Dry friction distributed over a contact patch between a rigid body and a visco-elastic plane

We consider the dynamics of an absolutely rigid body moving along a rough horizontal plane. We assume that the plane deforms during the motion so that the contact patch is non-planar and has non-zero, but comparatively small area. In the contact patch, the vertical reactions are proportional to the...

Full description

Saved in:
Bibliographic Details
Published inMultibody system dynamics Vol. 45; no. 2; pp. 203 - 222
Main Author Zobova, Alexandra A.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 15.02.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider the dynamics of an absolutely rigid body moving along a rough horizontal plane. We assume that the plane deforms during the motion so that the contact patch is non-planar and has non-zero, but comparatively small area. In the contact patch, the vertical reactions are proportional to the vertical deformations and their rates, that is, we consider Kelvin–Voigt model. The tangent forces are assumed to be classic Coulomb dry friction in sliding regime (no stiction in contact patch). Due to the viscous part of Kelvin–Voigt law, the contact patch, the plane’s normal reaction, friction force and torque depend on the position, orientation, velocity of the center of mass and the angular velocity of the body. The model does not involve any additional dynamic parameter and gives the friction force and torque directly for any given state of the body. To show the advances of the model, we recall the analytical solution of Cauchy’s initial problem with general initial conditions of ODE governing the dynamics of the homogeneous sphere on a horizontal plane (results of Zobova and Treschev in Proc. Steklov Inst. Math. 281:91–118, 2013 ). Here we generalize the model for arbitrary convex bodies and study its main properties. The model is compared to the continuous velocity-base friction model for pure sliding (Brown and McPhee in ASME J. Comput. Nonlinear Dyn. 11(5):054502, 2016 ) and to the combined dry friction (Awrejcewicz and Kudra in Multibody Syst. Dyn., 2018 , https://doi.org/10.1007/s11044-018-9624-9 ) in case of sliding with spinning. We illustrate the model considering the results of numerical integration of the Cauchy problem for a controlled differential-drive vehicle on a horizontal plane.
AbstractList We consider the dynamics of an absolutely rigid body moving along a rough horizontal plane. We assume that the plane deforms during the motion so that the contact patch is non-planar and has non-zero, but comparatively small area. In the contact patch, the vertical reactions are proportional to the vertical deformations and their rates, that is, we consider Kelvin–Voigt model. The tangent forces are assumed to be classic Coulomb dry friction in sliding regime (no stiction in contact patch). Due to the viscous part of Kelvin–Voigt law, the contact patch, the plane’s normal reaction, friction force and torque depend on the position, orientation, velocity of the center of mass and the angular velocity of the body. The model does not involve any additional dynamic parameter and gives the friction force and torque directly for any given state of the body. To show the advances of the model, we recall the analytical solution of Cauchy’s initial problem with general initial conditions of ODE governing the dynamics of the homogeneous sphere on a horizontal plane (results of Zobova and Treschev in Proc. Steklov Inst. Math. 281:91–118, 2013). Here we generalize the model for arbitrary convex bodies and study its main properties. The model is compared to the continuous velocity-base friction model for pure sliding (Brown and McPhee in ASME J. Comput. Nonlinear Dyn. 11(5):054502, 2016) and to the combined dry friction (Awrejcewicz and Kudra in Multibody Syst. Dyn., 2018, https://doi.org/10.1007/s11044-018-9624-9) in case of sliding with spinning. We illustrate the model considering the results of numerical integration of the Cauchy problem for a controlled differential-drive vehicle on a horizontal plane.
We consider the dynamics of an absolutely rigid body moving along a rough horizontal plane. We assume that the plane deforms during the motion so that the contact patch is non-planar and has non-zero, but comparatively small area. In the contact patch, the vertical reactions are proportional to the vertical deformations and their rates, that is, we consider Kelvin–Voigt model. The tangent forces are assumed to be classic Coulomb dry friction in sliding regime (no stiction in contact patch). Due to the viscous part of Kelvin–Voigt law, the contact patch, the plane’s normal reaction, friction force and torque depend on the position, orientation, velocity of the center of mass and the angular velocity of the body. The model does not involve any additional dynamic parameter and gives the friction force and torque directly for any given state of the body. To show the advances of the model, we recall the analytical solution of Cauchy’s initial problem with general initial conditions of ODE governing the dynamics of the homogeneous sphere on a horizontal plane (results of Zobova and Treschev in Proc. Steklov Inst. Math. 281:91–118, 2013 ). Here we generalize the model for arbitrary convex bodies and study its main properties. The model is compared to the continuous velocity-base friction model for pure sliding (Brown and McPhee in ASME J. Comput. Nonlinear Dyn. 11(5):054502, 2016 ) and to the combined dry friction (Awrejcewicz and Kudra in Multibody Syst. Dyn., 2018 , https://doi.org/10.1007/s11044-018-9624-9 ) in case of sliding with spinning. We illustrate the model considering the results of numerical integration of the Cauchy problem for a controlled differential-drive vehicle on a horizontal plane.
Author Zobova, Alexandra A.
Author_xml – sequence: 1
  givenname: Alexandra A.
  orcidid: 0000-0003-3729-4690
  surname: Zobova
  fullname: Zobova, Alexandra A.
  email: azobova@mech.math.msu.su
  organization: Lomonosov Moscow State University
BookMark eNp9UE1LAzEQDVLBtvoHPAU8R_O1m92j1E8oeFHwIITs7mxNqcmapJX-e1NX8OZhmOHx3puZN0MT5x0gdM7oJaNUXUXGqJSEsorQuhSKsCM0ZYUShCv-OsmzqCQpSklP0CzGNaWcFbKeorebsMd9sG2y3uHOxhRss03QYb-DgA1uvUumTXgwqX3HDaQvAJfxYFe2w43v9ti4LgM7G1tPYGNisi0eNsbBKTruzSbC2W-fo5e72-fFA1k-3T8urpekFaxOpFO0kPmesiwqJupGFrxkwCWomvfQ8PxZDaxkStUGmqKTQuTislBVVfOGiTm6GH2H4D-3EJNe-21weaXmrFQVF4IfWHxktcHHGKDXQ7AfJuw1o_qQoh5T1DlF_ZOiPojEKIqZ7FYQ_qz_UX0Ds7107w
CitedBy_id crossref_primary_10_3103_S1052618822090163
crossref_primary_10_1007_s00707_020_02643_5
crossref_primary_10_1007_s11044_019_09694_0
crossref_primary_10_1007_s00707_020_02800_w
crossref_primary_10_1155_2020_5471629
crossref_primary_10_1016_j_ijnonlinmec_2020_103666
crossref_primary_10_1093_jcde_qwac126
crossref_primary_10_1007_s11071_024_09462_6
crossref_primary_10_1016_j_ijmecsci_2021_106981
Cites_doi 10.1016/j.jappmathmech.2009.08.016
10.1016/S0021-8928(98)00090-2
10.1115/1.4033658
10.1134/S1560354715050020
10.1007/s11044-017-9572-9
10.1007/s11044-017-9605-4
10.1007/978-94-015-9048-8
10.1016/j.jappmathmech.2009.04.003
10.1109/MCS.2008.929279
10.1134/S0081543813040093
10.1134/S1995080217060051
10.1016/j.jappmathmech.2016.06.008
10.3103/S0025654413020039
10.1007/s11071-015-2485-3
10.1109/9.376053
10.1115/1.1454112
10.1007/s11044-018-9624-9
10.1155/2008/561280
ContentType Journal Article
Copyright Springer Nature B.V. 2018
Copyright Springer Science & Business Media 2019
Copyright_xml – notice: Springer Nature B.V. 2018
– notice: Copyright Springer Science & Business Media 2019
DBID AAYXX
CITATION
DOI 10.1007/s11044-018-09637-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-272X
EndPage 222
ExternalDocumentID 10_1007_s11044_018_09637_1
GrantInformation_xml – fundername: Russian Foundation for Basic Research
  grantid: 16-01-00338
  funderid: http://dx.doi.org/10.13039/501100002261
GroupedDBID -5B
-5G
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AACDK
AAJBT
AARHV
AASML
AAYXX
ABAKF
ABULA
ACAOD
ACBXY
ACDTI
ACZOJ
AEBTG
AEFQL
AEKMD
AEMSY
AFBBN
AFGCZ
AGGDS
AGQEE
AGRTI
AHSBF
AIGIU
AJBLW
CAG
CITATION
COF
H13
N2Q
O9-
OVD
RNI
RZC
RZE
RZK
S1Z
TEORI
ID FETCH-LOGICAL-c319t-d70542156658139b45261e24e792feb20449e161779aeb5d433d4324578892b13
IEDL.DBID U2A
ISSN 1384-5640
IngestDate Thu Oct 10 16:14:06 EDT 2024
Thu Sep 12 21:07:12 EDT 2024
Sat Dec 16 12:01:02 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Differential-drive vehicle
Wheel dynamic
Dry friction
Distributed friction
Visco-elastic contact
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d70542156658139b45261e24e792feb20449e161779aeb5d433d4324578892b13
ORCID 0000-0003-3729-4690
PQID 2167823321
PQPubID 2043839
PageCount 20
ParticipantIDs proquest_journals_2167823321
crossref_primary_10_1007_s11044_018_09637_1
springer_journals_10_1007_s11044_018_09637_1
PublicationCentury 2000
PublicationDate 2-15-2019
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 02
  year: 2019
  text: 2-15-2019
  day: 15
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Multibody system dynamics
PublicationTitleAbbrev Multibody Syst Dyn
PublicationYear 2019
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Borisov, Karavaev, Mamaev, Erdakova, Ivanova, Tarasov (CR7) 2015; 20
Al-Bender, Swevers (CR17) 2008; 28
Ivanov (CR15) 2009; 73
Awrejcewicz, Kudra (CR3) 2018
Kalker (CR14) 2000
Karapetyan, Zobova (CR23) 2017; 38
Zhuravlev (CR20) 1998; 62
Contensou (CR10) 1963
de Wit, Olsson, Astrom, Lischinsky (CR19) 1995; 40
Karapetyan (CR21) 2009; 73
Brown, McPhee (CR6) 2018; 42
Nikolić, Borovac, Raković (CR5) 2018; 42
Zobova (CR12) 2013; 48
Pennestrì, Rossi, Salvini, Valentini (CR8) 2016; 83
Zobova (CR16) 2016; 80
Brown, McPhee (CR2) 2016; 11
De Moerlooze, Al-Bender (CR4) 2008; 2008
Leine, Glocker (CR11) 2003
Goryacheva (CR13) 1998
Al-Bender, De Moerlooze (CR18) 2008; 2008
MacMillan (CR22) 1936
Zobova, Treschev (CR1) 2013; 281
Brogliato, ten Dam, Paoli, Génot, Abadie (CR9) 2002; 55
A. Zobova (9637_CR12) 2013; 48
A. Zobova (9637_CR16) 2016; 80
E. Pennestrì (9637_CR8) 2016; 83
P. Contensou (9637_CR10) 1963
J. Awrejcewicz (9637_CR3) 2018
P. Brown (9637_CR2) 2016; 11
F. Al-Bender (9637_CR18) 2008; 2008
C.C. Wit de (9637_CR19) 1995; 40
I.G. Goryacheva (9637_CR13) 1998
A.V. Karapetyan (9637_CR23) 2017; 38
A.A. Zobova (9637_CR1) 2013; 281
B. Brogliato (9637_CR9) 2002; 55
A. Karapetyan (9637_CR21) 2009; 73
K. Moerlooze De (9637_CR4) 2008; 2008
P. Brown (9637_CR6) 2018; 42
R.I. Leine (9637_CR11) 2003
M. Nikolić (9637_CR5) 2018; 42
F. Al-Bender (9637_CR17) 2008; 28
V. Zhuravlev (9637_CR20) 1998; 62
W. MacMillan (9637_CR22) 1936
A. Ivanov (9637_CR15) 2009; 73
A.V. Borisov (9637_CR7) 2015; 20
J. Kalker (9637_CR14) 2000
References_xml – volume: 73
  start-page: 367
  issue: 4
  year: 2009
  end-page: 370
  ident: CR21
  article-title: A two-parameter friction model
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/j.jappmathmech.2009.08.016
  contributor:
    fullname: Karapetyan
– volume: 62
  start-page: 705
  issue: 5
  year: 1998
  end-page: 710
  ident: CR20
  article-title: The model of dry friction in the problem of the rolling of rigid bodies
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/S0021-8928(98)00090-2
  contributor:
    fullname: Zhuravlev
– volume: 11
  issue: 5
  year: 2016
  ident: CR2
  article-title: A continuous velocity-based friction model for dynamics and control with physically meaningful parameters
  publication-title: ASME J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4033658
  contributor:
    fullname: McPhee
– year: 2018
  ident: CR3
  article-title: Rolling resistance modelling in the Celtic stone dynamics
  publication-title: Multibody Syst. Dyn.
  contributor:
    fullname: Kudra
– volume: 20
  start-page: 518
  year: 2015
  end-page: 541
  ident: CR7
  article-title: Experimental investigation of the motion of a body with an axisymmetric base sliding on a rough plane
  publication-title: Regul. Chaotic Dyn.
  doi: 10.1134/S1560354715050020
  contributor:
    fullname: Tarasov
– volume: 2008
  year: 2008
  ident: CR18
  article-title: A model for the transient behavior of tractive rolling contacts
  publication-title: Adv. Tribol.
  contributor:
    fullname: De Moerlooze
– volume: 42
  start-page: 197
  year: 2018
  end-page: 218
  ident: CR5
  article-title: Dynamic balance preservation and prevention of sliding for humanoid robots in the presence of multiple spatial contacts
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-017-9572-9
  contributor:
    fullname: Raković
– volume: 42
  start-page: 447
  issue: 4
  year: 2018
  end-page: 467
  ident: CR6
  article-title: A 3D ellipsoidal volumetric foot–ground contact model for forward dynamics
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-017-9605-4
  contributor:
    fullname: McPhee
– year: 1998
  ident: CR13
  publication-title: Contact Mechanics in Tribology
  doi: 10.1007/978-94-015-9048-8
  contributor:
    fullname: Goryacheva
– volume: 73
  start-page: 134
  issue: 2
  year: 2009
  end-page: 144
  ident: CR15
  article-title: A dynamically consistent model of the contact stresses in the plane motion of a rigid body
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/j.jappmathmech.2009.04.003
  contributor:
    fullname: Ivanov
– year: 2000
  ident: CR14
  publication-title: Rolling Contact Phenomena—Linear Elasticity
  contributor:
    fullname: Kalker
– year: 1963
  ident: CR10
  publication-title: Couplage entre frottement de glissement et frottement de pivotement dans la teorie de la toupie
  contributor:
    fullname: Contensou
– volume: 28
  start-page: 64
  year: 2008
  end-page: 81
  ident: CR17
  article-title: Characterization of friction force dynamics
  publication-title: IEEE Control Syst.
  doi: 10.1109/MCS.2008.929279
  contributor:
    fullname: Swevers
– volume: 281
  start-page: 91
  year: 2013
  end-page: 118
  ident: CR1
  article-title: Ball on a viscoelastic plane
  publication-title: Proc. Steklov Inst. Math.
  doi: 10.1134/S0081543813040093
  contributor:
    fullname: Treschev
– volume: 38
  start-page: 1007
  issue: 6
  year: 2017
  end-page: 1013
  ident: CR23
  article-title: Tippe-top on visco-elastic plane: steady-state motions, generalized Smale diagrams and overturns
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080217060051
  contributor:
    fullname: Zobova
– volume: 80
  start-page: 141
  issue: 2
  year: 2016
  end-page: 148
  ident: CR16
  article-title: A review of models of distributed dry friction
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/j.jappmathmech.2016.06.008
  contributor:
    fullname: Zobova
– year: 2003
  ident: CR11
  article-title: A set-valued force law for spatial Coulomb–Contensou friction
  publication-title: 19th Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C
  contributor:
    fullname: Glocker
– year: 1936
  ident: CR22
  publication-title: Dynamics of Rigid Bodies
  contributor:
    fullname: MacMillan
– volume: 48
  start-page: 134
  issue: 2
  year: 2013
  end-page: 139
  ident: CR12
  article-title: Various friction models in two-sphere top dynamics
  publication-title: Mech. Solids
  doi: 10.3103/S0025654413020039
  contributor:
    fullname: Zobova
– volume: 83
  start-page: 1785
  year: 2016
  end-page: 1801
  ident: CR8
  article-title: Review and comparison of dry friction force models
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-2485-3
  contributor:
    fullname: Valentini
– volume: 40
  start-page: 419
  year: 1995
  end-page: 425
  ident: CR19
  article-title: A new model for control of systems with friction
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.376053
  contributor:
    fullname: Lischinsky
– volume: 2008
  year: 2008
  ident: CR4
  article-title: Experimental investigation into the tractive prerolling behavior of balls in V-grooved tracks
  publication-title: Adv. Tribol.
  contributor:
    fullname: Al-Bender
– volume: 55
  start-page: 107
  issue: 2
  year: 2002
  ident: CR9
  article-title: Numerical simulation of finite dimensional multibody nonsmooth mechanical systems
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.1454112
  contributor:
    fullname: Abadie
– volume: 55
  start-page: 107
  issue: 2
  year: 2002
  ident: 9637_CR9
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.1454112
  contributor:
    fullname: B. Brogliato
– volume: 80
  start-page: 141
  issue: 2
  year: 2016
  ident: 9637_CR16
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/j.jappmathmech.2016.06.008
  contributor:
    fullname: A. Zobova
– volume: 38
  start-page: 1007
  issue: 6
  year: 2017
  ident: 9637_CR23
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080217060051
  contributor:
    fullname: A.V. Karapetyan
– volume: 281
  start-page: 91
  year: 2013
  ident: 9637_CR1
  publication-title: Proc. Steklov Inst. Math.
  doi: 10.1134/S0081543813040093
  contributor:
    fullname: A.A. Zobova
– volume: 48
  start-page: 134
  issue: 2
  year: 2013
  ident: 9637_CR12
  publication-title: Mech. Solids
  doi: 10.3103/S0025654413020039
  contributor:
    fullname: A. Zobova
– volume-title: Contact Mechanics in Tribology
  year: 1998
  ident: 9637_CR13
  doi: 10.1007/978-94-015-9048-8
  contributor:
    fullname: I.G. Goryacheva
– volume: 83
  start-page: 1785
  year: 2016
  ident: 9637_CR8
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-2485-3
  contributor:
    fullname: E. Pennestrì
– volume: 2008
  year: 2008
  ident: 9637_CR18
  publication-title: Adv. Tribol.
  contributor:
    fullname: F. Al-Bender
– volume: 11
  issue: 5
  year: 2016
  ident: 9637_CR2
  publication-title: ASME J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4033658
  contributor:
    fullname: P. Brown
– volume: 42
  start-page: 447
  issue: 4
  year: 2018
  ident: 9637_CR6
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-017-9605-4
  contributor:
    fullname: P. Brown
– volume: 40
  start-page: 419
  year: 1995
  ident: 9637_CR19
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.376053
  contributor:
    fullname: C.C. Wit de
– volume: 62
  start-page: 705
  issue: 5
  year: 1998
  ident: 9637_CR20
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/S0021-8928(98)00090-2
  contributor:
    fullname: V. Zhuravlev
– year: 2018
  ident: 9637_CR3
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-018-9624-9
  contributor:
    fullname: J. Awrejcewicz
– volume: 2008
  year: 2008
  ident: 9637_CR4
  publication-title: Adv. Tribol.
  doi: 10.1155/2008/561280
  contributor:
    fullname: K. Moerlooze De
– volume-title: Dynamics of Rigid Bodies
  year: 1936
  ident: 9637_CR22
  contributor:
    fullname: W. MacMillan
– volume: 73
  start-page: 367
  issue: 4
  year: 2009
  ident: 9637_CR21
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/j.jappmathmech.2009.08.016
  contributor:
    fullname: A. Karapetyan
– volume-title: 19th Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C
  year: 2003
  ident: 9637_CR11
  contributor:
    fullname: R.I. Leine
– volume: 73
  start-page: 134
  issue: 2
  year: 2009
  ident: 9637_CR15
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/j.jappmathmech.2009.04.003
  contributor:
    fullname: A. Ivanov
– volume: 20
  start-page: 518
  year: 2015
  ident: 9637_CR7
  publication-title: Regul. Chaotic Dyn.
  doi: 10.1134/S1560354715050020
  contributor:
    fullname: A.V. Borisov
– volume-title: Couplage entre frottement de glissement et frottement de pivotement dans la teorie de la toupie
  year: 1963
  ident: 9637_CR10
  contributor:
    fullname: P. Contensou
– volume: 28
  start-page: 64
  year: 2008
  ident: 9637_CR17
  publication-title: IEEE Control Syst.
  doi: 10.1109/MCS.2008.929279
  contributor:
    fullname: F. Al-Bender
– volume: 42
  start-page: 197
  year: 2018
  ident: 9637_CR5
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-017-9572-9
  contributor:
    fullname: M. Nikolić
– volume-title: Rolling Contact Phenomena—Linear Elasticity
  year: 2000
  ident: 9637_CR14
  contributor:
    fullname: J. Kalker
SSID ssj0021549
Score 2.28813
Snippet We consider the dynamics of an absolutely rigid body moving along a rough horizontal plane. We assume that the plane deforms during the motion so that the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 203
SubjectTerms Angular velocity
Automotive Engineering
Automotive parts
Cauchy problems
Control
Deformation
Dry friction
Dynamical Systems
Electrical Engineering
Engineering
Friction
Initial conditions
Mathematical models
Mechanical Engineering
Numerical integration
Optimization
Repair & maintenance
Rigid structures
Rigid-body dynamics
Sliding
Stiction
Torque
Vibration
Viscoelasticity
Title Dry friction distributed over a contact patch between a rigid body and a visco-elastic plane
URI https://link.springer.com/article/10.1007/s11044-018-09637-1
https://www.proquest.com/docview/2167823321
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB2kvejBj6pYrWUP3nQh2Ww-9li0tSh6slBBCJvsBr2kpU2F_ntn0sSo6MHrbrKEt5mdN-ybGYALqyIpTSi5Y3TEZeBmPLFSc-qurVJ06Nqn5OSHx2A8kXdTf9rkcZdi9_pGsjyom1w3DBxIMEG39YEXcgx52kgeJOm4JmLwGWVRzbEyyook9wPpVJkyv6_x3Rs1FPPHrWjpbEb7sFuxRDbYbOsBbNm8A3sVY2SVPS47sPOlnOAhvNws1oz6_hDYzFBJXOpmhW-QTpNpRrp0nRZsjufvK6skWjhOzbEMS2ZmzXRucOD9bZnOuEVmjR_A5iSIPYLJaPh0PeZV9wSeolkV3ITIxgSFZ36ENC-hXuKuFdKGSmQYTyMSylJ0EyptE99IzzNUng9NOFIicb1jaOWz3J4Ai1JtgtCm0mhqzSGUk9lMCuNkSD-8wHbhskYxnm-KZMRNOWTCPEbM4xLz2O1CrwY6rgxmGQsXvabwPIHTVzX4zfTfq53-7_Ez2EbKo0h37fo9aBWLlT1HWlEkfWgPbp_vh_3yd_oATw3CeQ
link.rule.ids 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2h9gAc2BFLAR-4gVGTONsRQaFAy6mVioQUObEjEFJaNQGpfD0zqUOhgkOvdmLZHi_vyW9mAE51GAihfMGbSgZceFbKYy0kp-zaYYIXunTJObn76LX74n7gDoxTWF6p3asnyfKknjm7IXMgxQQ913uOz5Hz1IWNcL8G9cvbp4fWN9GisGMl0QoEdz3RNM4yf7fy-0Kaocy5h9HyvrlZh37V06nM5O3ivYgvks-5II6LDmUD1gwAZZfTFbMJSzrbgnUDRpnZ6vkWrP6IVLgNz9fjCaOUQmRHpijaLiXKwj9IAsokI8m7TAo2wqP9hRn1F5ZT3i3F4qGaMJkpLPh4zZMh1wjasQNsRFrbHejftHpXbW4SM_AEd2zBlY9Azybm5waIIGNKU25pW2g_tFOk6ji4UBNx8kOpY1cJx1EU-Q9PhyC0Y8vZhVo2zPQesCCRyvN1IpSkrB922Ex1KmzVTBHZOJ7eh7PKOtFoGn8jmkVapmmMcBqjchojax8alQEjsxfzCJcIwiDHsbH6vLLHrPr_1g4W-_wEltu9bifq3D0-HMIKIquQ5N2W24BaMX7XR4heivjYLNYvlpPhNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRAMPAqIQgEPbGC1sZ2Hx4pSlVfFQKUOSJETO4IljdqA1H_PXZqQgmBgtRMr-ZzLfZ98D0IurAqkNL5kXaMDJj0nYZGVmmF3bRWDQ9cuJic_jrzhWN5N3MlKFn8R7V4dSS5zGrBKU5p3MpN06sQ3UBEYPYFH957wGeifdXBFAuXXmPe-JBcWICskVyCZ68lumTbz-xrfXVPNN38ckRaeZ7BLtkvKSHvLPd4jazZtkp2SPtLSOOdNsrVSW3CfvPRnC4pNgBB5arA-Lra2gjswaJNqim-s45xm8DN-pWW8FoxjpyxDo6lZUJ0aGPh4m8dTZoFmwwPQDKNjD8h4cPN8PWRlKwUWg43lzPhAzThqNTcAzhdhY3HHcml9xRMQ14CEsih1fKVt5BophMFafWDPgeKRIw5JI52m9ojQINbG820sjcY-HVx1E5tIbroJcBHh2Ra5rFAMs2XFjLCujYyYh4B5WGAeOi3SroAOS-uZh9wBF8qF4DB9VYFfT_-92vH_Lj8nG0_9QfhwO7o_IZtAhRTGYztumzTy2bs9BbqRR2fFF_UJdqDIhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dry+friction+distributed+over+a+contact+patch+between+a+rigid+body+and+a+visco-elastic+plane&rft.jtitle=Multibody+system+dynamics&rft.au=Zobova%2C+Alexandra+A.&rft.date=2019-02-15&rft.issn=1384-5640&rft.eissn=1573-272X&rft.volume=45&rft.issue=2&rft.spage=203&rft.epage=222&rft_id=info:doi/10.1007%2Fs11044-018-09637-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11044_018_09637_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5640&client=summon