Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: a review

Supercapacitors are gaining popularity as energy storage devices because of their quick charge/discharge rates, prolonged cycle stability, and high specific power. Low-cost active electrode materials have piqued the interest of researchers in energy storage applications, notably supercapacitor appli...

Full description

Saved in:
Bibliographic Details
Published inChemical papers Vol. 76; no. 6; pp. 3371 - 3385
Main Authors Dhilip Kumar, R., Nagarani, S., Sethuraman, V., Andra, Swetha, Dhinakaran, V.
Format Journal Article
LanguageEnglish
Published Warsaw Versita 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Supercapacitors are gaining popularity as energy storage devices because of their quick charge/discharge rates, prolonged cycle stability, and high specific power. Low-cost active electrode materials have piqued the interest of researchers in energy storage applications, notably supercapacitor applications. Carbon-based electrode materials have demonstrated excellent performance for electrochemical double-layer capacitors because of outstanding chemical and physical properties, low cost, large expanse, conduction, and extended life at high temperatures. Notably, graphene compound materials performed well for supercapacitors and had a long life of 335 000 cycles. Conducting polymers have exceptional and critical characteristics, such as metal-like conduction and reversible ability between redox states. Recent research interests include the creation of novel materials, namely mixed metal oxides and metal sulfides, for supercapacitors applications. The electrodes of supercapacitors, which are mostly made of metal oxides (Co 3 O 4 , MnO 2 , WO 3 , NiO, and TiO 2 ), have a high degree of stability and retention (up to 94%). Currently, metal sulfide-based materials, including CoNi 2 S 4 and Ni 3 S 2 , have attained specific capacitance values of up to 3296 F/g. When compared to standard capacitors, the supercapacitors outperformed them and employed high power density storage devices. The electrodes of supercapacitors, which are mostly made of metal oxides (Co 3 O 4 , MnO 2 , WO 3 , NiO, and TiO 2 ), have a high degree of stability and retention (up to 94 percent). Presently, the review focuses on active electrode materials for supercapacitors such as carbon-based materials, conducting polymers, metal oxides, and metal sulfide compounds. The objective of this review is fivefold: (1) to present the fabrication of symmetric and asymmetric supercapacitor cells; (2) to describe the performance of carbon-based materials for electrochemical double-layer capacitor; (3) to describe the performance of conducting polymers for supercapacitors in the aqueous and non-aqueous electrolyte; (4) to describe the high-performance metal oxide and metal sulfide for supercapacitor; (5) to outline the major challenges in the technology development and this technology is far more advanced than batteries and has been utilized in a wide range of sectors, including electronics, industries, medicine, and the military.
AbstractList Supercapacitors are gaining popularity as energy storage devices because of their quick charge/discharge rates, prolonged cycle stability, and high specific power. Low-cost active electrode materials have piqued the interest of researchers in energy storage applications, notably supercapacitor applications. Carbon-based electrode materials have demonstrated excellent performance for electrochemical double-layer capacitors because of outstanding chemical and physical properties, low cost, large expanse, conduction, and extended life at high temperatures. Notably, graphene compound materials performed well for supercapacitors and had a long life of 335 000 cycles. Conducting polymers have exceptional and critical characteristics, such as metal-like conduction and reversible ability between redox states. Recent research interests include the creation of novel materials, namely mixed metal oxides and metal sulfides, for supercapacitors applications. The electrodes of supercapacitors, which are mostly made of metal oxides (Co 3 O 4 , MnO 2 , WO 3 , NiO, and TiO 2 ), have a high degree of stability and retention (up to 94%). Currently, metal sulfide-based materials, including CoNi 2 S 4 and Ni 3 S 2 , have attained specific capacitance values of up to 3296 F/g. When compared to standard capacitors, the supercapacitors outperformed them and employed high power density storage devices. The electrodes of supercapacitors, which are mostly made of metal oxides (Co 3 O 4 , MnO 2 , WO 3 , NiO, and TiO 2 ), have a high degree of stability and retention (up to 94 percent). Presently, the review focuses on active electrode materials for supercapacitors such as carbon-based materials, conducting polymers, metal oxides, and metal sulfide compounds. The objective of this review is fivefold: (1) to present the fabrication of symmetric and asymmetric supercapacitor cells; (2) to describe the performance of carbon-based materials for electrochemical double-layer capacitor; (3) to describe the performance of conducting polymers for supercapacitors in the aqueous and non-aqueous electrolyte; (4) to describe the high-performance metal oxide and metal sulfide for supercapacitor; (5) to outline the major challenges in the technology development and this technology is far more advanced than batteries and has been utilized in a wide range of sectors, including electronics, industries, medicine, and the military.
Supercapacitors are gaining popularity as energy storage devices because of their quick charge/discharge rates, prolonged cycle stability, and high specific power. Low-cost active electrode materials have piqued the interest of researchers in energy storage applications, notably supercapacitor applications. Carbon-based electrode materials have demonstrated excellent performance for electrochemical double-layer capacitors because of outstanding chemical and physical properties, low cost, large expanse, conduction, and extended life at high temperatures. Notably, graphene compound materials performed well for supercapacitors and had a long life of 335 000 cycles. Conducting polymers have exceptional and critical characteristics, such as metal-like conduction and reversible ability between redox states. Recent research interests include the creation of novel materials, namely mixed metal oxides and metal sulfides, for supercapacitors applications. The electrodes of supercapacitors, which are mostly made of metal oxides (Co3O4, MnO2, WO3, NiO, and TiO2), have a high degree of stability and retention (up to 94%). Currently, metal sulfide-based materials, including CoNi2S4 and Ni3S2, have attained specific capacitance values of up to 3296 F/g. When compared to standard capacitors, the supercapacitors outperformed them and employed high power density storage devices. The electrodes of supercapacitors, which are mostly made of metal oxides (Co3O4, MnO2, WO3, NiO, and TiO2), have a high degree of stability and retention (up to 94 percent). Presently, the review focuses on active electrode materials for supercapacitors such as carbon-based materials, conducting polymers, metal oxides, and metal sulfide compounds. The objective of this review is fivefold: (1) to present the fabrication of symmetric and asymmetric supercapacitor cells; (2) to describe the performance of carbon-based materials for electrochemical double-layer capacitor; (3) to describe the performance of conducting polymers for supercapacitors in the aqueous and non-aqueous electrolyte; (4) to describe the high-performance metal oxide and metal sulfide for supercapacitor; (5) to outline the major challenges in the technology development and this technology is far more advanced than batteries and has been utilized in a wide range of sectors, including electronics, industries, medicine, and the military.
Author Nagarani, S.
Dhinakaran, V.
Dhilip Kumar, R.
Sethuraman, V.
Andra, Swetha
Author_xml – sequence: 1
  givenname: R.
  surname: Dhilip Kumar
  fullname: Dhilip Kumar, R.
  email: rajaiahdhilip@gmail.com, dhilipkumarr@citchennai.net
  organization: Center for Nanoscience and Technology, Chennai Institute of Technology
– sequence: 2
  givenname: S.
  surname: Nagarani
  fullname: Nagarani, S.
  organization: Center for Nanoscience and Technology, Chennai Institute of Technology
– sequence: 3
  givenname: V.
  surname: Sethuraman
  fullname: Sethuraman, V.
  organization: Center for Research, SSN College of Engineering
– sequence: 4
  givenname: Swetha
  surname: Andra
  fullname: Andra, Swetha
  email: swethavenkatesh3891@gmail.com
  organization: Center for Nanoscience and Technology, Chennai Institute of Technology
– sequence: 5
  givenname: V.
  surname: Dhinakaran
  fullname: Dhinakaran, V.
  organization: Center for Applied Research Mechanical Engineering, Chennai Institute of Technology Kundrathur
BookMark eNp9kEtPAyEUhYmpiW31D7gicesojxmYcWcaH02auNE1oQw0NFMYYabajb9d2jGauOiCAIf73cM9EzBy3mkALjG6wQjx24gxq1iGCEkLkzxDJ2BMirLIOKnQCIwRZSxjtCBnYBLjGqE8RwUag6-52-rY2ZXsrHcRegOVd3WvOutWsPXNbqNDvIZKhqV3cCM7HaxskuI_ba2hdDWMfWP2599HaHxIaquDkq1UtktX2baNVYPLHZQw6K3VH-fg1CRAX_zsU_D2-PA6e84WL0_z2f0iUxRXXVYrjk2FWImN5iZJlOVLWRlFFFaY1EYWGqmKFlhyWnOOi1oZLZelZtQgqukUXA192-Df-zSwWPs-uGQpCGM8L1JrnKrIUKWCjzFoI9pgNzLsBEZin7MYchYpZ3HIWaAElf-gNPBhzi5I2xxH6YDG5ONWOvz96gj1Dda-l2c
CitedBy_id crossref_primary_10_1016_j_mseb_2023_116776
crossref_primary_10_1016_j_aca_2024_343317
crossref_primary_10_3390_jcs6120376
crossref_primary_10_1080_25740881_2022_2121223
crossref_primary_10_3390_inorganics11040169
crossref_primary_10_1016_j_mseb_2024_117340
crossref_primary_10_1063_5_0177740
crossref_primary_10_1063_5_0175478
crossref_primary_10_1016_j_jpowsour_2025_236818
crossref_primary_10_1016_j_cej_2024_157533
crossref_primary_10_1007_s11581_024_05378_8
crossref_primary_10_1016_j_reactfunctpolym_2024_106101
crossref_primary_10_1007_s11696_024_03375_9
crossref_primary_10_1007_s10800_023_02051_2
crossref_primary_10_1016_j_est_2024_112572
crossref_primary_10_1002_jccs_202300412
crossref_primary_10_1016_j_est_2024_113040
crossref_primary_10_1016_j_jallcom_2025_179604
crossref_primary_10_1002_pssa_202300986
crossref_primary_10_1007_s11706_024_0695_7
crossref_primary_10_1016_j_inoche_2024_113588
crossref_primary_10_1002_app_54612
crossref_primary_10_1007_s00289_023_05014_x
crossref_primary_10_1016_j_jelechem_2022_116204
crossref_primary_10_1016_j_electacta_2023_143395
crossref_primary_10_1007_s42823_023_00478_3
crossref_primary_10_1039_D3TA06374G
crossref_primary_10_1007_s11696_023_03107_5
crossref_primary_10_1016_j_est_2024_111638
crossref_primary_10_1007_s11664_023_10532_5
crossref_primary_10_1038_s41598_024_80243_2
crossref_primary_10_1080_09593330_2024_2376288
crossref_primary_10_1016_j_jpowsour_2023_233181
crossref_primary_10_1002_elan_202400002
crossref_primary_10_1002_cey2_680
crossref_primary_10_1007_s10854_023_11622_0
crossref_primary_10_1016_j_renene_2024_120209
crossref_primary_10_1016_j_est_2024_113297
crossref_primary_10_1002_cnma_202400011
crossref_primary_10_1007_s42247_023_00547_3
crossref_primary_10_1007_s10800_023_01969_x
crossref_primary_10_1007_s42823_025_00857_y
crossref_primary_10_1088_2053_1591_ad04ae
crossref_primary_10_1016_j_est_2024_113151
crossref_primary_10_1007_s11581_023_04900_8
crossref_primary_10_1016_j_jpcs_2024_112025
crossref_primary_10_1007_s10854_022_09195_5
crossref_primary_10_1007_s12648_023_02840_7
Cites_doi 10.1016/j.scitotenv.2020.139288
10.1149/1.1339036
10.1021/jp304809r
10.1016/S0925-4005(03)00198-9
10.1149/1.1571530
10.1021/am5035494
10.1016/j.apsusc.2014.01.186
10.1016/j.jpowsour.2008.11.012
10.1016/j.jpowsour.2009.06.068
10.1142/S0217984913502151
10.1039/c2jm34066f
10.1002/advs.201600289
10.1021/am503783t
10.1016/j.jpowsour.2012.11.040
10.1039/c2dt31916k
10.1016/j.electacta.2012.03.060
10.5796/electrochemistry.75.345
10.1039/c0jm04085a
10.1021/acs.energyfuels.0c00430
10.1149/1.3236500
10.1039/c4cp01200c
10.1021/nn1017457
10.1016/j.cap.2008.01.005
10.1021/jp908739q
10.1016/j.synthmet.2012.03.020
10.1016/j.micromeso.2014.11.021
10.1002/cssc.201902071
10.1016/S0013-4686(00)00466-7
10.1016/S0038-1098(03)00373-9
10.1021/nn101754k
10.1016/j.jpowsour.2012.04.076
10.1021/nn100592d
10.1038/s41598-019-56847-4
10.1016/j.synthmet.2014.04.014
10.1016/S0378-7753(97)02468-3
10.1021/jp9097155
10.1021/am100343a
10.1016/j.eurpolymj.2013.08.001
10.1021/ie301642g
10.1149/1.1485773
10.1021/jp8027353
10.1021/am200294k
10.1021/jp806454r
10.1016/j.micromeso.2008.09.004
10.1039/b924247c
10.1166/asem.2015.1648
10.1021/ic200309t
10.1016/j.jpowsour.2012.09.004
10.1016/j.elecom.2006.03.035
10.1039/c0jm01573c
10.1039/c3ta00981e
10.1016/S0927-0248(00)00369-X
10.1063/1.5116146
10.1016/j.msea.2007.03.087
10.1016/j.jallcom.2013.02.015
10.1039/C2TA00055E
10.1023/A:1024439023251
10.1149/1.2085829
10.1016/j.electacta.2014.11.127
10.1039/c0ee00669f
10.1021/jp201200e
10.1016/0022-3697(64)90156-8
10.1021/am400012h
10.1149/1.1342166
10.1021/am507656q
10.1016/j.electacta.2010.07.042
10.1039/c0cp02054k
10.1016/j.apsusc.2005.09.004
10.1016/j.jpowsour.2010.06.036
10.1016/j.jpowsour.2014.09.013
10.1016/j.jallcom.2017.02.301
10.1021/nl300173j
10.1149/1.1449951
10.1021/cm010744r
10.1016/j.cap.2018.01.019
10.1021/nn4040734
10.1039/D1RA04341B
10.1021/jp7108785
10.1016/j.matlet.2011.05.114
10.1007/s13204-014-0327-0
10.1016/S0378-7753(00)00485-7
10.1021/jp2036982
10.1007/s10853-012-6929-6
10.1016/S0378-3820(02)00078-4
10.1016/j.carbon.2012.08.009
10.1016/j.jpowsour.2014.09.015
10.1007/s10311-021-01268-x
10.1016/j.rser.2015.12.249
10.1016/j.vacuum.2006.09.013
10.1021/nn405595r
10.1016/j.synthmet.2005.08.003
10.4028/www.scientific.net/AMM.787.3
10.1021/jp0543330
10.3390/en14227779
10.1016/j.jpowsour.2005.10.090
10.1039/b418835g
10.1016/j.apsusc.2012.09.036
10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
10.1016/j.jtte.2021.09.001
10.1049/mnl.2020.0400
10.1016/S0013-4686(02)00727-2
10.1016/j.jphotochem.2007.02.014
10.1016/j.ceramint.2013.07.025
10.1021/nn5001386
10.1021/acsami.8b07082
10.1007/s11581-008-0227-y
10.1021/nn101595y
10.1007/s10971-009-2098-8
10.1021/am3021894
10.1016/j.jpowsour.2010.09.078
10.1016/j.matchemphys.2007.01.022
10.1016/j.electacta.2013.07.138
10.1021/jp2049684
10.1016/j.matlet.2014.03.124
10.1039/b916666a
10.1002/adfm.201102839
10.1016/j.jcis.2020.10.032
10.1016/j.ssc.2007.01.011
10.1088/0957-4484/20/17/175602
10.1016/j.cap.2008.02.004
10.1016/j.elecom.2006.08.037
10.1016/j.jpcs.2003.10.051
10.1016/j.synthmet.2011.01.011
10.1002/sus2.8
10.1016/S0167-2738(00)00725-6
10.1021/am500421r
10.1021/am402686r
10.1002/jctb.6220
10.1016/j.matdes.2019.108199
10.1021/cm3012205
10.1073/pnas.0706508104
10.1149/1.1391005
10.1016/j.ceramint.2013.07.134
10.1039/C0CC03594G
10.1007/s10853-006-0394-z
10.1016/j.reactfunctpolym.2014.07.014
10.1016/j.vacuum.2007.06.002
10.1016/j.jallcom.2021.160301
10.1016/j.jiec.2018.02.014
10.1016/j.jallcom.2012.05.113
10.1016/j.mseb.2006.08.047
10.1016/j.electacta.2013.02.094
10.1016/j.electacta.2020.136277
10.1016/j.vacuum.2006.09.012
10.1016/j.electacta.2012.05.139
10.1016/j.jallcom.2008.01.050
10.1016/S0378-7753(98)00258-4
10.3390/coatings8100340
10.1007/s12034-012-0315-5
10.1016/j.cej.2014.03.083
10.1021/am5053784
10.1021/am405849n
10.1016/j.electacta.2004.02.055
10.1016/j.matchemphys.2008.01.032
10.1016/j.cap.2008.05.006
10.1039/pc095163
10.1038/srep07274
10.1142/9789814287005_0033
10.1016/j.mset.2020.10.012
10.1038/s41598-020-59481-7
ContentType Journal Article
Copyright Institute of Chemistry, Slovak Academy of Sciences 2022
Institute of Chemistry, Slovak Academy of Sciences 2022.
Copyright_xml – notice: Institute of Chemistry, Slovak Academy of Sciences 2022
– notice: Institute of Chemistry, Slovak Academy of Sciences 2022.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1007/s11696-022-02124-0
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2585-7290
1336-9075
EndPage 3385
ExternalDocumentID 10_1007_s11696_022_02124_0
GroupedDBID -58
-5G
-BR
-Y2
.86
.VR
06D
0VY
1N0
29B
2JY
2LR
2VQ
2WC
2~H
30V
4.4
406
408
40D
53G
5GY
5VS
67Z
6J9
6NX
8FE
8FG
8TC
8UJ
95.
95~
AAAVM
AACDK
AAFPC
AAJBT
AAQCX
AASML
AASQH
AATNV
AATVU
AAXMT
AAYQN
AAYZH
ABAKF
ABAQN
ABFKT
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABOCM
ABQBU
ABRQL
ABTEG
ABTKH
ABTMW
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACOMO
ACPIV
ACREN
ACZBO
ACZOJ
ADGYE
ADHHG
ADINQ
ADKNI
ADOZN
ADTPH
ADURQ
ADYFF
AEBTG
AEFQL
AEGNC
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEXYK
AFBAA
AFBBN
AFCXV
AFGCZ
AFKRA
AFQWF
AFWTZ
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AIGIU
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
BA0
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
DPUIP
EBLON
FIGPU
G-Y
G-Z
GJIRD
GQ6
GQ7
H13
HCIFZ
HG6
HLICF
HMJXF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
ISR
ITC
IWAJR
IXC
IXE
IY9
IZQ
I~X
I~Z
JZLTJ
KDC
KOV
L6V
LLZTM
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OAM
OK1
P2P
P9N
PF0
PT4
PTHSS
QD8
QOS
R9I
RNS
ROL
RPX
RSV
S1Z
S27
S3B
SCM
SDH
SHX
SJYHP
SNE
SOJ
SZN
T13
TSK
TSV
TUC
U2A
UG4
VC2
WK8
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEXIE
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SR
7U5
8BQ
8FD
ABRTQ
JG9
L7M
ID FETCH-LOGICAL-c319t-dc71f90681fe7f319364ba9fc2c1c12dfa5e0c9351a73d7715dcfeab8e63f03e3
IEDL.DBID U2A
ISSN 0366-6352
IngestDate Wed Aug 13 04:33:00 EDT 2025
Thu Apr 24 23:05:28 EDT 2025
Tue Jul 01 03:17:10 EDT 2025
Fri Feb 21 02:45:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Conducting polymers
Metal oxides
Carbon materials
Metal sulfides
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-dc71f90681fe7f319364ba9fc2c1c12dfa5e0c9351a73d7715dcfeab8e63f03e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2667456811
PQPubID 2039839
PageCount 15
ParticipantIDs proquest_journals_2667456811
crossref_primary_10_1007_s11696_022_02124_0
crossref_citationtrail_10_1007_s11696_022_02124_0
springer_journals_10_1007_s11696_022_02124_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220600
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220600
PublicationDecade 2020
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
– name: Heidelberg
PublicationTitle Chemical papers
PublicationTitleAbbrev Chem. Pap
PublicationYear 2022
Publisher Versita
Springer Nature B.V
Publisher_xml – name: Versita
– name: Springer Nature B.V
References Brown, Swain, Hiltwine, Brooks, Zhou (CR12) 2014; 272
Laforgue, Simon, Sarrazin, Fauvarque (CR71) 1999; 80
Osman, O’Connor, McSpadden, Abu-Dahrieh, Farrell, Al-Muhtaseb, Harrison, Rooney (CR101) 2019; 95
Wang, Li, Cheng, Xu, Zhan, Wang, He (CR137) 2014; 16
Binitha, Suraja, Yaakob, Resmi, Silija (CR10) 2010; 53
Miyazaki, Matsui, Kita, Karuppuchamy, Ito, Yoshihara (CR94) 2009; 9
CR38
Yan, Khoo, Sumboja, Lee (CR153) 2010; 4
Algharaibeh, Liu, Pickup (CR2) 2009; 187
Roberts, Wheeler, McKenzie, Bunker (CR111) 2009; 19
Chang, Hu, Huang, Liu, Chang (CR16) 2011; 196
Matsui, Karuppuchamy, Yamaguchi, Yoshihara (CR83) 2007; 189
Zhou, Liu, Sang, Zhao, Zhou, Liu, Chen (CR165) 2014; 6
Stenger-Smith, Webber, Anderson, Chafin, Zong, Reynolds (CR127) 2002; 149
Wang, Xu, Wang, Du (CR140) 2011; 161
Wu, Ren, Wang, Li, Liu, Cheng (CR146) 2010; 4
Rakhi, Chen, Hedhili, Cha, Alshareef (CR106) 2014; 6
Azam, Ramli, Nor, Nawi (CR7) 2021; 45
Rao, Muthukannan, Vijayan (CR108) 2012; 35
Dubal, Patil, Kim, Lokhande (CR26) 2011; 65
She, Tang, Li, Tang, Qiu, Shang, Hu (CR122) 2018; 8
Nithya, Selvan, Kalpana, Vasylechko, Sanjeeviraja (CR99) 2013; 109
Hong, Yeo, Paik (CR40) 2001; 148
Roberts, Slade (CR110) 2010; 20
Osman, Farrell, Ala’a, H., Harrison, J., & Rooney, D. W. (CR102) 2020; 10
Pang, Ma, Li, Chen, Zhang, Zheng, Du (CR103) 2012; 41
Huang, Li, Zhao, Luo, You, Zhang, Li (CR43) 2015; 152
Zhang, Miao, Niu, Wei (CR162) 2014; 8
Karthikeyan, Kalpana, Renganathan (CR55) 2009; 15
Karuppuchamy, Iwasaki, Minoura (CR58) 2007; 81
Conway, Pell, Liu (CR22) 1997; 65
Arauzo, Maziarka, Olszewski, Isemin, Muratova, Ronsse, Kruse (CR5) 2020; 732
Kawahara, Miyazaki, Karuppuchamy, Matsui, Ito, Yoshihara (CR61) 2007; 81
You, Jiang, Fan (CR161) 2014; 6
Kumar, Andou, Sathish, Karuppuchamy (CR68) 2016; 27
Karuppuchamy, Ito (CR57) 2008; 82
Barakat, Khil, Sheikh, Kim (CR8) 2008; 112
Miyazaki, Matsui, Kuwamoto, Ito, Karuppuchamy, Yoshihara (CR95) 2009; 118
Xie, Du, Xia (CR149) 2015; 204
Chen, Zhitomirsky (CR18) 2014; 125
Yeager, Du, Si, Su, Marinkovic, Teng (CR158) 2012; 116
Ganesh, Pitchumani, Lakshminarayanan (CR31) 2006; 158
Karuppuchamy, Suzuki, Ito, Endo (CR59) 2009; 9
Çelik, Çelik, Dolaş, Görçay, Şahin, Sarac, Pekmez (CR15) 2014; 83
Yao, Yang, Sun, Wang (CR156) 2012; 51
Chavhan, Sethi, Ganguly (CR17) 2020; 347
Sahoo, Nguyen, Shim (CR114) 2018; 63
Yoon, Bang, Prakash, Sun (CR159) 2008; 110
Nandhini, Mubeen, Kumar, Nithya (CR97) 2019; 8
Matsui, Okajima, Karuppuchamy, Yoshihara (CR85) 2009; 468
An, Kim, Park, Moon, Bae, Lim, Lee, Lee (CR3) 2001; 11
Yan, Fan, Sun, Ning, Wei, Zhang, Zhang, Zhi, Wei (CR152) 2012; 22
Fusalba, Gouérec, Villers, Bélanger (CR30) 2001; 148
Huang, Zhu, Sarkar, Zhao (CR44) 2019; 7
Meher, Justin, Ranga Rao (CR90) 2011; 3
Frackowiak, Jurewicz, Szostak, Delpeux, Beguin (CR28) 2002; 77
Shaheen, Ahmad, Zequine, Gupta, Thomas, Malik (CR121) 2021; 11
Ma, Li, Shi, Song, Liu (CR80) 2014; 249
Ramadoss, Kim (CR107) 2013; 561
Qu, Shi, Tian, Chen, Wu, Holze (CR105) 2009; 194
Santhi, Manikandan, Rani, Karuppuchamy (CR117) 2015; 5
Joseph, Shafi, Bose (CR52) 2020; 34
Matsui, Santhi, Sugiyama, Yoshihara, Karuppuchamy (CR87) 2014; 40
Hu, Chen, Xie, Zou, Qin, Bao (CR41) 2014; 6
Ni, Lu, Zhang, Yue, Shang, Lv (CR98) 2009; 113
Kim, Lee, Ahn, Song, Jang (CR64) 2013; 5
Jagadale, Kumbhar, Dhawale, Lokhande (CR49) 2013; 98
Yang, Gao, Song, Zhang, Yang, Wang (CR155) 2014; 272
Biswas, Drzal (CR11) 2010; 2
Kung, Chen, Lin, Vittal, Ho (CR70) 2012; 214
Lin, Dai, Hung (CR75) 2014; 4
Jimenez, Arbiol, Dezanneau, Cornet, Morante (CR50) 2003; 93
Ghenaatian, Mousavi, Rahmanifar (CR35) 2012; 78
Lu, Wang, Zhai, Yu, Gan, Tong, Li (CR78) 2012; 12
CR67
Meher, Rao (CR92) 2011; 115
Behm, Brokaw, Overson, Peloquin, Poler (CR9) 2013; 48
Talbi, Just, Dao (CR130) 2003; 33
Villers, Jobin, Soucy, Cossement, Chahine, Breau, Bélanger (CR135) 2003; 150
CR62
He, Li, Wang, Su, Tong (CR39) 2011; 4
Hu, Wei, She, Tang, Zhou, Zang, Du, Gao, Guo, Bao (CR42) 2017; 708
Miao, Han, Zhang, Chen, Zhang, Li, Han (CR93) 2021; 877
Izadi-Najafabadi, Yamada, Futaba, Yudasaka, Takagi, Hatori, Iijima, Hata (CR48) 2011; 5
Jo, Hwang, Lee, Lee, Yoon (CR51) 2011; 115
Pushparaj, Shaijumon, Kumar, Murugesan, Ci, Vajtai, Linhardt, Nalamasu, Ajayan (CR104) 2007; 104
González, Goikolea, Barrena, Mysyk (CR37) 2016; 58
Reddy, Shaijumon, Gowda, Ajayan (CR109) 2010; 114
Cai, Huang, Wang, Liu, Wang, Liu, Li, Wang (CR14) 2014; 6
Matsui, Yamamoto, Sasai, Karuppuchamy, Yoshihara (CR89) 2007; 75
Inagaki, Konno, Tanaike (CR47) 2010; 195
Gao, Zhou, Qian, He, Redepenning, Goodman, Li, Jiang, Lu (CR33) 2013; 51
Matsui, Saitou, Karuppuchamy, Hassan, Yoshihara (CR86) 2012; 538
Gao, Wang, Rong, Jiang, Zhang, Yu (CR32) 2018; 10
Justin, Meher, Rao (CR53) 2010; 114
Yaseen, Khattak, Humayun, Usman, Shah, Bibi, Hasnain, Ahmad, Khan, Shah (CR157) 2021; 14
Toufiq, Wang, Javed, Li (CR132) 2013; 27
Xiong, Hembram, Reifenberger, Fisher (CR150) 2013; 227
Fan, Maier (CR27) 2006; 8
Kawahara, Kuroda, Matsui, Mishima, Karuppuchamy, Seguchi, Yoshihara (CR60) 2007; 42
Karuppuchamy, Brundha (CR56) 2015; 787
Xiao, Tan, Zhu, Tan, Rui, Dong, Yan (CR147) 2013; 5
Wang, Zhang, Tan, Holt, Zahiri, Olsen, Mitlin (CR138) 2011; 115
Suematsu, Oura, Tsujimoto, Kanno, Naoi (CR129) 2000; 45
D’Arcy, El-Kady, Khine, Zhang, Lee, Davis, Liu, Yeung, Kim, Turner (CR23) 2014; 8
Ghosh, Inganäs (CR36) 2000; 3
CR119
Wei, Wei, Wang, He, Gao, Zhao (CR144) 2013; 49
Ariyanayagamkumarappa, Zhitomirsky (CR6) 2012; 162
Kong, Liu, Lang, Luo, Kang (CR65) 2009; 156
Maksoud, Bedir, Bekhit, Abouelela, Fahim, Awed, Attia, Kassem, Abd Elkodous, El-Sayyad (CR81) 2021; 19
Nam, Kim (CR96) 2002; 149
Huggins (CR45) 2000; 134
Nyström, Strømme, Sjödin, Nyholm (CR100) 2012; 70
Wang, Wang, Wang (CR136) 2011; 50
Conway (CR21) 1991; 138
Salari, Konstantinov, Liu (CR116) 2011; 21
Abdah, Azman, Kulandaivalu, Sulaiman (CR1) 2020; 186
Selvakumar, Bhat (CR120) 2012; 263
Shinde, Mahadik, Gujar, Lokhande (CR124) 2006; 252
Wang, Chen, Pang, Xue, Yu (CR143) 2017; 4
Deng, Huang, Sun, Tsai, Chang (CR24) 2009; 20
Ryu, Lee, Hong, Park, Wu, Kim, Kang, Park, Chang (CR113) 2004; 50
Matsui, Yamamoto, Izawa, Karuppuchamy, Yoshihara (CR88) 2007; 103
CR125
Snook, Peng, Fray, Chen (CR126) 2007; 9
Xiao, Zhou (CR148) 2003; 48
Lota, Khomenko, Frackowiak (CR77) 2004; 65
Matsui, Kira, Karuppuchamy, Yoshihara (CR84) 2009; 9
Thamima, Karuppuchamy (CR131) 2015; 7
Chen, Wang (CR19) 2010; 20
Wang, Duong, Mai, Kim, Kim, Seo, Kim, Jang, Lee, Suhr (CR141) 2015; 7
Sarma, Ray, Mohanty, Misra (CR118) 2014; 300
Subramanian, Zhu, Vajtai, Ajayan, Wei (CR128) 2005; 109
Yoon, Kang, Kim, Lee, Lee (CR160) 2011; 47
Yang, Yao, Liu, He, Zhou, Xiao, Zhang (CR154) 2013; 1
An, Park, Ko, Lee (CR4) 2014; 40
Wang, Yan (CR142) 2014; 4
Lee, Park, Kim, Jung, Im, Hur, Choi (CR72) 2013; 7
Kadam, Mane, Tirmali, Kulkarni (CR54) 2018; 18
Zhang, Li (CR163) 2020; 15
Yamamoto, Matsui, Ishiyama, Karuppuchamy, Yoshihara (CR151) 2006; 135
Kumar, Karuppuchamy (CR69) 2015; 26
Verma, Mishra, Gaur, Chowdhury, Mohapatra, Dwivedi, Verma (CR133) 2021; 8
Luo, Chen, Hu, Chen, Li (CR79) 2021; 1
Li, Rong, Wei (CR73) 2010; 4
Roth (CR112) 1964; 25
Furukawa, Matsui, Hasegawa, Karuppuchamy, Yoshihara (CR29) 2007; 142
Devaraj, Munichandraiah (CR25) 2008; 112
Manibalan, Govindaraj, Yesuraj, Kuppusami, Murugadoss, Murugavel, Kumar (CR82) 2021; 585
Wang, Kaskel (CR139) 2012; 22
Zhou, Wu (CR166) 2013; 222
Zhang, Zhao, Zhao, Tang, Shen, Xu, Li, Xiao (CR164) 2013; 1
Salari, Aboutalebi, Konstantinov, Liu (CR115) 2011; 13
Hughes, Chen, Shaffer, Fray, Windle (CR46) 2002; 14
Shinde, Jun (CR123) 2020; 13
Vijayakumar, Nagamuthu, Muralidharan (CR134) 2013; 5
Geetha, Trivedi (CR34) 2005; 155
Liang, Li, Zhang (CR74) 2008; 473
Meher, Justin, Rao (CR91) 2010; 55
Wu, Snook, Gupta, Shaffer, Fray, Chen (CR145) 2005; 15
Koza, He, Miller, Switzer (CR66) 2012; 24
Chou, Huang, Doong (CR20) 2014; 194
Kim, Park (CR63) 2003; 127
Burke (CR13) 2000; 91
Livage, Ganguli (CR76) 2001; 68
H Miyazaki (2124_CR94) 2009; 9
W Roth (2124_CR112) 1964; 25
B Sarma (2124_CR118) 2014; 300
P Zhang (2124_CR163) 2020; 15
MP Chavhan (2124_CR17) 2020; 347
X Zhang (2124_CR164) 2013; 1
KS Ryu (2124_CR113) 2004; 50
F Wang (2124_CR137) 2014; 16
AJ Roberts (2124_CR110) 2010; 20
V Shinde (2124_CR124) 2006; 252
J Livage (2124_CR76) 2001; 68
MA Azam (2124_CR7) 2021; 45
Y-B He (2124_CR39) 2011; 4
A Ramadoss (2124_CR107) 2013; 561
D Villers (2124_CR135) 2003; 150
Y Yao (2124_CR156) 2012; 51
H Matsui (2124_CR84) 2009; 9
M Wu (2124_CR145) 2005; 15
F Yang (2124_CR154) 2013; 1
S-I Kim (2124_CR64) 2013; 5
T-W Lin (2124_CR75) 2014; 4
KJ Kim (2124_CR63) 2003; 127
I Jimenez (2124_CR50) 2003; 93
BE Conway (2124_CR21) 1991; 138
B Çelik (2124_CR15) 2014; 83
M Inagaki (2124_CR47) 2010; 195
W Miao (2124_CR93) 2021; 877
V Subramanian (2124_CR128) 2005; 109
T Kawahara (2124_CR61) 2007; 81
S Huang (2124_CR44) 2019; 7
K Lota (2124_CR77) 2004; 65
M Hughes (2124_CR46) 2002; 14
X Lu (2124_CR78) 2012; 12
C-W Kung (2124_CR70) 2012; 214
H Matsui (2124_CR89) 2007; 75
G Nyström (2124_CR100) 2012; 70
B Brown (2124_CR12) 2014; 272
A Izadi-Najafabadi (2124_CR48) 2011; 5
S Verma (2124_CR133) 2021; 8
X Li (2124_CR73) 2010; 4
S Karuppuchamy (2124_CR57) 2008; 82
T Wang (2124_CR143) 2017; 4
2124_CR125
N Xiao (2124_CR147) 2013; 5
N Binitha (2124_CR10) 2010; 53
RD Kumar (2124_CR68) 2016; 27
Y Xie (2124_CR149) 2015; 204
K-W Nam (2124_CR96) 2002; 149
M Wang (2124_CR141) 2015; 7
C Jo (2124_CR51) 2011; 115
M Thamima (2124_CR131) 2015; 7
Z Zhou (2124_CR166) 2013; 222
SK Meher (2124_CR92) 2011; 115
M-J Deng (2124_CR24) 2009; 20
S Vijayakumar (2124_CR134) 2013; 5
G Xiong (2124_CR150) 2013; 227
2124_CR38
S Devaraj (2124_CR25) 2008; 112
H Talbi (2124_CR130) 2003; 33
T-C Chou (2124_CR20) 2014; 194
RD Kumar (2124_CR69) 2015; 26
H Pang (2124_CR103) 2012; 41
T Furukawa (2124_CR29) 2007; 142
S Karuppuchamy (2124_CR56) 2015; 787
J Wang (2124_CR139) 2012; 22
H Matsui (2124_CR83) 2007; 189
J-H Yoon (2124_CR159) 2008; 110
I Shaheen (2124_CR121) 2021; 11
J Wang (2124_CR140) 2011; 161
L-B Kong (2124_CR65) 2009; 156
2124_CR119
A Jagadale (2124_CR49) 2013; 98
A Osman (2124_CR101) 2019; 95
S Geetha (2124_CR34) 2005; 155
K Karthikeyan (2124_CR55) 2009; 15
V Nithya (2124_CR99) 2013; 109
AM Toufiq (2124_CR132) 2013; 27
M Yeager (2124_CR158) 2012; 116
S Biswas (2124_CR11) 2010; 2
GA Snook (2124_CR126) 2007; 9
W Yang (2124_CR155) 2014; 272
Q Qu (2124_CR105) 2009; 194
R Rakhi (2124_CR106) 2014; 6
H Ghenaatian (2124_CR35) 2012; 78
T Kawahara (2124_CR60) 2007; 42
M Salari (2124_CR116) 2011; 21
KH An (2124_CR3) 2001; 11
S Yoon (2124_CR160) 2011; 47
P Arauzo (2124_CR5) 2020; 732
M Gao (2124_CR32) 2018; 10
S Karuppuchamy (2124_CR59) 2009; 9
H Matsui (2124_CR87) 2014; 40
M Yaseen (2124_CR157) 2021; 14
W Hu (2124_CR42) 2017; 708
CR Rao (2124_CR108) 2012; 35
S Chen (2124_CR18) 2014; 125
N Joseph (2124_CR52) 2020; 34
SK Meher (2124_CR91) 2010; 55
G Manibalan (2124_CR82) 2021; 585
M Salari (2124_CR115) 2011; 13
A Burke (2124_CR13) 2000; 91
P Justin (2124_CR53) 2010; 114
E Frackowiak (2124_CR28) 2002; 77
BE Conway (2124_CR22) 1997; 65
J Yan (2124_CR152) 2012; 22
JH Lee (2124_CR72) 2013; 7
ME Roberts (2124_CR111) 2009; 19
H Matsui (2124_CR86) 2012; 538
X Luo (2124_CR79) 2021; 1
AI Osman (2124_CR102) 2020; 10
L-Z Fan (2124_CR27) 2006; 8
JM D’Arcy (2124_CR23) 2014; 8
S Karuppuchamy (2124_CR58) 2007; 81
SK Meher (2124_CR90) 2011; 3
S Sahoo (2124_CR114) 2018; 63
S Suematsu (2124_CR129) 2000; 45
JD Stenger-Smith (2124_CR127) 2002; 149
Y She (2124_CR122) 2018; 8
D Cai (2124_CR14) 2014; 6
2124_CR67
S Yamamoto (2124_CR151) 2006; 135
2124_CR62
H Matsui (2124_CR85) 2009; 468
D Dubal (2124_CR26) 2011; 65
RA Huggins (2124_CR45) 2000; 134
R Wang (2124_CR142) 2014; 4
K Santhi (2124_CR117) 2015; 5
Q Xiao (2124_CR148) 2003; 48
B You (2124_CR161) 2014; 6
M Selvakumar (2124_CR120) 2012; 263
M Huang (2124_CR43) 2015; 152
NA Barakat (2124_CR8) 2008; 112
S Ghosh (2124_CR36) 2000; 3
H Matsui (2124_CR88) 2007; 103
H Wang (2124_CR138) 2011; 115
J-I Hong (2124_CR40) 2001; 148
A González (2124_CR37) 2016; 58
H Miyazaki (2124_CR95) 2009; 118
J Wei (2124_CR144) 2013; 49
F Fusalba (2124_CR30) 2001; 148
RS Nandhini (2124_CR97) 2019; 8
D Wang (2124_CR136) 2011; 50
A Laforgue (2124_CR71) 1999; 80
MA Maksoud (2124_CR81) 2021; 19
W Zhou (2124_CR165) 2014; 6
K-H Chang (2124_CR16) 2011; 196
D Zhang (2124_CR162) 2014; 8
MAAM Abdah (2124_CR1) 2020; 186
VL Pushparaj (2124_CR104) 2007; 104
C Ma (2124_CR80) 2014; 249
J Yan (2124_CR153) 2010; 4
Z Algharaibeh (2124_CR2) 2009; 187
JA Koza (2124_CR66) 2012; 24
V Ganesh (2124_CR31) 2006; 158
Y-Y Liang (2124_CR74) 2008; 473
SQ Chen (2124_CR19) 2010; 20
S Kadam (2124_CR54) 2018; 18
ALM Reddy (2124_CR109) 2010; 114
S An (2124_CR4) 2014; 40
N Behm (2124_CR9) 2013; 48
PA Shinde (2124_CR123) 2020; 13
Y Gao (2124_CR33) 2013; 51
Z-S Wu (2124_CR146) 2010; 4
D Ariyanayagamkumarappa (2124_CR6) 2012; 162
J Ni (2124_CR98) 2009; 113
W Hu (2124_CR41) 2014; 6
References_xml – volume: 732
  start-page: 139288
  year: 2020
  ident: CR5
  article-title: Valorization of the poultry litter through wet torrefaction and different activation treatments
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.139288
– volume: 8
  start-page: 211
  issue: 9
  year: 2019
  end-page: 217
  ident: CR97
  article-title: Synthesis and characterization of CuO/NiO and CuO/Fe3O4 nanocomposite for super capacitor application
  publication-title: Int J Eng Tech
– volume: 148
  start-page: A1
  issue: 1
  year: 2001
  ident: CR30
  article-title: Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1339036
– volume: 116
  start-page: 20173
  issue: 38
  year: 2012
  end-page: 20181
  ident: CR158
  article-title: Highly efficient K0. 15MnO2 birnessite nanosheets for stable pseudocapacitive cathodes
  publication-title: The J Phys Chem C
  doi: 10.1021/jp304809r
– volume: 93
  start-page: 475
  issue: 1–3
  year: 2003
  end-page: 485
  ident: CR50
  article-title: Crystalline structure, defects and gas sensor response to NO2 and H2S of tungsten trioxide nanopowders
  publication-title: Sens Actuators B Chem
  doi: 10.1016/S0925-4005(03)00198-9
– volume: 150
  start-page: A747
  issue: 6
  year: 2003
  ident: CR135
  article-title: The influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1571530
– volume: 6
  start-page: 15905
  issue: 18
  year: 2014
  end-page: 15912
  ident: CR14
  article-title: High-performance supercapacitor electrode based on the unique ZnO@ Co3O4 core/shell heterostructures on nickel foam
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am5035494
– volume: 300
  start-page: 29
  year: 2014
  end-page: 36
  ident: CR118
  article-title: Synergistic enhancement in the capacitance of nickel and cobalt based mixed oxide supercapacitor prepared by electrodeposition
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2014.01.186
– volume: 187
  start-page: 640
  issue: 2
  year: 2009
  end-page: 643
  ident: CR2
  article-title: An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2008.11.012
– volume: 194
  start-page: 1222
  issue: 2
  year: 2009
  end-page: 1225
  ident: CR105
  article-title: A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2009.06.068
– volume: 27
  start-page: 1350215
  issue: 29
  year: 2013
  ident: CR132
  article-title: Magnetic properties of MnO2 shrimps-like nanostructures synthesized by hydrothermal route
  publication-title: Mod Phys Lett B
  doi: 10.1142/S0217984913502151
– volume: 22
  start-page: 23710
  issue: 45
  year: 2012
  end-page: 23725
  ident: CR139
  article-title: KOH activation of carbon-based materials for energy storage
  publication-title: J Mater Chem
  doi: 10.1039/c2jm34066f
– volume: 4
  start-page: 1600289
  issue: 2
  year: 2017
  ident: CR143
  article-title: MoS2-based nanocomposites for electrochemical energy storage
  publication-title: Adv Sci
  doi: 10.1002/advs.201600289
– volume: 6
  start-page: 15302
  issue: 17
  year: 2014
  end-page: 15308
  ident: CR161
  article-title: Three-dimensional hierarchically porous all-carbon foams for supercapacitor
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am503783t
– volume: 227
  start-page: 254
  year: 2013
  end-page: 259
  ident: CR150
  article-title: MnO2-coated graphitic petals for supercapacitor electrodes
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2012.11.040
– volume: 41
  start-page: 13284
  issue: 43
  year: 2012
  end-page: 13291
  ident: CR103
  article-title: Facile synthesis of porous ZnO–NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials
  publication-title: Dalton Trans
  doi: 10.1039/c2dt31916k
– volume: 70
  start-page: 91
  year: 2012
  end-page: 97
  ident: CR100
  article-title: Rapid potential step charging of paper-based polypyrrole energy storage devices
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.03.060
– volume: 75
  start-page: 345
  issue: 4
  year: 2007
  end-page: 348
  ident: CR89
  article-title: Electronic behavior of WO2/carbon clusters composite materials
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.75.345
– volume: 21
  start-page: 5128
  issue: 13
  year: 2011
  end-page: 5133
  ident: CR116
  article-title: Enhancement of the capacitance in TiO 2 nanotubes through controlled introduction of oxygen vacancies
  publication-title: J Mater Chem
  doi: 10.1039/c0jm04085a
– volume: 34
  start-page: 6558
  issue: 6
  year: 2020
  end-page: 6597
  ident: CR52
  article-title: Recent advances in 2D-MoS and its composite nanostructures for supercapacitor electrode application
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c00430
– volume: 156
  start-page: A1000
  issue: 12
  year: 2009
  ident: CR65
  article-title: Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3236500
– volume: 16
  start-page: 12214
  issue: 24
  year: 2014
  end-page: 12220
  ident: CR137
  article-title: Construction of 3D V 2 O 5/hydrogenated-WO 3 nanotrees on tungsten foil for high-performance pseudocapacitors
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c4cp01200c
– volume: 5
  start-page: 811
  issue: 2
  year: 2011
  end-page: 819
  ident: CR48
  article-title: High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite
  publication-title: ACS Nano
  doi: 10.1021/nn1017457
– volume: 9
  start-page: 155
  issue: 1
  year: 2009
  end-page: 160
  ident: CR94
  article-title: Electronic behavior of visible light sensitive ZrO /Cr O /carbon clusters composite materials
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2008.01.005
– volume: 114
  start-page: 658
  issue: 1
  year: 2010
  end-page: 663
  ident: CR109
  article-title: Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications
  publication-title: The J Phys Chem C
  doi: 10.1021/jp908739q
– volume: 162
  start-page: 868
  issue: 9–10
  year: 2012
  end-page: 872
  ident: CR6
  article-title: Electropolymerization of polypyrrole films on stainless steel substrates for electrodes of electrochemical supercapacitors
  publication-title: Synth Met
  doi: 10.1016/j.synthmet.2012.03.020
– volume: 204
  start-page: 163
  year: 2015
  end-page: 172
  ident: CR149
  article-title: Porous poly (3, 4-ethylenedioxythiophene) nanoarray used for flexible supercapacitor
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2014.11.021
– volume: 13
  start-page: 11
  issue: 1
  year: 2020
  end-page: 38
  ident: CR123
  article-title: Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage
  publication-title: Chem Sus Chem
  doi: 10.1002/cssc.201902071
– volume: 45
  start-page: 3813
  issue: 22–23
  year: 2000
  end-page: 3821
  ident: CR129
  article-title: Conducting polymer films of cross-linked structure and their QCM analysis
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(00)00466-7
– volume: 127
  start-page: 25
  issue: 1
  year: 2003
  end-page: 28
  ident: CR63
  article-title: Optical investigation of charge-transfer transitions in spinel Co3O4
  publication-title: Solid State Commun
  doi: 10.1016/S0038-1098(03)00373-9
– volume: 4
  start-page: 5835
  issue: 10
  year: 2010
  end-page: 5842
  ident: CR146
  article-title: High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors
  publication-title: ACS Nano
  doi: 10.1021/nn101754k
– volume: 214
  start-page: 91
  year: 2012
  end-page: 99
  ident: CR70
  article-title: Synthesis of Co3O4 nanosheets via electrodeposition followed by ozone treatment and their application to high-performance supercapacitors
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2012.04.076
– volume: 4
  start-page: 4247
  issue: 7
  year: 2010
  end-page: 4255
  ident: CR153
  article-title: Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior
  publication-title: ACS Nano
  doi: 10.1021/nn100592d
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 13
  ident: CR102
  article-title: The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56847-4
– volume: 194
  start-page: 29
  year: 2014
  end-page: 37
  ident: CR20
  article-title: Fabrication of hierarchically ordered porous carbons using sugarcane bagasse as the scaffold for supercapacitor applications
  publication-title: Synth Met
  doi: 10.1016/j.synthmet.2014.04.014
– volume: 65
  start-page: 53
  issue: 1–2
  year: 1997
  end-page: 59
  ident: CR22
  article-title: Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries
  publication-title: J Power Sour
  doi: 10.1016/S0378-7753(97)02468-3
– volume: 114
  start-page: 5203
  issue: 11
  year: 2010
  end-page: 5210
  ident: CR53
  article-title: Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis
  publication-title: The J Phys Chem C
  doi: 10.1021/jp9097155
– volume: 2
  start-page: 2293
  issue: 8
  year: 2010
  end-page: 2300
  ident: CR11
  article-title: Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am100343a
– volume: 49
  start-page: 3651
  issue: 11
  year: 2013
  end-page: 3656
  ident: CR144
  article-title: PPy modified titanium foam electrode with high performance for supercapacitor
  publication-title: Eur Polymer J
  doi: 10.1016/j.eurpolymj.2013.08.001
– volume: 51
  start-page: 14958
  issue: 46
  year: 2012
  end-page: 14965
  ident: CR156
  article-title: Hydrothermal synthesis of Co3O4–graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie301642g
– volume: 149
  start-page: A973
  issue: 8
  year: 2002
  ident: CR127
  article-title: Poly (3, 4-alkylenedioxythiophene)-based supercapacitors using ionic liquids as supporting electrolytes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1485773
– volume: 112
  start-page: 12225
  issue: 32
  year: 2008
  end-page: 12233
  ident: CR8
  article-title: Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process
  publication-title: The J Phys Chem C
  doi: 10.1021/jp8027353
– volume: 3
  start-page: 2063
  issue: 6
  year: 2011
  end-page: 2073
  ident: CR90
  article-title: Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am200294k
– volume: 113
  start-page: 54
  issue: 1
  year: 2009
  end-page: 60
  ident: CR98
  article-title: Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties
  publication-title: The J Phys Chem C
  doi: 10.1021/jp806454r
– volume: 118
  start-page: 518
  issue: 1–3
  year: 2009
  end-page: 522
  ident: CR95
  article-title: Synthesis and photocatalytic activities of MnO2-loaded Nb2O5/carbon clusters composite material
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2008.09.004
– volume: 20
  start-page: 3221
  issue: 16
  year: 2010
  end-page: 3226
  ident: CR110
  article-title: Controlled synthesis of ε-MnO and its application in hybrid supercapacitor devices
  publication-title: J Mater Chem
  doi: 10.1039/b924247c
– volume: 7
  start-page: 18
  issue: 1
  year: 2015
  end-page: 25
  ident: CR131
  article-title: Biosynthesis of titanium dioxide and zinc oxide nanoparticles from natural sources: a review
  publication-title: Adv Sci Eng Med
  doi: 10.1166/asem.2015.1648
– volume: 50
  start-page: 6482
  issue: 14
  year: 2011
  end-page: 6492
  ident: CR136
  article-title: Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors
  publication-title: Inorg Chem
  doi: 10.1021/ic200309t
– volume: 222
  start-page: 410
  year: 2013
  end-page: 416
  ident: CR166
  article-title: Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: synthesis and electrochemical characterization
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2012.09.004
– volume: 8
  start-page: 937
  issue: 6
  year: 2006
  end-page: 940
  ident: CR27
  article-title: High-performance polypyrrole electrode materials for redox supercapacitors
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2006.03.035
– volume: 20
  start-page: 9735
  issue: 43
  year: 2010
  end-page: 9739
  ident: CR19
  article-title: Microwave-assisted synthesis of a Co O –graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries
  publication-title: J Mater Chem
  doi: 10.1039/c0jm01573c
– volume: 1
  start-page: 3706
  issue: 11
  year: 2013
  end-page: 3712
  ident: CR164
  article-title: High performance asymmetric supercapacitor based on MnO 2 electrode in ionic liquid electrolyte
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta00981e
– volume: 68
  start-page: 365
  issue: 3–4
  year: 2001
  end-page: 381
  ident: CR76
  article-title: Sol–gel electrochromic coatings and devices: a review
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/S0927-0248(00)00369-X
– volume: 7
  start-page: 100901
  issue: 10
  year: 2019
  ident: CR44
  article-title: Challenges and opportunities for supercapacitors
  publication-title: APL Mater
  doi: 10.1063/1.5116146
– volume: 27
  start-page: 2926
  issue: 3
  year: 2016
  end-page: 2932
  ident: CR68
  article-title: Synthesis of nanostructured Cu-WO 3 and CuWO 4 for supercapacitor applications
  publication-title: J Mater Sci: Mater Electron
– volume: 473
  start-page: 317
  issue: 1–2
  year: 2008
  end-page: 322
  ident: CR74
  article-title: A novel asymmetric capacitor based on Co (OH) 2/USY composite and activated carbon electrodes
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2007.03.087
– volume: 561
  start-page: 262
  year: 2013
  end-page: 267
  ident: CR107
  article-title: Vertically aligned TiO2 nanorod arrays for electrochemical supercapacitor
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2013.02.015
– volume: 1
  start-page: 594
  issue: 3
  year: 2013
  end-page: 601
  ident: CR154
  article-title: Ni–Co oxides nanowire arrays grown on ordered TiO 2 nanotubes with high performance in supercapacitors
  publication-title: J Mater Chem A
  doi: 10.1039/C2TA00055E
– volume: 33
  start-page: 465
  issue: 6
  year: 2003
  end-page: 473
  ident: CR130
  article-title: Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: applications for supercapacitors
  publication-title: J Appl Electrochem
  doi: 10.1023/A:1024439023251
– volume: 138
  start-page: 1539
  issue: 6
  year: 1991
  ident: CR21
  article-title: Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2085829
– volume: 152
  start-page: 172
  year: 2015
  end-page: 177
  ident: CR43
  article-title: Hierarchical ZnO@ MnO2 core-shell pillar arrays on Ni foam for binder-free supercapacitor electrodes
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2014.11.127
– volume: 4
  start-page: 1288
  issue: 4
  year: 2011
  end-page: 1292
  ident: CR39
  article-title: Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: controllable electrochemical synthesis and enhanced supercapacitor performances
  publication-title: Energy Environ Sci
  doi: 10.1039/c0ee00669f
– volume: 115
  start-page: 15646
  issue: 31
  year: 2011
  end-page: 15654
  ident: CR92
  article-title: Ultralayered Co3O4 for high-performance supercapacitor applications
  publication-title: The J Phys Chem C
  doi: 10.1021/jp201200e
– volume: 25
  start-page: 1
  issue: 1
  year: 1964
  end-page: 10
  ident: CR112
  article-title: The magnetic structure of Co3O4
  publication-title: J Phys Chem Solids
  doi: 10.1016/0022-3697(64)90156-8
– volume: 5
  start-page: 2188
  issue: 6
  year: 2013
  end-page: 2196
  ident: CR134
  article-title: Supercapacitor studies on NiO nanoflakes synthesized through a microwave route
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am400012h
– volume: 148
  start-page: A156
  issue: 2
  year: 2001
  ident: CR40
  article-title: Conducting polymer with metal oxide for electrochemical capacitor: poly (3, 4-ethylenedioxythiophene) RuO x electrode
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1342166
– volume: 7
  start-page: 1348
  issue: 2
  year: 2015
  end-page: 1354
  ident: CR141
  article-title: All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am507656q
– volume: 55
  start-page: 8388
  issue: 28
  year: 2010
  end-page: 8396
  ident: CR91
  article-title: Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2010.07.042
– volume: 13
  start-page: 5038
  issue: 11
  year: 2011
  end-page: 5041
  ident: CR115
  article-title: A highly ordered titania nanotube array as a supercapacitor electrode
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c0cp02054k
– volume: 252
  start-page: 7487
  issue: 20
  year: 2006
  end-page: 7492
  ident: CR124
  article-title: Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2005.09.004
– volume: 195
  start-page: 7880
  issue: 24
  year: 2010
  end-page: 7903
  ident: CR47
  article-title: Carbon materials for electrochemical capacitors
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2010.06.036
– volume: 272
  start-page: 915
  year: 2014
  end-page: 921
  ident: CR155
  article-title: Synthesis of hollow polyaniline nano-capsules and their supercapacitor application
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2014.09.013
– volume: 708
  start-page: 146
  year: 2017
  end-page: 153
  ident: CR42
  article-title: Flower-like nickel-zinc-cobalt mixed metal oxide nanowire arrays for electrochemical capacitor applications
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2017.02.301
– ident: CR38
– volume: 12
  start-page: 1690
  issue: 3
  year: 2012
  end-page: 1696
  ident: CR78
  article-title: Hydrogenated TiO2 nanotube arrays for supercapacitors
  publication-title: Nano Lett
  doi: 10.1021/nl300173j
– volume: 149
  start-page: A346
  issue: 3
  year: 2002
  ident: CR96
  article-title: A study of the preparation of NiO x electrode via electrochemical route for supercapacitor applications and their charge storage mechanism
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1449951
– volume: 14
  start-page: 1610
  issue: 4
  year: 2002
  end-page: 1613
  ident: CR46
  article-title: Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole
  publication-title: Chem Mater
  doi: 10.1021/cm010744r
– volume: 18
  start-page: 397
  issue: 4
  year: 2018
  end-page: 404
  ident: CR54
  article-title: Electrochemical synthesis of flower like Mn-Co mixed metal oxides as electrode material for supercapacitor application
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2018.01.019
– volume: 7
  start-page: 9366
  issue: 10
  year: 2013
  end-page: 9374
  ident: CR72
  article-title: Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes
  publication-title: ACS Nano
  doi: 10.1021/nn4040734
– volume: 11
  start-page: 23374
  issue: 38
  year: 2021
  end-page: 23384
  ident: CR121
  article-title: Facile ZnO-based nanomaterial and its fabrication as a supercapacitor electrode: synthesis, characterization and electrochemical studies
  publication-title: RSC Adv
  doi: 10.1039/D1RA04341B
– volume: 112
  start-page: 4406
  issue: 11
  year: 2008
  end-page: 4417
  ident: CR25
  article-title: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties
  publication-title: The J Phys Chem C
  doi: 10.1021/jp7108785
– volume: 65
  start-page: 2628
  issue: 17–18
  year: 2011
  end-page: 2631
  ident: CR26
  article-title: Supercapacitors based on electrochemically deposited polypyrrole nanobricks
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2011.05.114
– volume: 5
  start-page: 373
  issue: 3
  year: 2015
  end-page: 378
  ident: CR117
  article-title: Synthesis of nanocrystalline titanium dioxide for photodegradation treatment of remazol brown dye
  publication-title: Appl Nanosci
  doi: 10.1007/s13204-014-0327-0
– volume: 91
  start-page: 37
  issue: 1
  year: 2000
  end-page: 50
  ident: CR13
  article-title: Ultracapacitors: why, how, and where is the technology
  publication-title: J Power Sour
  doi: 10.1016/S0378-7753(00)00485-7
– volume: 115
  start-page: 11880
  issue: 23
  year: 2011
  end-page: 11886
  ident: CR51
  article-title: Investigation of pseudocapacitive charge-storage behavior in highly conductive ordered mesoporous tungsten oxide electrodes
  publication-title: The J Phys Chem C
  doi: 10.1021/jp2036982
– volume: 48
  start-page: 1711
  issue: 4
  year: 2013
  end-page: 1716
  ident: CR9
  article-title: High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices
  publication-title: J Mater Sci
  doi: 10.1007/s10853-012-6929-6
– volume: 77
  start-page: 213
  year: 2002
  end-page: 219
  ident: CR28
  article-title: Nanotubular materials as electrodes for supercapacitors
  publication-title: Fuel Process Technol
  doi: 10.1016/S0378-3820(02)00078-4
– volume: 51
  start-page: 52
  year: 2013
  end-page: 58
  ident: CR33
  article-title: Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.08.009
– volume: 272
  start-page: 979
  year: 2014
  end-page: 986
  ident: CR12
  article-title: Carbon nanosheet buckypaper: A graphene-carbon nanotube hybrid material for enhanced supercapacitor performance
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2014.09.015
– volume: 19
  start-page: 3645
  year: 2021
  end-page: 3681
  ident: CR81
  article-title: MoS -based nanocomposites: synthesis, structure, and applications in water remediation and energy storage: a review
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-021-01268-x
– volume: 58
  start-page: 1189
  year: 2016
  end-page: 1206
  ident: CR37
  article-title: Review on supercapacitors: technologies and materials
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.12.249
– ident: CR125
– volume: 81
  start-page: 708
  issue: 5
  year: 2007
  end-page: 712
  ident: CR58
  article-title: Physico-chemical, photoelectrochemical and photocatalytic properties of electrodeposited nanocrystalline titanium dioxide thin films
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2006.09.013
– volume: 8
  start-page: 1500
  issue: 2
  year: 2014
  end-page: 1510
  ident: CR23
  article-title: Vapor-phase polymerization of nanofibrillar poly (3, 4-ethylenedioxythiophene) for supercapacitors
  publication-title: ACS Nano
  doi: 10.1021/nn405595r
– volume: 155
  start-page: 232
  issue: 1
  year: 2005
  end-page: 239
  ident: CR34
  article-title: A new route to synthesize high degree polythiophene in a room temperature melt medium
  publication-title: Synth Met
  doi: 10.1016/j.synthmet.2005.08.003
– volume: 787
  start-page: 3
  year: 2015
  end-page: 7
  ident: CR56
  article-title: Fabrication of core-shell structured TiO2/MgO electrodes for dye-sensitized solar cells
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.787.3
– volume: 109
  start-page: 20207
  issue: 43
  year: 2005
  end-page: 20214
  ident: CR128
  article-title: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures
  publication-title: J Phys Chem B
  doi: 10.1021/jp0543330
– volume: 14
  start-page: 7779
  issue: 22
  year: 2021
  ident: CR157
  article-title: A review of supercapacitors: materials design, modification, and applications
  publication-title: Energies
  doi: 10.3390/en14227779
– volume: 158
  start-page: 1523
  issue: 2
  year: 2006
  end-page: 1532
  ident: CR31
  article-title: New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2005.10.090
– volume: 15
  start-page: 2297
  issue: 23
  year: 2005
  end-page: 2303
  ident: CR145
  article-title: Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline
  publication-title: J Mater Chem
  doi: 10.1039/b418835g
– volume: 263
  start-page: 236
  year: 2012
  end-page: 241
  ident: CR120
  article-title: Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2012.09.036
– volume: 11
  start-page: 387
  issue: 5
  year: 2001
  end-page: 392
  ident: CR3
  article-title: Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes
  publication-title: Adv Func Mater
  doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
– volume: 8
  start-page: 621
  issue: 5
  year: 2021
  end-page: 637
  ident: CR133
  article-title: A comprehensive review on energy storage in hybrid electric vehicle
  publication-title: J Traffic Transp Eng (english Edition)
  doi: 10.1016/j.jtte.2021.09.001
– volume: 15
  start-page: 938
  issue: 13
  year: 2020
  end-page: 942
  ident: CR163
  article-title: Microwave-assisted synthesis of CuO/MnO2 nanocomposites for supercapacitor application
  publication-title: Micro Nano Lett
  doi: 10.1049/mnl.2020.0400
– ident: CR119
– volume: 48
  start-page: 575
  issue: 5
  year: 2003
  end-page: 580
  ident: CR148
  article-title: The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(02)00727-2
– volume: 189
  start-page: 280
  issue: 2–3
  year: 2007
  end-page: 285
  ident: CR83
  article-title: Electronic behavior of calcined materials obtained from SnO2 hydrosol/starch composite materials
  publication-title: J Photochem Photobiol A
  doi: 10.1016/j.jphotochem.2007.02.014
– volume: 40
  start-page: 1423
  issue: 1
  year: 2014
  end-page: 1429
  ident: CR4
  article-title: Fabrication of WO nanotube sensors and their gas sensing properties
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2013.07.025
– volume: 8
  start-page: 4571
  issue: 5
  year: 2014
  end-page: 4579
  ident: CR162
  article-title: Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles
  publication-title: ACS Nano
  doi: 10.1021/nn5001386
– volume: 10
  start-page: 23163
  issue: 27
  year: 2018
  end-page: 23173
  ident: CR32
  article-title: Porous ZnO-coated Co3O4 nanorod as a high-energy-density supercapacitor material
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b07082
– volume: 15
  start-page: 107
  issue: 1
  year: 2009
  end-page: 110
  ident: CR55
  article-title: Synthesis and characterization of ZnCo 2 O 4 nanomaterial for symmetric supercapacitor applications
  publication-title: Ionics
  doi: 10.1007/s11581-008-0227-y
– volume: 4
  start-page: 6039
  issue: 10
  year: 2010
  end-page: 6049
  ident: CR73
  article-title: Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress
  publication-title: ACS Nano
  doi: 10.1021/nn101595y
– volume: 53
  start-page: 466
  issue: 2
  year: 2010
  end-page: 469
  ident: CR10
  article-title: Simple synthesis of Co 3 O 4 nanoflakes using a low temperature sol–gel method suitable for photodegradation of dyes
  publication-title: J Sol-Gel Sci Technol
  doi: 10.1007/s10971-009-2098-8
– volume: 5
  start-page: 1596
  issue: 5
  year: 2013
  end-page: 1603
  ident: CR64
  article-title: Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am3021894
– volume: 196
  start-page: 2387
  issue: 4
  year: 2011
  end-page: 2392
  ident: CR16
  article-title: Microwave-assisted hydrothermal synthesis of crystalline WO3–WO3· 0.5 H2O mixtures for pseudocapacitors of the asymmetric type
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2010.09.078
– volume: 103
  start-page: 127
  issue: 1
  year: 2007
  end-page: 131
  ident: CR88
  article-title: Electron transfer behavior of calcined material obtained from a samarium-O–phenylene-S–nickel-S–phenylene-O hybrid copolymer
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2007.01.022
– volume: 109
  start-page: 720
  year: 2013
  end-page: 731
  ident: CR99
  article-title: Synthesis of Bi2WO6 nanoparticles and its electrochemical properties in different electrolytes for pseudocapacitor electrodes
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.07.138
– volume: 115
  start-page: 17599
  issue: 35
  year: 2011
  end-page: 17605
  ident: CR138
  article-title: Supercapacitive properties of hydrothermally synthesized Co3O4 nanostructures
  publication-title: The J Phys Chem C
  doi: 10.1021/jp2049684
– volume: 125
  start-page: 92
  year: 2014
  end-page: 95
  ident: CR18
  article-title: Capacitive behaviour of polypyrrole, prepared by electrochemical and chemical methods
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2014.03.124
– volume: 19
  start-page: 6977
  issue: 38
  year: 2009
  end-page: 6979
  ident: CR111
  article-title: High specific capacitance conducting polymer supercapacitor electrodes based on poly (tris (thiophenylphenyl) amine)
  publication-title: J Mater Chem
  doi: 10.1039/b916666a
– volume: 22
  start-page: 2632
  issue: 12
  year: 2012
  end-page: 2641
  ident: CR152
  article-title: Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.201102839
– volume: 585
  start-page: 505
  year: 2021
  end-page: 518
  ident: CR82
  article-title: Facile synthesis of NiO@ Ni (OH)2-α-MoO nanocomposite for enhanced solid-state symmetric supercapacitor application
  publication-title: J Coll Interface Sci
  doi: 10.1016/j.jcis.2020.10.032
– volume: 142
  start-page: 99
  issue: 1–2
  year: 2007
  end-page: 103
  ident: CR29
  article-title: Electronic behaviours of calcined materials from a (S-nickel-S-phenylene-O)-strontium-(O-phenylene-S-selenium-S) hybrid copolymer
  publication-title: Solid State Commun
  doi: 10.1016/j.ssc.2007.01.011
– ident: CR67
– volume: 20
  start-page: 175602
  issue: 17
  year: 2009
  ident: CR24
  article-title: An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/17/175602
– volume: 9
  start-page: 243
  issue: 1
  year: 2009
  end-page: 248
  ident: CR59
  article-title: A novel one-step electrochemical method to obtain crystalline titanium dioxide films at low temperature
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2008.02.004
– volume: 4
  start-page: 1
  issue: 1
  year: 2014
  end-page: 10
  ident: CR75
  article-title: High energy density asymmetric supercapacitor based on NiOOH/Ni 3 S 2/3D graphene and Fe 3 O 4/graphene composite electrodes
  publication-title: Sci Rep
– volume: 9
  start-page: 83
  issue: 1
  year: 2007
  end-page: 88
  ident: CR126
  article-title: Achieving high electrode specific capacitance with materials of low mass specific capacitance: potentiostatically grown thick micro-nanoporous PEDOT films
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2006.08.037
– volume: 65
  start-page: 295
  issue: 2–3
  year: 2004
  end-page: 301
  ident: CR77
  article-title: Capacitance properties of poly (3, 4-ethylenedioxythiophene)/carbon nanotubes composites
  publication-title: J Phys Chem Solids
  doi: 10.1016/j.jpcs.2003.10.051
– volume: 161
  start-page: 1141
  issue: 11–12
  year: 2011
  end-page: 1144
  ident: CR140
  article-title: Toward a high specific power and high stability polypyrrole supercapacitors
  publication-title: Synth Met
  doi: 10.1016/j.synthmet.2011.01.011
– volume: 1
  start-page: 211
  year: 2021
  end-page: 240
  ident: CR79
  article-title: Renewable biomass-derived carbons for electrochemical capacitor applications
  publication-title: SusMat
  doi: 10.1002/sus2.8
– volume: 134
  start-page: 179
  issue: 1–2
  year: 2000
  end-page: 195
  ident: CR45
  article-title: Supercapacitors and electrochemical pulse sources
  publication-title: Solid State Ion
  doi: 10.1016/S0167-2738(00)00725-6
– volume: 6
  start-page: 4578
  issue: 6
  year: 2014
  end-page: 4586
  ident: CR165
  article-title: Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am500421r
– volume: 5
  start-page: 9656
  issue: 19
  year: 2013
  end-page: 9662
  ident: CR147
  article-title: High-performance supercapacitor electrodes based on graphene achieved by thermal treatment with the aid of nitric acid
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am402686r
– volume: 95
  start-page: 183
  year: 2019
  end-page: 195
  ident: CR101
  article-title: Upcycling brewer’s spent grain waste into activated carbon and carbon nanotubes via two-stage activation for energy and other applications
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.6220
– volume: 186
  start-page: 108199
  year: 2020
  ident: CR1
  article-title: Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.108199
– volume: 24
  start-page: 3567
  issue: 18
  year: 2012
  end-page: 3573
  ident: CR66
  article-title: Electrodeposition of crystalline Co3O4 a catalyst for the oxygen evolution reaction
  publication-title: Chem Mater
  doi: 10.1021/cm3012205
– volume: 104
  start-page: 13574
  issue: 34
  year: 2007
  end-page: 13577
  ident: CR104
  article-title: Flexible energy storage devices based on nanocomposite paper
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0706508104
– volume: 3
  start-page: 213
  issue: 5
  year: 2000
  ident: CR36
  article-title: Networks of electron-conducting polymer in matrices of ion-conducting polymers applications to fast electrodes
  publication-title: Electrochem Solid State Lett
  doi: 10.1149/1.1391005
– volume: 40
  start-page: 2169
  issue: 1
  year: 2014
  end-page: 2172
  ident: CR87
  article-title: Visible light-induced photocatalytic activity of SiO2/carbon cluster composite materials
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2013.07.134
– volume: 47
  start-page: 1021
  issue: 3
  year: 2011
  end-page: 1023
  ident: CR160
  article-title: Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity
  publication-title: Chem Commun
  doi: 10.1039/C0CC03594G
– volume: 42
  start-page: 3708
  issue: 11
  year: 2007
  end-page: 3713
  ident: CR60
  article-title: Electronic properties of calcined materials from a scandium-O-phenylene-O-yttrium-O-phenylene hybrid copolymer
  publication-title: J Mater Sci
  doi: 10.1007/s10853-006-0394-z
– volume: 83
  start-page: 107
  year: 2014
  end-page: 112
  ident: CR15
  article-title: Electrochemical synthesis, characterization and capacitive properties of novel thiophene based conjugated polymer
  publication-title: React Funct Polym
  doi: 10.1016/j.reactfunctpolym.2014.07.014
– volume: 82
  start-page: 547
  issue: 5
  year: 2008
  end-page: 550
  ident: CR57
  article-title: Cathodic electrodeposition of nanoporous ZnO thin films from new electrochemical bath and their photoinduced hydrophilic properties
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2007.06.002
– volume: 877
  start-page: 160301
  year: 2021
  ident: CR93
  article-title: Uniform phosphorus doped CoWO4@ NiWO4 nanocomposites for asymmetric supercapacitors
  publication-title: J Alloys Comp
  doi: 10.1016/j.jallcom.2021.160301
– volume: 63
  start-page: 181
  year: 2018
  end-page: 190
  ident: CR114
  article-title: Mesoporous Fe–Ni–Co ternary oxide nanoflake arrays on Ni foam for high-performance supercapacitor applications
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2018.02.014
– volume: 538
  start-page: 177
  year: 2012
  end-page: 182
  ident: CR86
  article-title: Photo-electronic behavior of Cu2O-and/or CeO2-loaded TiO2/carbon cluster nanocomposite materials
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2012.05.113
– volume: 135
  start-page: 120
  issue: 2
  year: 2006
  end-page: 124
  ident: CR151
  article-title: Electronic behavior of calcined material obtained from a tantalum-O-phenylene-S-tin-S-phenylene-O hybrid copolymer
  publication-title: Mater Sci Eng B
  doi: 10.1016/j.mseb.2006.08.047
– volume: 98
  start-page: 32
  year: 2013
  end-page: 38
  ident: CR49
  article-title: Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.02.094
– volume: 347
  start-page: 136277
  year: 2020
  ident: CR17
  article-title: Mixed metal oxides in synergy at nanoscale: electrospray induced porosity of in situ grown film electrode for use in electrochemical capacitor
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2020.136277
– volume: 81
  start-page: 680
  issue: 5
  year: 2007
  end-page: 685
  ident: CR61
  article-title: Electronic nature of vanadium nitride–carbon cluster composite materials obtained by the calcination of oxovanadylphthalocyanine
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2006.09.012
– volume: 78
  start-page: 212
  year: 2012
  end-page: 222
  ident: CR35
  article-title: High performance hybrid supercapacitor based on two nanostructured conducting polymers: self-doped polyaniline and polypyrrole nanofibers
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.05.139
– volume: 45
  start-page: 8335
  issue: 6
  year: 2021
  end-page: 8346
  ident: CR7
  article-title: Recent advances in biomass-derived carbon, mesoporous materials, and transition metal nitrides as new electrode materials for supercapacitor: a short review
  publication-title: IJER
– volume: 468
  start-page: L27
  issue: 1–2
  year: 2009
  end-page: L32
  ident: CR85
  article-title: The electronic behavior of V2O3/TiO2/carbon clusters composite materials obtained by the calcination of a V (acac) 3/TiO (acac) 2/polyacrylic acid complex
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2008.01.050
– volume: 4
  start-page: 1
  issue: 1
  year: 2014
  end-page: 9
  ident: CR142
  article-title: Superior asymmetric supercapacitor based on Ni-Co oxide nanosheets and carbon nanorods
  publication-title: Sci Rep
– volume: 80
  start-page: 142
  issue: 1–2
  year: 1999
  end-page: 148
  ident: CR71
  article-title: Polythiophene-based supercapacitors
  publication-title: J Power Sour
  doi: 10.1016/S0378-7753(98)00258-4
– volume: 8
  start-page: 340
  issue: 10
  year: 2018
  ident: CR122
  article-title: Mixed nickel-cobalt-molybdenum metal oxide nanosheet arrays for hybrid supercapacitor applications
  publication-title: Coatings
  doi: 10.3390/coatings8100340
– volume: 35
  start-page: 405
  issue: 3
  year: 2012
  end-page: 414
  ident: CR108
  article-title: Studies on biphenyl disulphonic acid doped polyanilines: synthesis, characterization and electrochemistry
  publication-title: Bull Mater Sci
  doi: 10.1007/s12034-012-0315-5
– volume: 26
  start-page: 3256
  issue: 5
  year: 2015
  end-page: 3261
  ident: CR69
  article-title: Synthesis and characterization of nanostructured Zn-WO 3 and ZnWO 4 by simple solution growth technique
  publication-title: J Mater Sci: Mater Electron
– volume: 249
  start-page: 216
  year: 2014
  end-page: 225
  ident: CR80
  article-title: High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2014.03.083
– volume: 6
  start-page: 19318
  issue: 21
  year: 2014
  end-page: 19326
  ident: CR41
  article-title: CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am5053784
– volume: 6
  start-page: 4196
  issue: 6
  year: 2014
  end-page: 4206
  ident: CR106
  article-title: Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am405849n
– volume: 50
  start-page: 843
  issue: 2–3
  year: 2004
  end-page: 847
  ident: CR113
  article-title: Poly (ethylenedioxythiophene)(PEDOT) as polymer electrode in redox supercapacitor
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2004.02.055
– ident: CR62
– volume: 110
  start-page: 222
  issue: 2–3
  year: 2008
  end-page: 227
  ident: CR159
  article-title: Comparative study of Li [Ni1/3Co1/3Mn1/3] O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2008.01.032
– volume: 9
  start-page: 592
  issue: 3
  year: 2009
  end-page: 597
  ident: CR84
  article-title: The electronic behaviors of visible light sensitive Nb2O5/Cr2O3/carbon clusters composite materials
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2008.05.006
– ident: 2124_CR38
  doi: 10.1039/pc095163
– volume: 19
  start-page: 3645
  year: 2021
  ident: 2124_CR81
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-021-01268-x
– volume: 134
  start-page: 179
  issue: 1–2
  year: 2000
  ident: 2124_CR45
  publication-title: Solid State Ion
  doi: 10.1016/S0167-2738(00)00725-6
– volume: 50
  start-page: 843
  issue: 2–3
  year: 2004
  ident: 2124_CR113
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2004.02.055
– volume: 83
  start-page: 107
  year: 2014
  ident: 2124_CR15
  publication-title: React Funct Polym
  doi: 10.1016/j.reactfunctpolym.2014.07.014
– volume: 15
  start-page: 938
  issue: 13
  year: 2020
  ident: 2124_CR163
  publication-title: Micro Nano Lett
  doi: 10.1049/mnl.2020.0400
– volume: 24
  start-page: 3567
  issue: 18
  year: 2012
  ident: 2124_CR66
  publication-title: Chem Mater
  doi: 10.1021/cm3012205
– volume: 27
  start-page: 2926
  issue: 3
  year: 2016
  ident: 2124_CR68
  publication-title: J Mater Sci: Mater Electron
– volume: 4
  start-page: 1
  issue: 1
  year: 2014
  ident: 2124_CR75
  publication-title: Sci Rep
  doi: 10.1038/srep07274
– volume: 13
  start-page: 11
  issue: 1
  year: 2020
  ident: 2124_CR123
  publication-title: Chem Sus Chem
  doi: 10.1002/cssc.201902071
– volume: 8
  start-page: 4571
  issue: 5
  year: 2014
  ident: 2124_CR162
  publication-title: ACS Nano
  doi: 10.1021/nn5001386
– volume: 4
  start-page: 1
  issue: 1
  year: 2014
  ident: 2124_CR142
  publication-title: Sci Rep
– volume: 347
  start-page: 136277
  year: 2020
  ident: 2124_CR17
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2020.136277
– volume: 68
  start-page: 365
  issue: 3–4
  year: 2001
  ident: 2124_CR76
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/S0927-0248(00)00369-X
– volume: 65
  start-page: 295
  issue: 2–3
  year: 2004
  ident: 2124_CR77
  publication-title: J Phys Chem Solids
  doi: 10.1016/j.jpcs.2003.10.051
– volume: 116
  start-page: 20173
  issue: 38
  year: 2012
  ident: 2124_CR158
  publication-title: The J Phys Chem C
  doi: 10.1021/jp304809r
– volume: 5
  start-page: 811
  issue: 2
  year: 2011
  ident: 2124_CR48
  publication-title: ACS Nano
  doi: 10.1021/nn1017457
– volume: 5
  start-page: 1596
  issue: 5
  year: 2013
  ident: 2124_CR64
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am3021894
– volume: 33
  start-page: 465
  issue: 6
  year: 2003
  ident: 2124_CR130
  publication-title: J Appl Electrochem
  doi: 10.1023/A:1024439023251
– volume: 109
  start-page: 720
  year: 2013
  ident: 2124_CR99
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.07.138
– volume: 112
  start-page: 12225
  issue: 32
  year: 2008
  ident: 2124_CR8
  publication-title: The J Phys Chem C
  doi: 10.1021/jp8027353
– volume: 155
  start-page: 232
  issue: 1
  year: 2005
  ident: 2124_CR34
  publication-title: Synth Met
  doi: 10.1016/j.synthmet.2005.08.003
– volume: 51
  start-page: 52
  year: 2013
  ident: 2124_CR33
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.08.009
– volume: 45
  start-page: 8335
  issue: 6
  year: 2021
  ident: 2124_CR7
  publication-title: IJER
– volume: 263
  start-page: 236
  year: 2012
  ident: 2124_CR120
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2012.09.036
– volume: 26
  start-page: 3256
  issue: 5
  year: 2015
  ident: 2124_CR69
  publication-title: J Mater Sci: Mater Electron
– volume: 77
  start-page: 213
  year: 2002
  ident: 2124_CR28
  publication-title: Fuel Process Technol
  doi: 10.1016/S0378-3820(02)00078-4
– volume: 14
  start-page: 1610
  issue: 4
  year: 2002
  ident: 2124_CR46
  publication-title: Chem Mater
  doi: 10.1021/cm010744r
– volume: 150
  start-page: A747
  issue: 6
  year: 2003
  ident: 2124_CR135
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1571530
– volume: 50
  start-page: 6482
  issue: 14
  year: 2011
  ident: 2124_CR136
  publication-title: Inorg Chem
  doi: 10.1021/ic200309t
– volume: 70
  start-page: 91
  year: 2012
  ident: 2124_CR100
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.03.060
– volume: 14
  start-page: 7779
  issue: 22
  year: 2021
  ident: 2124_CR157
  publication-title: Energies
  doi: 10.3390/en14227779
– volume: 98
  start-page: 32
  year: 2013
  ident: 2124_CR49
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2013.02.094
– volume: 45
  start-page: 3813
  issue: 22–23
  year: 2000
  ident: 2124_CR129
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(00)00466-7
– volume: 127
  start-page: 25
  issue: 1
  year: 2003
  ident: 2124_CR63
  publication-title: Solid State Commun
  doi: 10.1016/S0038-1098(03)00373-9
– volume: 1
  start-page: 3706
  issue: 11
  year: 2013
  ident: 2124_CR164
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta00981e
– volume: 2
  start-page: 2293
  issue: 8
  year: 2010
  ident: 2124_CR11
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am100343a
– volume: 149
  start-page: A973
  issue: 8
  year: 2002
  ident: 2124_CR127
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1485773
– volume: 40
  start-page: 2169
  issue: 1
  year: 2014
  ident: 2124_CR87
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2013.07.134
– volume: 110
  start-page: 222
  issue: 2–3
  year: 2008
  ident: 2124_CR159
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2008.01.032
– volume: 249
  start-page: 216
  year: 2014
  ident: 2124_CR80
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2014.03.083
– volume: 194
  start-page: 1222
  issue: 2
  year: 2009
  ident: 2124_CR105
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2009.06.068
– volume: 473
  start-page: 317
  issue: 1–2
  year: 2008
  ident: 2124_CR74
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2007.03.087
– volume: 80
  start-page: 142
  issue: 1–2
  year: 1999
  ident: 2124_CR71
  publication-title: J Power Sour
  doi: 10.1016/S0378-7753(98)00258-4
– volume: 11
  start-page: 23374
  issue: 38
  year: 2021
  ident: 2124_CR121
  publication-title: RSC Adv
  doi: 10.1039/D1RA04341B
– volume: 138
  start-page: 1539
  issue: 6
  year: 1991
  ident: 2124_CR21
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2085829
– volume: 18
  start-page: 397
  issue: 4
  year: 2018
  ident: 2124_CR54
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2018.01.019
– volume: 152
  start-page: 172
  year: 2015
  ident: 2124_CR43
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2014.11.127
– volume: 8
  start-page: 1500
  issue: 2
  year: 2014
  ident: 2124_CR23
  publication-title: ACS Nano
  doi: 10.1021/nn405595r
– volume: 8
  start-page: 937
  issue: 6
  year: 2006
  ident: 2124_CR27
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2006.03.035
– volume: 195
  start-page: 7880
  issue: 24
  year: 2010
  ident: 2124_CR47
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2010.06.036
– volume: 58
  start-page: 1189
  year: 2016
  ident: 2124_CR37
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.12.249
– volume: 42
  start-page: 3708
  issue: 11
  year: 2007
  ident: 2124_CR60
  publication-title: J Mater Sci
  doi: 10.1007/s10853-006-0394-z
– volume: 187
  start-page: 640
  issue: 2
  year: 2009
  ident: 2124_CR2
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2008.11.012
– volume: 272
  start-page: 979
  year: 2014
  ident: 2124_CR12
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2014.09.015
– volume: 81
  start-page: 680
  issue: 5
  year: 2007
  ident: 2124_CR61
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2006.09.012
– volume: 113
  start-page: 54
  issue: 1
  year: 2009
  ident: 2124_CR98
  publication-title: The J Phys Chem C
  doi: 10.1021/jp806454r
– volume: 41
  start-page: 13284
  issue: 43
  year: 2012
  ident: 2124_CR103
  publication-title: Dalton Trans
  doi: 10.1039/c2dt31916k
– volume: 4
  start-page: 1600289
  issue: 2
  year: 2017
  ident: 2124_CR143
  publication-title: Adv Sci
  doi: 10.1002/advs.201600289
– volume: 47
  start-page: 1021
  issue: 3
  year: 2011
  ident: 2124_CR160
  publication-title: Chem Commun
  doi: 10.1039/C0CC03594G
– volume: 9
  start-page: 592
  issue: 3
  year: 2009
  ident: 2124_CR84
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2008.05.006
– volume: 93
  start-page: 475
  issue: 1–3
  year: 2003
  ident: 2124_CR50
  publication-title: Sens Actuators B Chem
  doi: 10.1016/S0925-4005(03)00198-9
– volume: 189
  start-page: 280
  issue: 2–3
  year: 2007
  ident: 2124_CR83
  publication-title: J Photochem Photobiol A
  doi: 10.1016/j.jphotochem.2007.02.014
– volume: 300
  start-page: 29
  year: 2014
  ident: 2124_CR118
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2014.01.186
– volume: 9
  start-page: 155
  issue: 1
  year: 2009
  ident: 2124_CR94
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2008.01.005
– volume: 20
  start-page: 9735
  issue: 43
  year: 2010
  ident: 2124_CR19
  publication-title: J Mater Chem
  doi: 10.1039/c0jm01573c
– volume: 9
  start-page: 83
  issue: 1
  year: 2007
  ident: 2124_CR126
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2006.08.037
– volume: 40
  start-page: 1423
  issue: 1
  year: 2014
  ident: 2124_CR4
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2013.07.025
– volume: 877
  start-page: 160301
  year: 2021
  ident: 2124_CR93
  publication-title: J Alloys Comp
  doi: 10.1016/j.jallcom.2021.160301
– volume: 6
  start-page: 4196
  issue: 6
  year: 2014
  ident: 2124_CR106
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am405849n
– volume: 7
  start-page: 18
  issue: 1
  year: 2015
  ident: 2124_CR131
  publication-title: Adv Sci Eng Med
  doi: 10.1166/asem.2015.1648
– volume: 8
  start-page: 621
  issue: 5
  year: 2021
  ident: 2124_CR133
  publication-title: J Traffic Transp Eng (english Edition)
  doi: 10.1016/j.jtte.2021.09.001
– volume: 35
  start-page: 405
  issue: 3
  year: 2012
  ident: 2124_CR108
  publication-title: Bull Mater Sci
  doi: 10.1007/s12034-012-0315-5
– volume: 9
  start-page: 243
  issue: 1
  year: 2009
  ident: 2124_CR59
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2008.02.004
– volume: 787
  start-page: 3
  year: 2015
  ident: 2124_CR56
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.787.3
– volume: 21
  start-page: 5128
  issue: 13
  year: 2011
  ident: 2124_CR116
  publication-title: J Mater Chem
  doi: 10.1039/c0jm04085a
– volume: 115
  start-page: 15646
  issue: 31
  year: 2011
  ident: 2124_CR92
  publication-title: The J Phys Chem C
  doi: 10.1021/jp201200e
– volume: 4
  start-page: 4247
  issue: 7
  year: 2010
  ident: 2124_CR153
  publication-title: ACS Nano
  doi: 10.1021/nn100592d
– volume: 25
  start-page: 1
  issue: 1
  year: 1964
  ident: 2124_CR112
  publication-title: J Phys Chem Solids
  doi: 10.1016/0022-3697(64)90156-8
– volume: 91
  start-page: 37
  issue: 1
  year: 2000
  ident: 2124_CR13
  publication-title: J Power Sour
  doi: 10.1016/S0378-7753(00)00485-7
– volume: 11
  start-page: 387
  issue: 5
  year: 2001
  ident: 2124_CR3
  publication-title: Adv Func Mater
  doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
– volume: 20
  start-page: 175602
  issue: 17
  year: 2009
  ident: 2124_CR24
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/17/175602
– volume: 82
  start-page: 547
  issue: 5
  year: 2008
  ident: 2124_CR57
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2007.06.002
– volume: 7
  start-page: 1348
  issue: 2
  year: 2015
  ident: 2124_CR141
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am507656q
– volume: 49
  start-page: 3651
  issue: 11
  year: 2013
  ident: 2124_CR144
  publication-title: Eur Polymer J
  doi: 10.1016/j.eurpolymj.2013.08.001
– volume: 8
  start-page: 211
  issue: 9
  year: 2019
  ident: 2124_CR97
  publication-title: Int J Eng Tech
– volume: 10
  start-page: 23163
  issue: 27
  year: 2018
  ident: 2124_CR32
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b07082
– volume: 65
  start-page: 2628
  issue: 17–18
  year: 2011
  ident: 2124_CR26
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2011.05.114
– volume: 5
  start-page: 9656
  issue: 19
  year: 2013
  ident: 2124_CR147
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am402686r
– ident: 2124_CR125
  doi: 10.1142/9789814287005_0033
– volume: 7
  start-page: 9366
  issue: 10
  year: 2013
  ident: 2124_CR72
  publication-title: ACS Nano
  doi: 10.1021/nn4040734
– volume: 158
  start-page: 1523
  issue: 2
  year: 2006
  ident: 2124_CR31
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2005.10.090
– volume: 3
  start-page: 2063
  issue: 6
  year: 2011
  ident: 2124_CR90
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am200294k
– volume: 272
  start-page: 915
  year: 2014
  ident: 2124_CR155
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2014.09.013
– volume: 16
  start-page: 12214
  issue: 24
  year: 2014
  ident: 2124_CR137
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c4cp01200c
– volume: 585
  start-page: 505
  year: 2021
  ident: 2124_CR82
  publication-title: J Coll Interface Sci
  doi: 10.1016/j.jcis.2020.10.032
– volume: 115
  start-page: 17599
  issue: 35
  year: 2011
  ident: 2124_CR138
  publication-title: The J Phys Chem C
  doi: 10.1021/jp2049684
– volume: 162
  start-page: 868
  issue: 9–10
  year: 2012
  ident: 2124_CR6
  publication-title: Synth Met
  doi: 10.1016/j.synthmet.2012.03.020
– volume: 34
  start-page: 6558
  issue: 6
  year: 2020
  ident: 2124_CR52
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c00430
– volume: 4
  start-page: 5835
  issue: 10
  year: 2010
  ident: 2124_CR146
  publication-title: ACS Nano
  doi: 10.1021/nn101754k
– volume: 6
  start-page: 19318
  issue: 21
  year: 2014
  ident: 2124_CR41
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am5053784
– volume: 65
  start-page: 53
  issue: 1–2
  year: 1997
  ident: 2124_CR22
  publication-title: J Power Sour
  doi: 10.1016/S0378-7753(97)02468-3
– volume: 7
  start-page: 100901
  issue: 10
  year: 2019
  ident: 2124_CR44
  publication-title: APL Mater
  doi: 10.1063/1.5116146
– ident: 2124_CR67
  doi: 10.1016/j.mset.2020.10.012
– volume: 19
  start-page: 6977
  issue: 38
  year: 2009
  ident: 2124_CR111
  publication-title: J Mater Chem
  doi: 10.1039/b916666a
– volume: 1
  start-page: 594
  issue: 3
  year: 2013
  ident: 2124_CR154
  publication-title: J Mater Chem A
  doi: 10.1039/C2TA00055E
– volume: 15
  start-page: 107
  issue: 1
  year: 2009
  ident: 2124_CR55
  publication-title: Ionics
  doi: 10.1007/s11581-008-0227-y
– volume: 114
  start-page: 5203
  issue: 11
  year: 2010
  ident: 2124_CR53
  publication-title: The J Phys Chem C
  doi: 10.1021/jp9097155
– volume: 732
  start-page: 139288
  year: 2020
  ident: 2124_CR5
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.139288
– volume: 78
  start-page: 212
  year: 2012
  ident: 2124_CR35
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.05.139
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 2124_CR102
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-59481-7
– volume: 22
  start-page: 2632
  issue: 12
  year: 2012
  ident: 2124_CR152
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.201102839
– volume: 196
  start-page: 2387
  issue: 4
  year: 2011
  ident: 2124_CR16
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2010.09.078
– volume: 5
  start-page: 2188
  issue: 6
  year: 2013
  ident: 2124_CR134
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am400012h
– volume: 27
  start-page: 1350215
  issue: 29
  year: 2013
  ident: 2124_CR132
  publication-title: Mod Phys Lett B
  doi: 10.1142/S0217984913502151
– ident: 2124_CR62
– volume: 161
  start-page: 1141
  issue: 11–12
  year: 2011
  ident: 2124_CR140
  publication-title: Synth Met
  doi: 10.1016/j.synthmet.2011.01.011
– ident: 2124_CR119
– volume: 5
  start-page: 373
  issue: 3
  year: 2015
  ident: 2124_CR117
  publication-title: Appl Nanosci
  doi: 10.1007/s13204-014-0327-0
– volume: 75
  start-page: 345
  issue: 4
  year: 2007
  ident: 2124_CR89
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.75.345
– volume: 222
  start-page: 410
  year: 2013
  ident: 2124_CR166
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2012.09.004
– volume: 48
  start-page: 575
  issue: 5
  year: 2003
  ident: 2124_CR148
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(02)00727-2
– volume: 148
  start-page: A156
  issue: 2
  year: 2001
  ident: 2124_CR40
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1342166
– volume: 109
  start-page: 20207
  issue: 43
  year: 2005
  ident: 2124_CR128
  publication-title: J Phys Chem B
  doi: 10.1021/jp0543330
– volume: 51
  start-page: 14958
  issue: 46
  year: 2012
  ident: 2124_CR156
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie301642g
– volume: 227
  start-page: 254
  year: 2013
  ident: 2124_CR150
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2012.11.040
– volume: 63
  start-page: 181
  year: 2018
  ident: 2124_CR114
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2018.02.014
– volume: 114
  start-page: 658
  issue: 1
  year: 2010
  ident: 2124_CR109
  publication-title: The J Phys Chem C
  doi: 10.1021/jp908739q
– volume: 6
  start-page: 4578
  issue: 6
  year: 2014
  ident: 2124_CR165
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am500421r
– volume: 20
  start-page: 3221
  issue: 16
  year: 2010
  ident: 2124_CR110
  publication-title: J Mater Chem
  doi: 10.1039/b924247c
– volume: 8
  start-page: 340
  issue: 10
  year: 2018
  ident: 2124_CR122
  publication-title: Coatings
  doi: 10.3390/coatings8100340
– volume: 4
  start-page: 1288
  issue: 4
  year: 2011
  ident: 2124_CR39
  publication-title: Energy Environ Sci
  doi: 10.1039/c0ee00669f
– volume: 4
  start-page: 6039
  issue: 10
  year: 2010
  ident: 2124_CR73
  publication-title: ACS Nano
  doi: 10.1021/nn101595y
– volume: 538
  start-page: 177
  year: 2012
  ident: 2124_CR86
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2012.05.113
– volume: 194
  start-page: 29
  year: 2014
  ident: 2124_CR20
  publication-title: Synth Met
  doi: 10.1016/j.synthmet.2014.04.014
– volume: 125
  start-page: 92
  year: 2014
  ident: 2124_CR18
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2014.03.124
– volume: 3
  start-page: 213
  issue: 5
  year: 2000
  ident: 2124_CR36
  publication-title: Electrochem Solid State Lett
  doi: 10.1149/1.1391005
– volume: 81
  start-page: 708
  issue: 5
  year: 2007
  ident: 2124_CR58
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2006.09.013
– volume: 561
  start-page: 262
  year: 2013
  ident: 2124_CR107
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2013.02.015
– volume: 156
  start-page: A1000
  issue: 12
  year: 2009
  ident: 2124_CR65
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3236500
– volume: 55
  start-page: 8388
  issue: 28
  year: 2010
  ident: 2124_CR91
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2010.07.042
– volume: 142
  start-page: 99
  issue: 1–2
  year: 2007
  ident: 2124_CR29
  publication-title: Solid State Commun
  doi: 10.1016/j.ssc.2007.01.011
– volume: 48
  start-page: 1711
  issue: 4
  year: 2013
  ident: 2124_CR9
  publication-title: J Mater Sci
  doi: 10.1007/s10853-012-6929-6
– volume: 103
  start-page: 127
  issue: 1
  year: 2007
  ident: 2124_CR88
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2007.01.022
– volume: 135
  start-page: 120
  issue: 2
  year: 2006
  ident: 2124_CR151
  publication-title: Mater Sci Eng B
  doi: 10.1016/j.mseb.2006.08.047
– volume: 186
  start-page: 108199
  year: 2020
  ident: 2124_CR1
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.108199
– volume: 149
  start-page: A346
  issue: 3
  year: 2002
  ident: 2124_CR96
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1449951
– volume: 252
  start-page: 7487
  issue: 20
  year: 2006
  ident: 2124_CR124
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2005.09.004
– volume: 15
  start-page: 2297
  issue: 23
  year: 2005
  ident: 2124_CR145
  publication-title: J Mater Chem
  doi: 10.1039/b418835g
– volume: 214
  start-page: 91
  year: 2012
  ident: 2124_CR70
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2012.04.076
– volume: 95
  start-page: 183
  year: 2019
  ident: 2124_CR101
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.6220
– volume: 148
  start-page: A1
  issue: 1
  year: 2001
  ident: 2124_CR30
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1339036
– volume: 104
  start-page: 13574
  issue: 34
  year: 2007
  ident: 2124_CR104
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0706508104
– volume: 6
  start-page: 15302
  issue: 17
  year: 2014
  ident: 2124_CR161
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am503783t
– volume: 22
  start-page: 23710
  issue: 45
  year: 2012
  ident: 2124_CR139
  publication-title: J Mater Chem
  doi: 10.1039/c2jm34066f
– volume: 13
  start-page: 5038
  issue: 11
  year: 2011
  ident: 2124_CR115
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c0cp02054k
– volume: 204
  start-page: 163
  year: 2015
  ident: 2124_CR149
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2014.11.021
– volume: 6
  start-page: 15905
  issue: 18
  year: 2014
  ident: 2124_CR14
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am5035494
– volume: 112
  start-page: 4406
  issue: 11
  year: 2008
  ident: 2124_CR25
  publication-title: The J Phys Chem C
  doi: 10.1021/jp7108785
– volume: 468
  start-page: L27
  issue: 1–2
  year: 2009
  ident: 2124_CR85
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2008.01.050
– volume: 708
  start-page: 146
  year: 2017
  ident: 2124_CR42
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2017.02.301
– volume: 53
  start-page: 466
  issue: 2
  year: 2010
  ident: 2124_CR10
  publication-title: J Sol-Gel Sci Technol
  doi: 10.1007/s10971-009-2098-8
– volume: 115
  start-page: 11880
  issue: 23
  year: 2011
  ident: 2124_CR51
  publication-title: The J Phys Chem C
  doi: 10.1021/jp2036982
– volume: 118
  start-page: 518
  issue: 1–3
  year: 2009
  ident: 2124_CR95
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2008.09.004
– volume: 1
  start-page: 211
  year: 2021
  ident: 2124_CR79
  publication-title: SusMat
  doi: 10.1002/sus2.8
– volume: 12
  start-page: 1690
  issue: 3
  year: 2012
  ident: 2124_CR78
  publication-title: Nano Lett
  doi: 10.1021/nl300173j
SSID ssj0044050
ssib044732867
ssib029106359
Score 2.5035517
SecondaryResourceType review_article
Snippet Supercapacitors are gaining popularity as energy storage devices because of their quick charge/discharge rates, prolonged cycle stability, and high specific...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3371
SubjectTerms Aqueous electrolytes
Biochemistry
Biotechnology
Capacitors
Carbon
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Cobalt oxides
Conducting polymers
Electrode materials
Electrodes
Electrolytic cells
Energy storage
Graphene
High temperature
Industrial Chemistry/Chemical Engineering
Low cost
Manganese dioxide
Materials Science
Medicinal Chemistry
Metal oxides
Metal sulfides
Nickel oxides
Nickel sulfide
Nonaqueous electrolytes
Physical properties
Polymers
Review
Stability
Sulfide compounds
Supercapacitors
Titanium dioxide
Tungsten oxides
Title Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: a review
URI https://link.springer.com/article/10.1007/s11696-022-02124-0
https://www.proquest.com/docview/2667456811
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yHvQiPnF1lRy8uYEmTdPW27K4LB48ubC3kicIS7vsA_Tib3fS5yoqeCvJNIXOJPNNJvMFobs0ShS1zBIVCwsBinREcupIIp2zKdNa6PKU77OYzvjTPJrXRWHr5rR7k5IsV-qu2I2K8sAsI56WnBMI1PcjH7uDFc_YqLEiBg4QvGjrpDn3fDSiDcM4QJSgymAKAoKsLqX5-Rtf3VWHQb-lTUtvNDlGRzWMxKNK7ydoz-an6GDc3N52hj52CDTAsHDhMES-ntwVxsPLYvHuN6yHWMuVKnIMuLUyxSEu3l6NxTI3eL1dOP_cdmJAuNC6tCsNPlbDYrDCuxnwByxxVQtzjmaTx5fxlNR3LRANk3BDjI6pSwORUGdjB02h4EqmTjNNNWXGycgGOg0jKuPQxDGNjHZWqsSK0AWhDS9QLy9ye4mwocan91LlyfUAvUnmEqWlUZE1SivRR7T5pZmuicj9fRiLrKNQ9mrIQA1ZqYYs6KP79p1lRcPxp_Sg0VRWT8l1Bkgk5p5ujfbRsNFe1_37aFf_E79Gh6w0IL9TM0C9zWprbwC4bNRtaaefShHjuA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6ih3oRn1itmoM3G9hkd7O73kqxVK09tdDbkicIZbf0AXrxtzvZR1tFBW9Lks3CziTzTWbmC0K3SRhLapghMuIGHBRhiQioJbGw1iRMKa6KLN8h74-Dp0k4qYrCFnW2ex2SLHbqTbEb5UXCLCOOljwg4KjvARiIXSLXmHVqLWJgAMGKro10EDg-Gr52wwKAKF4ZweQEBrKqlObnb3w1VxsM-i1sWlij3iE6qGAk7pRyP0I7JjtGjW59e9sJ-tgi0ADFwrnF4Pk6cleYD8_y6bs7sG5jJeYyzzDg1lIV2zh_e9UGi0zjxWpq3fO6EwPChdaZmSuwsQo2gznejoDfY4HLWphTNO49jLp9Ut21QBQswiXRKqI28XhMrYksNPk8kCKxiimqKNNWhMZTiR9SEfk6imiolTVCxob71vONf4Z2szwz5whrql14L5GOXA_Qm2A2lkpoGRotleRNROtfmqqKiNzdhzFNNxTKTgwpiCEtxJB6TXS3fmdW0nD8ObpVSyqtluQiBSQSBY5ujTZRu5bepvv32S7-N_wGNfqjl0E6eBw-X6J9ViiTO7Vpod3lfGWuAMQs5XWhs58x1-ar
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ioF7EJ66umoM3N9ikbdp6W1aX9YF4cMFbyROEpV3WFfTib3fS5yoqeCtpmtLM18yXTOYLQqdJGEtqmCEy4gYmKMISEVBLYmGtSZhSXBW7fO_5aBzcPIVPC1n8xW73OiRZ5jQ4laZsfj7V9rxNfKO82DzLiJMoDwhM2ldgOKYO12PWrxHFwBmCR20cdhA4bRreTMkCoCteGc3kBCqyKq3m53d8dV0tH_0WQi0803ATbVSUEvdLDGyhJZNto7VBfZLbDvpYENMAkOHcYvhcJ_QK7eFpPnl3i9c9rMRM5hkGDlvCsofzt2dtsMg0fnmdWHfd3MTAdqF0amYK_K2CgWGGF6PhF1jgMi9mF42HV4-DEanOXSAKenBOtIqoTTweU2siC0U-D6RIrGKKKsq0FaHxVOKHVES-jiIaamWNkLHhvvV84--h5SzPzD7CmmoX6kukE9oDJieYjaUSWoZGSyV5B9G6S1NViZK7szEmaSun7MyQghnSwgyp10FnzTPTUpLjz9rd2lJp9Xu-pMBKosBJr9EO6tXWa2__3trB_6qfoNWHy2F6d31_e4jWWYElt4DTRcvz2as5Aj4zl8cFZD8BnB_q5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigations+of+conducting+polymers%2C+carbon+materials%2C+oxide+and+sulfide+materials+for+supercapacitor+applications%3A+a+review&rft.jtitle=Chemical+papers&rft.au=Dhilip%2C+Kumar+R&rft.au=Nagarani%2C+S&rft.au=Sethuraman%2C+V&rft.au=Swetha%2C+Andra&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0366-6352&rft.eissn=1336-9075&rft.volume=76&rft.issue=6&rft.spage=3371&rft.epage=3385&rft_id=info:doi/10.1007%2Fs11696-022-02124-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0366-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0366-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0366-6352&client=summon