Computational assessment of hybrid nanofluid with the rule of heat-transfer enhancement over a stretched sheet: a comparative study
Hybrid nanofluids, which incorporate two distinct nanoparticles, are an innovative class of nanofluids designed to improve thermal and mechanical properties. These fluids have garnered considerable interest in numerous engineering and scientific fields. The fundamental goal of this research is to in...
Saved in:
Published in | Mechanics of time-dependent materials Vol. 28; no. 4; pp. 3183 - 3197 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hybrid nanofluids, which incorporate two distinct nanoparticles, are an innovative class of nanofluids designed to improve thermal and mechanical properties. These fluids have garnered considerable interest in numerous engineering and scientific fields. The fundamental goal of this research is to investigate the heat-transfer increase of MnZnFe
2
O
4
-NiZnFe
2
O
4
/C
10
H
22
hybrid nanofluids in the presence of magnetohydrodynamics, nonlinear thermal radiation, and the Biot number on a stretched sheet. In this case, nanomaterials (MnZnFe
2
O
4
and NiZnFe
2
O
4
) are combined with a base fluid C
10
H
22
. To do this, the system’s partial differential equations are transformed into a set of nonlinear ordinary differential equations using systematic similarity transformations. The shooting approach is then used in combination with MATLAB’s BVP4C solver to solve the resultant ordinary differential equations. The study presents the impact of various physical parameters, including the porosity parameter, magnetic parameter, Prandtl number, thermal-radiation parameter, Biot number, and Schmidt number, on the velocity and temperature fields, illustrated through graphs and tables. The velocity field reduces for increasing values of both magnetic and porosity parameters. The thermal-distribution profile is increased for increasing variations of the temperature-ratio parameter, Biot number, volume fraction of nanoparticles, and the thermal-radiation parameter. The MnZnFe
2
O
4
-NiZnFe
2
O
4
/C
10
H
22
hybrid nanofluids combine thermal, magnetic, and fluidic properties, making them versatile for applications in thermal management, medicine, industrial processes, environmental remediation, and advanced sensing technologies. Their multifunctional characteristics provide significant advantages in improving efficiency, performance, and control in various engineering and scientific fields. This research has potential applications in heat transfer, biomedical research, manufacturing, aerospace technology, and beyond. |
---|---|
AbstractList | Hybrid nanofluids, which incorporate two distinct nanoparticles, are an innovative class of nanofluids designed to improve thermal and mechanical properties. These fluids have garnered considerable interest in numerous engineering and scientific fields. The fundamental goal of this research is to investigate the heat-transfer increase of MnZnFe2O4-NiZnFe2O4/C10H22 hybrid nanofluids in the presence of magnetohydrodynamics, nonlinear thermal radiation, and the Biot number on a stretched sheet. In this case, nanomaterials (MnZnFe2O4 and NiZnFe2O4) are combined with a base fluid C10H22. To do this, the system’s partial differential equations are transformed into a set of nonlinear ordinary differential equations using systematic similarity transformations. The shooting approach is then used in combination with MATLAB’s BVP4C solver to solve the resultant ordinary differential equations. The study presents the impact of various physical parameters, including the porosity parameter, magnetic parameter, Prandtl number, thermal-radiation parameter, Biot number, and Schmidt number, on the velocity and temperature fields, illustrated through graphs and tables. The velocity field reduces for increasing values of both magnetic and porosity parameters. The thermal-distribution profile is increased for increasing variations of the temperature-ratio parameter, Biot number, volume fraction of nanoparticles, and the thermal-radiation parameter. The MnZnFe2O4-NiZnFe2O4/C10H22 hybrid nanofluids combine thermal, magnetic, and fluidic properties, making them versatile for applications in thermal management, medicine, industrial processes, environmental remediation, and advanced sensing technologies. Their multifunctional characteristics provide significant advantages in improving efficiency, performance, and control in various engineering and scientific fields. This research has potential applications in heat transfer, biomedical research, manufacturing, aerospace technology, and beyond. Hybrid nanofluids, which incorporate two distinct nanoparticles, are an innovative class of nanofluids designed to improve thermal and mechanical properties. These fluids have garnered considerable interest in numerous engineering and scientific fields. The fundamental goal of this research is to investigate the heat-transfer increase of MnZnFe 2 O 4 -NiZnFe 2 O 4 /C 10 H 22 hybrid nanofluids in the presence of magnetohydrodynamics, nonlinear thermal radiation, and the Biot number on a stretched sheet. In this case, nanomaterials (MnZnFe 2 O 4 and NiZnFe 2 O 4 ) are combined with a base fluid C 10 H 22 . To do this, the system’s partial differential equations are transformed into a set of nonlinear ordinary differential equations using systematic similarity transformations. The shooting approach is then used in combination with MATLAB’s BVP4C solver to solve the resultant ordinary differential equations. The study presents the impact of various physical parameters, including the porosity parameter, magnetic parameter, Prandtl number, thermal-radiation parameter, Biot number, and Schmidt number, on the velocity and temperature fields, illustrated through graphs and tables. The velocity field reduces for increasing values of both magnetic and porosity parameters. The thermal-distribution profile is increased for increasing variations of the temperature-ratio parameter, Biot number, volume fraction of nanoparticles, and the thermal-radiation parameter. The MnZnFe 2 O 4 -NiZnFe 2 O 4 /C 10 H 22 hybrid nanofluids combine thermal, magnetic, and fluidic properties, making them versatile for applications in thermal management, medicine, industrial processes, environmental remediation, and advanced sensing technologies. Their multifunctional characteristics provide significant advantages in improving efficiency, performance, and control in various engineering and scientific fields. This research has potential applications in heat transfer, biomedical research, manufacturing, aerospace technology, and beyond. |
Author | Alhushaybari, Abdullah Imran, Muhammad Waqas, Hassan Fatima, Nahid Farooq, Umar Noreen, Sobia Basem, Ali Muhammad, Taseer |
Author_xml | – sequence: 1 givenname: Umar surname: Farooq fullname: Farooq, Umar organization: Department of Mathematics, Government College University Faisalabad – sequence: 2 givenname: Ali surname: Basem fullname: Basem, Ali organization: Air Conditioning Engineering Department, Faculty of Engineering, Warith Al-Anbiyaa University – sequence: 3 givenname: Muhammad surname: Imran fullname: Imran, Muhammad email: drmimranchaudhry@gcuf.edu.pk organization: Department of Mathematics, Government College University Faisalabad – sequence: 4 givenname: Nahid surname: Fatima fullname: Fatima, Nahid organization: Department of Mathematics and Sciences, Prince Sultan University – sequence: 5 givenname: Abdullah surname: Alhushaybari fullname: Alhushaybari, Abdullah organization: Department of Mathematics, Turabah University College, Taif University – sequence: 6 givenname: Taseer surname: Muhammad fullname: Muhammad, Taseer organization: Department of Mathematics, College of Sciences, King Khalid University – sequence: 7 givenname: Hassan surname: Waqas fullname: Waqas, Hassan organization: Department of Mathematics, Government College University Faisalabad – sequence: 8 givenname: Sobia surname: Noreen fullname: Noreen, Sobia organization: Department of Mathematics, Government College University Faisalabad |
BookMark | eNp9kE1r3DAQhkVIIJ9_ICdBzkpHkj_k3sLSpIWFXNqzkKVx7OCVt5K8Yc_949GuA4UccpqX0fvMaN5Lcuonj4TccrjnAPW3yDkUkoEoGDS1KBmckAte1pKJWqrTrKUqmQCAc3IZ42sWdQPqgvxbTZvtnEwaJm9GamLEGDfoE5062u_bMDjqjZ-6cc7qbUg9TT3SMI94dKBJLAXjY4eBou-Nt7jgu9wwNKaAyfboaOwR0_fcsnmjCXnjDvPz7PbX5KwzY8Sbj3pF_jz--L36ydbPT79WD2tmJW8Scy1vUJXKutZxJcqykrKtXSEtOF6VNULVtdw2lakqI8AWLa8KbKxQrmt4UcorcrfM3Ybp74wx6ddpDvnsqCWXgkvg6uBSi8uGKcaAnbbDkk--cxg1B32IXC-R6xy5PkauIaPiE7oNw8aE_deQXKCYzf4Fw_9ffUG9Azg7l_4 |
CitedBy_id | crossref_primary_10_1007_s41939_024_00712_z crossref_primary_10_1007_s11043_024_09739_8 crossref_primary_10_1007_s11043_024_09743_y crossref_primary_10_1007_s41939_025_00748_9 crossref_primary_10_1007_s41939_024_00709_8 crossref_primary_10_1007_s41939_024_00723_w crossref_primary_10_1007_s42452_025_06508_1 crossref_primary_10_1007_s00396_024_05353_9 crossref_primary_10_1007_s41939_025_00786_3 |
Cites_doi | 10.1155/2014/538950 10.1007/s40430-017-0850-5 10.1166/jon.2016.1224 10.1515/9783110696080-004 10.1007/s10973-020-10127-w 10.1016/j.aej.2021.02.055 10.1016/j.ijheatmasstransfer.2018.05.021 10.3390/biomimetics8080574 10.1007/s13369-024-09008-3 10.1016/j.aej.2021.01.050 10.1007/s12043-015-1137-y 10.1016/j.molliq.2016.01.005 10.1016/j.ijft.2024.100668 10.3390/sym12030393 10.1080/10407782.2024.2333042 10.1080/10407782.2016.1230423 10.1002/htj.22532 10.1038/s41598-021-93748-x 10.4283/JMAG.2021.26.3.271 10.1016/j.icheatmasstransfer.2021.105445 10.1007/s13369-020-04453-2 10.1007/s13204-022-02528-0 10.1016/j.aej.2021.06.047 10.3389/fmats.2023.1253090 10.1016/j.matcom.2020.12.005 10.1007/s42452-020-3011-x 10.3390/w15162879 10.1007/s10483-021-2791-8 10.1038/s41598-022-15658-w 10.1166/jon.2024.2145 10.1016/j.csite.2021.100943 10.1063/1.4942201 10.1016/j.rinp.2020.103812 10.1016/j.ijft.2023.100490 10.1007/s12668-018-0592-6 10.1088/1402-4896/acfe5e 10.2963/jjtp.7.227 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11043-024-09725-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-2738 |
EndPage | 3197 |
ExternalDocumentID | 10_1007_s11043_024_09725_0 |
GroupedDBID | -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 203 29M 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9N PF0 PT4 PT5 QOS R89 R9I RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 ZMTXR ~A9 AAYXX CITATION |
ID | FETCH-LOGICAL-c319t-db19e858cdbd18255633b7d43c0d1657e06fb1c96a66a20c4b164e9c28df91453 |
IEDL.DBID | U2A |
ISSN | 1385-2000 |
IngestDate | Fri Jul 25 11:12:59 EDT 2025 Tue Jul 01 03:16:43 EDT 2025 Thu Apr 24 23:06:26 EDT 2025 Mon Jul 21 06:07:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Two-dimensional flow Shooting method (BVP4C) Porous medium MHD Nonlinear thermal radiation Stretched sheet Hybrid nanofluid Matlab |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-db19e858cdbd18255633b7d43c0d1657e06fb1c96a66a20c4b164e9c28df91453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3132130185 |
PQPubID | 2043841 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3132130185 crossref_citationtrail_10_1007_s11043_024_09725_0 crossref_primary_10_1007_s11043_024_09725_0 springer_journals_10_1007_s11043_024_09725_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to the Time-Dependent Behaviour of Materials and Structures |
PublicationTitle | Mechanics of time-dependent materials |
PublicationTitleAbbrev | Mech Time-Depend Mater |
PublicationYear | 2024 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Farooq, Waqas, Muhammad, Imran, Alshomrani (CR11) 2022; 423 Alzahrani, Khan (CR4) 2021; 26 Nagaraja, Vidhya, Almeida, Kumar (CR32) 2024 Sreedevi, Sudarsana Reddy, Chamkha (CR40) 2020; 2 Khan, Shoaib, Zubair, Kumar, Prasannakumara, Mousa, Raja (CR20) 2023; 13 Li, Waqas, Imran, Farooq, Mallawi, Tlili (CR24) 2020; 12 Madhu, Baili, Kumar, Prasannakumara, Gowda (CR25) 2023; 98 Muhammad, Waqas, Mahanthesh (CR29) 2021 Javed, Mehmood, Siddiqui (CR17) 2017; 39 Madhukesh, Kalleshachar, Kumar, Khan, Nagaraja, Sarris, Chohan (CR26) 2023; 15 Saranya, Al-Mdallal (CR37) 2021; 25 Ebaid, Al Mutairi, Khaled (CR8) 2014; 2014 Nagaraja, Gireesha, Almeida, Kumar, Ajaykumar (CR31) 2024; 10 Rashid, Liang, Ahmad, Abbas, Iqbal, Hamed (CR35) 2021; 21 Naveen Kumar, Suresh Goud, Srilatha, Manjunatha, Rani, Kumar, Suresha (CR33) 2022; 51 Tayebi, Chamkha (CR41) 2016; 70 Poornima, Sarris, Chandan, Nagaraja, Kumar, Ben Ahmed (CR34) 2023; 8 Shaw, Dogonchi, Nayak, Makinde (CR39) 2020; 45 Hazarika, Ahmed, Chamkha (CR14) 2021; 182 Hayat, Waqas, Shehzad, Alsaedi (CR13) 2016; 215 Imran, Abbas, Naveed, Salamat (CR16) 2021; 60 Manjula, Jayalakshmi (CR27) 2018; 7 Hussanan, Khan, Gorji, Khan (CR15) 2019; 9 Khan, Khan (CR18) 2016; 6 Farooq, Waqas, Khan, Khan, Chu, Kadry (CR9) 2021; 60 Waqas, Wakif, Al-Mdallal, Zaydan, Farooq, Hussain (CR43) 2022; 61 Waqas, Farooq, Ibrahim, Alam, Shah, Kumam (CR42) 2021; 11 Hayat, Waqas, Shehzad, Alsaedi (CR12) 2016; 86 Kumar, Rudraswamy, Ajaykumar, Felicita, Nagaraja, Shehzad (CR23) 2024 CR7 CR28 Acharya, Das, Kundu (CR1) 2019; 6 Nagaraja, Vinutha, Madhukesh, Khan, Singh Chohan, Sherif, Shanker (CR30) 2023; 10 Amjad, Zehra, Nadeem, Abbas (CR5) 2021; 143 Kumar, Gowda, Alam, Ahmad, Mahrous, Gorji, Prasannakumara (CR21) 2021; 126 Badak, Sharma, Ahmed (CR6) 2024; 13 Kumar, Ajaykumar, Felicita, Nagaraja, Al-Mdallal, El-Khatib (CR22) 2023; 20 Ajaykumar, Kumar, Almeida, Nagaraja, Al-Mdallal (CR2) 2024; 22 Sajid, Ali (CR36) 2018; 126 Shah, Khan, Al-Khaled, Khan, Khan, Shah, Ali (CR38) 2022; 102 Khan, Ali, Abbas (CR19) 2016; 5 Farooq, Tahir, Waqas, Muhammad, Alshehri, Imran (CR10) 2022; 12 Ali, Hussain, Anwar, Inc (CR3) 2021; 42 M. Khan (9725_CR18) 2016; 6 S.U. Khan (9725_CR19) 2016; 5 S. Saranya (9725_CR37) 2021; 25 S. Hazarika (9725_CR14) 2021; 182 A. Ebaid (9725_CR8) 2014; 2014 9725_CR7 T. Hayat (9725_CR13) 2016; 215 B. Nagaraja (9725_CR32) 2024 J.K. Madhukesh (9725_CR26) 2023; 15 M. Imran (9725_CR16) 2021; 60 P. Sreedevi (9725_CR40) 2020; 2 S. Shaw (9725_CR39) 2020; 45 U. Farooq (9725_CR9) 2021; 60 M.I. Khan (9725_CR20) 2023; 13 F. Shah (9725_CR38) 2022; 102 H. Waqas (9725_CR43) 2022; 61 N. Acharya (9725_CR1) 2019; 6 T. Tayebi (9725_CR41) 2016; 70 U. Farooq (9725_CR11) 2022; 423 A. Hussanan (9725_CR15) 2019; 9 T. Javed (9725_CR17) 2017; 39 K.V. Nagaraja (9725_CR30) 2023; 10 T. Hayat (9725_CR12) 2016; 86 A. Ali (9725_CR3) 2021; 42 B. Nagaraja (9725_CR31) 2024; 10 P. Kumar (9725_CR23) 2024 U. Rashid (9725_CR35) 2021; 21 Y. Li (9725_CR24) 2020; 12 M.U. Sajid (9725_CR36) 2018; 126 H. Waqas (9725_CR42) 2021; 11 U. Farooq (9725_CR10) 2022; 12 D. Manjula (9725_CR27) 2018; 7 M. Amjad (9725_CR5) 2021; 143 B.S. Poornima (9725_CR34) 2023; 8 F. Alzahrani (9725_CR4) 2021; 26 J. Madhu (9725_CR25) 2023; 98 9725_CR28 R. Naveen Kumar (9725_CR33) 2022; 51 A.R. Ajaykumar (9725_CR2) 2024; 22 P. Kumar (9725_CR22) 2023; 20 T. Muhammad (9725_CR29) 2021 K. Badak (9725_CR6) 2024; 13 R.N. Kumar (9725_CR21) 2021; 126 |
References_xml | – volume: 2014 year: 2014 ident: CR8 article-title: Effect of velocity slip boundary condition on the flow and heat transfer of Cu-water and TiO2-water nanofluids in the presence of a magnetic field publication-title: Adv. Math. Phys. doi: 10.1155/2014/538950 – volume: 39 start-page: 3897 issue: 10 year: 2017 end-page: 3909 ident: CR17 article-title: Mixed convection in a triangular cavity permeated with micropolar nanofluid-saturated porous medium under the impact of MHD publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-017-0850-5 – volume: 5 start-page: 351 issue: 3 year: 2016 end-page: 362 ident: CR19 article-title: Influence of heat generation/absorption with convective heat and mass conditions in the unsteady flow of Eyring Powell nanofluid over a porous oscillatory stretching surface publication-title: J. Nanofluids doi: 10.1166/jon.2016.1224 – start-page: 75 year: 2021 end-page: 102 ident: CR29 article-title: Computational analysis of bioconvection in the magnetized flow of thixotropic nanofluid with gyrotactic microorganisms publication-title: Mathematical Fluid Mechanics doi: 10.1515/9783110696080-004 – volume: 143 start-page: 2485 issue: 3 year: 2021 end-page: 2497 ident: CR5 article-title: Thermal analysis of Casson micropolar nanofluid flow over a permeable curved stretching surface under the stagnation region publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-10127-w – volume: 60 start-page: 4097 issue: 4 year: 2021 end-page: 4113 ident: CR16 article-title: Impact of Joule heating and melting on the time-dependent flow of nanoparticles due to an oscillatory stretchable curved wall publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.02.055 – volume: 126 start-page: 211 year: 2018 end-page: 234 ident: CR36 article-title: Thermal conductivity of hybrid nanofluids: a critical review publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.05.021 – volume: 6 start-page: 739 issue: 4 year: 2019 end-page: 750 ident: CR1 article-title: On the heat transport mechanism and entropy generation in a nozzle of liquid rocket engine using ferrofluid: a computational framework publication-title: J. Comput. Des. Eng. – volume: 8 issue: 8 year: 2023 ident: CR34 article-title: Evolutionary computing for the radiative–convective heat transfer of a wetted wavy fin using a genetic algorithm-based neural network publication-title: Biomimetics doi: 10.3390/biomimetics8080574 – volume: 102 issue: 3 year: 2022 ident: CR38 article-title: Impact of entropy optimized Darcy-Forchheimer flow in MnZnFe2O4 and NiZnFe2O4 hybrid nanofluid towards a curved surface publication-title: J. Appl. Math. Mech. – year: 2024 ident: CR23 article-title: Optimization of surface drag reduction attribute of non-Newtonian nanofluids flow driven by magnetic dipole enabled curved sheet publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-024-09008-3 – volume: 60 start-page: 3073 issue: 3 year: 2021 end-page: 3086 ident: CR9 article-title: Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat source publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.01.050 – volume: 86 start-page: 3 issue: 1 year: 2016 end-page: 17 ident: CR12 article-title: The stretched flow of Carreau nanofluid with convective boundary condition publication-title: Pramana doi: 10.1007/s12043-015-1137-y – volume: 215 start-page: 704 year: 2016 end-page: 710 ident: CR13 article-title: A model of solar radiation and Joule heating in magnetohydrodynamic (MHD) convective flow of thixotropic nanofluid publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.01.005 – volume: 22 year: 2024 ident: CR2 article-title: Sensitivity analysis and response surface methodology for entropy optimization in the exponentially stretching stratified curved sheet for Casson–Williamson nanofluid flow publication-title: Int. J. Thermofluids doi: 10.1016/j.ijft.2024.100668 – volume: 12 issue: 3 year: 2020 ident: CR24 article-title: A numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal radiation, and Wu’s slip publication-title: Symmetry doi: 10.3390/sym12030393 – year: 2024 ident: CR32 article-title: Numerical illustration of diffusive flow of blood-based tri-hybrid nanofluid generated by a curved stretching sheet using law of porosity publication-title: Numer. Heat Transf., Part A, Appl. doi: 10.1080/10407782.2024.2333042 – volume: 70 start-page: 1141 issue: 10 year: 2016 end-page: 1156 ident: CR41 article-title: Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids publication-title: Numer. Heat Transf., Part A, Appl. doi: 10.1080/10407782.2016.1230423 – volume: 51 start-page: 4977 issue: 6 year: 2022 end-page: 4991 ident: CR33 article-title: Cattaneo–Christov heat flux model for nanofluid flow over a curved stretching sheet: an application of Stefan blowing publication-title: Heat Transf. doi: 10.1002/htj.22532 – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 15 ident: CR42 article-title: Numerical simulation for the convectional flow of burger nanofluid with effects of activation energy and exponential heat source/sink over an inclined wall under the swimming microorganisms publication-title: Sci. Rep. doi: 10.1038/s41598-021-93748-x – volume: 26 start-page: 271 issue: 3 year: 2021 end-page: 276 ident: CR4 article-title: Comparative work for Darcy-Forchheimer hybrid nanofluid flow subject to zinc ferrite, nickle zinc ferrite publication-title: J. Magn. doi: 10.4283/JMAG.2021.26.3.271 – volume: 126 year: 2021 ident: CR21 article-title: Inspection of convective heat transfer and KKL correlation for simulation of nanofluid flow over a curved stretching sheet publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2021.105445 – volume: 45 start-page: 5471 issue: 7 year: 2020 end-page: 5490 ident: CR39 article-title: Impact of entropy generation and nonlinear thermal radiation on Darcy–Forchheimer flow of MnFe 2 O 4-Casson/water nanofluid due to a rotating disk: application to brain dynamics publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04453-2 – volume: 13 start-page: 3767 issue: 6 year: 2023 end-page: 3786 ident: CR20 article-title: Neural artificial networking for nonlinear Darcy–Forchheimer nanofluidic slip flow publication-title: Appl. Nanosci. doi: 10.1007/s13204-022-02528-0 – volume: 61 start-page: 1425 issue: 2 year: 2022 end-page: 1436 ident: CR43 article-title: Significance of magnetic field and activation energy on the features of stratified mixed radiative-convective couple-stress nanofluid flows with motile microorganisms publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.06.047 – volume: 10 year: 2023 ident: CR30 article-title: Thermal conductivity performance in sodium alginate-based Casson nanofluid flow by a curved Riga surface publication-title: Front. Mater. doi: 10.3389/fmats.2023.1253090 – volume: 182 start-page: 819 year: 2021 end-page: 837 ident: CR14 article-title: Investigation of nanoparticles Cu, Ag, and Fe3O4 on thermophoresis and viscous dissipation of MHD nanofluid over a stretching sheet in a porous regime: a numerical modeling publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2020.12.005 – volume: 2 issue: 7 year: 2020 ident: CR40 article-title: Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-3011-x – volume: 15 issue: 16 year: 2023 ident: CR26 article-title: A model development for thermal and solutal transport analysis of non-Newtonian nanofluid flow over a Riga surface driven by a waste discharge concentration publication-title: Water doi: 10.3390/w15162879 – volume: 42 start-page: 1675 issue: 11 year: 2021 end-page: 1684 ident: CR3 article-title: Mathematical modeling and parametric investigation of blood flow through a stenosis artery publication-title: Appl. Math. Mech. doi: 10.1007/s10483-021-2791-8 – volume: 12 start-page: 1 issue: 1 year: 2022 end-page: 15 ident: CR10 article-title: Investigation of 3D flow of magnetized hybrid nanofluid with heat source/sink over a stretching sheet publication-title: Sci. Rep. doi: 10.1038/s41598-022-15658-w – volume: 13 start-page: 207 issue: 1 year: 2024 end-page: 217 ident: CR6 article-title: Application of CNTs–Al2O3/H2O on a hybrid nanofluid in two-dimensional unsteady flow in a stretching sheet: Darcy-Forchheimer model publication-title: J. Nanofluids doi: 10.1166/jon.2024.2145 – volume: 25 year: 2021 ident: CR37 article-title: Computational study on nanoparticle shape effects of Al2O3-silicon oil nanofluid flow over a radially stretching rotating disk publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.100943 – volume: 6 issue: 2 year: 2016 ident: CR18 article-title: MHD boundary layer flow of a power-law nanofluid with new mass flux condition publication-title: AIP Adv. doi: 10.1063/1.4942201 – volume: 10 start-page: 287 issue: 2 year: 2024 end-page: 303 ident: CR31 article-title: Entropy analysis of Darcy-Forchheimer model of Prandtl nanofluid over a curved stretching sheet and heat transfer optimization by ANOVA-Taguchi technique publication-title: J. Appl. Comput. Mech. – volume: 21 year: 2021 ident: CR35 article-title: Study of (Ag and TiO2)/water nanoparticles shape effect on heat transfer and hybrid nanofluid flow toward stretching shrinking horizontal cylinder publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103812 – ident: CR7 – volume: 20 year: 2023 ident: CR22 article-title: Model designed to acquire an optimized performance implementing l27 orthogonal array for the Prandtl fluid flow maneuvering grey relational theory publication-title: Int. J. Thermofluids doi: 10.1016/j.ijft.2023.100490 – volume: 423 year: 2022 ident: CR11 article-title: Computation of nonlinear thermal radiation in magnetized nanofluid flow with entropy generation publication-title: Appl. Math. Comput. – volume: 9 start-page: 21 issue: 1 year: 2019 end-page: 29 ident: CR15 article-title: CNTS-water–based nanofluid over a stretching sheet publication-title: BioNanoScience doi: 10.1007/s12668-018-0592-6 – volume: 98 issue: 11 year: 2023 ident: CR25 article-title: Multilayer neural networks for studying three-dimensional flow of non-Newtonian fluid flow with the impact of magnetic dipole and gyrotactic microorganisms publication-title: Phys. Scr. doi: 10.1088/1402-4896/acfe5e – ident: CR28 – volume: 7 start-page: 609 issue: 8 year: 2018 end-page: 623 ident: CR27 article-title: Slip effects on unsteady MHD and heat transfer flow over a stretching sheet embedded with suction in a porous medium filled with a Jeffrey fluid publication-title: Int. J. Res. – volume: 98 issue: 11 year: 2023 ident: 9725_CR25 publication-title: Phys. Scr. doi: 10.1088/1402-4896/acfe5e – volume: 5 start-page: 351 issue: 3 year: 2016 ident: 9725_CR19 publication-title: J. Nanofluids doi: 10.1166/jon.2016.1224 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 9725_CR42 publication-title: Sci. Rep. doi: 10.1038/s41598-021-93748-x – volume: 7 start-page: 609 issue: 8 year: 2018 ident: 9725_CR27 publication-title: Int. J. Res. – year: 2024 ident: 9725_CR32 publication-title: Numer. Heat Transf., Part A, Appl. doi: 10.1080/10407782.2024.2333042 – volume: 6 issue: 2 year: 2016 ident: 9725_CR18 publication-title: AIP Adv. doi: 10.1063/1.4942201 – volume: 21 year: 2021 ident: 9725_CR35 publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103812 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 9725_CR10 publication-title: Sci. Rep. doi: 10.1038/s41598-022-15658-w – volume: 13 start-page: 3767 issue: 6 year: 2023 ident: 9725_CR20 publication-title: Appl. Nanosci. doi: 10.1007/s13204-022-02528-0 – year: 2024 ident: 9725_CR23 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-024-09008-3 – volume: 42 start-page: 1675 issue: 11 year: 2021 ident: 9725_CR3 publication-title: Appl. Math. Mech. doi: 10.1007/s10483-021-2791-8 – volume: 20 year: 2023 ident: 9725_CR22 publication-title: Int. J. Thermofluids doi: 10.1016/j.ijft.2023.100490 – volume: 60 start-page: 3073 issue: 3 year: 2021 ident: 9725_CR9 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.01.050 – volume: 26 start-page: 271 issue: 3 year: 2021 ident: 9725_CR4 publication-title: J. Magn. doi: 10.4283/JMAG.2021.26.3.271 – volume: 8 issue: 8 year: 2023 ident: 9725_CR34 publication-title: Biomimetics doi: 10.3390/biomimetics8080574 – volume: 126 year: 2021 ident: 9725_CR21 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2021.105445 – volume: 10 start-page: 287 issue: 2 year: 2024 ident: 9725_CR31 publication-title: J. Appl. Comput. Mech. – volume: 215 start-page: 704 year: 2016 ident: 9725_CR13 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.01.005 – volume: 12 issue: 3 year: 2020 ident: 9725_CR24 publication-title: Symmetry doi: 10.3390/sym12030393 – volume: 25 year: 2021 ident: 9725_CR37 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.100943 – volume: 9 start-page: 21 issue: 1 year: 2019 ident: 9725_CR15 publication-title: BioNanoScience doi: 10.1007/s12668-018-0592-6 – volume: 70 start-page: 1141 issue: 10 year: 2016 ident: 9725_CR41 publication-title: Numer. Heat Transf., Part A, Appl. doi: 10.1080/10407782.2016.1230423 – volume: 22 year: 2024 ident: 9725_CR2 publication-title: Int. J. Thermofluids doi: 10.1016/j.ijft.2024.100668 – volume: 6 start-page: 739 issue: 4 year: 2019 ident: 9725_CR1 publication-title: J. Comput. Des. Eng. – volume: 143 start-page: 2485 issue: 3 year: 2021 ident: 9725_CR5 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-10127-w – volume: 2 issue: 7 year: 2020 ident: 9725_CR40 publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-3011-x – ident: 9725_CR28 doi: 10.2963/jjtp.7.227 – volume: 60 start-page: 4097 issue: 4 year: 2021 ident: 9725_CR16 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.02.055 – volume: 2014 year: 2014 ident: 9725_CR8 publication-title: Adv. Math. Phys. doi: 10.1155/2014/538950 – volume: 15 issue: 16 year: 2023 ident: 9725_CR26 publication-title: Water doi: 10.3390/w15162879 – volume: 45 start-page: 5471 issue: 7 year: 2020 ident: 9725_CR39 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04453-2 – volume: 51 start-page: 4977 issue: 6 year: 2022 ident: 9725_CR33 publication-title: Heat Transf. doi: 10.1002/htj.22532 – volume: 61 start-page: 1425 issue: 2 year: 2022 ident: 9725_CR43 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.06.047 – volume: 182 start-page: 819 year: 2021 ident: 9725_CR14 publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2020.12.005 – start-page: 75 volume-title: Mathematical Fluid Mechanics year: 2021 ident: 9725_CR29 doi: 10.1515/9783110696080-004 – volume: 126 start-page: 211 year: 2018 ident: 9725_CR36 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.05.021 – volume: 39 start-page: 3897 issue: 10 year: 2017 ident: 9725_CR17 publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-017-0850-5 – ident: 9725_CR7 – volume: 102 issue: 3 year: 2022 ident: 9725_CR38 publication-title: J. Appl. Math. Mech. – volume: 423 year: 2022 ident: 9725_CR11 publication-title: Appl. Math. Comput. – volume: 13 start-page: 207 issue: 1 year: 2024 ident: 9725_CR6 publication-title: J. Nanofluids doi: 10.1166/jon.2024.2145 – volume: 86 start-page: 3 issue: 1 year: 2016 ident: 9725_CR12 publication-title: Pramana doi: 10.1007/s12043-015-1137-y – volume: 10 year: 2023 ident: 9725_CR30 publication-title: Front. Mater. doi: 10.3389/fmats.2023.1253090 |
SSID | ssj0007908 |
Score | 2.437904 |
Snippet | Hybrid nanofluids, which incorporate two distinct nanoparticles, are an innovative class of nanofluids designed to improve thermal and mechanical properties.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3183 |
SubjectTerms | Biomedical engineering Biot number Characterization and Evaluation of Materials Classical Mechanics Comparative studies Engineering Environmental management Heat Heat transfer Magnetic properties Magnetohydrodynamics Mechanical properties Nanofluids Nanomaterials Nanoparticles Nonlinear differential equations Ordinary differential equations Parameters Partial differential equations Physical properties Polymer Sciences Porosity Prandtl number Radiation Schmidt number Solid Mechanics Thermal management Thermal radiation Thermodynamic properties Velocity distribution |
Title | Computational assessment of hybrid nanofluid with the rule of heat-transfer enhancement over a stretched sheet: a comparative study |
URI | https://link.springer.com/article/10.1007/s11043-024-09725-0 https://www.proquest.com/docview/3132130185 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQu8CA-BSFUnlgA0txEjsOW4VaKpCYqFSmKP5ShypFbTow88c5O0kDCJDYosT2kHe-e2f7nhG6osJCGFQ5ATKakDgJUiJZZIg0gRVGmzyxXu3ziU-m8cOMzeqisHVz2r3ZkvSeui12o26nGGIKcZIzjECi3mUudwcrnobDrf9NUn8PHY0EczYQ1KUyP4_xNRy1HPPbtqiPNuMDtF_TRDyscD1EO6Y4QnufxAOP0Xt1IUO9mIfzrcQmXlo8f3OVWLjIi6VdbODJrbdiIHt4tVkY3wKcMCk9bTUrbIq5g7_qDtaNc-yqSBykGq_nxpS38Eq1UuHY69KeoOl49Hw3IfWVCkTBXCuJljQ1ggmlpYbMwqmDRTLRcaQCTTlLTMCtpCrlOed5GKhYQjplUhUKbVMas-gUdYplYc4QFoqzHNy2kAJSPEshcZPccgUcKlapiXqINn82U7XeuLv2YpG1SskOjQzQyDwaWdBD19s-r5Xaxp-t-w1gWT3z1pmTooS4DDSkh24aENvPv492_r_mF2g3dHbkT7b0Uadcbcwl8JNSDlB3eP_yOBp4s_wAJcLedQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQDMCA-BSFAh7YwFLcJI7DViGqAqVTK3Wz4i91qFLUpgMzf5yzkzSAAIktSmwPeee7d7bvGaFryi2EQZURIKMJiZIgJTIODZEmsNxokyXWq30OWX8cPU3iSVUUtqxPu9dbkt5TN8Vu1O0UQ0whTnImJpCobwEZ4O4g17jTXfvfJPX30NGQx84GgqpU5ucxvoajhmN-2xb10aa3j_Yqmoi7Ja4HaMPkh2j3k3jgEXovL2SoFvNwtpbYxHOLp2-uEgvnWT63sxU8ufVWDGQPL1Yz41uAEyaFp61mgU0-dfCX3cG6cYZdFYmDVOPl1JjiDl6pRioce13aYzTuPYzu-6S6UoEomGsF0ZKmhsdcaakhs3DqYKFMdBSqQFMWJyZgVlKVsoyxrBOoSEI6ZVLV4dqmNIrDE7SZz3NzijBXLM7AbXPJIcWzFBI3ySxTwKEilZqwhWj9Z4Wq9MbdtRcz0SglOzQEoCE8GiJooZt1n9dSbePP1u0aMFHNvKVwUpQQl4GGtNBtDWLz-ffRzv7X_Apt90cvAzF4HD6fo52Osyl_yqWNNovFylwAVynkpTfND8ua39Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRAMiKcoFPDABlbjJnEctgqoykMVA5W6RfFLHaq0atOBmT_O2UmaggCJLUpsD77L3Xc-33cIXVFuwA3KlAAYjUgQeTERoa-J0J7hWuk0Mo7tc8D6w-BpFI7WqvjdbfcqJVnUNFiWpixvz5Rp14Vv1GaNwb8QSz8TEgjaN8EcU6vXw053ZYuj2PWkoz4PrT54ZdnMz2t8dU013vyWInWep7eHdkvIiLuFjPfRhs4O0M4akeAh-iiaM5QHezhd0W3iqcHjd1uVhbM0m5rJEp7s2SsG4Ifny4l2I8Agk9xBWD3HOhtbVSimg6bjFNuKEitehRdjrfNbeCVr2nDsOGqP0LD38HbXJ2V7BSJho3KiBI01D7lUQkGUYZnCfBGpwJeeoiyMtMeMoDJmKWNpx5OBgNBKx7LDlYlpEPrHqJFNM32CMJcsTMGEc8Eh3DMUgjjBDJOApwIZa7-JaLWziSy5x20LjElSsyZbaSQgjcRJI_Ga6Ho1Z1Ywb_w5ulUJLCn_wkViaSnBRwMkaaKbSoj1599XO_3f8Eu09XrfS14eB89naLtjVcpdeGmhRj5f6nOALbm4cJr5CcPs5BA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+assessment+of+hybrid+nanofluid+with+the+rule+of+heat-transfer+enhancement+over+a+stretched+sheet%3A+a+comparative+study&rft.jtitle=Mechanics+of+time-dependent+materials&rft.au=Farooq%2C+Umar&rft.au=Basem%2C+Ali&rft.au=Imran%2C+Muhammad&rft.au=Fatima%2C+Nahid&rft.date=2024-12-01&rft.pub=Springer+Netherlands&rft.issn=1385-2000&rft.eissn=1573-2738&rft.volume=28&rft.issue=4&rft.spage=3183&rft.epage=3197&rft_id=info:doi/10.1007%2Fs11043-024-09725-0&rft.externalDocID=10_1007_s11043_024_09725_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2000&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2000&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2000&client=summon |