem Solids doi: 10.1016/j.jpcs.2003.10.051 – volume: 161 start-page: 1141 issue: 11–12 year: 2011 end-page: 1144 ident: CR140 article-title: Toward a high specific power and high stability polypyrrole supercapacitors publication-title: Synth Met doi: 10.1016/j.synthmet.2011.01.011 – volume: 1 start-page: 211 year: 2021 end-page: 240 ident: CR79 article-title: Renewable biomass-derived carbons for electrochemical capacitor applications publication-title: SusMat doi: 10.1002/sus2.8 – volume: 134 start-page: 179 issue: 1–2 year: 2000 end-page: 195 ident: CR45 article-title: Supercapacitors and electrochemical pulse sources publication-title: Solid State Ion doi: 10.1016/S0167-2738(00)00725-6 – volume: 6 start-page: 4578 issue: 6 year: 2014 end-page: 4586 ident: CR165 article-title: Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange publication-title: ACS Appl Mater Interfaces doi: 10.1021/am500421r – volume: 5 start-page: 9656 issue: 19 year: 2013 end-page: 9662 ident: CR147 article-title: High-performance supercapacitor electrodes based on graphene achieved by thermal treatment with the aid of nitric acid publication-title: ACS Appl Mater Interfaces doi: 10.1021/am402686r – volume: 95 start-page: 183 year: 2019 end-page: 195 ident: CR101 article-title: Upcycling brewer’s spent grain waste into activated carbon and carbon nanotubes via two-stage activation for energy and other applications publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.6220 – volume: 186 start-page: 108199 year: 2020 ident: CR1 article-title: Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors publication-title: Mater Des doi: 10.1016/j.matdes.2019.108199 – volume: 24 start-page: 3567 issue: 18 year: 2012 end-page: 3573 ident: CR66 article-title: Electrodeposition of crystalline Co3O4 a catalyst for the oxygen evolution reaction publication-title: Chem Mater doi: 10.1021/cm3012205 – volume: 104 start-page: 13574 issue: 34 year: 2007 end-page: 13577 ident: CR104 article-title: Flexible energy storage devices based on nanocomposite paper publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0706508104 – volume: 3 start-page: 213 issue: 5 year: 2000 ident: CR36 article-title: Networks of electron-conducting polymer in matrices of ion-conducting polymers applications to fast electrodes publication-title: Electrochem Solid State Lett doi: 10.1149/1.1391005 – volume: 40 start-page: 2169 issue: 1 year: 2014 end-page: 2172 ident: CR87 article-title: Visible light-induced photocatalytic activity of SiO2/carbon cluster composite materials publication-title: Ceram Int doi: 10.1016/j.ceramint.2013.07.134 – volume: 47 start-page: 1021 issue: 3 year: 2011 end-page: 1023 ident: CR160 article-title: Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity publication-title: Chem Commun doi: 10.1039/C0CC03594G – volume: 42 start-page: 3708 issue: 11 year: 2007 end-page: 3713 ident: CR60 article-title: Electronic properties of calcined materials from a scandium-O-phenylene-O-yttrium-O-phenylene hybrid copolymer publication-title: J Mater Sci doi: 10.1007/s10853-006-0394-z – volume: 83 start-page: 107 year: 2014 end-page: 112 ident: CR15 article-title: Electrochemical synthesis, characterization and capacitive properties of novel thiophene based conjugated polymer publication-title: React Funct Polym doi: 10.1016/j.reactfunctpolym.2014.07.014 – volume: 82 start-page: 547 issue: 5 year: 2008 end-page: 550 ident: CR57 article-title: Cathodic electrodeposition of nanoporous ZnO thin films from new electrochemical bath and their photoinduced hydrophilic properties publication-title: Vacuum doi: 10.1016/j.vacuum.2007.06.002 – volume: 877 start-page: 160301 year: 2021 ident: CR93 article-title: Uniform phosphorus doped CoWO4@ NiWO4 nanocomposites for asymmetric supercapacitors publication-title: J Alloys Comp doi: 10.1016/j.jallcom.2021.160301 – volume: 63 start-page: 181 year: 2018 end-page: 190 ident: CR114 article-title: Mesoporous Fe–Ni–Co ternary oxide nanoflake arrays on Ni foam for high-performance supercapacitor applications publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2018.02.014 – volume: 538 start-page: 177 year: 2012 end-page: 182 ident: CR86 article-title: Photo-electronic behavior of Cu2O-and/or CeO2-loaded TiO2/carbon cluster nanocomposite materials publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2012.05.113 – volume: 135 start-page: 120 issue: 2 year: 2006 end-page: 124 ident: CR151 article-title: Electronic behavior of calcined material obtained from a tantalum-O-phenylene-S-tin-S-phenylene-O hybrid copolymer publication-title: Mater Sci Eng B doi: 10.1016/j.mseb.2006.08.047 – volume: 98 start-page: 32 year: 2013 end-page: 38 ident: CR49 article-title: Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.02.094 – volume: 347 start-page: 136277 year: 2020 ident: CR17 article-title: Mixed metal oxides in synergy at nanoscale: electrospray induced porosity of in situ grown film electrode for use in electrochemical capacitor publication-title: Electrochim Acta doi: 10.1016/j.electacta.2020.136277 – volume: 81 start-page: 680 issue: 5 year: 2007 end-page: 685 ident: CR61 article-title: Electronic nature of vanadium nitride–carbon cluster composite materials obtained by the calcination of oxovanadylphthalocyanine publication-title: Vacuum doi: 10.1016/j.vacuum.2006.09.012 – volume: 78 start-page: 212 year: 2012 end-page: 222 ident: CR35 article-title: High performance hybrid supercapacitor based on two nanostructured conducting polymers: self-doped polyaniline and polypyrrole nanofibers publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.05.139 – volume: 45 start-page: 8335 issue: 6 year: 2021 end-page: 8346 ident: CR7 article-title: Recent advances in biomass-derived carbon, mesoporous materials, and transition metal nitrides as new electrode materials for supercapacitor: a short review publication-title: IJER – volume: 468 start-page: L27 issue: 1–2 year: 2009 end-page: L32 ident: CR85 article-title: The electronic behavior of V2O3/TiO2/carbon clusters composite materials obtained by the calcination of a V (acac) 3/TiO (acac) 2/polyacrylic acid complex publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2008.01.050 – volume: 4 start-page: 1 issue: 1 year: 2014 end-page: 9 ident: CR142 article-title: Superior asymmetric supercapacitor based on Ni-Co oxide nanosheets and carbon nanorods publication-title: Sci Rep – volume: 80 start-page: 142 issue: 1–2 year: 1999 end-page: 148 ident: CR71 article-title: Polythiophene-based supercapacitors publication-title: J Power Sour doi: 10.1016/S0378-7753(98)00258-4 – volume: 8 start-page: 340 issue: 10 year: 2018 ident: CR122 article-title: Mixed nickel-cobalt-molybdenum metal oxide nanosheet arrays for hybrid supercapacitor applications publication-title: Coatings doi: 10.3390/coatings8100340 – volume: 35 start-page: 405 issue: 3 year: 2012 end-page: 414 ident: CR108 article-title: Studies on biphenyl disulphonic acid doped polyanilines: synthesis, characterization and electrochemistry publication-title: Bull Mater Sci doi: 10.1007/s12034-012-0315-5 – volume: 26 start-page: 3256 issue: 5 year: 2015 end-page: 3261 ident: CR69 article-title: Synthesis and characterization of nanostructured Zn-WO 3 and ZnWO 4 by simple solution growth technique publication-title: J Mater Sci: Mater Electron – volume: 249 start-page: 216 year: 2014 end-page: 225 ident: CR80 article-title: High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching publication-title: Chem Eng J doi: 10.1016/j.cej.2014.03.083 – volume: 6 start-page: 19318 issue: 21 year: 2014 end-page: 19326 ident: CR41 article-title: CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications publication-title: ACS Appl Mater Interfaces doi: 10.1021/am5053784 – volume: 6 start-page: 4196 issue: 6 year: 2014 end-page: 4206 ident: CR106 article-title: Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration publication-title: ACS Appl Mater Interfaces doi: 10.1021/am405849n – volume: 50 start-page: 843 issue: 2–3 year: 2004 end-page: 847 ident: CR113 article-title: Poly (ethylenedioxythiophene)(PEDOT) as polymer electrode in redox supercapacitor publication-title: Electrochim Acta doi: 10.1016/j.electacta.2004.02.055 – ident: CR62 – volume: 110 start-page: 222 issue: 2–3 year: 2008 end-page: 227 ident: CR159 article-title: Comparative study of Li [Ni1/3Co1/3Mn1/3] O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2008.01.032 – volume: 9 start-page: 592 issue: 3 year: 2009 end-page: 597 ident: CR84 article-title: The electronic behaviors of visible light sensitive Nb2O5/Cr2O3/carbon clusters composite materials publication-title: Curr Appl Phys doi: 10.1016/j.cap.2008.05.006 – ident: 2124_CR38 doi: 10.1039/pc095163 – volume: 19 start-page: 3645 year: 2021 ident: 2124_CR81 publication-title: Environ Chem Lett doi: 10.1007/s10311-021-01268-x – volume: 134 start-page: 179 issue: 1–2 year: 2000 ident: 2124_CR45 publication-title: Solid State Ion doi: 10.1016/S0167-2738(00)00725-6 – volume: 50 start-page: 843 issue: 2–3 year: 2004 ident: 2124_CR113 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2004.02.055 – volume: 83 start-page: 107 year: 2014 ident: 2124_CR15 publication-title: React Funct Polym doi: 10.1016/j.reactfunctpolym.2014.07.014 – volume: 15 start-page: 938 issue: 13 year: 2020 ident: 2124_CR163 publication-title: Micro Nano Lett doi: 10.1049/mnl.2020.0400 – volume: 24 start-page: 3567 issue: 18 year: 2012 ident: 2124_CR66 publication-title: Chem Mater doi: 10.1021/cm3012205 – volume: 27 start-page: 2926 issue: 3 year: 2016 ident: 2124_CR68 publication-title: J Mater Sci: Mater Electron – volume: 4 start-page: 1 issue: 1 year: 2014 ident: 2124_CR75 publication-title: Sci Rep doi: 10.1038/srep07274 – volume: 13 start-page: 11 issue: 1 year: 2020 ident: 2124_CR123 publication-title: Chem Sus Chem doi: 10.1002/cssc.201902071 – volume: 8 start-page: 4571 issue: 5 year: 2014 ident: 2124_CR162 publication-title: ACS Nano doi: 10.1021/nn5001386 – volume: 4 start-page: 1 issue: 1 year: 2014 ident: 2124_CR142 publication-title: Sci Rep – volume: 347 start-page: 136277 year: 2020 ident: 2124_CR17 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2020.136277 – volume: 68 start-page: 365 issue: 3–4 year: 2001 ident: 2124_CR76 publication-title: Sol Energy Mater Sol Cells doi: 10.1016/S0927-0248(00)00369-X – volume: 65 start-page: 295 issue: 2–3 year: 2004 ident: 2124_CR77 publication-title: J Phys Chem Solids doi: 10.1016/j.jpcs.2003.10.051 – volume: 116 start-page: 20173 issue: 38 year: 2012 ident: 2124_CR158 publication-title: The J Phys Chem C doi: 10.1021/jp304809r – volume: 5 start-page: 811 issue: 2 year: 2011 ident: 2124_CR48 publication-title: ACS Nano doi: 10.1021/nn1017457 – volume: 5 start-page: 1596 issue: 5 year: 2013 ident: 2124_CR64 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am3021894 – volume: 33 start-page: 465 issue: 6 year: 2003 ident: 2124_CR130 publication-title: J Appl Electrochem doi: 10.1023/A:1024439023251 – volume: 109 start-page: 720 year: 2013 ident: 2124_CR99 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.07.138 – volume: 112 start-page: 12225 issue: 32 year: 2008 ident: 2124_CR8 publication-title: The J Phys Chem C doi: 10.1021/jp8027353 – volume: 155 start-page: 232 issue: 1 year: 2005 ident: 2124_CR34 publication-title: Synth Met doi: 10.1016/j.synthmet.2005.08.003 – volume: 51 start-page: 52 year: 2013 ident: 2124_CR33 publication-title: Carbon doi: 10.1016/j.carbon.2012.08.009 – volume: 45 start-page: 8335 issue: 6 year: 2021 ident: 2124_CR7 publication-title: IJER – volume: 263 start-page: 236 year: 2012 ident: 2124_CR120 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2012.09.036 – volume: 26 start-page: 3256 issue: 5 year: 2015 ident: 2124_CR69 publication-title: J Mater Sci: Mater Electron – volume: 77 start-page: 213 year: 2002 ident: 2124_CR28 publication-title: Fuel Process Technol doi: 10.1016/S0378-3820(02)00078-4 – volume: 14 start-page: 1610 issue: 4 year: 2002 ident: 2124_CR46 publication-title: Chem Mater doi: 10.1021/cm010744r – volume: 150 start-page: A747 issue: 6 year: 2003 ident: 2124_CR135 publication-title: J Electrochem Soc doi: 10.1149/1.1571530 – volume: 50 start-page: 6482 issue: 14 year: 2011 ident: 2124_CR136 publication-title: Inorg Chem doi: 10.1021/ic200309t – volume: 70 start-page: 91 year: 2012 ident: 2124_CR100 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.03.060 – volume: 14 start-page: 7779 issue: 22 year: 2021 ident: 2124_CR157 publication-title: Energies doi: 10.3390/en14227779 – volume: 98 start-page: 32 year: 2013 ident: 2124_CR49 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.02.094 – volume: 45 start-page: 3813 issue: 22–23 year: 2000 ident: 2124_CR129 publication-title: Electrochim Acta doi: 10.1016/S0013-4686(00)00466-7 – volume: 127 start-page: 25 issue: 1 year: 2003 ident: 2124_CR63 publication-title: Solid State Commun doi: 10.1016/S0038-1098(03)00373-9 – volume: 1 start-page: 3706 issue: 11 year: 2013 ident: 2124_CR164 publication-title: J Mater Chem A doi: 10.1039/c3ta00981e – volume: 2 start-page: 2293 issue: 8 year: 2010 ident: 2124_CR11 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am100343a – volume: 149 start-page: A973 issue: 8 year: 2002 ident: 2124_CR127 publication-title: J Electrochem Soc doi: 10.1149/1.1485773 – volume: 40 start-page: 2169 issue: 1 year: 2014 ident: 2124_CR87 publication-title: Ceram Int doi: 10.1016/j.ceramint.2013.07.134 – volume: 110 start-page: 222 issue: 2–3 year: 2008 ident: 2124_CR159 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2008.01.032 – volume: 249 start-page: 216 year: 2014 ident: 2124_CR80 publication-title: Chem Eng J doi: 10.1016/j.cej.2014.03.083 – volume: 194 start-page: 1222 issue: 2 year: 2009 ident: 2124_CR105 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2009.06.068 – volume: 473 start-page: 317 issue: 1–2 year: 2008 ident: 2124_CR74 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2007.03.087 – volume: 80 start-page: 142 issue: 1–2 year: 1999 ident: 2124_CR71 publication-title: J Power Sour doi: 10.1016/S0378-7753(98)00258-4 – volume: 11 start-page: 23374 issue: 38 year: 2021 ident: 2124_CR121 publication-title: RSC Adv doi: 10.1039/D1RA04341B – volume: 138 start-page: 1539 issue: 6 year: 1991 ident: 2124_CR21 publication-title: J Electrochem Soc doi: 10.1149/1.2085829 – volume: 18 start-page: 397 issue: 4 year: 2018 ident: 2124_CR54 publication-title: Curr Appl Phys doi: 10.1016/j.cap.2018.01.019 – volume: 152 start-page: 172 year: 2015 ident: 2124_CR43 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2014.11.127 – volume: 8 start-page: 1500 issue: 2 year: 2014 ident: 2124_CR23 publication-title: ACS Nano doi: 10.1021/nn405595r – volume: 8 start-page: 937 issue: 6 year: 2006 ident: 2124_CR27 publication-title: Electrochem Commun doi: 10.1016/j.elecom.2006.03.035 – volume: 195 start-page: 7880 issue: 24 year: 2010 ident: 2124_CR47 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2010.06.036 – volume: 58 start-page: 1189 year: 2016 ident: 2124_CR37 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.12.249 – volume: 42 start-page: 3708 issue: 11 year: 2007 ident: 2124_CR60 publication-title: J Mater Sci doi: 10.1007/s10853-006-0394-z – volume: 187 start-page: 640 issue: 2 year: 2009 ident: 2124_CR2 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2008.11.012 – volume: 272 start-page: 979 year: 2014 ident: 2124_CR12 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2014.09.015 – volume: 81 start-page: 680 issue: 5 year: 2007 ident: 2124_CR61 publication-title: Vacuum doi: 10.1016/j.vacuum.2006.09.012 – volume: 113 start-page: 54 issue: 1 year: 2009 ident: 2124_CR98 publication-title: The J Phys Chem C doi: 10.1021/jp806454r – volume: 41 start-page: 13284 issue: 43 year: 2012 ident: 2124_CR103 publication-title: Dalton Trans doi: 10.1039/c2dt31916k – volume: 4 start-page: 1600289 issue: 2 year: 2017 ident: 2124_CR143 publication-title: Adv Sci doi: 10.1002/advs.201600289 – volume: 47 start-page: 1021 issue: 3 year: 2011 ident: 2124_CR160 publication-title: Chem Commun doi: 10.1039/C0CC03594G – volume: 9 start-page: 592 issue: 3 year: 2009 ident: 2124_CR84 publication-title: Curr Appl Phys doi: 10.1016/j.cap.2008.05.006 – volume: 93 start-page: 475 issue: 1–3 year: 2003 ident: 2124_CR50 publication-title: Sens Actuators B Chem doi: 10.1016/S0925-4005(03)00198-9 – volume: 189 start-page: 280 issue: 2–3 year: 2007 ident: 2124_CR83 publication-title: J Photochem Photobiol A doi: 10.1016/j.jphotochem.2007.02.014 – volume: 300 start-page: 29 year: 2014 ident: 2124_CR118 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2014.01.186 – volume: 9 start-page: 155 issue: 1 year: 2009 ident: 2124_CR94 publication-title: Curr Appl Phys doi: 10.1016/j.cap.2008.01.005 – volume: 20 start-page: 9735 issue: 43 year: 2010 ident: 2124_CR19 publication-title: J Mater Chem doi: 10.1039/c0jm01573c – volume: 9 start-page: 83 issue: 1 year: 2007 ident: 2124_CR126 publication-title: Electrochem Commun doi: 10.1016/j.elecom.2006.08.037 – volume: 40 start-page: 1423 issue: 1 year: 2014 ident: 2124_CR4 publication-title: Ceram Int doi: 10.1016/j.ceramint.2013.07.025 – volume: 877 start-page: 160301 year: 2021 ident: 2124_CR93 publication-title: J Alloys Comp doi: 10.1016/j.jallcom.2021.160301 – volume: 6 start-page: 4196 issue: 6 year: 2014 ident: 2124_CR106 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am405849n – volume: 7 start-page: 18 issue: 1 year: 2015 ident: 2124_CR131 publication-title: Adv Sci Eng Med doi: 10.1166/asem.2015.1648 – volume: 8 start-page: 621 issue: 5 year: 2021 ident: 2124_CR133 publication-title: J Traffic Transp Eng (english Edition) doi: 10.1016/j.jtte.2021.09.001 – volume: 35 start-page: 405 issue: 3 year: 2012 ident: 2124_CR108 publication-title: Bull Mater Sci doi: 10.1007/s12034-012-0315-5 – volume: 9 start-page: 243 issue: 1 year: 2009 ident: 2124_CR59 publication-title: Curr Appl Phys doi: 10.1016/j.cap.2008.02.004 – volume: 787 start-page: 3 year: 2015 ident: 2124_CR56 publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.787.3 – volume: 21 start-page: 5128 issue: 13 year: 2011 ident: 2124_CR116 publication-title: J Mater Chem doi: 10.1039/c0jm04085a – volume: 115 start-page: 15646 issue: 31 year: 2011 ident: 2124_CR92 publication-title: The J Phys Chem C doi: 10.1021/jp201200e – volume: 4 start-page: 4247 issue: 7 year: 2010 ident: 2124_CR153 publication-title: ACS Nano doi: 10.1021/nn100592d – volume: 25 start-page: 1 issue: 1 year: 1964 ident: 2124_CR112 publication-title: J Phys Chem Solids doi: 10.1016/0022-3697(64)90156-8 – volume: 91 start-page: 37 issue: 1 year: 2000 ident: 2124_CR13 publication-title: J Power Sour doi: 10.1016/S0378-7753(00)00485-7 – volume: 11 start-page: 387 issue: 5 year: 2001 ident: 2124_CR3 publication-title: Adv Func Mater doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G – volume: 20 start-page: 175602 issue: 17 year: 2009 ident: 2124_CR24 publication-title: Nanotechnology doi: 10.1088/0957-4484/20/17/175602 – volume: 82 start-page: 547 issue: 5 year: 2008 ident: 2124_CR57 publication-title: Vacuum doi: 10.1016/j.vacuum.2007.06.002 – volume: 7 start-page: 1348 issue: 2 year: 2015 ident: 2124_CR141 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am507656q – volume: 49 start-page: 3651 issue: 11 year: 2013 ident: 2124_CR144 publication-title: Eur Polymer J doi: 10.1016/j.eurpolymj.2013.08.001 – volume: 8 start-page: 211 issue: 9 year: 2019 ident: 2124_CR97 publication-title: Int J Eng Tech – volume: 10 start-page: 23163 issue: 27 year: 2018 ident: 2124_CR32 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b07082 – volume: 65 start-page: 2628 issue: 17–18 year: 2011 ident: 2124_CR26 publication-title: Mater Lett doi: 10.1016/j.matlet.2011.05.114 – volume: 5 start-page: 9656 issue: 19 year: 2013 ident: 2124_CR147 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am402686r – ident: 2124_CR125 doi: 10.1142/9789814287005_0033 – volume: 7 start-page: 9366 issue: 10 year: 2013 ident: 2124_CR72 publication-title: ACS Nano doi: 10.1021/nn4040734 – volume: 158 start-page: 1523 issue: 2 year: 2006 ident: 2124_CR31 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2005.10.090 – volume: 3 start-page: 2063 issue: 6 year: 2011 ident: 2124_CR90 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am200294k – volume: 272 start-page: 915 year: 2014 ident: 2124_CR155 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2014.09.013 – volume: 16 start-page: 12214 issue: 24 year: 2014 ident: 2124_CR137 publication-title: Phys Chem Chem Phys doi: 10.1039/c4cp01200c – volume: 585 start-page: 505 year: 2021 ident: 2124_CR82 publication-title: J Coll Interface Sci doi: 10.1016/j.jcis.2020.10.032 – volume: 115 start-page: 17599 issue: 35 year: 2011 ident: 2124_CR138 publication-title: The J Phys Chem C doi: 10.1021/jp2049684 – volume: 162 start-page: 868 issue: 9–10 year: 2012 ident: 2124_CR6 publication-title: Synth Met doi: 10.1016/j.synthmet.2012.03.020 – volume: 34 start-page: 6558 issue: 6 year: 2020 ident: 2124_CR52 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c00430 – volume: 4 start-page: 5835 issue: 10 year: 2010 ident: 2124_CR146 publication-title: ACS Nano doi: 10.1021/nn101754k – volume: 6 start-page: 19318 issue: 21 year: 2014 ident: 2124_CR41 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am5053784 – volume: 65 start-page: 53 issue: 1–2 year: 1997 ident: 2124_CR22 publication-title: J Power Sour doi: 10.1016/S0378-7753(97)02468-3 – volume: 7 start-page: 100901 issue: 10 year: 2019 ident: 2124_CR44 publication-title: APL Mater doi: 10.1063/1.5116146 – ident: 2124_CR67 doi: 10.1016/j.mset.2020.10.012 – volume: 19 start-page: 6977 issue: 38 year: 2009 ident: 2124_CR111 publication-title: J Mater Chem doi: 10.1039/b916666a – volume: 1 start-page: 594 issue: 3 year: 2013 ident: 2124_CR154 publication-title: J Mater Chem A doi: 10.1039/C2TA00055E – volume: 15 start-page: 107 issue: 1 year: 2009 ident: 2124_CR55 publication-title: Ionics doi: 10.1007/s11581-008-0227-y – volume: 114 start-page: 5203 issue: 11 year: 2010 ident: 2124_CR53 publication-title: The J Phys Chem C doi: 10.1021/jp9097155 – volume: 732 start-page: 139288 year: 2020 ident: 2124_CR5 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.139288 – volume: 78 start-page: 212 year: 2012 ident: 2124_CR35 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.05.139 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 2124_CR102 publication-title: Sci Rep doi: 10.1038/s41598-020-59481-7 – volume: 22 start-page: 2632 issue: 12 year: 2012 ident: 2124_CR152 publication-title: Adv Func Mater doi: 10.1002/adfm.201102839 – volume: 196 start-page: 2387 issue: 4 year: 2011 ident: 2124_CR16 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2010.09.078 – volume: 5 start-page: 2188 issue: 6 year: 2013 ident: 2124_CR134 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am400012h – volume: 27 start-page: 1350215 issue: 29 year: 2013 ident: 2124_CR132 publication-title: Mod Phys Lett B doi: 10.1142/S0217984913502151 – ident: 2124_CR62 – volume: 161 start-page: 1141 issue: 11–12 year: 2011 ident: 2124_CR140 publication-title: Synth Met doi: 10.1016/j.synthmet.2011.01.011 – ident: 2124_CR119 – volume: 5 start-page: 373 issue: 3 year: 2015 ident: 2124_CR117 publication-title: Appl Nanosci doi: 10.1007/s13204-014-0327-0 – volume: 75 start-page: 345 issue: 4 year: 2007 ident: 2124_CR89 publication-title: Electrochemistry doi: 10.5796/electrochemistry.75.345 – volume: 222 start-page: 410 year: 2013 ident: 2124_CR166 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2012.09.004 – volume: 48 start-page: 575 issue: 5 year: 2003 ident: 2124_CR148 publication-title: Electrochim Acta doi: 10.1016/S0013-4686(02)00727-2 – volume: 148 start-page: A156 issue: 2 year: 2001 ident: 2124_CR40 publication-title: J Electrochem Soc doi: 10.1149/1.1342166 – volume: 109 start-page: 20207 issue: 43 year: 2005 ident: 2124_CR128 publication-title: J Phys Chem B doi: 10.1021/jp0543330 – volume: 51 start-page: 14958 issue: 46 year: 2012 ident: 2124_CR156 publication-title: Ind Eng Chem Res doi: 10.1021/ie301642g – volume: 227 start-page: 254 year: 2013 ident: 2124_CR150 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2012.11.040 – volume: 63 start-page: 181 year: 2018 ident: 2124_CR114 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2018.02.014 – volume: 114 start-page: 658 issue: 1 year: 2010 ident: 2124_CR109 publication-title: The J Phys Chem C doi: 10.1021/jp908739q – volume: 6 start-page: 4578 issue: 6 year: 2014 ident: 2124_CR165 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am500421r – volume: 20 start-page: 3221 issue: 16 year: 2010 ident: 2124_CR110 publication-title: J Mater Chem doi: 10.1039/b924247c – volume: 8 start-page: 340 issue: 10 year: 2018 ident: 2124_CR122 publication-title: Coatings doi: 10.3390/coatings8100340 – volume: 4 start-page: 1288 issue: 4 year: 2011 ident: 2124_CR39 publication-title: Energy Environ Sci doi: 10.1039/c0ee00669f – volume: 4 start-page: 6039 issue: 10 year: 2010 ident: 2124_CR73 publication-title: ACS Nano doi: 10.1021/nn101595y – volume: 538 start-page: 177 year: 2012 ident: 2124_CR86 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2012.05.113 – volume: 194 start-page: 29 year: 2014 ident: 2124_CR20 publication-title: Synth Met doi: 10.1016/j.synthmet.2014.04.014 – volume: 125 start-page: 92 year: 2014 ident: 2124_CR18 publication-title: Mater Lett doi: 10.1016/j.matlet.2014.03.124 – volume: 3 start-page: 213 issue: 5 year: 2000 ident: 2124_CR36 publication-title: Electrochem Solid State Lett doi: 10.1149/1.1391005 – volume: 81 start-page: 708 issue: 5 year: 2007 ident: 2124_CR58 publication-title: Vacuum doi: 10.1016/j.vacuum.2006.09.013 – volume: 561 start-page: 262 year: 2013 ident: 2124_CR107 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2013.02.015 – volume: 156 start-page: A1000 issue: 12 year: 2009 ident: 2124_CR65 publication-title: J Electrochem Soc doi: 10.1149/1.3236500 – volume: 55 start-page: 8388 issue: 28 year: 2010 ident: 2124_CR91 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2010.07.042 – volume: 142 start-page: 99 issue: 1–2 year: 2007 ident: 2124_CR29 publication-title: Solid State Commun doi: 10.1016/j.ssc.2007.01.011 – volume: 48 start-page: 1711 issue: 4 year: 2013 ident: 2124_CR9 publication-title: J Mater Sci doi: 10.1007/s10853-012-6929-6 – volume: 103 start-page: 127 issue: 1 year: 2007 ident: 2124_CR88 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2007.01.022 – volume: 135 start-page: 120 issue: 2 year: 2006 ident: 2124_CR151 publication-title: Mater Sci Eng B doi: 10.1016/j.mseb.2006.08.047 – volume: 186 start-page: 108199 year: 2020 ident: 2124_CR1 publication-title: Mater Des doi: 10.1016/j.matdes.2019.108199 – volume: 149 start-page: A346 issue: 3 year: 2002 ident: 2124_CR96 publication-title: J Electrochem Soc doi: 10.1149/1.1449951 – volume: 252 start-page: 7487 issue: 20 year: 2006 ident: 2124_CR124 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2005.09.004 – volume: 15 start-page: 2297 issue: 23 year: 2005 ident: 2124_CR145 publication-title: J Mater Chem doi: 10.1039/b418835g – volume: 214 start-page: 91 year: 2012 ident: 2124_CR70 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2012.04.076 – volume: 95 start-page: 183 year: 2019 ident: 2124_CR101 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.6220 – volume: 148 start-page: A1 issue: 1 year: 2001 ident: 2124_CR30 publication-title: J Electrochem Soc doi: 10.1149/1.1339036 – volume: 104 start-page: 13574 issue: 34 year: 2007 ident: 2124_CR104 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0706508104 – volume: 6 start-page: 15302 issue: 17 year: 2014 ident: 2124_CR161 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am503783t – volume: 22 start-page: 23710 issue: 45 year: 2012 ident: 2124_CR139 publication-title: J Mater Chem doi: 10.1039/c2jm34066f – volume: 13 start-page: 5038 issue: 11 year: 2011 ident: 2124_CR115 publication-title: Phys Chem Chem Phys doi: 10.1039/c0cp02054k – volume: 204 start-page: 163 year: 2015 ident: 2124_CR149 publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2014.11.021 – volume: 6 start-page: 15905 issue: 18 year: 2014 ident: 2124_CR14 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am5035494 – volume: 112 start-page: 4406 issue: 11 year: 2008 ident: 2124_CR25 publication-title: The J Phys Chem C doi: 10.1021/jp7108785 – volume: 468 start-page: L27 issue: 1–2 year: 2009 ident: 2124_CR85 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2008.01.050 – volume: 708 start-page: 146 year: 2017 ident: 2124_CR42 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2017.02.301 – volume: 53 start-page: 466 issue: 2 year: 2010 ident: 2124_CR10 publication-title: J Sol-Gel Sci Technol doi: 10.1007/s10971-009-2098-8 – volume: 115 start-page: 11880 issue: 23 year: 2011 ident: 2124_CR51 publication-title: The J Phys Chem C doi: 10.1021/jp2036982 – volume: 118 start-page: 518 issue: 1–3 year: 2009 ident: 2124_CR95 publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2008.09.004 – volume: 1 start-page: 211 year: 2021 ident: 2124_CR79 publication-title: SusMat doi: 10.1002/sus2.8 – volume: 12 start-page: 1690 issue: 3 year: 2012 ident: 2124_CR78 publication-title: Nano Lett doi: 10.1021/nl300173j |
SSID | ssj0044050 ssib044732867 ssib029106359 |
Score | 2.5035517 |
SecondaryResourceType | review_article |
Snippet | Supercapacitors are gaining popularity as energy storage devices because of their quick charge/discharge rates, prolonged cycle stability, and high specific... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3371 |
SubjectTerms | Aqueous electrolytes Biochemistry Biotechnology Capacitors Carbon Chemistry Chemistry and Materials Science Chemistry/Food Science Cobalt oxides Conducting polymers Electrode materials Electrodes Electrolytic cells Energy storage Graphene High temperature Industrial Chemistry/Chemical Engineering Low cost Manganese dioxide Materials Science Medicinal Chemistry Metal oxides Metal sulfides Nickel oxides Nickel sulfide Nonaqueous electrolytes Physical properties Polymers Review Stability Sulfide compounds Supercapacitors Titanium dioxide Tungsten oxides |
Title | Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: a review |
URI | https://link.springer.com/article/10.1007/s11696-022-02124-0 https://www.proquest.com/docview/2667456811 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yHvQiPnF1lRy8uYEmTdPW27K4LB48ubC3kicIS7vsA_Tib3fS5yoqeCvJNIXOJPNNJvMFobs0ShS1zBIVCwsBinREcupIIp2zKdNa6PKU77OYzvjTPJrXRWHr5rR7k5IsV-qu2I2K8sAsI56WnBMI1PcjH7uDFc_YqLEiBg4QvGjrpDn3fDSiDcM4QJSgymAKAoKsLqX5-Rtf3VWHQb-lTUtvNDlGRzWMxKNK7ydoz-an6GDc3N52hj52CDTAsHDhMES-ntwVxsPLYvHuN6yHWMuVKnIMuLUyxSEu3l6NxTI3eL1dOP_cdmJAuNC6tCsNPlbDYrDCuxnwByxxVQtzjmaTx5fxlNR3LRANk3BDjI6pSwORUGdjB02h4EqmTjNNNWXGycgGOg0jKuPQxDGNjHZWqsSK0AWhDS9QLy9ye4mwocan91LlyfUAvUnmEqWlUZE1SivRR7T5pZmuicj9fRiLrKNQ9mrIQA1ZqYYs6KP79p1lRcPxp_Sg0VRWT8l1Bkgk5p5ujfbRsNFe1_37aFf_E79Gh6w0IL9TM0C9zWprbwC4bNRtaaefShHjuA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6ih3oRn1itmoM3G9hkd7O73kqxVK09tdDbkicIZbf0AXrxtzvZR1tFBW9Lks3CziTzTWbmC0K3SRhLapghMuIGHBRhiQioJbGw1iRMKa6KLN8h74-Dp0k4qYrCFnW2ex2SLHbqTbEb5UXCLCOOljwg4KjvARiIXSLXmHVqLWJgAMGKro10EDg-Gr52wwKAKF4ZweQEBrKqlObnb3w1VxsM-i1sWlij3iE6qGAk7pRyP0I7JjtGjW59e9sJ-tgi0ADFwrnF4Pk6cleYD8_y6bs7sG5jJeYyzzDg1lIV2zh_e9UGi0zjxWpq3fO6EwPChdaZmSuwsQo2gznejoDfY4HLWphTNO49jLp9Ut21QBQswiXRKqI28XhMrYksNPk8kCKxiimqKNNWhMZTiR9SEfk6imiolTVCxob71vONf4Z2szwz5whrql14L5GOXA_Qm2A2lkpoGRotleRNROtfmqqKiNzdhzFNNxTKTgwpiCEtxJB6TXS3fmdW0nD8ObpVSyqtluQiBSQSBY5ujTZRu5bepvv32S7-N_wGNfqjl0E6eBw-X6J9ViiTO7Vpod3lfGWuAMQs5XWhs58x1-ar |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ioF7EJ66umoM3N9ikbdp6W1aX9YF4cMFbyROEpV3WFfTib3fS5yoqeCtpmtLM18yXTOYLQqdJGEtqmCEy4gYmKMISEVBLYmGtSZhSXBW7fO_5aBzcPIVPC1n8xW73OiRZ5jQ4laZsfj7V9rxNfKO82DzLiJMoDwhM2ldgOKYO12PWrxHFwBmCR20cdhA4bRreTMkCoCteGc3kBCqyKq3m53d8dV0tH_0WQi0803ATbVSUEvdLDGyhJZNto7VBfZLbDvpYENMAkOHcYvhcJ_QK7eFpPnl3i9c9rMRM5hkGDlvCsofzt2dtsMg0fnmdWHfd3MTAdqF0amYK_K2CgWGGF6PhF1jgMi9mF42HV4-DEanOXSAKenBOtIqoTTweU2siC0U-D6RIrGKKKsq0FaHxVOKHVES-jiIaamWNkLHhvvV84--h5SzPzD7CmmoX6kukE9oDJieYjaUSWoZGSyV5B9G6S1NViZK7szEmaSun7MyQghnSwgyp10FnzTPTUpLjz9rd2lJp9Xu-pMBKosBJr9EO6tXWa2__3trB_6qfoNWHy2F6d31_e4jWWYElt4DTRcvz2as5Aj4zl8cFZD8BnB_q5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigations+of+conducting+polymers%2C+carbon+materials%2C+oxide+and+sulfide+materials+for+supercapacitor+applications%3A+a+review&rft.jtitle=Chemical+papers&rft.au=Dhilip%2C+Kumar+R&rft.au=Nagarani%2C+S&rft.au=Sethuraman%2C+V&rft.au=Swetha%2C+Andra&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0366-6352&rft.eissn=1336-9075&rft.volume=76&rft.issue=6&rft.spage=3371&rft.epage=3385&rft_id=info:doi/10.1007%2Fs11696-022-02124-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0366-6352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0366-6352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0366-6352&client=summon |