Artificial Intelligence Approaches for the Detection of Normal Pressure Hydrocephalus: A Systematic Review
Normal pressure hydrocephalus (NPH) is a neurological disorder characterized by altered cerebrospinal fluid accumulation in the brain’s ventricles, leading to symptoms such as gait disturbance and cognitive impairment. Artificial intelligence (AI), including machine learning (ML) and deep learning (...
Saved in:
Published in | Applied sciences Vol. 15; no. 7; p. 3653 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Normal pressure hydrocephalus (NPH) is a neurological disorder characterized by altered cerebrospinal fluid accumulation in the brain’s ventricles, leading to symptoms such as gait disturbance and cognitive impairment. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL), shows promise in diagnosing NPH using medical images. In this systematic review, we examined 21 papers on the use of AI in detecting NPH. The studies primarily focused on differentiating NPH from other neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease. We found that traditional ML methods like Support Vector Machines, Random Forest, and Logistic Regression were commonly used, while DL methods, particularly Deep Convolutional Neural Networks, were also widely employed. The accuracy of these approaches varied, ranging from 70% to 95% in differentiating NPH from other conditions. Feature selection techniques were used to identify relevant parameters for diagnosis. MRI scans were more frequently used than CT scans, but both modalities showed promise. Evaluation metrics like Dice similarity coefficients and ROC-AUC were the most typical metrics of model performance. Challenges in implementing AI in clinical practice were identified, and the authors suggested that a hybrid deep-traditional ML framework could enhance NPH diagnosis. Further research is needed to maximize the benefits of AI while addressing limitations. |
---|---|
AbstractList | Normal pressure hydrocephalus (NPH) is a neurological disorder characterized by altered cerebrospinal fluid accumulation in the brain’s ventricles, leading to symptoms such as gait disturbance and cognitive impairment. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL), shows promise in diagnosing NPH using medical images. In this systematic review, we examined 21 papers on the use of AI in detecting NPH. The studies primarily focused on differentiating NPH from other neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease. We found that traditional ML methods like Support Vector Machines, Random Forest, and Logistic Regression were commonly used, while DL methods, particularly Deep Convolutional Neural Networks, were also widely employed. The accuracy of these approaches varied, ranging from 70% to 95% in differentiating NPH from other conditions. Feature selection techniques were used to identify relevant parameters for diagnosis. MRI scans were more frequently used than CT scans, but both modalities showed promise. Evaluation metrics like Dice similarity coefficients and ROC-AUC were the most typical metrics of model performance. Challenges in implementing AI in clinical practice were identified, and the authors suggested that a hybrid deep-traditional ML framework could enhance NPH diagnosis. Further research is needed to maximize the benefits of AI while addressing limitations. |
