2D-human face recognition using SIFT and SURF descriptors of face’s feature regions

Face recognition is the process of identifying people through facial images. It has become vital for security and surveillance applications and required everywhere including institutions, organizations, offices, and social places. There are a number of challenges faced in face recognition which incl...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 37; no. 3; pp. 447 - 456
Main Authors Gupta, Surbhi, Thakur, Kutub, Kumar, Munish
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Face recognition is the process of identifying people through facial images. It has become vital for security and surveillance applications and required everywhere including institutions, organizations, offices, and social places. There are a number of challenges faced in face recognition which includes face pose, age, gender, illumination, and other variable condition. Another challenge is that the database size for these applications is usually small. So, training and recognition become difficult. Face recognition methods can be divided into two major categories, appearance-based method and feature-based method. In this paper, the authors have presented the feature-based method for 2D face images. speeded up robust features (SURF) and scale-invariant feature transform (SIFT) are used for feature extraction. Five public datasets, namely Yale2B, Face 94, M2VTS, ORL, and FERET, are used for experimental work. Various combinations of SIFT and SURF features with two classification techniques, namely decision tree and random forest, have experimented in this work. A maximum recognition accuracy of 99.7% has been reported by the authors with a combination of SIFT (64-components) and SURF (32-components).
AbstractList Face recognition is the process of identifying people through facial images. It has become vital for security and surveillance applications and required everywhere including institutions, organizations, offices, and social places. There are a number of challenges faced in face recognition which includes face pose, age, gender, illumination, and other variable condition. Another challenge is that the database size for these applications is usually small. So, training and recognition become difficult. Face recognition methods can be divided into two major categories, appearance-based method and feature-based method. In this paper, the authors have presented the feature-based method for 2D face images. speeded up robust features (SURF) and scale-invariant feature transform (SIFT) are used for feature extraction. Five public datasets, namely Yale2B, Face 94, M2VTS, ORL, and FERET, are used for experimental work. Various combinations of SIFT and SURF features with two classification techniques, namely decision tree and random forest, have experimented in this work. A maximum recognition accuracy of 99.7% has been reported by the authors with a combination of SIFT (64-components) and SURF (32-components).
Author Gupta, Surbhi
Kumar, Munish
Thakur, Kutub
Author_xml – sequence: 1
  givenname: Surbhi
  surname: Gupta
  fullname: Gupta, Surbhi
  organization: Department of Computer Science and Engineering, Gokaraju Rangaraju Institute of Engineering and Technology
– sequence: 2
  givenname: Kutub
  surname: Thakur
  fullname: Thakur, Kutub
  organization: Department of Professional Security Studies, Cyber Security, New Jersey City University
– sequence: 3
  givenname: Munish
  surname: Kumar
  fullname: Kumar, Munish
  email: munishcse@gmail.com
  organization: Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University
BookMark eNp9kMtKAzEUhoNUsK2-gKuA62gu00mylGq1UBBsuw5pJhmntElNZhbufA1fzycxbQXBRVeHA_93Lt8A9HzwFoBrgm8JxvwuYcw4QZhihIkgBRJnoE8KRhFlZNQDfUy4QJQLeQEGKa1x7nkh-2BJH9Bbt9UeOm0sjNaE2jdtEzzsUuNrOJ9OFlD7Cs6XrxNY2WRis2tDTDC4A_P9-ZWgs7rt4p6vM5ouwbnTm2SvfusQLCePi_Ezmr08Tcf3M2QYkS2qOF2ZggkmsXQu36MLyqVYGT4qXWEt59awUjharkauokRoUVYEM1Liwljh2BDcHOfuYnjvbGrVOnTR55WKSsJlySjDOSWOKRNDStE6ZZpW739so242imC1l6iOElWWqA4Slcgo_YfuYrPV8eM0xI5QymFf2_h31QnqB-4UhcY
CitedBy_id crossref_primary_10_1007_s11042_022_12151_4
crossref_primary_10_1007_s44196_024_00729_9
crossref_primary_10_1007_s00371_023_02822_0
crossref_primary_10_1016_j_ijleo_2022_168925
crossref_primary_10_1007_s11042_022_13894_w
crossref_primary_10_1109_JSEN_2024_3426553
crossref_primary_10_1007_s11042_022_13927_4
crossref_primary_10_2478_jaiscr_2022_0011
crossref_primary_10_1007_s00371_021_02324_x
crossref_primary_10_1007_s42979_024_03590_x
crossref_primary_10_1007_s11042_020_10271_3
crossref_primary_10_1080_19361610_2024_2302237
crossref_primary_10_1080_00207543_2024_2354853
crossref_primary_10_1109_ACCESS_2025_3543311
crossref_primary_10_1007_s11042_022_11904_5
crossref_primary_10_3390_electronics11020202
crossref_primary_10_1109_ACCESS_2023_3253510
crossref_primary_10_1109_TITS_2022_3215538
crossref_primary_10_1007_s00371_022_02757_y
crossref_primary_10_3233_IDT_240104
crossref_primary_10_1186_s12859_022_04818_4
crossref_primary_10_3390_bdcc8110164
crossref_primary_10_1007_s11063_022_10783_z
crossref_primary_10_1007_s11760_023_02490_6
crossref_primary_10_1007_s00371_022_02572_5
crossref_primary_10_3390_app14145986
crossref_primary_10_1080_03772063_2023_2220691
crossref_primary_10_1007_s00500_021_06072_x
crossref_primary_10_1007_s00500_021_06098_1
crossref_primary_10_1007_s11760_022_02217_z
crossref_primary_10_1615_JFlowVisImageProc_2023046834
crossref_primary_10_1007_s00521_020_05512_3
crossref_primary_10_1007_s11042_022_12245_z
crossref_primary_10_3390_electronics11071010
crossref_primary_10_1007_s11042_022_13215_1
crossref_primary_10_1016_j_measurement_2024_115642
crossref_primary_10_1007_s11042_023_17994_z
crossref_primary_10_1016_j_ijleo_2021_167763
crossref_primary_10_3390_technologies12020017
crossref_primary_10_1007_s00371_021_02276_2
crossref_primary_10_1007_s11042_022_13198_z
crossref_primary_10_1016_j_asoc_2023_110584
crossref_primary_10_1007_s11042_022_13697_z
crossref_primary_10_1007_s11042_022_12567_y
crossref_primary_10_1007_s00371_021_02253_9
crossref_primary_10_1007_s11042_023_18007_9
crossref_primary_10_1016_j_eswa_2025_126594
crossref_primary_10_1007_s10278_021_00564_w
crossref_primary_10_1007_s11042_022_12100_1
crossref_primary_10_1007_s00371_022_02615_x
crossref_primary_10_1007_s11042_023_14770_x
crossref_primary_10_3390_s23020632
crossref_primary_10_32604_csse_2024_050817
crossref_primary_10_22399_ijcesen_937
crossref_primary_10_32604_iasc_2024_052983
crossref_primary_10_1007_s11042_022_11934_z
crossref_primary_10_1142_S0129183121501370
crossref_primary_10_1007_s11042_022_13636_y
crossref_primary_10_1155_2022_8937084
crossref_primary_10_1142_S012918312150100X
crossref_primary_10_1007_s11042_021_11041_5
crossref_primary_10_3233_JIFS_211890
crossref_primary_10_1109_ACCESS_2020_2997312
crossref_primary_10_1109_TITS_2022_3165156
crossref_primary_10_1007_s10044_023_01196_2
crossref_primary_10_1016_j_advengsoft_2022_103296
crossref_primary_10_3390_f15111908
crossref_primary_10_1007_s11042_022_14325_6
crossref_primary_10_1007_s11042_023_17534_9
crossref_primary_10_1007_s11042_022_13153_y
crossref_primary_10_1007_s11042_022_13957_y
crossref_primary_10_1109_ACCESS_2023_3310398
crossref_primary_10_1007_s42417_021_00286_x
crossref_primary_10_1080_03772063_2021_1967792
crossref_primary_10_1007_s11042_023_15981_y
crossref_primary_10_1007_s11042_023_17545_6
crossref_primary_10_29121_granthaalayah_v9_i12_2021_4416
crossref_primary_10_1007_s00371_024_03311_8
crossref_primary_10_2478_acss_2023_0016
crossref_primary_10_3390_app13063396
crossref_primary_10_3390_su13094738
crossref_primary_10_3390_s23094285
crossref_primary_10_1007_s11042_022_13589_2
crossref_primary_10_1007_s11042_022_13184_5
crossref_primary_10_1049_cmu2_12601
crossref_primary_10_1016_j_eswa_2023_122266
crossref_primary_10_1007_s11042_023_14801_7
crossref_primary_10_1007_s10278_021_00432_7
crossref_primary_10_1007_s00371_020_01949_8
crossref_primary_10_1007_s00500_023_07822_9
crossref_primary_10_3389_frobt_2024_1490812
crossref_primary_10_1007_s00371_023_02919_6
crossref_primary_10_1007_s13748_024_00336_x
crossref_primary_10_1007_s11042_023_14874_4
crossref_primary_10_1109_ACCESS_2020_3025165
crossref_primary_10_1007_s00371_022_02732_7
crossref_primary_10_1007_s10586_024_04935_0
crossref_primary_10_1007_s11042_022_13823_x
crossref_primary_10_1007_s12652_020_02787_1
Cites_doi 10.1371/journal.pone.0086041
10.1016/j.tics.2017.09.007
10.1007/s00371-017-1428-z
10.1109/TPAMI.2005.55
10.1016/j.neucom.2015.08.128
10.1016/j.asoc.2015.10.039
10.1016/j.patcog.2016.12.008
10.1109/TPAMI.2017.2781233
10.1007/s00371-013-0861-x
10.1080/09500340.2017.1380854
10.3390/s18072080
10.2174/1874444301507011721
10.1109/34.927464
10.1016/j.procs.2015.10.068
10.1109/34.598228
10.1007/s00521-018-3677-9
10.1109/34.879790
10.1109/TIP.2017.2713940
10.1109/TIFS.2016.2515505
10.1016/j.jvcir.2019.01.013
10.1016/j.inffus.2014.06.001
10.1007/978-3-319-14442-9_59
10.1007/978-3-319-22180-9_31
10.5220/0005314404470454
10.1109/WACV.2014.6835990
10.1109/CVPRW.2016.23
10.1109/ICICS.2013.6782777
10.1007/BFb0016021
10.1007/978-3-319-46478-7_31
10.1007/978-3-319-15554-8_73
10.1109/ICMEAE.2014.16
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-020-01814-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 456
ExternalDocumentID 10_1007_s00371_020_01814_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-d72bc4383909ff749a42798bc756f4ee77ec368f26b5fd218a86d1031604ce8f3
IEDL.DBID BENPR
ISSN 0178-2789
IngestDate Fri Jul 25 23:47:48 EDT 2025
Tue Jul 01 01:05:48 EDT 2025
Thu Apr 24 23:08:53 EDT 2025
Fri Feb 21 02:50:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords SURF
SIFT
Random forest
Face recognition
Decision tree
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d72bc4383909ff749a42798bc756f4ee77ec368f26b5fd218a86d1031604ce8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2917963230
PQPubID 2043737
PageCount 10
ParticipantIDs proquest_journals_2917963230
crossref_citationtrail_10_1007_s00371_020_01814_8
crossref_primary_10_1007_s00371_020_01814_8
springer_journals_10_1007_s00371_020_01814_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210300
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References He, Yan, Hu, Niyogi, Zhang (CR11) 2005; 27
CR19
Ke, Peng, Liu, Li, Pei (CR14) 2018; 65
Liu, Shen, Gui, Wang, Li, Yan, Wang (CR20) 2016; 204
CR15
CR37
Phillips, Moon, Rizvi, Rauss (CR23) 2000; 22
Georghiades, Belhumeur, Kriegman (CR7) 2001; 23
CR34
Yan, Li, Wang, Zhao, Liu, Chen (CR36) 2014; 9
CR10
CR32
Lu, Wang, Zhou (CR21) 2017; 26
Guntupalli, Gobbini (CR8) 2017; 21
Vinay, Hebbar, Shekhar, Murthy, Natarajan (CR29) 2015; 70
Karczmarek, Kiersztyn, Pedrycz, Dolecki (CR13) 2017; 65
Li, Qiu, Wen, Xie, Wen (CR18) 2018; 18
Du, Su, Cai (CR6) 2009; 7496
Abdurrahim, Samad, Huddin (CR1) 2018; 34
Chhabra, Garg, Kumar (CR5) 2018
Ranjan, Patel, Chellappa (CR25) 2019; 41
CR4
Vinay, Rao, Shekhar, Kumar, Murthy, Natarajan (CR30) 2015; 70
CR3
CR28
CR9
CR27
CR26
CR24
Werghi, Tortorici, Berretti, Del (CR35) 2016; 11
Kotropoulos, Pitas (CR16) 1997; 4
Wang (CR31) 2019; 60
Naik, Panda (CR22) 2016; 38
Huang, Li, Wang, Zhang (CR12) 2015; 22
Li, Zhou, Su (CR17) 2015; 7
Wang, Miao, Wu, Wan, Tang (CR33) 2014; 30
Belhumeur, Hespanha, Kriegman (CR2) 1997; 19
P Chhabra (1814_CR5) 2018
1814_CR24
BD Liu (1814_CR20) 2016; 204
1814_CR28
A Vinay (1814_CR30) 2015; 70
N Werghi (1814_CR35) 2016; 11
X He (1814_CR11) 2005; 27
1814_CR26
1814_CR27
PN Belhumeur (1814_CR2) 1997; 19
J Lu (1814_CR21) 2017; 26
ZH Huang (1814_CR12) 2015; 22
MK Naik (1814_CR22) 2016; 38
P Karczmarek (1814_CR13) 2017; 65
JS Guntupalli (1814_CR8) 2017; 21
J Ke (1814_CR14) 2018; 65
1814_CR10
1814_CR32
Z Wang (1814_CR33) 2014; 30
PJ Phillips (1814_CR23) 2000; 22
D Wang (1814_CR31) 2019; 60
1814_CR34
R Ranjan (1814_CR25) 2019; 41
G Du (1814_CR6) 2009; 7496
A Georghiades (1814_CR7) 2001; 23
1814_CR9
1814_CR15
1814_CR37
SH Abdurrahim (1814_CR1) 2018; 34
A Vinay (1814_CR29) 2015; 70
1814_CR4
C Kotropoulos (1814_CR16) 1997; 4
1814_CR19
WJ Yan (1814_CR36) 2014; 9
J Li (1814_CR18) 2018; 18
1814_CR3
G Li (1814_CR17) 2015; 7
References_xml – volume: 9
  start-page: e86041
  year: 2014
  ident: CR36
  article-title: CASME II: an improved spontaneous micro-expression database and the baseline evaluation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0086041
– volume: 21
  start-page: 915
  issue: 12
  year: 2017
  end-page: 916
  ident: CR8
  article-title: Reading faces: from features to recognition
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2017.09.007
– volume: 34
  start-page: 1617
  issue: 11
  year: 2018
  end-page: 1630
  ident: CR1
  article-title: Review on the effects of age, gender, and race demographics on automatic face recognition
  publication-title: The Visual Computer
  doi: 10.1007/s00371-017-1428-z
– ident: CR4
– ident: CR37
– volume: 27
  start-page: 328
  issue: 3
  year: 2005
  end-page: 340
  ident: CR11
  article-title: Face recognition using laplacianfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.55
– volume: 204
  start-page: 198
  year: 2016
  end-page: 210
  ident: CR20
  article-title: Face recognition using class specific dictionary learning for sparse representation and collaborative representation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.128
– ident: CR10
– volume: 4
  start-page: 2537
  year: 1997
  end-page: 2540
  ident: CR16
  article-title: Rule-based face detection in frontal views
  publication-title: IEEE Int. Conf. Acoustics Speech Signal Process.
– volume: 38
  start-page: 661
  year: 2016
  end-page: 675
  ident: CR22
  article-title: A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.039
– volume: 65
  start-page: 26
  year: 2017
  end-page: 34
  ident: CR13
  article-title: An application of chain code-based local descriptor and its extension to face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.12.008
– volume: 41
  start-page: 121
  issue: 1
  year: 2019
  end-page: 135
  ident: CR25
  article-title: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2781233
– volume: 30
  start-page: 359
  issue: 4
  year: 2014
  end-page: 386
  ident: CR33
  article-title: Low-resolution face recognition: a review
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-013-0861-x
– volume: 65
  start-page: 367
  issue: 4
  year: 2018
  end-page: 380
  ident: CR14
  article-title: Face recognition based on symmetrical virtual image and original training image
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340.2017.1380854
– ident: CR27
– volume: 7496
  start-page: 749628
  year: 2009
  ident: CR6
  article-title: Face recognition using SURF features
  publication-title: Pattern Recognit. Comput. Vis.
– volume: 18
  start-page: E2080
  issue: 7
  year: 2018
  ident: CR18
  article-title: Robust face recognition using the deep C2D-CNN model based on decision-level fusion
  publication-title: Sensors
  doi: 10.3390/s18072080
– volume: 7
  start-page: 1721
  issue: 1
  year: 2015
  end-page: 1728
  ident: CR17
  article-title: Face recognition algorithm using two dimensional locality preserving projection in discrete wavelet domain
  publication-title: Open Autom. Control Syst. J.
  doi: 10.2174/1874444301507011721
– ident: CR19
– volume: 23
  start-page: 643
  issue: 6
  year: 2001
  end-page: 660
  ident: CR7
  article-title: From few to many: illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.927464
– volume: 70
  start-page: 174
  year: 2015
  end-page: 184
  ident: CR30
  article-title: Feature extraction using ORB-RANSAC for face recognition
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.10.068
– ident: CR3
– ident: CR15
– volume: 19
  start-page: 711
  issue: 7
  year: 1997
  end-page: 720
  ident: CR2
  article-title: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.598228
– year: 2018
  ident: CR5
  article-title: Content-based image retrieval system using ORB and SIFT features
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3677-9
– volume: 22
  start-page: 1090
  issue: 10
  year: 2000
  end-page: 1104
  ident: CR23
  article-title: The FERET evaluation methodology for face-recognition algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.879790
– ident: CR9
– volume: 26
  start-page: 4042
  issue: 8
  year: 2017
  end-page: 4054
  ident: CR21
  article-title: Simultaneous feature and dictionary learning for image set based face recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2713940
– ident: CR32
– volume: 70
  start-page: 185
  year: 2015
  end-page: 197
  ident: CR29
  article-title: Two novel detector-descriptor based approaches for face recognition using sift and surf
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.10.068
– ident: CR34
– volume: 11
  start-page: 964
  issue: 5
  year: 2016
  end-page: 979
  ident: CR35
  article-title: Boosting 3D LBP-based face recognition by fusing shape and texture descriptors on the mesh
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2016.2515505
– volume: 60
  start-page: 116
  year: 2019
  end-page: 122
  ident: CR31
  article-title: Effect of subject’s age and gender on face recognition results
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2019.01.013
– volume: 22
  start-page: 95
  year: 2015
  end-page: 104
  ident: CR12
  article-title: Face recognition based on pixel-level and feature-level fusion of the top-level’s wavelet sub-bands
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2014.06.001
– ident: CR28
– ident: CR26
– ident: CR24
– ident: 1814_CR27
  doi: 10.1007/978-3-319-14442-9_59
– volume: 38
  start-page: 661
  year: 2016
  ident: 1814_CR22
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.039
– volume: 9
  start-page: e86041
  year: 2014
  ident: 1814_CR36
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0086041
– volume: 204
  start-page: 198
  year: 2016
  ident: 1814_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.128
– volume: 19
  start-page: 711
  issue: 7
  year: 1997
  ident: 1814_CR2
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.598228
– ident: 1814_CR3
  doi: 10.1007/978-3-319-22180-9_31
– volume: 23
  start-page: 643
  issue: 6
  year: 2001
  ident: 1814_CR7
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.927464
– ident: 1814_CR15
  doi: 10.5220/0005314404470454
– ident: 1814_CR37
  doi: 10.1109/WACV.2014.6835990
– volume: 70
  start-page: 174
  year: 2015
  ident: 1814_CR30
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.10.068
– volume: 34
  start-page: 1617
  issue: 11
  year: 2018
  ident: 1814_CR1
  publication-title: The Visual Computer
  doi: 10.1007/s00371-017-1428-z
– volume: 11
  start-page: 964
  issue: 5
  year: 2016
  ident: 1814_CR35
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2016.2515505
– volume: 7
  start-page: 1721
  issue: 1
  year: 2015
  ident: 1814_CR17
  publication-title: Open Autom. Control Syst. J.
  doi: 10.2174/1874444301507011721
– volume: 18
  start-page: E2080
  issue: 7
  year: 2018
  ident: 1814_CR18
  publication-title: Sensors
  doi: 10.3390/s18072080
– volume: 26
  start-page: 4042
  issue: 8
  year: 2017
  ident: 1814_CR21
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2713940
– ident: 1814_CR9
  doi: 10.1109/CVPRW.2016.23
– volume: 65
  start-page: 367
  issue: 4
  year: 2018
  ident: 1814_CR14
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340.2017.1380854
– volume: 7496
  start-page: 749628
  year: 2009
  ident: 1814_CR6
  publication-title: Pattern Recognit. Comput. Vis.
– volume: 27
  start-page: 328
  issue: 3
  year: 2005
  ident: 1814_CR11
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.55
– ident: 1814_CR19
  doi: 10.1109/ICICS.2013.6782777
– volume: 30
  start-page: 359
  issue: 4
  year: 2014
  ident: 1814_CR33
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-013-0861-x
– volume: 60
  start-page: 116
  year: 2019
  ident: 1814_CR31
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2019.01.013
– volume: 22
  start-page: 95
  year: 2015
  ident: 1814_CR12
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2014.06.001
– volume: 22
  start-page: 1090
  issue: 10
  year: 2000
  ident: 1814_CR23
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.879790
– ident: 1814_CR28
– volume: 70
  start-page: 185
  year: 2015
  ident: 1814_CR29
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.10.068
– volume: 65
  start-page: 26
  year: 2017
  ident: 1814_CR13
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.12.008
– ident: 1814_CR24
  doi: 10.1007/BFb0016021
– ident: 1814_CR34
  doi: 10.1007/978-3-319-46478-7_31
– volume: 21
  start-page: 915
  issue: 12
  year: 2017
  ident: 1814_CR8
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2017.09.007
– year: 2018
  ident: 1814_CR5
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3677-9
– volume: 41
  start-page: 121
  issue: 1
  year: 2019
  ident: 1814_CR25
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2781233
– ident: 1814_CR26
– ident: 1814_CR32
  doi: 10.1007/978-3-319-15554-8_73
– ident: 1814_CR10
– ident: 1814_CR4
  doi: 10.1109/ICMEAE.2014.16
– volume: 4
  start-page: 2537
  year: 1997
  ident: 1814_CR16
  publication-title: IEEE Int. Conf. Acoustics Speech Signal Process.
SSID ssj0017749
Score 2.5780196
Snippet Face recognition is the process of identifying people through facial images. It has become vital for security and surveillance applications and required...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 447
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Automation
Computer Graphics
Computer Science
Decision trees
Dictionaries
Face recognition
Facial recognition technology
Feature extraction
Feature recognition
Identification
Image Processing and Computer Vision
Image retrieval
Localization
Neural networks
Original Article
Principal components analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLABpYax3HisQKiggQDbaRukeMHC0pQW3b-Bn-PX4LtJuEhQGKO7eHO94rvvg_gNOShkEkhMTcmxNQIhQthq1aeSBv-jDKEutnh2zs2yujNNJrWQ2Hzptu9eZL0nroddvPoctiVOw5kiuJkFdYiW7u7Rq6MDNu3A5vQ-KQ3sPWRm_OsR2V-PuNrOPrIMb89i_pok27DZp0mouFSrzuwossubDUUDKi2yC5sfMIT3IWMXGJPuoeMkBq1zUFViVx_-wMaX6cTJEqFxtl9ipRe-oxqNkeV8XveXl7nyGiP9okcaYO9lHuQpVeTixGueROwtAa1wComhXQQpHzg_shSLiiJuVVIHDFDtY5jLUOWGMKKyCgb40XClKN7YAMqdWLCfeiUVakPAEnKFCE6DiSXNJDS5uOUDjRnIii4CeMeBI34clmDijtui8e8hUP2Is-tyHMv8jzpwVm752kJqfHn6n6jlbw2r3lObJFpPYctn3pw3mjq4_Pvpx3-b_kRrBPXw-J7zvrQWcye9bFNQhbFib9z716M0TA
  priority: 102
  providerName: Springer Nature
Title 2D-human face recognition using SIFT and SURF descriptors of face’s feature regions
URI https://link.springer.com/article/10.1007/s00371-020-01814-8
https://www.proquest.com/docview/2917963230
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdoEB8RTlUXlgA4vGcRN7QgWa8hAIAZHKFCV-sKAEaNn5G_w9fgm267aARNckznB3vvvOvvsOYD_kYS5YITDXOsRU5xIXuclaORMm_GmpCbW9w9c30XlKLwedgT9wG_qyyolPdI5aVsKekR8Rk1cYYzGI-fjlFdupUfZ21Y_QqEHDuGDG6tA46d3c3k3vEQy4cQA4MLmS7fn0bTOuec6x1WGbPlnSKorZ79A0w5t_rkhd5ElWYNlDRtQd63gVFlS5Bks_iATXISVn2E3bQzoXCk2rgqoS2cL2J3R_kTygvJToPr1LkFRjZ1G9DVGl3Zqvj88h0srRfCI7rcFY4wakSe_h9Bz7gQlYmJ00wjImhbDco7xtj2IpzymJudFE3Ik0VSqOlQgjpklUdLQ0wT1nkbRzHqI2FYrpcBPqZVWqLUCCRpIQFQeCCxoIYYA4pW3FozwouA7jJgQTWWXCs4nboRbP2ZQH2ck3M_LNnHwz1oSD6ZqXMZfG3K93JyrI_L4aZjMraMLhRC2z1___bXv-33ZgkdhiFVdctgv10du72jNoY1S0oMaSfgsa3f7jVa_lDcw8TUn3G9uL0tY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB4BPQAHRAuIQGj30J7oini9sb0HhFBTNykkB5JI3Iy9P1yQHUgQ4sZr8BI8FE_C7MZO2krNjbO9K2v2887M7sz3AXz1hZ_KKJNUGONTblJFsxSzVhFJdH9GGcZt73C3F7SH_Pdl83IJXqpeGFtWWe2JbqNWhbRn5EcM8woEC0bMJ6NbalWj7O1qJaExhcWZfnzAlG183Gnh-n5jLP45-NGmpaoAlQi3CVUhy6Ql6BQNe17JRcpZKPBzw2ZguNZhqKUfRIYFWdMo9IBpFCgrhhA0uNSR8XHeZfjAffTktjM9_jW7tcBQyoXbHmZmtsO0bNJxrXqOG4_aZM1SZHEa_e0I59HtPxeyzs_Fm7BRBqjkdIqoj7Ck80-w_gdt4RYMWYs6bT9iUqnJrAapyIkto78m_U48IGmuSH94EROlp1tTcTcmhXFjXp-ex8RoRypKrDYEYn8bhu9iyB1YyYtc7wKRPFCM6dCTQnJPSgz7OW9oEaReJowf1sCrbJXIkrvcSmjcJDPWZWffBO2bOPsmUQ0OZ2NGU-aOhW_XqyVIyr94nMwxV4Pv1bLMH_9_tr3Fs32B1fage56cd3pn-7DGbJmMK2urw8rk7l4fYJwzyT47cBG4em80vwGx3QpS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTuMwEB51QVotB37KIsqvD7snsGgcN4kPHBAlosBWqy2RuGUT_3BBKaJFiBuvwVvwTDwJYzcJC1qQOHCObVnjGc988cw3AD984WcyyiUVxviUm0zRPEPUKiKJ7s8ow7itHf7VDw4TfnTWOWvAQ1UL47LdqyfJSU2DZWkqxjuXyuzUhW-OaY5a6GMJpziNyrTKY317g6BttNvr4gn_ZCw-ON0_pGVfASpR4cZUhSyXlqJTtO0fSy4yzkKBGw47geFah6GWfhAZFuQdo9AHZlGgbDuEoM2ljoyP636BaW6rj9GCErZXv1tgMOUCbg-xma0xLct0_r_nl67wOb599STrPF08D7NliEr2Jjq1AA1dNGGuav9AytugCTP_cBkuQsK61DX8IyaTmtSJScOC2Nz6czLoxackKxQZJH9iovTkvhpejcjQuDmPd_cjYrRjGiW2YQQaxHdIPkW2SzBVDAu9DETyQDGmQ08KyT0pEQtw3tYiyLxcGD9sgVeJL5Ulobntq3GR1lTMTuQpijx1Ik-jFmzVcy4ndB7vjl6rTiUtTXuUMgS4eGshdGvBdnVSz5_fXm3lY8M34evvbpye9PrHq_CN2VQal_q2BlPjq2u9jrHQON9w6kfg72fr-xPymBHH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D-human+face+recognition+using+SIFT+and+SURF+descriptors+of+face%E2%80%99s+feature+regions&rft.jtitle=The+Visual+computer&rft.au=Gupta%2C+Surbhi&rft.au=Thakur%2C+Kutub&rft.au=Kumar%2C+Munish&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=37&rft.issue=3&rft.spage=447&rft.epage=456&rft_id=info:doi/10.1007%2Fs00371-020-01814-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon