Energy Scaling and Asymptotic Properties of One-Dimensional Discrete System with Generalized Lennard-Jones (m, n) Interaction

It is well known that elastic effects can cause surface instability. In this paper, we analyze a one-dimensional discrete system which can reveal pattern formation mechanism resembling the “step-bunching” phenomenon for epitaxial growth on vicinal surfaces. The surface steps are subject to long-rang...

Full description

Saved in:
Bibliographic Details
Published inJournal of nonlinear science Vol. 31; no. 2
Main Authors Luo, Tao, Xiang, Yang, Yip, Nung Kwan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0938-8974
1432-1467
DOI10.1007/s00332-021-09704-6

Cover

Loading…
Abstract It is well known that elastic effects can cause surface instability. In this paper, we analyze a one-dimensional discrete system which can reveal pattern formation mechanism resembling the “step-bunching” phenomenon for epitaxial growth on vicinal surfaces. The surface steps are subject to long-range pairwise interactions taking the form of a general Lennard-Jones (LJ)-type potential. It is characterized by two exponents m and n describing the singular and decaying behaviors of the interacting potential at small and large distances, and henceforth are called generalized LJ ( m ,  n ) potential. We provide a systematic analysis of the asymptotic properties of the step configurations and the value of the minimum energy, in particular their dependence on m and n and an additional parameter α indicating the interaction range. Our results show that there is a phase transition between the bunching and non-bunching regimes. Moreover, some of our statements are applicable for any critical points of the energy, not necessarily minimizers. This work extends the technique and results of Luo et al. (SIAM Multiscale Model Simul 14(2):737–771, 2016) which concentrates on the case of LJ (0,2) potential (originated from the elastic force monopole and dipole interactions between the steps). As a by-product, our result also leads to the well-known fact that the classical LJ (6,12) potential does not demonstrate the step-bunching-type phenomenon.
AbstractList It is well known that elastic effects can cause surface instability. In this paper, we analyze a one-dimensional discrete system which can reveal pattern formation mechanism resembling the “step-bunching” phenomenon for epitaxial growth on vicinal surfaces. The surface steps are subject to long-range pairwise interactions taking the form of a general Lennard-Jones (LJ)-type potential. It is characterized by two exponents m and n describing the singular and decaying behaviors of the interacting potential at small and large distances, and henceforth are called generalized LJ ( m ,  n ) potential. We provide a systematic analysis of the asymptotic properties of the step configurations and the value of the minimum energy, in particular their dependence on m and n and an additional parameter α indicating the interaction range. Our results show that there is a phase transition between the bunching and non-bunching regimes. Moreover, some of our statements are applicable for any critical points of the energy, not necessarily minimizers. This work extends the technique and results of Luo et al. (SIAM Multiscale Model Simul 14(2):737–771, 2016) which concentrates on the case of LJ (0,2) potential (originated from the elastic force monopole and dipole interactions between the steps). As a by-product, our result also leads to the well-known fact that the classical LJ (6,12) potential does not demonstrate the step-bunching-type phenomenon.
It is well known that elastic effects can cause surface instability. In this paper, we analyze a one-dimensional discrete system which can reveal pattern formation mechanism resembling the “step-bunching” phenomenon for epitaxial growth on vicinal surfaces. The surface steps are subject to long-range pairwise interactions taking the form of a general Lennard-Jones (LJ)-type potential. It is characterized by two exponents m and n describing the singular and decaying behaviors of the interacting potential at small and large distances, and henceforth are called generalized LJ (m, n) potential. We provide a systematic analysis of the asymptotic properties of the step configurations and the value of the minimum energy, in particular their dependence on m and n and an additional parameter α indicating the interaction range. Our results show that there is a phase transition between the bunching and non-bunching regimes. Moreover, some of our statements are applicable for any critical points of the energy, not necessarily minimizers. This work extends the technique and results of Luo et al. (SIAM Multiscale Model Simul 14(2):737–771, 2016) which concentrates on the case of LJ (0,2) potential (originated from the elastic force monopole and dipole interactions between the steps). As a by-product, our result also leads to the well-known fact that the classical LJ (6,12) potential does not demonstrate the step-bunching-type phenomenon.
ArticleNumber 43
Author Luo, Tao
Yip, Nung Kwan
Xiang, Yang
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-2029-0362
  surname: Luo
  fullname: Luo, Tao
  email: luotao41@sjtu.edu.cn
  organization: School of Mathematical Sciences, Institute of Natural Sciences, MOE-LSC, and Qing Yuan Research Institute, Shanghai Jiao Tong University, Department of Mathematics, Hong Kong University of Science and Technology
– sequence: 2
  givenname: Yang
  surname: Xiang
  fullname: Xiang, Yang
  organization: Department of Mathematics, Hong Kong University of Science and Technology
– sequence: 3
  givenname: Nung Kwan
  surname: Yip
  fullname: Yip, Nung Kwan
  organization: Department of Mathematics, Purdue University
BookMark eNp9kMtKBDEURIMoOD5-wFXAjYLRvLrTvRTHJwMK6jqk07fHyHR6TCIyLvwWv8UvMzqC4MLVhUudoqo20KofPCC0w-gho1QdRUqF4IRyRmitqCTlChoxmV9MlmoVjWgtKlLVSq6jjRgfKWWqEHyE3k49hOkC31ozc36KjW_xcVz08zQkZ_FNGOYQkoOIhw5feyBj14OPbvBmhscu2gAJ8O0iJujxi0sP-ByyYzZ7hRZPwHsTWnKV00a81x98vPt9fOlTVtiUTbbQWmdmEbZ_7ia6Pzu9O7kgk-vzy5PjCbGC1Ym0ihdNJ0pjmDGlahvZstybV63qatkVVVNLDtQ0Ja8YFFZI2jXKcsalhdZysYl2l77zMDw9Q0z6cXgOuUPUvKAV45XgNKuqpcqGIcYAnbYuma-cKRg304zqr7X1cm2d19bfa-syo_wPOg-uN2HxPySWUMxiP4Xwm-of6hMHyJXl
CitedBy_id crossref_primary_10_2478_amns_2023_1_00427
Cites_doi 10.1103/PhysRevB.69.035409
10.1137/15M1041821
10.1103/PhysRevLett.75.2730
10.1051/jp1:1995200
10.1063/1.4944247
10.1016/0378-4371(79)90178-X
10.1016/0378-4371(79)90072-4
10.1103/PhysRevLett.80.1268
10.4171/EMSS/13
10.1016/S0370-1573(99)00046-0
10.1007/BF01009521
10.1016/0378-4371(78)90136-X
10.1137/S003613990139828X
10.1103/PhysRevLett.74.134
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s00332-021-09704-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1432-1467
ExternalDocumentID 10_1007_s00332_021_09704_6
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7U
Z83
Z8W
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-d725bf36aa1aa67db4d110028d7f94f58b942e0ab6281e5c340fb7c2124cedc23
IEDL.DBID U2A
ISSN 0938-8974
IngestDate Fri Jul 25 11:05:40 EDT 2025
Tue Jul 01 04:07:54 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Fri Feb 21 02:48:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 74A50
49K99
74G45
74G65
Crystallization
Non-local interaction
Epitaxial growth
Lennard-Jones potential
Energy scaling law
Step bunching
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d725bf36aa1aa67db4d110028d7f94f58b942e0ab6281e5c340fb7c2124cedc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2029-0362
PQID 2508128320
PQPubID 2043730
ParticipantIDs proquest_journals_2508128320
crossref_citationtrail_10_1007_s00332_021_09704_6
crossref_primary_10_1007_s00332_021_09704_6
springer_journals_10_1007_s00332_021_09704_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of nonlinear science
PublicationTitleAbbrev J Nonlinear Sci
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Blanc X., Lewin, M.: The crystallization conjecture: a review. arXiv preprint arXiv:1504.01153, (2015)
GardnerCSRadinCThe infinite-volume ground state of the Lennard–Jones potentialJ. Stat. Phys.197920671972453726710.1007/BF01009521
LiuFTersoffJLagallyMGSelf-organization of steps in growth of strained films on vicinal substratesPhys. Rev. Lett.19988061268127110.1103/PhysRevLett.80.1268
DuportCPolitiPVillainJGrowth instabilities induced by elasticity in a vicinal surfaceJ. Phys. I France19955101317135010.1051/jp1:1995200
VentevogelWJNijboerBRAOn the configuration of systems of interacting particles with minimum potential energy per particlePhysica A197999356958055285510.1016/0378-4371(79)90072-4
DuportCNozièresPVillainJNew instability in molecular beam epitaxyPhys. Rev. Lett.199574113413710.1103/PhysRevLett.74.134
Krasteva, A., Popova, H., Akutsu, N., Tonchev, V.: Time scaling relations for step bunches from models with step-step attractions (B1-type models). In: AIP Conference Proceedings, vol. 1722. AIP Publishing, p. 220015 (2016)
VentevogelWJNijboerBRAOn the configuration of systems of interacting particle with minimum potential energy per particlePhysica A1979981–227428854689610.1016/0378-4371(79)90178-X
Xiang, Y., E, W.: Misfit elastic energy and a continuum model for epitaxial growth with elasticity on vicinal surfaces. Phys. Rev. B 69(3), 035409 (2004)
PolitiPGrenetGMartyAPonchetAVillainJInstabilities in crystal growth by atomic or molecular beamsPhys. Rep.20003245–627140410.1016/S0370-1573(99)00046-0
TersoffJPhangYHZhangZLagallyMGStep-bunching instability of vicinal surfaces under stressPhys. Rev. Lett.199575142730273310.1103/PhysRevLett.75.2730
VentevogelWJOn the configuration of a one-dimensional system of interacting particles with minimum potential energy per particlePhysica A1978923–434336154689610.1016/0378-4371(78)90136-X
XiangYDerivation of a continuum model for epitaxial growth with elasticity on vicinal surfaceSIAM J. Appl. Math.2002631241258195289410.1137/S003613990139828X
LuoTXiangYYipNKEnergy scaling and asymptotic properties of step bunching in epitaxial growth with elasticity effectsSIAM Multiscale Model. Simul.2016142737771349310710.1137/15M1041821
9704_CR5
CS Gardner (9704_CR4) 1979; 20
C Duport (9704_CR2) 1995; 74
WJ Ventevogel (9704_CR12) 1979; 99
F Liu (9704_CR6) 1998; 80
9704_CR1
T Luo (9704_CR7) 2016; 14
Y Xiang (9704_CR13) 2002; 63
9704_CR14
WJ Ventevogel (9704_CR10) 1978; 92
C Duport (9704_CR3) 1995; 5
P Politi (9704_CR8) 2000; 324
WJ Ventevogel (9704_CR11) 1979; 98
J Tersoff (9704_CR9) 1995; 75
References_xml – reference: XiangYDerivation of a continuum model for epitaxial growth with elasticity on vicinal surfaceSIAM J. Appl. Math.2002631241258195289410.1137/S003613990139828X
– reference: VentevogelWJNijboerBRAOn the configuration of systems of interacting particle with minimum potential energy per particlePhysica A1979981–227428854689610.1016/0378-4371(79)90178-X
– reference: GardnerCSRadinCThe infinite-volume ground state of the Lennard–Jones potentialJ. Stat. Phys.197920671972453726710.1007/BF01009521
– reference: VentevogelWJOn the configuration of a one-dimensional system of interacting particles with minimum potential energy per particlePhysica A1978923–434336154689610.1016/0378-4371(78)90136-X
– reference: VentevogelWJNijboerBRAOn the configuration of systems of interacting particles with minimum potential energy per particlePhysica A197999356958055285510.1016/0378-4371(79)90072-4
– reference: Krasteva, A., Popova, H., Akutsu, N., Tonchev, V.: Time scaling relations for step bunches from models with step-step attractions (B1-type models). In: AIP Conference Proceedings, vol. 1722. AIP Publishing, p. 220015 (2016)
– reference: Blanc X., Lewin, M.: The crystallization conjecture: a review. arXiv preprint arXiv:1504.01153, (2015)
– reference: LuoTXiangYYipNKEnergy scaling and asymptotic properties of step bunching in epitaxial growth with elasticity effectsSIAM Multiscale Model. Simul.2016142737771349310710.1137/15M1041821
– reference: PolitiPGrenetGMartyAPonchetAVillainJInstabilities in crystal growth by atomic or molecular beamsPhys. Rep.20003245–627140410.1016/S0370-1573(99)00046-0
– reference: DuportCPolitiPVillainJGrowth instabilities induced by elasticity in a vicinal surfaceJ. Phys. I France19955101317135010.1051/jp1:1995200
– reference: LiuFTersoffJLagallyMGSelf-organization of steps in growth of strained films on vicinal substratesPhys. Rev. Lett.19988061268127110.1103/PhysRevLett.80.1268
– reference: Xiang, Y., E, W.: Misfit elastic energy and a continuum model for epitaxial growth with elasticity on vicinal surfaces. Phys. Rev. B 69(3), 035409 (2004)
– reference: DuportCNozièresPVillainJNew instability in molecular beam epitaxyPhys. Rev. Lett.199574113413710.1103/PhysRevLett.74.134
– reference: TersoffJPhangYHZhangZLagallyMGStep-bunching instability of vicinal surfaces under stressPhys. Rev. Lett.199575142730273310.1103/PhysRevLett.75.2730
– ident: 9704_CR14
  doi: 10.1103/PhysRevB.69.035409
– volume: 14
  start-page: 737
  issue: 2
  year: 2016
  ident: 9704_CR7
  publication-title: SIAM Multiscale Model. Simul.
  doi: 10.1137/15M1041821
– volume: 75
  start-page: 2730
  issue: 14
  year: 1995
  ident: 9704_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.2730
– volume: 5
  start-page: 1317
  issue: 10
  year: 1995
  ident: 9704_CR3
  publication-title: J. Phys. I France
  doi: 10.1051/jp1:1995200
– ident: 9704_CR5
  doi: 10.1063/1.4944247
– volume: 98
  start-page: 274
  issue: 1–2
  year: 1979
  ident: 9704_CR11
  publication-title: Physica A
  doi: 10.1016/0378-4371(79)90178-X
– volume: 99
  start-page: 569
  issue: 3
  year: 1979
  ident: 9704_CR12
  publication-title: Physica A
  doi: 10.1016/0378-4371(79)90072-4
– volume: 80
  start-page: 1268
  issue: 6
  year: 1998
  ident: 9704_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.1268
– ident: 9704_CR1
  doi: 10.4171/EMSS/13
– volume: 324
  start-page: 271
  issue: 5–6
  year: 2000
  ident: 9704_CR8
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(99)00046-0
– volume: 20
  start-page: 719
  issue: 6
  year: 1979
  ident: 9704_CR4
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01009521
– volume: 92
  start-page: 343
  issue: 3–4
  year: 1978
  ident: 9704_CR10
  publication-title: Physica A
  doi: 10.1016/0378-4371(78)90136-X
– volume: 63
  start-page: 241
  issue: 1
  year: 2002
  ident: 9704_CR13
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S003613990139828X
– volume: 74
  start-page: 134
  issue: 1
  year: 1995
  ident: 9704_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.134
SSID ssj0017532
Score 2.2770605
Snippet It is well known that elastic effects can cause surface instability. In this paper, we analyze a one-dimensional discrete system which can reveal pattern...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Analysis
Asymptotic properties
Bunching
Classical Mechanics
Critical point
Dimensional analysis
Dipole interactions
Discrete systems
Economic Theory/Quantitative Economics/Mathematical Methods
Epitaxial growth
Interaction parameters
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Phase transitions
Stability analysis
Surface stability
Theoretical
Title Energy Scaling and Asymptotic Properties of One-Dimensional Discrete System with Generalized Lennard-Jones (m, n) Interaction
URI https://link.springer.com/article/10.1007/s00332-021-09704-6
https://www.proquest.com/docview/2508128320
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBt7i-yMGDooVumjbtcdVdxffBBT2VJm1B0Crb9aAHf4u_xV_mTJpWFBU85ZA0gc4jXzIzXwA28cSVSz-NHO0FEV3dBI4SiqMuaylDSgTUVJx8dh4cDcTxtX9ti8LKOtu9DkkaT90Uu9GzY9yhlAI3kq5wgnGY8PHsTno94N0mdoAA3MQOIjTlEOGyLZX5eY6v29EnxvwWFjW7TX8Wpi1MZN1KrnMwlhXzMGMhI7MGWc7D1FlDu1ouwGvPVPJhf0JV5iwpUtYtn-8fRw84gF3SxfuQGFTZQ84uisw5IG7_ipeDHdyiB0EIzSoSc0Y3tMyyUt--4Kqn6JMpxdbQ-7Ot-933t2KbmSvFqjpiEQb93tX-kWMfWEDJdKKRk0ruq9wLkqSTJIFMlUiJQY6HqcwjkfuhigTP3EQFPOxkvvaEmyupcbcTOks195agVeCay8Ck8kOOR6cIW-GliqxbC6V4hhBIybANnfo_x9qyj9MjGHdxw5tsZBOjbGIjmzhow07zzWPFvfHn6LVafLG1wzJGgIcIBr2W24bdWqSf3b_PtvK_4aswyY1WUUrPGrRGw6dsHdHKSG3ARLe_t3dO7eHNSW_DKOsHtLTisw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NToQwEJ7oelAP_hvX3x48aJQNWwqF40ZXV91VD26iJ0ILJEZFI3jQg8_is_hkTkvBaNTEE4eWFtqZ6dd25huATdxxpdyNA0s6XqCObjxLMEFRliXnvnIElCo4eXDq9Ybs-NK9NEFheeXtXl1JaktdB7uptGPUUi4FdsBtZnmjMMZwD-42YKxzeHXSrW8PEILr24MAldlHwGyCZX5u5euC9Ikyv12M6vXmYBqG1ZeWbiY3radCtOTLNxLH__7KDEwZAEo6pcTMwkiSzcG0AaPEqHo-B5ODmtA1n4fXro4RxPJIxa-TKItJJ3--eyjusQI5V0f6j4qbldyn5CxLrH2VNaBk_CD712ibEJyTkh6dqLNfYviur1-w1z5ae-W8qxMHkK273fe3bJvow8oy7mIBhgfdi72eZVI34Jy3g8KKOXVF6nhR1I4ij8eCxYqbjvoxTwOWur4IGE3sSHjUbyeudJidCi5xHWUyiSV1FqGRYZ9LQLhwfYqbsgCfzImFshuSCUETBFeC-01oV_MXSsNrrtJr3IY1I7Me7hCHO9TDHXpN2KnfeShZPf6svVqJRWg0PA8ROiI2QntoN2G3muXP4t9bW_5f9Q0Y710M-mH_6PRkBSaoFhrlOLQKjeLxKVlDTFSIdaMCH9JQ_4M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xRVotB94rCgV84MAKoiaOEyfHilLxhsNW4hbFdiIhLaGi4QAHfgu_hV_GjJOGhxYkTjnYsaWMZ_zFM99ngC3848plYGJH-2FMRzeho4TiuJa1lBEVAmoiJ5-ehQdDcXQZXL5h8dtq90lKsuI0kEpTUXZHJu82xDe6gow7VF7gxtIVTvgDpjEce1TUNeS9Jo-AYNzmEWJ06wihc02b-f8Y77emV7z5IUVqd57BPMzWkJH1KhsvwFRWLMJcDR9Z7ZzjRZg5bSRYx0vwuG9ZfdieEuOcpYVhvfH99ai8wQ7sgg7hb0lNld3k7LzInD7p_FcaHax_hdEE4TSrBM0ZndayWqH66gFnPcH4TOW2VuqfbV_vPj8Vf5g9XqyYEsswHOz_3Ttw6ssW0EpeXDpG8kDlfpimXpqG0ihhSE2OR0bmsciDSMWCZ26qQh55WaB94eZKatz5hM6M5v5vaBU45wowqYKI429UjE_hG0WeroVSPEM4pGTUBm_ynRNdK5HThRj_kkZD2domQdsk1jZJ2Iad5p1RpcPxZe_OxHxJ7ZPjBMEeohmMYG4bdicmfW3-fLTV73XfhJ8X_UFycnh2vAa_uF1gVOnTgVZ5e5etI4gp1YZdpy-BD-bS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Scaling+and+Asymptotic+Properties+of+One-Dimensional+Discrete+System+with+Generalized+Lennard-Jones+%28m%2C%C2%A0n%29+Interaction&rft.jtitle=Journal+of+nonlinear+science&rft.au=Luo%2C+Tao&rft.au=Xiang%2C+Yang&rft.au=Yip%2C+Nung+Kwan&rft.date=2021-04-01&rft.pub=Springer+US&rft.issn=0938-8974&rft.eissn=1432-1467&rft.volume=31&rft.issue=2&rft_id=info:doi/10.1007%2Fs00332-021-09704-6&rft.externalDocID=10_1007_s00332_021_09704_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-8974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-8974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-8974&client=summon