Artificial Intelligence Approaches for the Detection of Normal Pressure Hydrocephalus: A Systematic Review

Normal pressure hydrocephalus (NPH) is a neurological disorder characterized by altered cerebrospinal fluid accumulation in the brain’s ventricles, leading to symptoms such as gait disturbance and cognitive impairment. Artificial intelligence (AI), including machine learning (ML) and deep learning (...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 15; no. 7; p. 3653
Main Authors Mercado-Diaz, Luis R., Prakash, Neha, Gong, Gary X., Posada-Quintero, Hugo F.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Normal pressure hydrocephalus (NPH) is a neurological disorder characterized by altered cerebrospinal fluid accumulation in the brain’s ventricles, leading to symptoms such as gait disturbance and cognitive impairment. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL), shows promise in diagnosing NPH using medical images. In this systematic review, we examined 21 papers on the use of AI in detecting NPH. The studies primarily focused on differentiating NPH from other neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease. We found that traditional ML methods like Support Vector Machines, Random Forest, and Logistic Regression were commonly used, while DL methods, particularly Deep Convolutional Neural Networks, were also widely employed. The accuracy of these approaches varied, ranging from 70% to 95% in differentiating NPH from other conditions. Feature selection techniques were used to identify relevant parameters for diagnosis. MRI scans were more frequently used than CT scans, but both modalities showed promise. Evaluation metrics like Dice similarity coefficients and ROC-AUC were the most typical metrics of model performance. Challenges in implementing AI in clinical practice were identified, and the authors suggested that a hybrid deep-traditional ML framework could enhance NPH diagnosis. Further research is needed to maximize the benefits of AI while addressing limitations.
AbstractList Normal pressure hydrocephalus (NPH) is a neurological disorder characterized by altered cerebrospinal fluid accumulation in the brain’s ventricles, leading to symptoms such as gait disturbance and cognitive impairment. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL), shows promise in diagnosing NPH using medical images. In this systematic review, we examined 21 papers on the use of AI in detecting NPH. The studies primarily focused on differentiating NPH from other neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease. We found that traditional ML methods like Support Vector Machines, Random Forest, and Logistic Regression were commonly used, while DL methods, particularly Deep Convolutional Neural Networks, were also widely employed. The accuracy of these approaches varied, ranging from 70% to 95% in differentiating NPH from other conditions. Feature selection techniques were used to identify relevant parameters for diagnosis. MRI scans were more frequently used than CT scans, but both modalities showed promise. Evaluation metrics like Dice similarity coefficients and ROC-AUC were the most typical metrics of model performance. Challenges in implementing AI in clinical practice were identified, and the authors suggested that a hybrid deep-traditional ML framework could enhance NPH diagnosis. Further research is needed to maximize the benefits of AI while addressing limitations.
Audience Academic
Author Mercado-Diaz, Luis R.
Prakash, Neha
Posada-Quintero, Hugo F.
Gong, Gary X.
Author_xml – sequence: 1
  givenname: Luis R.
  orcidid: 0000-0003-3543-3677
  surname: Mercado-Diaz
  fullname: Mercado-Diaz, Luis R.
– sequence: 2
  givenname: Neha
  surname: Prakash
  fullname: Prakash, Neha
– sequence: 3
  givenname: Gary X.
  orcidid: 0000-0003-0082-300X
  surname: Gong
  fullname: Gong, Gary X.
– sequence: 4
  givenname: Hugo F.
  orcidid: 0000-0003-4514-4772
  surname: Posada-Quintero
  fullname: Posada-Quintero, Hugo F.
BookMark eNptUV1v1DAQjFCRKKVP_AFLPKJr13FytnmLykdPqkpV4NnybdZ3PiVxsH2g-_c1PQRFYv2w69XMyON5WZ1MYaKqes3hQggNl3aeeQtSLFvxrDqtQS4XouHy5Mn8ojpPaQelNBeKw2m162L2zqO3A1tNmYbBb2hCYt08x2BxS4m5EFneEntPmTD7MLHg2G2IY-HcRUppH4ldH_oYkOatHfbpHevYl0PKNNrskd3TD08_X1XPnR0Snf_uZ9W3jx--Xl0vbj5_Wl11NwsUXOdFvwZCi1CLnpSGVpPUDXHdNlhuuHR1I0AtnQRoSEoOqHgvJfSitetaoTirVkfdPtidmaMfbTyYYL15XIS4MbaYxoFMD9STtgBSikZaZ61SytXOadUgrqlovTlqlc_4vqeUzS7s41SebwRXSirV6uYvamOLqJ9cyNHi6BOaTokC4aBEQV38B1VOT6PHkqXzZf8P4e2RgDGkFMn9McPB_IrcPIlcPAB7lZ7l
Cites_doi 10.1136/bmj.n71
10.1201/9781351253765
10.1007/s00415-022-11168-x
10.1109/IEMBS.2011.6090758
10.1016/j.jare.2021.03.015
10.3389/fneur.2022.922199
10.1016/j.parkreldis.2022.08.007
10.2176/nmc.52.775
10.1007/s00521-023-08225-5
10.3174/ajnr.A4124
10.1016/j.compbiomed.2019.103547
10.3390/brainsci12111484
10.1891/9780826143051.0043
10.1016/j.patcog.2016.09.034
10.1186/s12868-021-00667-8
10.1016/j.jocn.2021.05.010
10.1007/s11682-021-00523-7
10.3171/2022.1.FOCUS21733
10.34133/2022/9783128
10.1016/j.wneu.2015.07.005
10.2176/nmc.st.2020-0292
10.3233/JIFS-189852
10.1007/s00415-014-7454-0
10.5772/intechopen.95715
10.1007/s00330-022-08733-3
10.1016/j.jocn.2022.08.018
10.1186/s12987-023-00407-6
10.1007/s00062-020-00993-0
10.3174/ajnr.A7294
10.1016/j.bbe.2021.11.004
10.1007/s11042-022-12744-z
10.1002/brb3.2884
10.1117/12.2653999
10.1590/1980-57642018dn13-020001
10.1053/j.sult.2016.01.005
10.1016/0022-510X(65)90016-X
10.1016/j.jsasus.2025.02.002
10.1126/science.aaa8415
10.2463/mrms.mp.2019-0106
10.1186/s12987-016-0044-z
10.1007/s13735-021-00218-1
10.1371/journal.pone.0232275
10.1016/j.media.2020.101688
10.1148/radiol.2017161216
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app15073653
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_d0ede9a0077347afaa888f2ff984ccbe
A838591083
10_3390_app15073653
GeographicLocations United States
Connecticut
Taiwan
GeographicLocations_xml – name: Connecticut
– name: Taiwan
– name: United States
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c319t-db0ecac023de89059e794e1954c905c6f243086f7004e7710c81d770d35ab28c3
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 00:57:51 EDT 2025
Sat Aug 23 13:00:23 EDT 2025
Thu May 08 04:18:08 EDT 2025
Tue Jun 10 20:53:25 EDT 2025
Tue Jul 01 05:15:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-db0ecac023de89059e794e1954c905c6f243086f7004e7710c81d770d35ab28c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4514-4772
0000-0003-0082-300X
0000-0003-3543-3677
OpenAccessLink https://www.proquest.com/docview/3188788594?pq-origsite=%requestingapplication%
PQID 3188788594
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_d0ede9a0077347afaa888f2ff984ccbe
proquest_journals_3188788594
gale_infotracmisc_A838591083
gale_infotracacademiconefile_A838591083
crossref_primary_10_3390_app15073653
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 20250401
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
ref_13
Rudhra (ref_31) 2021; 41
Zhang (ref_40) 2022; 2022
ref_53
(ref_5) 2015; 84
ref_52
Bontempi (ref_25) 2020; 62
Sotoudeh (ref_22) 2021; 13
ref_18
Chen (ref_24) 2022; 32
Giner (ref_48) 2014; 29
Hakim (ref_2) 1965; 2
Gerla (ref_43) 2022; 52
Kora (ref_9) 2022; 42
Borzage (ref_17) 2021; 42
Oliveira (ref_14) 2019; 13
Chen (ref_15) 2022; 105
Mao (ref_45) 2022; 2022
Bradley (ref_16) 2016; 37
Baloni (ref_47) 2022; 81
Tang (ref_8) 2020; 2
ref_23
Irie (ref_29) 2020; 19
ref_21
ref_20
Mori (ref_6) 2012; 52
Griffa (ref_36) 2022; 269
Tulbure (ref_49) 2022; 35
ref_26
Ishikawa (ref_4) 2016; 13
Miskin (ref_37) 2017; 285
Serulle (ref_33) 2014; 261
Bianco (ref_41) 2022; 103
Jordan (ref_19) 2015; 349
ref_34
Suganyadevi (ref_10) 2022; 11
ref_30
Fabbro (ref_27) 2023; 20
Haber (ref_28) 2023; 35
ref_38
Fu (ref_35) 2023; 13
McKenna (ref_12) 2022; 16
Wade (ref_51) 2017; 63
Bradley (ref_11) 2015; 36
Tsou (ref_44) 2021; 90
ref_46
Nakajima (ref_1) 2021; 61
ref_42
ref_3
Rau (ref_39) 2021; 31
Page (ref_32) 2021; 372
ref_7
References_xml – volume: 372
  start-page: 71
  year: 2021
  ident: ref_32
  article-title: The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews
  publication-title: BMJ
  doi: 10.1136/bmj.n71
– ident: ref_7
  doi: 10.1201/9781351253765
– ident: ref_26
– volume: 269
  start-page: 5114
  year: 2022
  ident: ref_36
  article-title: CSF Tap Test in Idiopathic Normal Pressure Hydrocephalus: Still a Necessary Prognostic Test?
  publication-title: J. Neurol.
  doi: 10.1007/s00415-022-11168-x
– volume: 29
  start-page: 68
  year: 2014
  ident: ref_48
  article-title: Quantitative Phase-Contrast MRI Study of Cerebrospinal Fluid Flow: A Method for Identifying Patients with Normal-Pressure Hydrocephalus
  publication-title: Neurologia
– ident: ref_46
  doi: 10.1109/IEMBS.2011.6090758
– volume: 35
  start-page: 33
  year: 2022
  ident: ref_49
  article-title: A Review on Modern Defect Detection Models Using DCNNs—Deep Convolutional Neural Networks
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2021.03.015
– ident: ref_23
  doi: 10.3389/fneur.2022.922199
– volume: 103
  start-page: 7
  year: 2022
  ident: ref_41
  article-title: Cortical Atrophy Distinguishes Idiopathic Normal-Pressure Hydrocephalus from Progressive Supranuclear Palsy: A Machine Learning Approach
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2022.08.007
– volume: 52
  start-page: 775
  year: 2012
  ident: ref_6
  article-title: Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus: Second Edition
  publication-title: Neurol. Med. Chir.
  doi: 10.2176/nmc.52.775
– volume: 35
  start-page: 9907
  year: 2023
  ident: ref_28
  article-title: Detection of Idiopathic Normal Pressure Hydrocephalus on Head CT Using a Deep Convolutional Neural Network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08225-5
– volume: 36
  start-page: 831
  year: 2015
  ident: ref_11
  article-title: CSF Flow in the Brain in the Context of Normal Pressure Hydrocephalus
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A4124
– ident: ref_42
  doi: 10.1016/j.compbiomed.2019.103547
– ident: ref_38
  doi: 10.3390/brainsci12111484
– ident: ref_13
  doi: 10.1891/9780826143051.0043
– volume: 63
  start-page: 731
  year: 2017
  ident: ref_51
  article-title: Machine Learning on High Dimensional Shape Data from Subcortical Brain Surfaces: A Comparison of Feature Selection and Classification Methods
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.09.034
– ident: ref_34
  doi: 10.1186/s12868-021-00667-8
– volume: 2022
  start-page: 3070361
  year: 2022
  ident: ref_45
  article-title: Deep Learning-Based MR Imaging for Analysis of Relation between Cerebrospinal Fluid Variation and Communicating Hydrocephalus after Decompressive Craniectomy for Craniocerebral Injury
  publication-title: Sci. Program.
– volume: 2
  start-page: 20190031
  year: 2020
  ident: ref_8
  article-title: The Role of Artificial Intelligence in Medical Imaging Research
  publication-title: BJR Open
– volume: 90
  start-page: 60
  year: 2021
  ident: ref_44
  article-title: Using Deep Learning Convolutional Neural Networks to Automatically Perform Cerebral Aqueduct CSF Flow Analysis
  publication-title: J. Clin. Neurosci.
  doi: 10.1016/j.jocn.2021.05.010
– volume: 16
  start-page: 1196
  year: 2022
  ident: ref_12
  article-title: Mapping Cortical Disease-Burden at Individual-Level in Frontotemporal Dementia: Implications for Clinical Care and Pharmacological Trials
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-021-00523-7
– ident: ref_20
– volume: 52
  start-page: E6
  year: 2022
  ident: ref_43
  article-title: Boosting Phase-Contrast MRI Performance in Idiopathic Normal Pressure Hydrocephalus Diagnostics by Means of Machine Learning Approach
  publication-title: Neurosurg. Focus
  doi: 10.3171/2022.1.FOCUS21733
– volume: 2022
  start-page: 9783128
  year: 2022
  ident: ref_40
  article-title: Automated Segmentation and Connectivity Analysis for Normal Pressure Hydrocephalus
  publication-title: BME Front.
  doi: 10.34133/2022/9783128
– volume: 84
  start-page: 2002
  year: 2015
  ident: ref_5
  article-title: Epidemiology of Idiopathic Normal Pressure Hydrocephalus: A Systematic Review of the Literature
  publication-title: World Neurosurg.
  doi: 10.1016/j.wneu.2015.07.005
– volume: 61
  start-page: 63
  year: 2021
  ident: ref_1
  article-title: Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus (Third Edition): Endorsed by the Japanese Society of Normal Pressure Hydrocephalus
  publication-title: Neurol. Med. Chir.
  doi: 10.2176/nmc.st.2020-0292
– volume: 41
  start-page: 5299
  year: 2021
  ident: ref_31
  article-title: A Novel Deep Learning Approach for the Automated Diagnosis of Normal Pressure Hydrocephalus
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-189852
– ident: ref_30
– volume: 261
  start-page: 1994
  year: 2014
  ident: ref_33
  article-title: Differentiating Shunt-Responsive Normal Pressure Hydrocephalus from Alzheimer Disease and Normal Aging: Pilot Study Using Automated MRI Brain Tissue Segmentation
  publication-title: J. Neurol.
  doi: 10.1007/s00415-014-7454-0
– ident: ref_3
  doi: 10.5772/intechopen.95715
– volume: 32
  start-page: 7800
  year: 2022
  ident: ref_24
  article-title: Value of MRI-Based Semi-Quantitative Structural Neuroimaging in Predicting the Prognosis of Patients with Idiopathic Normal Pressure Hydrocephalus After Shunt Surgery
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-022-08733-3
– volume: 105
  start-page: 9
  year: 2022
  ident: ref_15
  article-title: Accuracy of MRI Derived Cerebral Aqueduct Flow Parameters in the Diagnosis of Idiopathic Normal Pressure Hydrocephalus
  publication-title: J. Clin. Neurosci.
  doi: 10.1016/j.jocn.2022.08.018
– volume: 20
  start-page: 7
  year: 2023
  ident: ref_27
  article-title: Resting-State Functional-MRI in iNPH: Can Default Mode and Motor Networks Changes Improve Patient Selection and Outcome? Preliminary Report
  publication-title: Fluids Barriers CNS
  doi: 10.1186/s12987-023-00407-6
– volume: 13
  start-page: 1
  year: 2021
  ident: ref_22
  article-title: The Role of Machine Learning and Radiomics for Treatment Response Prediction in Idiopathic Normal Pressure Hydrocephalus
  publication-title: Cureus
– volume: 31
  start-page: 1029
  year: 2021
  ident: ref_39
  article-title: SVM-Based Normal Pressure Hydrocephalus Detection
  publication-title: Clin. Neuroradiol. Klin. Neuroradiol.
  doi: 10.1007/s00062-020-00993-0
– volume: 42
  start-page: 1942
  year: 2021
  ident: ref_17
  article-title: The First Examination of Diagnostic Performance of Automated Measurement of the Callosal Angle in 1856 Elderly Patients and Volunteers Indicates That 12.4% of Exams Met the Criteria for Possible Normal Pressure Hydrocephalus
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A7294
– volume: 42
  start-page: 79
  year: 2022
  ident: ref_9
  article-title: Transfer Learning Techniques for Medical Image Analysis: A Review
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2021.11.004
– ident: ref_21
– volume: 81
  start-page: 21199
  year: 2022
  ident: ref_47
  article-title: Detection of Hydrocephalus Using Machine Learning in Medical Science—A Review
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12744-z
– volume: 13
  start-page: e2884
  year: 2023
  ident: ref_35
  article-title: Higher Prevalence of Idiopathic Normal Pressure Hydrocephalus-Like MRI Features in Progressive Supranuclear Palsy: An Imaging Reminder of Atypical Parkinsonism
  publication-title: Brain Behav.
  doi: 10.1002/brb3.2884
– ident: ref_50
– ident: ref_53
  doi: 10.1117/12.2653999
– volume: 13
  start-page: 133
  year: 2019
  ident: ref_14
  article-title: Normal-Pressure Hydrocephalus: A Critical Review
  publication-title: Dement. Neuropsychol.
  doi: 10.1590/1980-57642018dn13-020001
– volume: 37
  start-page: 120
  year: 2016
  ident: ref_16
  article-title: Magnetic Resonance Imaging of Normal Pressure Hydrocephalus
  publication-title: Semin. Ultrasound CT MR
  doi: 10.1053/j.sult.2016.01.005
– volume: 2
  start-page: 307
  year: 1965
  ident: ref_2
  article-title: The Special Clinical Problem of Symptomatic Hydrocephalus with Normal Cerebrospinal Fluid Pressure: Observations on Cerebrospinal Fluid Hydrodynamics
  publication-title: J. Neurol. Sci.
  doi: 10.1016/0022-510X(65)90016-X
– ident: ref_52
  doi: 10.1016/j.jsasus.2025.02.002
– volume: 349
  start-page: 255
  year: 2015
  ident: ref_19
  article-title: Machine Learning: Trends, Perspectives, and Prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 19
  start-page: 351
  year: 2020
  ident: ref_29
  article-title: A Novel Deep Learning Approach with a 3D Convolutional Ladder Network for Differential Diagnosis of Idiopathic Normal Pressure Hydrocephalus and Alzheimer’s Disease
  publication-title: Magn. Reson. Med. Sci.
  doi: 10.2463/mrms.mp.2019-0106
– volume: 13
  start-page: 20
  year: 2016
  ident: ref_4
  article-title: Early and Delayed Assessments of Quantitative Gait Measures to Improve the Tap Test as a Predictor of Shunt Effectiveness in Idiopathic Normal Pressure Hydrocephalus
  publication-title: Fluids Barriers CNS
  doi: 10.1186/s12987-016-0044-z
– volume: 11
  start-page: 19
  year: 2022
  ident: ref_10
  article-title: A Review on Deep Learning in Medical Image Analysis
  publication-title: Int. J. Multimed. Inf. Retr.
  doi: 10.1007/s13735-021-00218-1
– ident: ref_18
  doi: 10.1371/journal.pone.0232275
– volume: 62
  start-page: 101688
  year: 2020
  ident: ref_25
  article-title: CEREBRUM: A Fast and Fully-Volumetric Convolutional Encoder-decodeR for Weakly-Supervised sEgmentation of BRain strUctures from out-of-the-Scanner MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101688
– volume: 285
  start-page: 197
  year: 2017
  ident: ref_37
  article-title: Diagnosis of Normal-Pressure Hydrocephalus: Use of Traditional Measures in the Era of Volumetric MR Imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2017161216
SSID ssj0000913810
Score 2.322068
Snippet Normal pressure hydrocephalus (NPH) is a neurological disorder characterized by altered cerebrospinal fluid accumulation in the brain’s ventricles, leading to...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 3653
SubjectTerms Accuracy
Algorithms
Alzheimer's disease
Artificial intelligence
Cognitive ability
Computational linguistics
Decision trees
Deep learning
Disease
Hydrocephalus
Language processing
Machine learning
Medical imaging
Medical imaging equipment
Natural language interfaces
Nervous system diseases
Neural networks
normal pressure hydrocephalus
Surgery
Systematic review
Urinary incontinence
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYtxAQDogVEoSAPSMAQ0cZO4rCFLxUkWACpm-XYZyGEWtSGgX_PXZxW6YBYGNO4knvXu3tPth8zduIMKMjARYnLykimwmMejIcRxIkoZWkV1HcdPj6lo1f5ME7Grau-aE9YwAMHw124ATjIDWFnhMyMNwZ7Nh97nytpbQmUfbHmtZqpOgfnQ0JXhQN5Avt6Wg8m7SPSRKyUoJrU_1s-rovM3TbbatQhL8KsOmwNJl222WIGdlmnicY5P2uQ0ec77J2-EVgQ_L4F2eRFgwzH4ahOOao9fgNVvf1qwqeeP5Fk_eDhkOAM-OjbUUX7fDMfX_NLXvDnJemZh2WEXfZ6d_tyPYqaWxQii-FVRa4cgDUWa7MDlaOaAgxBINCbxSeb-lgK7Gs8ce4hQ8FhUcJm2cCJxJSxsmKPrU-mE9hnPDcyRyeAFSBlZr0Z2jhVcemH6cBiouixk4Vh9WeAZWhsMsj-umX_Hrsioy-HEOG6_gD9rhu_67_83mOn5DJNcVjNDP7CcJwAZ0pEK10oQWg-VJg91l8ZifFjV18vnK6b-J1rzHQqUzhCHvzHZA_ZRkz3Btc7fvpsvZp9wRGKmao8rv-3Pzr086U
  priority: 102
  providerName: Directory of Open Access Journals
Title Artificial Intelligence Approaches for the Detection of Normal Pressure Hydrocephalus: A Systematic Review
URI https://www.proquest.com/docview/3188788594
https://doaj.org/article/d0ede9a0077347afaa888f2ff984ccbe
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6x7gUe0DZAlG2VHyYBDxFp7CTOXqYOVgoSFQIm7c1y7PMQmtquzR7477lL3NI-wGPii5KcfXff-cd3AGfeosYSfZL7sk5UIQP5wWyYYJbLWtVOY1vr8Mu0mFyrzzf5TZxwW8VtlWuf2DpqP3c8R_6Oxp6mdC2v1MXiPuGqUby6Gkto7ME-uWCte7B_eTX9-m0zy8Ksl3qYdgfzJOX3vC7MGEgWudwJRS1j_7_8chtsxgfwNKJEMeq69RAe4ewInmxxBx7BYbTKlXgTqaPfPoNf_ETHCSE-bZFtilGkDidxQqmCUJ_4gE27DWsm5kFMGbreie6w4BLF5LfnyLb4ae8eVudiJL5vGJ9Ft5zwHK7HVz_eT5JYTSFxZGZN4usUnXUUoz3qilAVkikiE745unJFyJSk_CYw3z2WBDwcQdmyTL3MbZ1pJ19Abzaf4UsQlVWVVCU6iUqVLtihywqd1WFYpI4cRh_O1oo1i440w1Cywfo3W_rvwyUrfSPCTNftjfny1kTDMT5Fj5Vl2iF6pQ3WUs4eshAqrZyrsQ-vucsM22OztPSH3bEC-lJmtjIjLZmij5BmH052JMmO3G7zutNNtOOV-TvqXv2_-RgeZ1wZuN3TcwK9ZvmApwRXmnoAe3r8cRBH5qBN-v8A7fPs2g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiBYQgQI-FAGHFRvbu-tFQihQQkLbXGil3lyvdwxCVRKSrVD_FL-RmX2E5AC3HnftfY3n8Xnt-QZgv3RoMMMySsqsiHSqAvlB2Y9QJqrQhTdY1zo8nqSjU_3lLDnbgt9dLgxvq-x8Yu2oy5nnf-RvSPcMTdeSXL-f_4y4ahSvrnYlNBq1OMSrXzRlW74bH9D4vpBy-Onk4yhqqwpEntStisoiRu88xaoSTU7oAkklkYnPPB35NEitCOcH5n3HjAKwJ0iXZXGpEldI4xXd9wbc1IoiOWemDz-v_ukwx6bpx00aILXHvArNiEulidoIfHV9gH9FgTq0De_B3RaTikGjRDuwhdNduLPGVLgLO60PWIpXLVH16_vwg69oGCjEeI3aUwxaonLqTphYEMYUB1jVm76mYhbEhIHyhWhSExcoRlclx9H5d3dxuXwrBuLril9aNIsXD-D0WqT8ELansyk-ApE7nSudoVeodeaD63uZGlmEfhp7ck892O8Ea-cNRYelqQ3L367JvwcfWOirLsyrXZ-YLb7Z1kxtGWOJuWOSI3qkC84ZY4IMITfa-wJ78JKHzLL1VwtHX9gkMdCbMo-WHRjFhICEa3uwt9GTrNZvNneDbluvsbR_dfzx_5ufw63RyfGRPRpPDp_Abck1ievdRHuwXS0u8SkBpap4VmungPPrNoc_jo4lOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQLSACBTwoQg4rLpZ78OLhFBKGiUUogqo1Jvx2mOqqkpCshXqX-PXMbOPkBzg1uPuel_j8cw3tucbgH1nUGGGLkhcVgRxKj3ZwagXYJTIIi6swqrW4edJOjqNP54lZ1vwu82F4W2VrU2sDLWbWZ4jPyDdUxSuJXl84JttESeD4fv5z4ArSPFKa1tOo1aRY7z-ReHb8t14QH39MoqGR98-jIKmwkBgSfXKwBUhWmPJbzlUOSENJPVEJkGzdGRTH8WSML9nDnjMyBlbgndZFjqZmCJSVtJzb8F2xlFRB7YPjyYnX1YzPMy4qXphnRQoZR7ymjTjL5kmcsMNVtUC_uUTKkc3vA_3GoQq-rVK7cAWTnfh7hpv4S7sNBZhKV43tNVvHsAF31HzUYjxGtGn6De05dScELIgxCkGWFZbwKZi5sWEYfOlqBMVFyhG14696vzcXF4t34q--Lpimxb1UsZDOL0ROT-CznQ2xccgchPnMs7QSozjzHrTs1GqosL30tCSserCfitYPa8JOzQFOix_vSb_Lhyy0FdNmGW7OjFb_NDNoNUuRIe5YcojeqXxxiilfOR9rmJrC-zCK-4yzbagXBj6wzqlgb6UWbV0X0mmBySU24W9jZY0hu3m5bbTdWNDlvqvxj_5_-UXcJuGgv40nhw_hTsRFyiuthbtQadcXOEzQk1l8bxRTwHfb3pE_AEL_SrK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Approaches+for+the+Detection+of+Normal+Pressure+Hydrocephalus%3A+A+Systematic+Review&rft.jtitle=Applied+sciences&rft.au=Mercado-Diaz%2C+Luis+R&rft.au=Prakash%2C+Neha&rft.au=Gong%2C+Gary+X&rft.au=Posada-Quintero%2C+Hugo+F&rft.date=2025-04-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=7&rft.spage=3653&rft_id=info:doi/10.3390%2Fapp15073653&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon