Energy Scaling and Asymptotic Properties of One-Dimensional Discrete System with Generalized Lennard-Jones (m, n) Interaction
It is well known that elastic effects can cause surface instability. In this paper, we analyze a one-dimensional discrete system which can reveal pattern formation mechanism resembling the “step-bunching” phenomenon for epitaxial growth on vicinal surfaces. The surface steps are subject to long-rang...
Saved in:
Published in | Journal of nonlinear science Vol. 31; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0938-8974 1432-1467 |
DOI | 10.1007/s00332-021-09704-6 |
Cover
Loading…
Abstract | It is well known that elastic effects can cause surface instability. In this paper, we analyze a one-dimensional discrete system which can reveal pattern formation mechanism resembling the “step-bunching” phenomenon for epitaxial growth on vicinal surfaces. The surface steps are subject to long-range pairwise interactions taking the form of a general Lennard-Jones (LJ)-type potential. It is characterized by two exponents
m
and
n
describing the singular and decaying behaviors of the interacting potential at small and large distances, and henceforth are called generalized LJ (
m
,
n
) potential. We provide a systematic analysis of the asymptotic properties of the step configurations and the value of the minimum energy, in particular their dependence on
m
and
n
and an additional parameter
α
indicating the interaction range. Our results show that there is a phase transition between the bunching and non-bunching regimes. Moreover, some of our statements are applicable for any critical points of the energy, not necessarily minimizers. This work extends the technique and results of Luo et al. (SIAM Multiscale Model Simul 14(2):737–771, 2016) which concentrates on the case of LJ (0,2) potential (originated from the elastic force monopole and dipole interactions between the steps). As a by-product, our result also leads to the well-known fact that the classical LJ (6,12) potential does not demonstrate the step-bunching-type phenomenon. |
---|---|
AbstractList | It is well known that elastic effects can cause surface instability. In this paper, we analyze a one-dimensional discrete system which can reveal pattern formation mechanism resembling the “step-bunching” phenomenon for epitaxial growth on vicinal surfaces. The surface steps are subject to long-range pairwise interactions taking the form of a general Lennard-Jones (LJ)-type potential. It is characterized by two exponents
m
and
n
describing the singular and decaying behaviors of the interacting potential at small and large distances, and henceforth are called generalized LJ (
m
,
n
) potential. We provide a systematic analysis of the asymptotic properties of the step configurations and the value of the minimum energy, in particular their dependence on
m
and
n
and an additional parameter
α
indicating the interaction range. Our results show that there is a phase transition between the bunching and non-bunching regimes. Moreover, some of our statements are applicable for any critical points of the energy, not necessarily minimizers. This work extends the technique and results of Luo et al. (SIAM Multiscale Model Simul 14(2):737–771, 2016) which concentrates on the case of LJ (0,2) potential (originated from the elastic force monopole and dipole interactions between the steps). As a by-product, our result also leads to the well-known fact that the classical LJ (6,12) potential does not demonstrate the step-bunching-type phenomenon. It is well known that elastic effects can cause surface instability. In this paper, we analyze a one-dimensional discrete system which can reveal pattern formation mechanism resembling the “step-bunching” phenomenon for epitaxial growth on vicinal surfaces. The surface steps are subject to long-range pairwise interactions taking the form of a general Lennard-Jones (LJ)-type potential. It is characterized by two exponents m and n describing the singular and decaying behaviors of the interacting potential at small and large distances, and henceforth are called generalized LJ (m, n) potential. We provide a systematic analysis of the asymptotic properties of the step configurations and the value of the minimum energy, in particular their dependence on m and n and an additional parameter α indicating the interaction range. Our results show that there is a phase transition between the bunching and non-bunching regimes. Moreover, some of our statements are applicable for any critical points of the energy, not necessarily minimizers. This work extends the technique and results of Luo et al. (SIAM Multiscale Model Simul 14(2):737–771, 2016) which concentrates on the case of LJ (0,2) potential (originated from the elastic force monopole and dipole interactions between the steps). As a by-product, our result also leads to the well-known fact that the classical LJ (6,12) potential does not demonstrate the step-bunching-type phenomenon. |
ArticleNumber | 43 |
Author | Luo, Tao Yip, Nung Kwan Xiang, Yang |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-2029-0362 surname: Luo fullname: Luo, Tao email: luotao41@sjtu.edu.cn organization: School of Mathematical Sciences, Institute of Natural Sciences, MOE-LSC, and Qing Yuan Research Institute, Shanghai Jiao Tong University, Department of Mathematics, Hong Kong University of Science and Technology – sequence: 2 givenname: Yang surname: Xiang fullname: Xiang, Yang organization: Department of Mathematics, Hong Kong University of Science and Technology – sequence: 3 givenname: Nung Kwan surname: Yip fullname: Yip, Nung Kwan organization: Department of Mathematics, Purdue University |
BookMark | eNp9kMtKBDEURIMoOD5-wFXAjYLRvLrTvRTHJwMK6jqk07fHyHR6TCIyLvwWv8UvMzqC4MLVhUudoqo20KofPCC0w-gho1QdRUqF4IRyRmitqCTlChoxmV9MlmoVjWgtKlLVSq6jjRgfKWWqEHyE3k49hOkC31ozc36KjW_xcVz08zQkZ_FNGOYQkoOIhw5feyBj14OPbvBmhscu2gAJ8O0iJujxi0sP-ByyYzZ7hRZPwHsTWnKV00a81x98vPt9fOlTVtiUTbbQWmdmEbZ_7ia6Pzu9O7kgk-vzy5PjCbGC1Ym0ihdNJ0pjmDGlahvZstybV63qatkVVVNLDtQ0Ja8YFFZI2jXKcsalhdZysYl2l77zMDw9Q0z6cXgOuUPUvKAV45XgNKuqpcqGIcYAnbYuma-cKRg304zqr7X1cm2d19bfa-syo_wPOg-uN2HxPySWUMxiP4Xwm-of6hMHyJXl |
CitedBy_id | crossref_primary_10_2478_amns_2023_1_00427 |
Cites_doi | 10.1103/PhysRevB.69.035409 10.1137/15M1041821 10.1103/PhysRevLett.75.2730 10.1051/jp1:1995200 10.1063/1.4944247 10.1016/0378-4371(79)90178-X 10.1016/0378-4371(79)90072-4 10.1103/PhysRevLett.80.1268 10.4171/EMSS/13 10.1016/S0370-1573(99)00046-0 10.1007/BF01009521 10.1016/0378-4371(78)90136-X 10.1137/S003613990139828X 10.1103/PhysRevLett.74.134 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00332-021-09704-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1432-1467 |
ExternalDocumentID | 10_1007_s00332_021_09704_6 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7U Z83 Z8W ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-d725bf36aa1aa67db4d110028d7f94f58b942e0ab6281e5c340fb7c2124cedc23 |
IEDL.DBID | U2A |
ISSN | 0938-8974 |
IngestDate | Fri Jul 25 11:05:40 EDT 2025 Tue Jul 01 04:07:54 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Fri Feb 21 02:48:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 74A50 49K99 74G45 74G65 Crystallization Non-local interaction Epitaxial growth Lennard-Jones potential Energy scaling law Step bunching |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-d725bf36aa1aa67db4d110028d7f94f58b942e0ab6281e5c340fb7c2124cedc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2029-0362 |
PQID | 2508128320 |
PQPubID | 2043730 |
ParticipantIDs | proquest_journals_2508128320 crossref_citationtrail_10_1007_s00332_021_09704_6 crossref_primary_10_1007_s00332_021_09704_6 springer_journals_10_1007_s00332_021_09704_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of nonlinear science |
PublicationTitleAbbrev | J Nonlinear Sci |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Blanc X., Lewin, M.: The crystallization conjecture: a review. arXiv preprint arXiv:1504.01153, (2015) GardnerCSRadinCThe infinite-volume ground state of the Lennard–Jones potentialJ. Stat. Phys.197920671972453726710.1007/BF01009521 LiuFTersoffJLagallyMGSelf-organization of steps in growth of strained films on vicinal substratesPhys. Rev. Lett.19988061268127110.1103/PhysRevLett.80.1268 DuportCPolitiPVillainJGrowth instabilities induced by elasticity in a vicinal surfaceJ. Phys. I France19955101317135010.1051/jp1:1995200 VentevogelWJNijboerBRAOn the configuration of systems of interacting particles with minimum potential energy per particlePhysica A197999356958055285510.1016/0378-4371(79)90072-4 DuportCNozièresPVillainJNew instability in molecular beam epitaxyPhys. Rev. Lett.199574113413710.1103/PhysRevLett.74.134 Krasteva, A., Popova, H., Akutsu, N., Tonchev, V.: Time scaling relations for step bunches from models with step-step attractions (B1-type models). In: AIP Conference Proceedings, vol. 1722. AIP Publishing, p. 220015 (2016) VentevogelWJNijboerBRAOn the configuration of systems of interacting particle with minimum potential energy per particlePhysica A1979981–227428854689610.1016/0378-4371(79)90178-X Xiang, Y., E, W.: Misfit elastic energy and a continuum model for epitaxial growth with elasticity on vicinal surfaces. Phys. Rev. B 69(3), 035409 (2004) PolitiPGrenetGMartyAPonchetAVillainJInstabilities in crystal growth by atomic or molecular beamsPhys. Rep.20003245–627140410.1016/S0370-1573(99)00046-0 TersoffJPhangYHZhangZLagallyMGStep-bunching instability of vicinal surfaces under stressPhys. Rev. Lett.199575142730273310.1103/PhysRevLett.75.2730 VentevogelWJOn the configuration of a one-dimensional system of interacting particles with minimum potential energy per particlePhysica A1978923–434336154689610.1016/0378-4371(78)90136-X XiangYDerivation of a continuum model for epitaxial growth with elasticity on vicinal surfaceSIAM J. Appl. Math.2002631241258195289410.1137/S003613990139828X LuoTXiangYYipNKEnergy scaling and asymptotic properties of step bunching in epitaxial growth with elasticity effectsSIAM Multiscale Model. Simul.2016142737771349310710.1137/15M1041821 9704_CR5 CS Gardner (9704_CR4) 1979; 20 C Duport (9704_CR2) 1995; 74 WJ Ventevogel (9704_CR12) 1979; 99 F Liu (9704_CR6) 1998; 80 9704_CR1 T Luo (9704_CR7) 2016; 14 Y Xiang (9704_CR13) 2002; 63 9704_CR14 WJ Ventevogel (9704_CR10) 1978; 92 C Duport (9704_CR3) 1995; 5 P Politi (9704_CR8) 2000; 324 WJ Ventevogel (9704_CR11) 1979; 98 J Tersoff (9704_CR9) 1995; 75 |
References_xml | – reference: XiangYDerivation of a continuum model for epitaxial growth with elasticity on vicinal surfaceSIAM J. Appl. Math.2002631241258195289410.1137/S003613990139828X – reference: VentevogelWJNijboerBRAOn the configuration of systems of interacting particle with minimum potential energy per particlePhysica A1979981–227428854689610.1016/0378-4371(79)90178-X – reference: GardnerCSRadinCThe infinite-volume ground state of the Lennard–Jones potentialJ. Stat. Phys.197920671972453726710.1007/BF01009521 – reference: VentevogelWJOn the configuration of a one-dimensional system of interacting particles with minimum potential energy per particlePhysica A1978923–434336154689610.1016/0378-4371(78)90136-X – reference: VentevogelWJNijboerBRAOn the configuration of systems of interacting particles with minimum potential energy per particlePhysica A197999356958055285510.1016/0378-4371(79)90072-4 – reference: Krasteva, A., Popova, H., Akutsu, N., Tonchev, V.: Time scaling relations for step bunches from models with step-step attractions (B1-type models). In: AIP Conference Proceedings, vol. 1722. AIP Publishing, p. 220015 (2016) – reference: Blanc X., Lewin, M.: The crystallization conjecture: a review. arXiv preprint arXiv:1504.01153, (2015) – reference: LuoTXiangYYipNKEnergy scaling and asymptotic properties of step bunching in epitaxial growth with elasticity effectsSIAM Multiscale Model. Simul.2016142737771349310710.1137/15M1041821 – reference: PolitiPGrenetGMartyAPonchetAVillainJInstabilities in crystal growth by atomic or molecular beamsPhys. Rep.20003245–627140410.1016/S0370-1573(99)00046-0 – reference: DuportCPolitiPVillainJGrowth instabilities induced by elasticity in a vicinal surfaceJ. Phys. I France19955101317135010.1051/jp1:1995200 – reference: LiuFTersoffJLagallyMGSelf-organization of steps in growth of strained films on vicinal substratesPhys. Rev. Lett.19988061268127110.1103/PhysRevLett.80.1268 – reference: Xiang, Y., E, W.: Misfit elastic energy and a continuum model for epitaxial growth with elasticity on vicinal surfaces. Phys. Rev. B 69(3), 035409 (2004) – reference: DuportCNozièresPVillainJNew instability in molecular beam epitaxyPhys. Rev. Lett.199574113413710.1103/PhysRevLett.74.134 – reference: TersoffJPhangYHZhangZLagallyMGStep-bunching instability of vicinal surfaces under stressPhys. Rev. Lett.199575142730273310.1103/PhysRevLett.75.2730 – ident: 9704_CR14 doi: 10.1103/PhysRevB.69.035409 – volume: 14 start-page: 737 issue: 2 year: 2016 ident: 9704_CR7 publication-title: SIAM Multiscale Model. Simul. doi: 10.1137/15M1041821 – volume: 75 start-page: 2730 issue: 14 year: 1995 ident: 9704_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.2730 – volume: 5 start-page: 1317 issue: 10 year: 1995 ident: 9704_CR3 publication-title: J. Phys. I France doi: 10.1051/jp1:1995200 – ident: 9704_CR5 doi: 10.1063/1.4944247 – volume: 98 start-page: 274 issue: 1–2 year: 1979 ident: 9704_CR11 publication-title: Physica A doi: 10.1016/0378-4371(79)90178-X – volume: 99 start-page: 569 issue: 3 year: 1979 ident: 9704_CR12 publication-title: Physica A doi: 10.1016/0378-4371(79)90072-4 – volume: 80 start-page: 1268 issue: 6 year: 1998 ident: 9704_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.1268 – ident: 9704_CR1 doi: 10.4171/EMSS/13 – volume: 324 start-page: 271 issue: 5–6 year: 2000 ident: 9704_CR8 publication-title: Phys. Rep. doi: 10.1016/S0370-1573(99)00046-0 – volume: 20 start-page: 719 issue: 6 year: 1979 ident: 9704_CR4 publication-title: J. Stat. Phys. doi: 10.1007/BF01009521 – volume: 92 start-page: 343 issue: 3–4 year: 1978 ident: 9704_CR10 publication-title: Physica A doi: 10.1016/0378-4371(78)90136-X – volume: 63 start-page: 241 issue: 1 year: 2002 ident: 9704_CR13 publication-title: SIAM J. Appl. Math. doi: 10.1137/S003613990139828X – volume: 74 start-page: 134 issue: 1 year: 1995 ident: 9704_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.134 |
SSID | ssj0017532 |
Score | 2.2770605 |
Snippet | It is well known that elastic effects can cause surface instability. In this paper, we analyze a one-dimensional discrete system which can reveal pattern... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Analysis Asymptotic properties Bunching Classical Mechanics Critical point Dimensional analysis Dipole interactions Discrete systems Economic Theory/Quantitative Economics/Mathematical Methods Epitaxial growth Interaction parameters Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Phase transitions Stability analysis Surface stability Theoretical |
Title | Energy Scaling and Asymptotic Properties of One-Dimensional Discrete System with Generalized Lennard-Jones (m, n) Interaction |
URI | https://link.springer.com/article/10.1007/s00332-021-09704-6 https://www.proquest.com/docview/2508128320 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBt7i-yMGDooVumjbtcdVdxffBBT2VJm1B0Crb9aAHf4u_xV_mTJpWFBU85ZA0gc4jXzIzXwA28cSVSz-NHO0FEV3dBI4SiqMuaylDSgTUVJx8dh4cDcTxtX9ti8LKOtu9DkkaT90Uu9GzY9yhlAI3kq5wgnGY8PHsTno94N0mdoAA3MQOIjTlEOGyLZX5eY6v29EnxvwWFjW7TX8Wpi1MZN1KrnMwlhXzMGMhI7MGWc7D1FlDu1ouwGvPVPJhf0JV5iwpUtYtn-8fRw84gF3SxfuQGFTZQ84uisw5IG7_ipeDHdyiB0EIzSoSc0Y3tMyyUt--4Kqn6JMpxdbQ-7Ot-933t2KbmSvFqjpiEQb93tX-kWMfWEDJdKKRk0ruq9wLkqSTJIFMlUiJQY6HqcwjkfuhigTP3EQFPOxkvvaEmyupcbcTOks195agVeCay8Ck8kOOR6cIW-GliqxbC6V4hhBIybANnfo_x9qyj9MjGHdxw5tsZBOjbGIjmzhow07zzWPFvfHn6LVafLG1wzJGgIcIBr2W24bdWqSf3b_PtvK_4aswyY1WUUrPGrRGw6dsHdHKSG3ARLe_t3dO7eHNSW_DKOsHtLTisw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NToQwEJ7oelAP_hvX3x48aJQNWwqF40ZXV91VD26iJ0ILJEZFI3jQg8_is_hkTkvBaNTEE4eWFtqZ6dd25huATdxxpdyNA0s6XqCObjxLMEFRliXnvnIElCo4eXDq9Ybs-NK9NEFheeXtXl1JaktdB7uptGPUUi4FdsBtZnmjMMZwD-42YKxzeHXSrW8PEILr24MAldlHwGyCZX5u5euC9Ikyv12M6vXmYBqG1ZeWbiY3radCtOTLNxLH__7KDEwZAEo6pcTMwkiSzcG0AaPEqHo-B5ODmtA1n4fXro4RxPJIxa-TKItJJ3--eyjusQI5V0f6j4qbldyn5CxLrH2VNaBk_CD712ibEJyTkh6dqLNfYviur1-w1z5ae-W8qxMHkK273fe3bJvow8oy7mIBhgfdi72eZVI34Jy3g8KKOXVF6nhR1I4ij8eCxYqbjvoxTwOWur4IGE3sSHjUbyeudJidCi5xHWUyiSV1FqGRYZ9LQLhwfYqbsgCfzImFshuSCUETBFeC-01oV_MXSsNrrtJr3IY1I7Me7hCHO9TDHXpN2KnfeShZPf6svVqJRWg0PA8ROiI2QntoN2G3muXP4t9bW_5f9Q0Y710M-mH_6PRkBSaoFhrlOLQKjeLxKVlDTFSIdaMCH9JQ_4M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xRVotB94rCgV84MAKoiaOEyfHilLxhsNW4hbFdiIhLaGi4QAHfgu_hV_GjJOGhxYkTjnYsaWMZ_zFM99ngC3848plYGJH-2FMRzeho4TiuJa1lBEVAmoiJ5-ehQdDcXQZXL5h8dtq90lKsuI0kEpTUXZHJu82xDe6gow7VF7gxtIVTvgDpjEce1TUNeS9Jo-AYNzmEWJ06wihc02b-f8Y77emV7z5IUVqd57BPMzWkJH1KhsvwFRWLMJcDR9Z7ZzjRZg5bSRYx0vwuG9ZfdieEuOcpYVhvfH99ai8wQ7sgg7hb0lNld3k7LzInD7p_FcaHax_hdEE4TSrBM0ZndayWqH66gFnPcH4TOW2VuqfbV_vPj8Vf5g9XqyYEsswHOz_3Ttw6ssW0EpeXDpG8kDlfpimXpqG0ihhSE2OR0bmsciDSMWCZ26qQh55WaB94eZKatz5hM6M5v5vaBU45wowqYKI429UjE_hG0WeroVSPEM4pGTUBm_ynRNdK5HThRj_kkZD2domQdsk1jZJ2Iad5p1RpcPxZe_OxHxJ7ZPjBMEeohmMYG4bdicmfW3-fLTV73XfhJ8X_UFycnh2vAa_uF1gVOnTgVZ5e5etI4gp1YZdpy-BD-bS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Scaling+and+Asymptotic+Properties+of+One-Dimensional+Discrete+System+with+Generalized+Lennard-Jones+%28m%2C%C2%A0n%29+Interaction&rft.jtitle=Journal+of+nonlinear+science&rft.au=Luo%2C+Tao&rft.au=Xiang%2C+Yang&rft.au=Yip%2C+Nung+Kwan&rft.date=2021-04-01&rft.pub=Springer+US&rft.issn=0938-8974&rft.eissn=1432-1467&rft.volume=31&rft.issue=2&rft_id=info:doi/10.1007%2Fs00332-021-09704-6&rft.externalDocID=10_1007_s00332_021_09704_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-8974&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-8974&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-8974&client=summon |