Audience | Academic |
Author | Mercado-Diaz, Luis R. Prakash, Neha Posada-Quintero, Hugo F. Gong, Gary X. |
Author_xml | – sequence: 1 givenname: Luis R. orcidid: 0000-0003-3543-3677 surname: Mercado-Diaz fullname: Mercado-Diaz, Luis R. – sequence: 2 givenname: Neha surname: Prakash fullname: Prakash, Neha – sequence: 3 givenname: Gary X. orcidid: 0000-0003-0082-300X surname: Gong fullname: Gong, Gary X. – sequence: 4 givenname: Hugo F. orcidid: 0000-0003-4514-4772 surname: Posada-Quintero fullname: Posada-Quintero, Hugo F. |
BookMark | eNptUV1v1DAQjFCRKKVP_AFLPKJr13FytnmLykdPqkpV4NnybdZ3PiVxsH2g-_c1PQRFYv2w69XMyON5WZ1MYaKqes3hQggNl3aeeQtSLFvxrDqtQS4XouHy5Mn8ojpPaQelNBeKw2m162L2zqO3A1tNmYbBb2hCYt08x2BxS4m5EFneEntPmTD7MLHg2G2IY-HcRUppH4ldH_oYkOatHfbpHevYl0PKNNrskd3TD08_X1XPnR0Snf_uZ9W3jx--Xl0vbj5_Wl11NwsUXOdFvwZCi1CLnpSGVpPUDXHdNlhuuHR1I0AtnQRoSEoOqHgvJfSitetaoTirVkfdPtidmaMfbTyYYL15XIS4MbaYxoFMD9STtgBSikZaZ61SytXOadUgrqlovTlqlc_4vqeUzS7s41SebwRXSirV6uYvamOLqJ9cyNHi6BOaTokC4aBEQV38B1VOT6PHkqXzZf8P4e2RgDGkFMn9McPB_IrcPIlcPAB7lZ7l |
Cites_doi | 10.1136/bmj.n71 10.1201/9781351253765 10.1007/s00415-022-11168-x 10.1109/IEMBS.2011.6090758 10.1016/j.jare.2021.03.015 10.3389/fneur.2022.922199 10.1016/j.parkreldis.2022.08.007 10.2176/nmc.52.775 10.1007/s00521-023-08225-5 10.3174/ajnr.A4124 10.1016/j.compbiomed.2019.103547 10.3390/brainsci12111484 10.1891/9780826143051.0043 10.1016/j.patcog.2016.09.034 10.1186/s12868-021-00667-8 10.1016/j.jocn.2021.05.010 10.1007/s11682-021-00523-7 10.3171/2022.1.FOCUS21733 10.34133/2022/9783128 10.1016/j.wneu.2015.07.005 10.2176/nmc.st.2020-0292 10.3233/JIFS-189852 10.1007/s00415-014-7454-0 10.5772/intechopen.95715 10.1007/s00330-022-08733-3 10.1016/j.jocn.2022.08.018 10.1186/s12987-023-00407-6 10.1007/s00062-020-00993-0 10.3174/ajnr.A7294 10.1016/j.bbe.2021.11.004 10.1007/s11042-022-12744-z 10.1002/brb3.2884 10.1117/12.2653999 10.1590/1980-57642018dn13-020001 10.1053/j.sult.2016.01.005 10.1016/0022-510X(65)90016-X 10.1016/j.jsasus.2025.02.002 10.1126/science.aaa8415 10.2463/mrms.mp.2019-0106 10.1186/s12987-016-0044-z 10.1007/s13735-021-00218-1 10.1371/journal.pone.0232275 10.1016/j.media.2020.101688 10.1148/radiol.2017161216 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app15073653 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_d0ede9a0077347afaa888f2ff984ccbe A838591083 10_3390_app15073653 |
GeographicLocations | United States Connecticut Taiwan |
GeographicLocations_xml | – name: Connecticut – name: Taiwan – name: United States |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c319t-db0ecac023de89059e794e1954c905c6f243086f7004e7710c81d770d35ab28c3 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 00:57:51 EDT 2025 Sat Aug 23 13:00:23 EDT 2025 Thu May 08 04:18:08 EDT 2025 Tue Jun 10 20:53:25 EDT 2025 Tue Jul 01 05:15:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-db0ecac023de89059e794e1954c905c6f243086f7004e7710c81d770d35ab28c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4514-4772 0000-0003-0082-300X 0000-0003-3543-3677 |
OpenAccessLink | https://www.proquest.com/docview/3188788594?pq-origsite=%requestingapplication% |
PQID | 3188788594 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d0ede9a0077347afaa888f2ff984ccbe proquest_journals_3188788594 gale_infotracmisc_A838591083 gale_infotracacademiconefile_A838591083 crossref_primary_10_3390_app15073653 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250401 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 20250401 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 ref_13 Rudhra (ref_31) 2021; 41 Zhang (ref_40) 2022; 2022 ref_53 (ref_5) 2015; 84 ref_52 Bontempi (ref_25) 2020; 62 Sotoudeh (ref_22) 2021; 13 ref_18 Chen (ref_24) 2022; 32 Giner (ref_48) 2014; 29 Hakim (ref_2) 1965; 2 Gerla (ref_43) 2022; 52 Kora (ref_9) 2022; 42 Borzage (ref_17) 2021; 42 Oliveira (ref_14) 2019; 13 Chen (ref_15) 2022; 105 Mao (ref_45) 2022; 2022 Bradley (ref_16) 2016; 37 Baloni (ref_47) 2022; 81 Tang (ref_8) 2020; 2 ref_23 Irie (ref_29) 2020; 19 ref_21 ref_20 Mori (ref_6) 2012; 52 Griffa (ref_36) 2022; 269 Tulbure (ref_49) 2022; 35 ref_26 Ishikawa (ref_4) 2016; 13 Miskin (ref_37) 2017; 285 Serulle (ref_33) 2014; 261 Bianco (ref_41) 2022; 103 Jordan (ref_19) 2015; 349 ref_34 Suganyadevi (ref_10) 2022; 11 ref_30 Fabbro (ref_27) 2023; 20 Haber (ref_28) 2023; 35 ref_38 Fu (ref_35) 2023; 13 McKenna (ref_12) 2022; 16 Wade (ref_51) 2017; 63 Bradley (ref_11) 2015; 36 Tsou (ref_44) 2021; 90 ref_46 Nakajima (ref_1) 2021; 61 ref_42 ref_3 Rau (ref_39) 2021; 31 Page (ref_32) 2021; 372 ref_7 |
References_xml | – volume: 372 start-page: 71 year: 2021 ident: ref_32 article-title: The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews publication-title: BMJ doi: 10.1136/bmj.n71 – ident: ref_7 doi: 10.1201/9781351253765 – ident: ref_26 – volume: 269 start-page: 5114 year: 2022 ident: ref_36 article-title: CSF Tap Test in Idiopathic Normal Pressure Hydrocephalus: Still a Necessary Prognostic Test? publication-title: J. Neurol. doi: 10.1007/s00415-022-11168-x – volume: 29 start-page: 68 year: 2014 ident: ref_48 article-title: Quantitative Phase-Contrast MRI Study of Cerebrospinal Fluid Flow: A Method for Identifying Patients with Normal-Pressure Hydrocephalus publication-title: Neurologia – ident: ref_46 doi: 10.1109/IEMBS.2011.6090758 – volume: 35 start-page: 33 year: 2022 ident: ref_49 article-title: A Review on Modern Defect Detection Models Using DCNNs—Deep Convolutional Neural Networks publication-title: J. Adv. Res. doi: 10.1016/j.jare.2021.03.015 – ident: ref_23 doi: 10.3389/fneur.2022.922199 – volume: 103 start-page: 7 year: 2022 ident: ref_41 article-title: Cortical Atrophy Distinguishes Idiopathic Normal-Pressure Hydrocephalus from Progressive Supranuclear Palsy: A Machine Learning Approach publication-title: Park. Relat. Disord. doi: 10.1016/j.parkreldis.2022.08.007 – volume: 52 start-page: 775 year: 2012 ident: ref_6 article-title: Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus: Second Edition publication-title: Neurol. Med. Chir. doi: 10.2176/nmc.52.775 – volume: 35 start-page: 9907 year: 2023 ident: ref_28 article-title: Detection of Idiopathic Normal Pressure Hydrocephalus on Head CT Using a Deep Convolutional Neural Network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08225-5 – volume: 36 start-page: 831 year: 2015 ident: ref_11 article-title: CSF Flow in the Brain in the Context of Normal Pressure Hydrocephalus publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A4124 – ident: ref_42 doi: 10.1016/j.compbiomed.2019.103547 – ident: ref_38 doi: 10.3390/brainsci12111484 – ident: ref_13 doi: 10.1891/9780826143051.0043 – volume: 63 start-page: 731 year: 2017 ident: ref_51 article-title: Machine Learning on High Dimensional Shape Data from Subcortical Brain Surfaces: A Comparison of Feature Selection and Classification Methods publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.09.034 – ident: ref_34 doi: 10.1186/s12868-021-00667-8 – volume: 2022 start-page: 3070361 year: 2022 ident: ref_45 article-title: Deep Learning-Based MR Imaging for Analysis of Relation between Cerebrospinal Fluid Variation and Communicating Hydrocephalus after Decompressive Craniectomy for Craniocerebral Injury publication-title: Sci. Program. – volume: 2 start-page: 20190031 year: 2020 ident: ref_8 article-title: The Role of Artificial Intelligence in Medical Imaging Research publication-title: BJR Open – volume: 90 start-page: 60 year: 2021 ident: ref_44 article-title: Using Deep Learning Convolutional Neural Networks to Automatically Perform Cerebral Aqueduct CSF Flow Analysis publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2021.05.010 – volume: 16 start-page: 1196 year: 2022 ident: ref_12 article-title: Mapping Cortical Disease-Burden at Individual-Level in Frontotemporal Dementia: Implications for Clinical Care and Pharmacological Trials publication-title: Brain Imaging Behav. doi: 10.1007/s11682-021-00523-7 – ident: ref_20 – volume: 52 start-page: E6 year: 2022 ident: ref_43 article-title: Boosting Phase-Contrast MRI Performance in Idiopathic Normal Pressure Hydrocephalus Diagnostics by Means of Machine Learning Approach publication-title: Neurosurg. Focus doi: 10.3171/2022.1.FOCUS21733 – volume: 2022 start-page: 9783128 year: 2022 ident: ref_40 article-title: Automated Segmentation and Connectivity Analysis for Normal Pressure Hydrocephalus publication-title: BME Front. doi: 10.34133/2022/9783128 – volume: 84 start-page: 2002 year: 2015 ident: ref_5 article-title: Epidemiology of Idiopathic Normal Pressure Hydrocephalus: A Systematic Review of the Literature publication-title: World Neurosurg. doi: 10.1016/j.wneu.2015.07.005 – volume: 61 start-page: 63 year: 2021 ident: ref_1 article-title: Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus (Third Edition): Endorsed by the Japanese Society of Normal Pressure Hydrocephalus publication-title: Neurol. Med. Chir. doi: 10.2176/nmc.st.2020-0292 – volume: 41 start-page: 5299 year: 2021 ident: ref_31 article-title: A Novel Deep Learning Approach for the Automated Diagnosis of Normal Pressure Hydrocephalus publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-189852 – ident: ref_30 – volume: 261 start-page: 1994 year: 2014 ident: ref_33 article-title: Differentiating Shunt-Responsive Normal Pressure Hydrocephalus from Alzheimer Disease and Normal Aging: Pilot Study Using Automated MRI Brain Tissue Segmentation publication-title: J. Neurol. doi: 10.1007/s00415-014-7454-0 – ident: ref_3 doi: 10.5772/intechopen.95715 – volume: 32 start-page: 7800 year: 2022 ident: ref_24 article-title: Value of MRI-Based Semi-Quantitative Structural Neuroimaging in Predicting the Prognosis of Patients with Idiopathic Normal Pressure Hydrocephalus After Shunt Surgery publication-title: Eur. Radiol. doi: 10.1007/s00330-022-08733-3 – volume: 105 start-page: 9 year: 2022 ident: ref_15 article-title: Accuracy of MRI Derived Cerebral Aqueduct Flow Parameters in the Diagnosis of Idiopathic Normal Pressure Hydrocephalus publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2022.08.018 – volume: 20 start-page: 7 year: 2023 ident: ref_27 article-title: Resting-State Functional-MRI in iNPH: Can Default Mode and Motor Networks Changes Improve Patient Selection and Outcome? Preliminary Report publication-title: Fluids Barriers CNS doi: 10.1186/s12987-023-00407-6 – volume: 13 start-page: 1 year: 2021 ident: ref_22 article-title: The Role of Machine Learning and Radiomics for Treatment Response Prediction in Idiopathic Normal Pressure Hydrocephalus publication-title: Cureus – volume: 31 start-page: 1029 year: 2021 ident: ref_39 article-title: SVM-Based Normal Pressure Hydrocephalus Detection publication-title: Clin. Neuroradiol. Klin. Neuroradiol. doi: 10.1007/s00062-020-00993-0 – volume: 42 start-page: 1942 year: 2021 ident: ref_17 article-title: The First Examination of Diagnostic Performance of Automated Measurement of the Callosal Angle in 1856 Elderly Patients and Volunteers Indicates That 12.4% of Exams Met the Criteria for Possible Normal Pressure Hydrocephalus publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A7294 – volume: 42 start-page: 79 year: 2022 ident: ref_9 article-title: Transfer Learning Techniques for Medical Image Analysis: A Review publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2021.11.004 – ident: ref_21 – volume: 81 start-page: 21199 year: 2022 ident: ref_47 article-title: Detection of Hydrocephalus Using Machine Learning in Medical Science—A Review publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12744-z – volume: 13 start-page: e2884 year: 2023 ident: ref_35 article-title: Higher Prevalence of Idiopathic Normal Pressure Hydrocephalus-Like MRI Features in Progressive Supranuclear Palsy: An Imaging Reminder of Atypical Parkinsonism publication-title: Brain Behav. doi: 10.1002/brb3.2884 – ident: ref_50 – ident: ref_53 doi: 10.1117/12.2653999 – volume: 13 start-page: 133 year: 2019 ident: ref_14 article-title: Normal-Pressure Hydrocephalus: A Critical Review publication-title: Dement. Neuropsychol. doi: 10.1590/1980-57642018dn13-020001 – volume: 37 start-page: 120 year: 2016 ident: ref_16 article-title: Magnetic Resonance Imaging of Normal Pressure Hydrocephalus publication-title: Semin. Ultrasound CT MR doi: 10.1053/j.sult.2016.01.005 – volume: 2 start-page: 307 year: 1965 ident: ref_2 article-title: The Special Clinical Problem of Symptomatic Hydrocephalus with Normal Cerebrospinal Fluid Pressure: Observations on Cerebrospinal Fluid Hydrodynamics publication-title: J. Neurol. Sci. doi: 10.1016/0022-510X(65)90016-X – ident: ref_52 doi: 10.1016/j.jsasus.2025.02.002 – volume: 349 start-page: 255 year: 2015 ident: ref_19 article-title: Machine Learning: Trends, Perspectives, and Prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 19 start-page: 351 year: 2020 ident: ref_29 article-title: A Novel Deep Learning Approach with a 3D Convolutional Ladder Network for Differential Diagnosis of Idiopathic Normal Pressure Hydrocephalus and Alzheimer’s Disease publication-title: Magn. Reson. Med. Sci. doi: 10.2463/mrms.mp.2019-0106 – volume: 13 start-page: 20 year: 2016 ident: ref_4 article-title: Early and Delayed Assessments of Quantitative Gait Measures to Improve the Tap Test as a Predictor of Shunt Effectiveness in Idiopathic Normal Pressure Hydrocephalus publication-title: Fluids Barriers CNS doi: 10.1186/s12987-016-0044-z – volume: 11 start-page: 19 year: 2022 ident: ref_10 article-title: A Review on Deep Learning in Medical Image Analysis publication-title: Int. J. Multimed. Inf. Retr. doi: 10.1007/s13735-021-00218-1 – ident: ref_18 doi: 10.1371/journal.pone.0232275 – volume: 62 start-page: 101688 year: 2020 ident: ref_25 article-title: CEREBRUM: A Fast and Fully-Volumetric Convolutional Encoder-decodeR for Weakly-Supervised sEgmentation of BRain strUctures from out-of-the-Scanner MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101688 – volume: 285 start-page: 197 year: 2017 ident: ref_37 article-title: Diagnosis of Normal-Pressure Hydrocephalus: Use of Traditional Measures in the Era of Volumetric MR Imaging publication-title: Radiology doi: 10.1148/radiol.2017161216 |
SSID | ssj0000913810 |
Score | 2.322068 |
Snippet | Normal pressure hydrocephalus (NPH) is a neurological disorder characterized by altered cerebrospinal fluid accumulation in the brain’s ventricles, leading to... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 3653 |
SubjectTerms | Accuracy Algorithms Alzheimer's disease Artificial intelligence Cognitive ability Computational linguistics Decision trees Deep learning Disease Hydrocephalus Language processing Machine learning Medical imaging Medical imaging equipment Natural language interfaces Nervous system diseases Neural networks normal pressure hydrocephalus Surgery Systematic review Urinary incontinence |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYtxAQDogVEoSAPSMAQ0cZO4rCFLxUkWACpm-XYZyGEWtSGgX_PXZxW6YBYGNO4knvXu3tPth8zduIMKMjARYnLykimwmMejIcRxIkoZWkV1HcdPj6lo1f5ME7Grau-aE9YwAMHw124ATjIDWFnhMyMNwZ7Nh97nytpbQmUfbHmtZqpOgfnQ0JXhQN5Avt6Wg8m7SPSRKyUoJrU_1s-rovM3TbbatQhL8KsOmwNJl222WIGdlmnicY5P2uQ0ec77J2-EVgQ_L4F2eRFgwzH4ahOOao9fgNVvf1qwqeeP5Fk_eDhkOAM-OjbUUX7fDMfX_NLXvDnJemZh2WEXfZ6d_tyPYqaWxQii-FVRa4cgDUWa7MDlaOaAgxBINCbxSeb-lgK7Gs8ce4hQ8FhUcJm2cCJxJSxsmKPrU-mE9hnPDcyRyeAFSBlZr0Z2jhVcemH6cBiouixk4Vh9WeAZWhsMsj-umX_Hrsioy-HEOG6_gD9rhu_67_83mOn5DJNcVjNDP7CcJwAZ0pEK10oQWg-VJg91l8ZifFjV18vnK6b-J1rzHQqUzhCHvzHZA_ZRkz3Btc7fvpsvZp9wRGKmao8rv-3Pzr086U priority: 102 providerName: Directory of Open Access Journals |
Title | Artificial Intelligence Approaches for the Detection of Normal Pressure Hydrocephalus: A Systematic Review |
URI | https://www.proquest.com/docview/3188788594 https://doaj.org/article/d0ede9a0077347afaa888f2ff984ccbe |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6x7gUe0DZAlG2VHyYBDxFp7CTOXqYOVgoSFQIm7c1y7PMQmtquzR7477lL3NI-wGPii5KcfXff-cd3AGfeosYSfZL7sk5UIQP5wWyYYJbLWtVOY1vr8Mu0mFyrzzf5TZxwW8VtlWuf2DpqP3c8R_6Oxp6mdC2v1MXiPuGqUby6Gkto7ME-uWCte7B_eTX9-m0zy8Ksl3qYdgfzJOX3vC7MGEgWudwJRS1j_7_8chtsxgfwNKJEMeq69RAe4ewInmxxBx7BYbTKlXgTqaPfPoNf_ETHCSE-bZFtilGkDidxQqmCUJ_4gE27DWsm5kFMGbreie6w4BLF5LfnyLb4ae8eVudiJL5vGJ9Ft5zwHK7HVz_eT5JYTSFxZGZN4usUnXUUoz3qilAVkikiE745unJFyJSk_CYw3z2WBDwcQdmyTL3MbZ1pJ19Abzaf4UsQlVWVVCU6iUqVLtihywqd1WFYpI4cRh_O1oo1i440w1Cywfo3W_rvwyUrfSPCTNftjfny1kTDMT5Fj5Vl2iF6pQ3WUs4eshAqrZyrsQ-vucsM22OztPSH3bEC-lJmtjIjLZmij5BmH052JMmO3G7zutNNtOOV-TvqXv2_-RgeZ1wZuN3TcwK9ZvmApwRXmnoAe3r8cRBH5qBN-v8A7fPs2g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiBYQgQI-FAGHFRvbu-tFQihQQkLbXGil3lyvdwxCVRKSrVD_FL-RmX2E5AC3HnftfY3n8Xnt-QZgv3RoMMMySsqsiHSqAvlB2Y9QJqrQhTdY1zo8nqSjU_3lLDnbgt9dLgxvq-x8Yu2oy5nnf-RvSPcMTdeSXL-f_4y4ahSvrnYlNBq1OMSrXzRlW74bH9D4vpBy-Onk4yhqqwpEntStisoiRu88xaoSTU7oAkklkYnPPB35NEitCOcH5n3HjAKwJ0iXZXGpEldI4xXd9wbc1IoiOWemDz-v_ukwx6bpx00aILXHvArNiEulidoIfHV9gH9FgTq0De_B3RaTikGjRDuwhdNduLPGVLgLO60PWIpXLVH16_vwg69oGCjEeI3aUwxaonLqTphYEMYUB1jVm76mYhbEhIHyhWhSExcoRlclx9H5d3dxuXwrBuLril9aNIsXD-D0WqT8ELansyk-ApE7nSudoVeodeaD63uZGlmEfhp7ck892O8Ea-cNRYelqQ3L367JvwcfWOirLsyrXZ-YLb7Z1kxtGWOJuWOSI3qkC84ZY4IMITfa-wJ78JKHzLL1VwtHX9gkMdCbMo-WHRjFhICEa3uwt9GTrNZvNneDbluvsbR_dfzx_5ufw63RyfGRPRpPDp_Abck1ievdRHuwXS0u8SkBpap4VmungPPrNoc_jo4lOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQLSACBTwoQg4rLpZ78OLhFBKGiUUogqo1Jvx2mOqqkpCshXqX-PXMbOPkBzg1uPuel_j8cw3tucbgH1nUGGGLkhcVgRxKj3ZwagXYJTIIi6swqrW4edJOjqNP54lZ1vwu82F4W2VrU2sDLWbWZ4jPyDdUxSuJXl84JttESeD4fv5z4ArSPFKa1tOo1aRY7z-ReHb8t14QH39MoqGR98-jIKmwkBgSfXKwBUhWmPJbzlUOSENJPVEJkGzdGRTH8WSML9nDnjMyBlbgndZFjqZmCJSVtJzb8F2xlFRB7YPjyYnX1YzPMy4qXphnRQoZR7ymjTjL5kmcsMNVtUC_uUTKkc3vA_3GoQq-rVK7cAWTnfh7hpv4S7sNBZhKV43tNVvHsAF31HzUYjxGtGn6De05dScELIgxCkGWFZbwKZi5sWEYfOlqBMVFyhG14696vzcXF4t34q--Lpimxb1UsZDOL0ROT-CznQ2xccgchPnMs7QSozjzHrTs1GqosL30tCSserCfitYPa8JOzQFOix_vSb_Lhyy0FdNmGW7OjFb_NDNoNUuRIe5YcojeqXxxiilfOR9rmJrC-zCK-4yzbagXBj6wzqlgb6UWbV0X0mmBySU24W9jZY0hu3m5bbTdWNDlvqvxj_5_-UXcJuGgv40nhw_hTsRFyiuthbtQadcXOEzQk1l8bxRTwHfb3pE_AEL_SrK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Approaches+for+the+Detection+of+Normal+Pressure+Hydrocephalus%3A+A+Systematic+Review&rft.jtitle=Applied+sciences&rft.au=Mercado-Diaz%2C+Luis+R&rft.au=Prakash%2C+Neha&rft.au=Gong%2C+Gary+X&rft.au=Posada-Quintero%2C+Hugo+F&rft.date=2025-04-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=7&rft.spage=3653&rft_id=info:doi/10.3390%2Fapp15073653&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |