2D-human face recognition using SIFT and SURF descriptors of face’s feature regions
Face recognition is the process of identifying people through facial images. It has become vital for security and surveillance applications and required everywhere including institutions, organizations, offices, and social places. There are a number of challenges faced in face recognition which incl...
Saved in:
Published in | The Visual computer Vol. 37; no. 3; pp. 447 - 456 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Face recognition is the process of identifying people through facial images. It has become vital for security and surveillance applications and required everywhere including institutions, organizations, offices, and social places. There are a number of challenges faced in face recognition which includes face pose, age, gender, illumination, and other variable condition. Another challenge is that the database size for these applications is usually small. So, training and recognition become difficult. Face recognition methods can be divided into two major categories, appearance-based method and feature-based method. In this paper, the authors have presented the feature-based method for 2D face images. speeded up robust features (SURF) and scale-invariant feature transform (SIFT) are used for feature extraction. Five public datasets, namely Yale2B, Face 94, M2VTS, ORL, and FERET, are used for experimental work. Various combinations of SIFT and SURF features with two classification techniques, namely decision tree and random forest, have experimented in this work. A maximum recognition accuracy of 99.7% has been reported by the authors with a combination of SIFT (64-components) and SURF (32-components). |
---|---|
AbstractList | Face recognition is the process of identifying people through facial images. It has become vital for security and surveillance applications and required everywhere including institutions, organizations, offices, and social places. There are a number of challenges faced in face recognition which includes face pose, age, gender, illumination, and other variable condition. Another challenge is that the database size for these applications is usually small. So, training and recognition become difficult. Face recognition methods can be divided into two major categories, appearance-based method and feature-based method. In this paper, the authors have presented the feature-based method for 2D face images. speeded up robust features (SURF) and scale-invariant feature transform (SIFT) are used for feature extraction. Five public datasets, namely Yale2B, Face 94, M2VTS, ORL, and FERET, are used for experimental work. Various combinations of SIFT and SURF features with two classification techniques, namely decision tree and random forest, have experimented in this work. A maximum recognition accuracy of 99.7% has been reported by the authors with a combination of SIFT (64-components) and SURF (32-components). |
Author | Gupta, Surbhi Kumar, Munish Thakur, Kutub |
Author_xml | – sequence: 1 givenname: Surbhi surname: Gupta fullname: Gupta, Surbhi organization: Department of Computer Science and Engineering, Gokaraju Rangaraju Institute of Engineering and Technology – sequence: 2 givenname: Kutub surname: Thakur fullname: Thakur, Kutub organization: Department of Professional Security Studies, Cyber Security, New Jersey City University – sequence: 3 givenname: Munish surname: Kumar fullname: Kumar, Munish email: munishcse@gmail.com organization: Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University |
BookMark | eNp9kMtKAzEUhoNUsK2-gKuA62gu00mylGq1UBBsuw5pJhmntElNZhbufA1fzycxbQXBRVeHA_93Lt8A9HzwFoBrgm8JxvwuYcw4QZhihIkgBRJnoE8KRhFlZNQDfUy4QJQLeQEGKa1x7nkh-2BJH9Bbt9UeOm0sjNaE2jdtEzzsUuNrOJ9OFlD7Cs6XrxNY2WRis2tDTDC4A_P9-ZWgs7rt4p6vM5ouwbnTm2SvfusQLCePi_Ezmr08Tcf3M2QYkS2qOF2ZggkmsXQu36MLyqVYGT4qXWEt59awUjharkauokRoUVYEM1Liwljh2BDcHOfuYnjvbGrVOnTR55WKSsJlySjDOSWOKRNDStE6ZZpW739so242imC1l6iOElWWqA4Slcgo_YfuYrPV8eM0xI5QymFf2_h31QnqB-4UhcY |
CitedBy_id | crossref_primary_10_1007_s11042_022_12151_4 crossref_primary_10_1007_s44196_024_00729_9 crossref_primary_10_1007_s00371_023_02822_0 crossref_primary_10_1016_j_ijleo_2022_168925 crossref_primary_10_1007_s11042_022_13894_w crossref_primary_10_1109_JSEN_2024_3426553 crossref_primary_10_1007_s11042_022_13927_4 crossref_primary_10_2478_jaiscr_2022_0011 crossref_primary_10_1007_s00371_021_02324_x crossref_primary_10_1007_s42979_024_03590_x crossref_primary_10_1007_s11042_020_10271_3 crossref_primary_10_1080_19361610_2024_2302237 crossref_primary_10_1080_00207543_2024_2354853 crossref_primary_10_1109_ACCESS_2025_3543311 crossref_primary_10_1007_s11042_022_11904_5 crossref_primary_10_3390_electronics11020202 crossref_primary_10_1109_ACCESS_2023_3253510 crossref_primary_10_1109_TITS_2022_3215538 crossref_primary_10_1007_s00371_022_02757_y crossref_primary_10_3233_IDT_240104 crossref_primary_10_1186_s12859_022_04818_4 crossref_primary_10_3390_bdcc8110164 crossref_primary_10_1007_s11063_022_10783_z crossref_primary_10_1007_s11760_023_02490_6 crossref_primary_10_1007_s00371_022_02572_5 crossref_primary_10_3390_app14145986 crossref_primary_10_1080_03772063_2023_2220691 crossref_primary_10_1007_s00500_021_06072_x crossref_primary_10_1007_s00500_021_06098_1 crossref_primary_10_1007_s11760_022_02217_z crossref_primary_10_1615_JFlowVisImageProc_2023046834 crossref_primary_10_1007_s00521_020_05512_3 crossref_primary_10_1007_s11042_022_12245_z crossref_primary_10_3390_electronics11071010 crossref_primary_10_1007_s11042_022_13215_1 crossref_primary_10_1016_j_measurement_2024_115642 crossref_primary_10_1007_s11042_023_17994_z crossref_primary_10_1016_j_ijleo_2021_167763 crossref_primary_10_3390_technologies12020017 crossref_primary_10_1007_s00371_021_02276_2 crossref_primary_10_1007_s11042_022_13198_z crossref_primary_10_1016_j_asoc_2023_110584 crossref_primary_10_1007_s11042_022_13697_z crossref_primary_10_1007_s11042_022_12567_y crossref_primary_10_1007_s00371_021_02253_9 crossref_primary_10_1007_s11042_023_18007_9 crossref_primary_10_1016_j_eswa_2025_126594 crossref_primary_10_1007_s10278_021_00564_w crossref_primary_10_1007_s11042_022_12100_1 crossref_primary_10_1007_s00371_022_02615_x crossref_primary_10_1007_s11042_023_14770_x crossref_primary_10_3390_s23020632 crossref_primary_10_32604_csse_2024_050817 crossref_primary_10_22399_ijcesen_937 crossref_primary_10_32604_iasc_2024_052983 crossref_primary_10_1007_s11042_022_11934_z crossref_primary_10_1142_S0129183121501370 crossref_primary_10_1007_s11042_022_13636_y crossref_primary_10_1155_2022_8937084 crossref_primary_10_1142_S012918312150100X crossref_primary_10_1007_s11042_021_11041_5 crossref_primary_10_3233_JIFS_211890 crossref_primary_10_1109_ACCESS_2020_2997312 crossref_primary_10_1109_TITS_2022_3165156 crossref_primary_10_1007_s10044_023_01196_2 crossref_primary_10_1016_j_advengsoft_2022_103296 crossref_primary_10_3390_f15111908 crossref_primary_10_1007_s11042_022_14325_6 crossref_primary_10_1007_s11042_023_17534_9 crossref_primary_10_1007_s11042_022_13153_y crossref_primary_10_1007_s11042_022_13957_y crossref_primary_10_1109_ACCESS_2023_3310398 crossref_primary_10_1007_s42417_021_00286_x crossref_primary_10_1080_03772063_2021_1967792 crossref_primary_10_1007_s11042_023_15981_y crossref_primary_10_1007_s11042_023_17545_6 crossref_primary_10_29121_granthaalayah_v9_i12_2021_4416 crossref_primary_10_1007_s00371_024_03311_8 crossref_primary_10_2478_acss_2023_0016 crossref_primary_10_3390_app13063396 crossref_primary_10_3390_su13094738 crossref_primary_10_3390_s23094285 crossref_primary_10_1007_s11042_022_13589_2 crossref_primary_10_1007_s11042_022_13184_5 crossref_primary_10_1049_cmu2_12601 crossref_primary_10_1016_j_eswa_2023_122266 crossref_primary_10_1007_s11042_023_14801_7 crossref_primary_10_1007_s10278_021_00432_7 crossref_primary_10_1007_s00371_020_01949_8 crossref_primary_10_1007_s00500_023_07822_9 crossref_primary_10_3389_frobt_2024_1490812 crossref_primary_10_1007_s00371_023_02919_6 crossref_primary_10_1007_s13748_024_00336_x crossref_primary_10_1007_s11042_023_14874_4 crossref_primary_10_1109_ACCESS_2020_3025165 crossref_primary_10_1007_s00371_022_02732_7 crossref_primary_10_1007_s10586_024_04935_0 crossref_primary_10_1007_s11042_022_13823_x crossref_primary_10_1007_s12652_020_02787_1 |
Cites_doi | 10.1371/journal.pone.0086041 10.1016/j.tics.2017.09.007 10.1007/s00371-017-1428-z 10.1109/TPAMI.2005.55 10.1016/j.neucom.2015.08.128 10.1016/j.asoc.2015.10.039 10.1016/j.patcog.2016.12.008 10.1109/TPAMI.2017.2781233 10.1007/s00371-013-0861-x 10.1080/09500340.2017.1380854 10.3390/s18072080 10.2174/1874444301507011721 10.1109/34.927464 10.1016/j.procs.2015.10.068 10.1109/34.598228 10.1007/s00521-018-3677-9 10.1109/34.879790 10.1109/TIP.2017.2713940 10.1109/TIFS.2016.2515505 10.1016/j.jvcir.2019.01.013 10.1016/j.inffus.2014.06.001 10.1007/978-3-319-14442-9_59 10.1007/978-3-319-22180-9_31 10.5220/0005314404470454 10.1109/WACV.2014.6835990 10.1109/CVPRW.2016.23 10.1109/ICICS.2013.6782777 10.1007/BFb0016021 10.1007/978-3-319-46478-7_31 10.1007/978-3-319-15554-8_73 10.1109/ICMEAE.2014.16 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00371-020-01814-8 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 456 |
ExternalDocumentID | 10_1007_s00371_020_01814_8 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-d72bc4383909ff749a42798bc756f4ee77ec368f26b5fd218a86d1031604ce8f3 |
IEDL.DBID | BENPR |
ISSN | 0178-2789 |
IngestDate | Fri Jul 25 23:47:48 EDT 2025 Tue Jul 01 01:05:48 EDT 2025 Thu Apr 24 23:08:53 EDT 2025 Fri Feb 21 02:50:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | SURF SIFT Random forest Face recognition Decision tree |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-d72bc4383909ff749a42798bc756f4ee77ec368f26b5fd218a86d1031604ce8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2917963230 |
PQPubID | 2043737 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2917963230 crossref_citationtrail_10_1007_s00371_020_01814_8 crossref_primary_10_1007_s00371_020_01814_8 springer_journals_10_1007_s00371_020_01814_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210300 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210300 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | He, Yan, Hu, Niyogi, Zhang (CR11) 2005; 27 CR19 Ke, Peng, Liu, Li, Pei (CR14) 2018; 65 Liu, Shen, Gui, Wang, Li, Yan, Wang (CR20) 2016; 204 CR15 CR37 Phillips, Moon, Rizvi, Rauss (CR23) 2000; 22 Georghiades, Belhumeur, Kriegman (CR7) 2001; 23 CR34 Yan, Li, Wang, Zhao, Liu, Chen (CR36) 2014; 9 CR10 CR32 Lu, Wang, Zhou (CR21) 2017; 26 Guntupalli, Gobbini (CR8) 2017; 21 Vinay, Hebbar, Shekhar, Murthy, Natarajan (CR29) 2015; 70 Karczmarek, Kiersztyn, Pedrycz, Dolecki (CR13) 2017; 65 Li, Qiu, Wen, Xie, Wen (CR18) 2018; 18 Du, Su, Cai (CR6) 2009; 7496 Abdurrahim, Samad, Huddin (CR1) 2018; 34 Chhabra, Garg, Kumar (CR5) 2018 Ranjan, Patel, Chellappa (CR25) 2019; 41 CR4 Vinay, Rao, Shekhar, Kumar, Murthy, Natarajan (CR30) 2015; 70 CR3 CR28 CR9 CR27 CR26 CR24 Werghi, Tortorici, Berretti, Del (CR35) 2016; 11 Kotropoulos, Pitas (CR16) 1997; 4 Wang (CR31) 2019; 60 Naik, Panda (CR22) 2016; 38 Huang, Li, Wang, Zhang (CR12) 2015; 22 Li, Zhou, Su (CR17) 2015; 7 Wang, Miao, Wu, Wan, Tang (CR33) 2014; 30 Belhumeur, Hespanha, Kriegman (CR2) 1997; 19 P Chhabra (1814_CR5) 2018 1814_CR24 BD Liu (1814_CR20) 2016; 204 1814_CR28 A Vinay (1814_CR30) 2015; 70 N Werghi (1814_CR35) 2016; 11 X He (1814_CR11) 2005; 27 1814_CR26 1814_CR27 PN Belhumeur (1814_CR2) 1997; 19 J Lu (1814_CR21) 2017; 26 ZH Huang (1814_CR12) 2015; 22 MK Naik (1814_CR22) 2016; 38 P Karczmarek (1814_CR13) 2017; 65 JS Guntupalli (1814_CR8) 2017; 21 J Ke (1814_CR14) 2018; 65 1814_CR10 1814_CR32 Z Wang (1814_CR33) 2014; 30 PJ Phillips (1814_CR23) 2000; 22 D Wang (1814_CR31) 2019; 60 1814_CR34 R Ranjan (1814_CR25) 2019; 41 G Du (1814_CR6) 2009; 7496 A Georghiades (1814_CR7) 2001; 23 1814_CR9 1814_CR15 1814_CR37 SH Abdurrahim (1814_CR1) 2018; 34 A Vinay (1814_CR29) 2015; 70 1814_CR4 C Kotropoulos (1814_CR16) 1997; 4 1814_CR19 WJ Yan (1814_CR36) 2014; 9 J Li (1814_CR18) 2018; 18 1814_CR3 G Li (1814_CR17) 2015; 7 |
References_xml | – volume: 9 start-page: e86041 year: 2014 ident: CR36 article-title: CASME II: an improved spontaneous micro-expression database and the baseline evaluation publication-title: PLoS ONE doi: 10.1371/journal.pone.0086041 – volume: 21 start-page: 915 issue: 12 year: 2017 end-page: 916 ident: CR8 article-title: Reading faces: from features to recognition publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2017.09.007 – volume: 34 start-page: 1617 issue: 11 year: 2018 end-page: 1630 ident: CR1 article-title: Review on the effects of age, gender, and race demographics on automatic face recognition publication-title: The Visual Computer doi: 10.1007/s00371-017-1428-z – ident: CR4 – ident: CR37 – volume: 27 start-page: 328 issue: 3 year: 2005 end-page: 340 ident: CR11 article-title: Face recognition using laplacianfaces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.55 – volume: 204 start-page: 198 year: 2016 end-page: 210 ident: CR20 article-title: Face recognition using class specific dictionary learning for sparse representation and collaborative representation publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.128 – ident: CR10 – volume: 4 start-page: 2537 year: 1997 end-page: 2540 ident: CR16 article-title: Rule-based face detection in frontal views publication-title: IEEE Int. Conf. Acoustics Speech Signal Process. – volume: 38 start-page: 661 year: 2016 end-page: 675 ident: CR22 article-title: A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.039 – volume: 65 start-page: 26 year: 2017 end-page: 34 ident: CR13 article-title: An application of chain code-based local descriptor and its extension to face recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.12.008 – volume: 41 start-page: 121 issue: 1 year: 2019 end-page: 135 ident: CR25 article-title: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2781233 – volume: 30 start-page: 359 issue: 4 year: 2014 end-page: 386 ident: CR33 article-title: Low-resolution face recognition: a review publication-title: Vis. Comput. doi: 10.1007/s00371-013-0861-x – volume: 65 start-page: 367 issue: 4 year: 2018 end-page: 380 ident: CR14 article-title: Face recognition based on symmetrical virtual image and original training image publication-title: J. Mod. Opt. doi: 10.1080/09500340.2017.1380854 – ident: CR27 – volume: 7496 start-page: 749628 year: 2009 ident: CR6 article-title: Face recognition using SURF features publication-title: Pattern Recognit. Comput. Vis. – volume: 18 start-page: E2080 issue: 7 year: 2018 ident: CR18 article-title: Robust face recognition using the deep C2D-CNN model based on decision-level fusion publication-title: Sensors doi: 10.3390/s18072080 – volume: 7 start-page: 1721 issue: 1 year: 2015 end-page: 1728 ident: CR17 article-title: Face recognition algorithm using two dimensional locality preserving projection in discrete wavelet domain publication-title: Open Autom. Control Syst. J. doi: 10.2174/1874444301507011721 – ident: CR19 – volume: 23 start-page: 643 issue: 6 year: 2001 end-page: 660 ident: CR7 article-title: From few to many: illumination cone models for face recognition under variable lighting and pose publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.927464 – volume: 70 start-page: 174 year: 2015 end-page: 184 ident: CR30 article-title: Feature extraction using ORB-RANSAC for face recognition publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.10.068 – ident: CR3 – ident: CR15 – volume: 19 start-page: 711 issue: 7 year: 1997 end-page: 720 ident: CR2 article-title: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.598228 – year: 2018 ident: CR5 article-title: Content-based image retrieval system using ORB and SIFT features publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3677-9 – volume: 22 start-page: 1090 issue: 10 year: 2000 end-page: 1104 ident: CR23 article-title: The FERET evaluation methodology for face-recognition algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.879790 – ident: CR9 – volume: 26 start-page: 4042 issue: 8 year: 2017 end-page: 4054 ident: CR21 article-title: Simultaneous feature and dictionary learning for image set based face recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2713940 – ident: CR32 – volume: 70 start-page: 185 year: 2015 end-page: 197 ident: CR29 article-title: Two novel detector-descriptor based approaches for face recognition using sift and surf publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.10.068 – ident: CR34 – volume: 11 start-page: 964 issue: 5 year: 2016 end-page: 979 ident: CR35 article-title: Boosting 3D LBP-based face recognition by fusing shape and texture descriptors on the mesh publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2016.2515505 – volume: 60 start-page: 116 year: 2019 end-page: 122 ident: CR31 article-title: Effect of subject’s age and gender on face recognition results publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2019.01.013 – volume: 22 start-page: 95 year: 2015 end-page: 104 ident: CR12 article-title: Face recognition based on pixel-level and feature-level fusion of the top-level’s wavelet sub-bands publication-title: Inf. Fusion doi: 10.1016/j.inffus.2014.06.001 – ident: CR28 – ident: CR26 – ident: CR24 – ident: 1814_CR27 doi: 10.1007/978-3-319-14442-9_59 – volume: 38 start-page: 661 year: 2016 ident: 1814_CR22 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.039 – volume: 9 start-page: e86041 year: 2014 ident: 1814_CR36 publication-title: PLoS ONE doi: 10.1371/journal.pone.0086041 – volume: 204 start-page: 198 year: 2016 ident: 1814_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.128 – volume: 19 start-page: 711 issue: 7 year: 1997 ident: 1814_CR2 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.598228 – ident: 1814_CR3 doi: 10.1007/978-3-319-22180-9_31 – volume: 23 start-page: 643 issue: 6 year: 2001 ident: 1814_CR7 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.927464 – ident: 1814_CR15 doi: 10.5220/0005314404470454 – ident: 1814_CR37 doi: 10.1109/WACV.2014.6835990 – volume: 70 start-page: 174 year: 2015 ident: 1814_CR30 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.10.068 – volume: 34 start-page: 1617 issue: 11 year: 2018 ident: 1814_CR1 publication-title: The Visual Computer doi: 10.1007/s00371-017-1428-z – volume: 11 start-page: 964 issue: 5 year: 2016 ident: 1814_CR35 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2016.2515505 – volume: 7 start-page: 1721 issue: 1 year: 2015 ident: 1814_CR17 publication-title: Open Autom. Control Syst. J. doi: 10.2174/1874444301507011721 – volume: 18 start-page: E2080 issue: 7 year: 2018 ident: 1814_CR18 publication-title: Sensors doi: 10.3390/s18072080 – volume: 26 start-page: 4042 issue: 8 year: 2017 ident: 1814_CR21 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2713940 – ident: 1814_CR9 doi: 10.1109/CVPRW.2016.23 – volume: 65 start-page: 367 issue: 4 year: 2018 ident: 1814_CR14 publication-title: J. Mod. Opt. doi: 10.1080/09500340.2017.1380854 – volume: 7496 start-page: 749628 year: 2009 ident: 1814_CR6 publication-title: Pattern Recognit. Comput. Vis. – volume: 27 start-page: 328 issue: 3 year: 2005 ident: 1814_CR11 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.55 – ident: 1814_CR19 doi: 10.1109/ICICS.2013.6782777 – volume: 30 start-page: 359 issue: 4 year: 2014 ident: 1814_CR33 publication-title: Vis. Comput. doi: 10.1007/s00371-013-0861-x – volume: 60 start-page: 116 year: 2019 ident: 1814_CR31 publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2019.01.013 – volume: 22 start-page: 95 year: 2015 ident: 1814_CR12 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2014.06.001 – volume: 22 start-page: 1090 issue: 10 year: 2000 ident: 1814_CR23 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.879790 – ident: 1814_CR28 – volume: 70 start-page: 185 year: 2015 ident: 1814_CR29 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.10.068 – volume: 65 start-page: 26 year: 2017 ident: 1814_CR13 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.12.008 – ident: 1814_CR24 doi: 10.1007/BFb0016021 – ident: 1814_CR34 doi: 10.1007/978-3-319-46478-7_31 – volume: 21 start-page: 915 issue: 12 year: 2017 ident: 1814_CR8 publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2017.09.007 – year: 2018 ident: 1814_CR5 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3677-9 – volume: 41 start-page: 121 issue: 1 year: 2019 ident: 1814_CR25 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2781233 – ident: 1814_CR26 – ident: 1814_CR32 doi: 10.1007/978-3-319-15554-8_73 – ident: 1814_CR10 – ident: 1814_CR4 doi: 10.1109/ICMEAE.2014.16 – volume: 4 start-page: 2537 year: 1997 ident: 1814_CR16 publication-title: IEEE Int. Conf. Acoustics Speech Signal Process. |
SSID | ssj0017749 |
Score | 2.5780196 |
Snippet | Face recognition is the process of identifying people through facial images. It has become vital for security and surveillance applications and required... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 447 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Automation Computer Graphics Computer Science Decision trees Dictionaries Face recognition Facial recognition technology Feature extraction Feature recognition Identification Image Processing and Computer Vision Image retrieval Localization Neural networks Original Article Principal components analysis Wavelet transforms |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLABpYax3HisQKiggQDbaRukeMHC0pQW3b-Bn-PX4LtJuEhQGKO7eHO94rvvg_gNOShkEkhMTcmxNQIhQthq1aeSBv-jDKEutnh2zs2yujNNJrWQ2Hzptu9eZL0nroddvPoctiVOw5kiuJkFdYiW7u7Rq6MDNu3A5vQ-KQ3sPWRm_OsR2V-PuNrOPrIMb89i_pok27DZp0mouFSrzuwossubDUUDKi2yC5sfMIT3IWMXGJPuoeMkBq1zUFViVx_-wMaX6cTJEqFxtl9ipRe-oxqNkeV8XveXl7nyGiP9okcaYO9lHuQpVeTixGueROwtAa1wComhXQQpHzg_shSLiiJuVVIHDFDtY5jLUOWGMKKyCgb40XClKN7YAMqdWLCfeiUVakPAEnKFCE6DiSXNJDS5uOUDjRnIii4CeMeBI34clmDijtui8e8hUP2Is-tyHMv8jzpwVm752kJqfHn6n6jlbw2r3lObJFpPYctn3pw3mjq4_Pvpx3-b_kRrBPXw-J7zvrQWcye9bFNQhbFib9z716M0TA priority: 102 providerName: Springer Nature |
Title | 2D-human face recognition using SIFT and SURF descriptors of face’s feature regions |
URI | https://link.springer.com/article/10.1007/s00371-020-01814-8 https://www.proquest.com/docview/2917963230 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED7RdoEB8RTlUXlgA4vGcRN7QgWa8hAIAZHKFCV-sKAEaNn5G_w9fgm267aARNckznB3vvvOvvsOYD_kYS5YITDXOsRU5xIXuclaORMm_GmpCbW9w9c30XlKLwedgT9wG_qyyolPdI5aVsKekR8Rk1cYYzGI-fjlFdupUfZ21Y_QqEHDuGDG6tA46d3c3k3vEQy4cQA4MLmS7fn0bTOuec6x1WGbPlnSKorZ79A0w5t_rkhd5ElWYNlDRtQd63gVFlS5Bks_iATXISVn2E3bQzoXCk2rgqoS2cL2J3R_kTygvJToPr1LkFRjZ1G9DVGl3Zqvj88h0srRfCI7rcFY4wakSe_h9Bz7gQlYmJ00wjImhbDco7xtj2IpzymJudFE3Ik0VSqOlQgjpklUdLQ0wT1nkbRzHqI2FYrpcBPqZVWqLUCCRpIQFQeCCxoIYYA4pW3FozwouA7jJgQTWWXCs4nboRbP2ZQH2ck3M_LNnHwz1oSD6ZqXMZfG3K93JyrI_L4aZjMraMLhRC2z1___bXv-33ZgkdhiFVdctgv10du72jNoY1S0oMaSfgsa3f7jVa_lDcw8TUn3G9uL0tY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB4BPQAHRAuIQGj30J7oini9sb0HhFBTNykkB5JI3Iy9P1yQHUgQ4sZr8BI8FE_C7MZO2krNjbO9K2v2887M7sz3AXz1hZ_KKJNUGONTblJFsxSzVhFJdH9GGcZt73C3F7SH_Pdl83IJXqpeGFtWWe2JbqNWhbRn5EcM8woEC0bMJ6NbalWj7O1qJaExhcWZfnzAlG183Gnh-n5jLP45-NGmpaoAlQi3CVUhy6Ql6BQNe17JRcpZKPBzw2ZguNZhqKUfRIYFWdMo9IBpFCgrhhA0uNSR8XHeZfjAffTktjM9_jW7tcBQyoXbHmZmtsO0bNJxrXqOG4_aZM1SZHEa_e0I59HtPxeyzs_Fm7BRBqjkdIqoj7Ck80-w_gdt4RYMWYs6bT9iUqnJrAapyIkto78m_U48IGmuSH94EROlp1tTcTcmhXFjXp-ex8RoRypKrDYEYn8bhu9iyB1YyYtc7wKRPFCM6dCTQnJPSgz7OW9oEaReJowf1sCrbJXIkrvcSmjcJDPWZWffBO2bOPsmUQ0OZ2NGU-aOhW_XqyVIyr94nMwxV4Pv1bLMH_9_tr3Fs32B1fage56cd3pn-7DGbJmMK2urw8rk7l4fYJwzyT47cBG4em80vwGx3QpS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTuMwEB51QVotB37KIsqvD7snsGgcN4kPHBAlosBWqy2RuGUT_3BBKaJFiBuvwVvwTDwJYzcJC1qQOHCObVnjGc988cw3AD984WcyyiUVxviUm0zRPEPUKiKJ7s8ow7itHf7VDw4TfnTWOWvAQ1UL47LdqyfJSU2DZWkqxjuXyuzUhW-OaY5a6GMJpziNyrTKY317g6BttNvr4gn_ZCw-ON0_pGVfASpR4cZUhSyXlqJTtO0fSy4yzkKBGw47geFah6GWfhAZFuQdo9AHZlGgbDuEoM2ljoyP636BaW6rj9GCErZXv1tgMOUCbg-xma0xLct0_r_nl67wOb599STrPF08D7NliEr2Jjq1AA1dNGGuav9AytugCTP_cBkuQsK61DX8IyaTmtSJScOC2Nz6czLoxackKxQZJH9iovTkvhpejcjQuDmPd_cjYrRjGiW2YQQaxHdIPkW2SzBVDAu9DETyQDGmQ08KyT0pEQtw3tYiyLxcGD9sgVeJL5Ulobntq3GR1lTMTuQpijx1Ik-jFmzVcy4ndB7vjl6rTiUtTXuUMgS4eGshdGvBdnVSz5_fXm3lY8M34evvbpye9PrHq_CN2VQal_q2BlPjq2u9jrHQON9w6kfg72fr-xPymBHH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D-human+face+recognition+using+SIFT+and+SURF+descriptors+of+face%E2%80%99s+feature+regions&rft.jtitle=The+Visual+computer&rft.au=Gupta%2C+Surbhi&rft.au=Thakur%2C+Kutub&rft.au=Kumar%2C+Munish&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=37&rft.issue=3&rft.spage=447&rft.epage=456&rft_id=info:doi/10.1007%2Fs00371-020-01814-8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |