Image classification via convolutional sparse coding

The Convolutional Sparse Coding (CSC) model has recently attracted a lot of attention in the signal and image processing communities. Since, in traditional sparse coding methods, a significant assumption is that all input samples are independent, so it is not well for most dependent works. In such c...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 39; no. 5; pp. 1731 - 1744
Main Authors Nozaripour, Ali, Soltanizadeh, Hadi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Convolutional Sparse Coding (CSC) model has recently attracted a lot of attention in the signal and image processing communities. Since, in traditional sparse coding methods, a significant assumption is that all input samples are independent, so it is not well for most dependent works. In such cases, CSC models are a good choice. In this paper, we proposed a novel CSC-based classification model which combines the local block coordinate descent (LoBCoD) algorithm with the classification strategy. For this, in the training phase, the convolutional dictionary atoms (filters) of each class are learned by all training samples of the same class. In the test phase, the label of the query sample can be determined based on the reconstruction error of the filters related to every subject. Experimental results on five benchmark databases at the different number of training samples clearly demonstrate the superiority of our method to many state-of-the-art classification methods. Besides, we have shown that our method is less dependent on the number of training samples and therefore it can better work than other methods in small databases with fewer samples. For instance, increases of 26.27%, 18.32%, 11.35%, 13.5%, and 19.3% in recognition rates are observed for our method when compared to conventional SRC for five used databases at the least number of training samples per class.
AbstractList The Convolutional Sparse Coding (CSC) model has recently attracted a lot of attention in the signal and image processing communities. Since, in traditional sparse coding methods, a significant assumption is that all input samples are independent, so it is not well for most dependent works. In such cases, CSC models are a good choice. In this paper, we proposed a novel CSC-based classification model which combines the local block coordinate descent (LoBCoD) algorithm with the classification strategy. For this, in the training phase, the convolutional dictionary atoms (filters) of each class are learned by all training samples of the same class. In the test phase, the label of the query sample can be determined based on the reconstruction error of the filters related to every subject. Experimental results on five benchmark databases at the different number of training samples clearly demonstrate the superiority of our method to many state-of-the-art classification methods. Besides, we have shown that our method is less dependent on the number of training samples and therefore it can better work than other methods in small databases with fewer samples. For instance, increases of 26.27%, 18.32%, 11.35%, 13.5%, and 19.3% in recognition rates are observed for our method when compared to conventional SRC for five used databases at the least number of training samples per class.
Author Nozaripour, Ali
Soltanizadeh, Hadi
Author_xml – sequence: 1
  givenname: Ali
  surname: Nozaripour
  fullname: Nozaripour, Ali
  organization: Department of Electrical/Computer Engineering, Semnan University
– sequence: 2
  givenname: Hadi
  orcidid: 0000-0002-2210-675X
  surname: Soltanizadeh
  fullname: Soltanizadeh, Hadi
  email: h_Soltanizadeh@semnan.ac.ir
  organization: Faculty of Electrical/Computer Engineering, Semnan University
BookMark eNp9kE9LAzEQxYNUsK1-AU8LnqP5t01ylKK2UPCi55BOsiVlu6nJtuC3N-0KgocehmHg_WbevAkadbHzCN1T8kgJkU-ZEC4pJoyVEoJieoXGVHCGGaf1CI0JlQozqfQNmuS8JWWWQo-RWO7sxlfQ2pxDE8D2IXbVMdgKYneM7eE027bKe5ty0UUXus0tum5sm_3db5-iz9eXj_kCr97flvPnFQZOdY9d7fSMKq2AOCVJA9wLCbCuYa28Yt7Jmbd1swaiQAGvG150TgnJdVNbx_gUPQx79yl-HXzuzTYeUrGTDdNUal4-JUXFBhWkmHPyjdmnsLPp21BiTumYIR1T0jHndAwtkPoHQejPz_fJhvYyygc0lzvdxqc_VxeoHwNyezs
CitedBy_id crossref_primary_10_1007_s00371_022_02628_6
crossref_primary_10_1007_s00371_023_02780_7
crossref_primary_10_1007_s00371_024_03351_0
Cites_doi 10.1109/TIP.2017.2729885
10.1007/s00371-015-1169-9
10.1016/j.measurement.2021.109104
10.1587/transinf.E96.D.387
10.1007/s11042-015-2786-z
10.1016/j.neunet.2020.01.020
10.1007/s00500-021-05723-3
10.1109/34.927464
10.1109/TSP.2006.881199
10.1007/s11263-014-0722-8
10.1109/TPAMI.2013.2295311
10.1080/00207178908953472
10.1007/s00500-020-04989-3
10.1016/j.patcog.2017.02.009
10.1109/TIP.2017.2766446
10.1137/S003614450037906X
10.1109/LSP.2016.2618776
10.1007/s00371-017-1456-8
10.1007/s00371-019-01746-y
10.1049/iet-bmt.2018.5130
10.1504/IJAPR.2015.069540
10.1109/TNNLS.2019.2910146
10.1109/TPAMI.2008.79
10.1007/s00371-016-1215-2
10.1109/TPAMI.2013.88
10.1109/LSP.2018.2847236
10.1016/j.patcog.2019.107129
10.1016/j.neucom.2015.03.071
10.1007/s10044-019-00792-5
10.1109/ACCESS.2017.2695239
10.1007/s00371-016-1318-9
10.1049/iet-cvi.2010.0175
10.1117/12.605553
10.1109/CVPR.2010.5539957
10.1007/s11634-020-00417-4
10.1007/978-3-319-46466-4_34
10.1109/CVPR.2013.57
10.1109/ICIP.2016.7532692
10.1145/3309074.3309106
10.1109/CVPR.2019.00840
10.1109/ICCV.2015.212
10.1109/CVPR.2015.7299149
10.1007/s11760-020-01821-1
10.1007/s11042-021-11379-w
10.1109/ICASSP.2014.6854992
10.1109/ICCSS.2017.8091400
10.1109/ICIP.2010.5652363
10.1109/ICCV.2017.566
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-022-02441-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 1744
ExternalDocumentID 10_1007_s00371_022_02441_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-d5d961898c0d870fc3e47ccb5cb8e82ed76ea5fbc08c8c35f30d8d84739f5ad23
IEDL.DBID U2A
ISSN 0178-2789
IngestDate Sat Jul 19 13:10:55 EDT 2025
Tue Jul 01 01:05:51 EDT 2025
Thu Apr 24 22:52:46 EDT 2025
Fri Feb 21 02:44:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Sparse representation
Filters
Feature map
Convolutional sparse coding
Image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d5d961898c0d870fc3e47ccb5cb8e82ed76ea5fbc08c8c35f30d8d84739f5ad23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2210-675X
PQID 2917934410
PQPubID 2043737
PageCount 14
ParticipantIDs proquest_journals_2917934410
crossref_primary_10_1007_s00371_022_02441_1
crossref_citationtrail_10_1007_s00371_022_02441_1
springer_journals_10_1007_s00371_022_02441_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230500
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 5
  year: 2023
  text: 20230500
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Yuksel, Akarun, Sankur (CR55) 2011; 5
Zheng, Tao (CR7) 2015; 162
Benrhouma, Hermassi, Abd El-Latif, Belghith (CR2) 2016; 75
Pour, Eslami, Haddadnia (CR56) 2015; 2
CR37
Xu, Li, Yang, Zhang (CR24) 2017; 5
CR36
Gai (CR21) 2019; 35
CR35
CR34
CR33
CR32
CR31
Zhao, Zhang, Yin, Sun, Hu, Piao, Wu (CR29) 2016; 32
Foroughi, Ray, Zhang (CR12) 2017; 27
Georghiades, Belhumeur, Kriegman (CR51) 2001; 23
Chen, Billings, Luo (CR46) 1989; 50
Jiang, Lin, Davis (CR49) 2013; 35
Vu, Monga (CR50) 2017; 26
Aharon, Elad, Bruckstein (CR3) 2006; 54
CR4
An (CR18) 2020; 24
Li, Zhang, Qin, Zhang, Shao (CR8) 2019; 31
Zha, Liu, Zhang, Chen, Tang, Bai, Wang, Shang (CR19) 2018; 34
CR48
CR45
CR44
CR43
Wang, Guo, Zhang, Li (CR14) 2017; 33
CR41
CR40
Liu, Wu, Shu (CR30) 2019; 22
Liu, Chen, Ward, Wang (CR39) 2016; 23
Zhu, Lucey (CR38) 2013; 37
CR16
CR15
Fan, Hu, Liu (CR23) 2019; 35
Yang, Zhang, Feng, Zhang (CR27) 2014; 109
CR11
CR10
CR54
CR53
CR52
Wright, Yang, Ganesh, Sastry, Ma (CR26) 2008; 31
Gou, Wang, Yi, Yuan, Ou, Mao (CR6) 2020; 125
Liao, Su (CR42) 2018; 25
Bai, Zhang, Wang, Abd El-Latif, Niu (CR1) 2013; 96
Hu, Tan (CR13) 2018; 75
Zhao, Shen, Feng, Zhu (CR28) 2021; 25
Mokhayeri, Granger (CR9) 2020; 100
CR22
Shazeeda, Rosdi (CR25) 2018; 8
CR20
Chen, Donoho, Saunders (CR47) 2001; 43
Yang, Tse (CR5) 2021; 175
Liu, Chen, Chen, Wang, Zhang (CR17) 2020; 36
B Wang (2441_CR14) 2017; 33
2441_CR16
2441_CR15
J Yang (2441_CR5) 2021; 175
F Mokhayeri (2441_CR9) 2020; 100
AS Georghiades (2441_CR51) 2001; 23
SS Chen (2441_CR47) 2001; 43
F An (2441_CR18) 2020; 24
H-W Liao (2441_CR42) 2018; 25
2441_CR10
2441_CR54
2441_CR11
2441_CR52
2441_CR53
AN Pour (2441_CR56) 2015; 2
S Gai (2441_CR21) 2019; 35
Z Zha (2441_CR19) 2018; 34
C Fan (2441_CR23) 2019; 35
S Shazeeda (2441_CR25) 2018; 8
L Liu (2441_CR17) 2020; 36
Y Zhu (2441_CR38) 2013; 37
S Chen (2441_CR46) 1989; 50
TH Vu (2441_CR50) 2017; 26
J Hu (2441_CR13) 2018; 75
2441_CR22
2441_CR20
2441_CR36
A Yuksel (2441_CR55) 2011; 5
Y Xu (2441_CR24) 2017; 5
2441_CR37
2441_CR34
2441_CR35
Z Zhao (2441_CR28) 2021; 25
O Benrhouma (2441_CR2) 2016; 75
Y Liu (2441_CR39) 2016; 23
M Yang (2441_CR27) 2014; 109
2441_CR32
X Bai (2441_CR1) 2013; 96
2441_CR33
M Aharon (2441_CR3) 2006; 54
2441_CR31
2441_CR48
2441_CR45
L Zhao (2441_CR29) 2016; 32
J Gou (2441_CR6) 2020; 125
Z Li (2441_CR8) 2019; 31
Z Jiang (2441_CR49) 2013; 35
Z Liu (2441_CR30) 2019; 22
2441_CR43
J Wright (2441_CR26) 2008; 31
2441_CR44
2441_CR41
H Zheng (2441_CR7) 2015; 162
2441_CR4
H Foroughi (2441_CR12) 2017; 27
2441_CR40
References_xml – ident: CR45
– volume: 26
  start-page: 5160
  issue: 11
  year: 2017
  end-page: 5175
  ident: CR50
  article-title: Fast low-rank shared dictionary learning for image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2729885
– ident: CR22
– volume: 32
  start-page: 1165
  issue: 9
  year: 2016
  end-page: 1178
  ident: CR29
  article-title: Fisher discrimination-based -norm sparse representation for face recognition
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-015-1169-9
– ident: CR4
– ident: CR16
– volume: 175
  year: 2021
  ident: CR5
  article-title: Sparse representation of complex steerable pyramid for machine fault diagnosis by using non-contact video motion to replace conventional accelerometers
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109104
– volume: 96
  start-page: 387
  issue: 2
  year: 2013
  end-page: 391
  ident: CR1
  article-title: A fully automatic player detection method based on one-class svm
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.E96.D.387
– volume: 75
  start-page: 8695
  issue: 14
  year: 2016
  end-page: 8718
  ident: CR2
  article-title: Chaotic watermark for blind forgery detection in images
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-015-2786-z
– volume: 125
  start-page: 104
  year: 2020
  end-page: 120
  ident: CR6
  article-title: Weighted discriminative collaborative competitive representation for robust image classification
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.01.020
– volume: 25
  start-page: 7627
  issue: 11
  year: 2021
  end-page: 7643
  ident: CR28
  article-title: Collaborative coding and dictionary learning for nearest subspace classification
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-021-05723-3
– ident: CR35
– volume: 23
  start-page: 643
  issue: 6
  year: 2001
  end-page: 660
  ident: CR51
  article-title: From few to many: Illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.927464
– ident: CR54
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  end-page: 4322
  ident: CR3
  article-title: K-svd: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– volume: 109
  start-page: 209
  issue: 3
  year: 2014
  end-page: 232
  ident: CR27
  article-title: Sparse representation based fisher discrimination dictionary learning for image classification
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0722-8
– volume: 37
  start-page: 529
  issue: 3
  year: 2013
  end-page: 540
  ident: CR38
  article-title: Convolutional sparse coding for trajectory reconstruction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.2295311
– volume: 50
  start-page: 1873
  issue: 5
  year: 1989
  end-page: 1896
  ident: CR46
  article-title: Orthogonal least squares methods and their application to non-linear system identification
  publication-title: Int. J. Control
  doi: 10.1080/00207178908953472
– volume: 24
  start-page: 16967
  issue: 22
  year: 2020
  end-page: 16981
  ident: CR18
  article-title: Image classification algorithm based on stacked sparse coding deep learning model-optimized kernel function nonnegative sparse representation
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-020-04989-3
– volume: 75
  start-page: 282
  year: 2018
  end-page: 291
  ident: CR13
  article-title: Nonlinear dictionary learning with application to image classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.02.009
– volume: 27
  start-page: 806
  issue: 2
  year: 2017
  end-page: 821
  ident: CR12
  article-title: Object classification with joint projection and low-rank dictionary learning
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2766446
– volume: 43
  start-page: 129
  issue: 1
  year: 2001
  end-page: 159
  ident: CR47
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450037906X
– ident: CR15
– volume: 23
  start-page: 1882
  issue: 12
  year: 2016
  end-page: 1886
  ident: CR39
  article-title: Image fusion with convolutional sparse representation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2618776
– ident: CR11
– volume: 35
  start-page: 109
  issue: 1
  year: 2019
  end-page: 122
  ident: CR21
  article-title: Color image denoising via monogenic matrix-based sparse representation
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-017-1456-8
– ident: CR32
– volume: 36
  start-page: 1521
  issue: 8
  year: 2020
  end-page: 1534
  ident: CR17
  article-title: Fuzzy weighted sparse reconstruction error-steered semi-supervised learning for face recognition
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01746-y
– ident: CR36
– volume: 8
  start-page: 49
  issue: 1
  year: 2018
  end-page: 58
  ident: CR25
  article-title: Finger vein recognition using mutual sparse representation classification
  publication-title: IET Biometrics
  doi: 10.1049/iet-bmt.2018.5130
– volume: 2
  start-page: 111
  issue: 2
  year: 2015
  end-page: 127
  ident: CR56
  article-title: A new method for automatic extraction of region of interest from infrared images of dorsal hand vein pattern based on floating selection model
  publication-title: Int. J. Appl. Pattern Recognit.
  doi: 10.1504/IJAPR.2015.069540
– volume: 31
  start-page: 786
  issue: 3
  year: 2019
  end-page: 800
  ident: CR8
  article-title: Discriminative fisher embedding dictionary learning algorithm for object recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2910146
– ident: CR43
– volume: 31
  start-page: 210
  issue: 2
  year: 2008
  end-page: 227
  ident: CR26
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– ident: CR37
– ident: CR53
– ident: CR10
– ident: CR33
– volume: 33
  start-page: 647
  issue: 5
  year: 2017
  end-page: 663
  ident: CR14
  article-title: Hierarchical feature concatenation-based kernel sparse representations for image categorization
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-016-1215-2
– volume: 35
  start-page: 2651
  issue: 11
  year: 2013
  end-page: 2664
  ident: CR49
  article-title: Label consistent k-svd: Learning a discriminative dictionary for recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.88
– ident: CR40
– volume: 25
  start-page: 1156
  issue: 8
  year: 2018
  end-page: 1160
  ident: CR42
  article-title: Monaural source separation using Ramanujan subspace dictionaries
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2847236
– volume: 100
  start-page: 107129
  year: 2020
  ident: CR9
  article-title: A paired sparse representation model for robust face recognition from a single sample
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107129
– ident: CR44
– ident: CR48
– volume: 162
  start-page: 9
  year: 2015
  end-page: 15
  ident: CR7
  article-title: Discriminative dictionary learning via fisher discrimination k-svd algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.071
– volume: 22
  start-page: 1527
  issue: 4
  year: 2019
  end-page: 1535
  ident: CR30
  article-title: Sparsity augmented discriminative sparse representation for face recognition
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-019-00792-5
– ident: CR52
– ident: CR31
– volume: 5
  start-page: 8502
  year: 2017
  end-page: 8514
  ident: CR24
  article-title: A survey of dictionary learning algorithms for face recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2695239
– volume: 34
  start-page: 117
  issue: 1
  year: 2018
  end-page: 137
  ident: CR19
  article-title: Compressed sensing image reconstruction via adaptive sparse nonlocal regularization
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-016-1318-9
– volume: 35
  start-page: 1797
  issue: 12
  year: 2019
  end-page: 1807
  ident: CR23
  article-title: Linearized kernel dictionary learning with group sparse priors for action recognition
  publication-title: Vis. Comput.
– ident: CR34
– ident: CR41
– ident: CR20
– volume: 5
  start-page: 398
  issue: 6
  year: 2011
  end-page: 406
  ident: CR55
  article-title: Hand vein biometry based on geometry and appearance methods
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2010.0175
– volume: 25
  start-page: 1156
  issue: 8
  year: 2018
  ident: 2441_CR42
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2847236
– ident: 2441_CR48
– volume: 35
  start-page: 109
  issue: 1
  year: 2019
  ident: 2441_CR21
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-017-1456-8
– ident: 2441_CR54
  doi: 10.1117/12.605553
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 2441_CR3
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– volume: 31
  start-page: 786
  issue: 3
  year: 2019
  ident: 2441_CR8
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2910146
– volume: 8
  start-page: 49
  issue: 1
  year: 2018
  ident: 2441_CR25
  publication-title: IET Biometrics
  doi: 10.1049/iet-bmt.2018.5130
– ident: 2441_CR33
  doi: 10.1109/CVPR.2010.5539957
– volume: 125
  start-page: 104
  year: 2020
  ident: 2441_CR6
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.01.020
– ident: 2441_CR20
  doi: 10.1007/s11634-020-00417-4
– volume: 50
  start-page: 1873
  issue: 5
  year: 1989
  ident: 2441_CR46
  publication-title: Int. J. Control
  doi: 10.1080/00207178908953472
– volume: 75
  start-page: 8695
  issue: 14
  year: 2016
  ident: 2441_CR2
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-015-2786-z
– volume: 31
  start-page: 210
  issue: 2
  year: 2008
  ident: 2441_CR26
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– volume: 23
  start-page: 1882
  issue: 12
  year: 2016
  ident: 2441_CR39
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2618776
– ident: 2441_CR4
– volume: 34
  start-page: 117
  issue: 1
  year: 2018
  ident: 2441_CR19
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-016-1318-9
– ident: 2441_CR22
  doi: 10.1007/978-3-319-46466-4_34
– volume: 162
  start-page: 9
  year: 2015
  ident: 2441_CR7
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.071
– ident: 2441_CR45
  doi: 10.1109/CVPR.2013.57
– ident: 2441_CR41
  doi: 10.1109/ICIP.2016.7532692
– ident: 2441_CR16
  doi: 10.1145/3309074.3309106
– volume: 96
  start-page: 387
  issue: 2
  year: 2013
  ident: 2441_CR1
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.E96.D.387
– volume: 35
  start-page: 1797
  issue: 12
  year: 2019
  ident: 2441_CR23
  publication-title: Vis. Comput.
– volume: 32
  start-page: 1165
  issue: 9
  year: 2016
  ident: 2441_CR29
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-015-1169-9
– ident: 2441_CR32
  doi: 10.1109/CVPR.2019.00840
– volume: 35
  start-page: 2651
  issue: 11
  year: 2013
  ident: 2441_CR49
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.88
– volume: 43
  start-page: 129
  issue: 1
  year: 2001
  ident: 2441_CR47
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450037906X
– ident: 2441_CR36
  doi: 10.1109/ICCV.2015.212
– volume: 33
  start-page: 647
  issue: 5
  year: 2017
  ident: 2441_CR14
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-016-1215-2
– volume: 26
  start-page: 5160
  issue: 11
  year: 2017
  ident: 2441_CR50
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2729885
– volume: 23
  start-page: 643
  issue: 6
  year: 2001
  ident: 2441_CR51
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.927464
– volume: 100
  start-page: 107129
  year: 2020
  ident: 2441_CR9
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107129
– volume: 25
  start-page: 7627
  issue: 11
  year: 2021
  ident: 2441_CR28
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-021-05723-3
– ident: 2441_CR10
– volume: 37
  start-page: 529
  issue: 3
  year: 2013
  ident: 2441_CR38
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.2295311
– volume: 36
  start-page: 1521
  issue: 8
  year: 2020
  ident: 2441_CR17
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01746-y
– volume: 2
  start-page: 111
  issue: 2
  year: 2015
  ident: 2441_CR56
  publication-title: Int. J. Appl. Pattern Recognit.
  doi: 10.1504/IJAPR.2015.069540
– volume: 75
  start-page: 282
  year: 2018
  ident: 2441_CR13
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.02.009
– volume: 109
  start-page: 209
  issue: 3
  year: 2014
  ident: 2441_CR27
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0722-8
– ident: 2441_CR34
  doi: 10.1109/CVPR.2015.7299149
– ident: 2441_CR52
– volume: 24
  start-page: 16967
  issue: 22
  year: 2020
  ident: 2441_CR18
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-020-04989-3
– ident: 2441_CR35
  doi: 10.1007/s11760-020-01821-1
– ident: 2441_CR40
  doi: 10.1007/s11042-021-11379-w
– ident: 2441_CR43
– volume: 22
  start-page: 1527
  issue: 4
  year: 2019
  ident: 2441_CR30
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-019-00792-5
– ident: 2441_CR11
– volume: 5
  start-page: 8502
  year: 2017
  ident: 2441_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2695239
– volume: 5
  start-page: 398
  issue: 6
  year: 2011
  ident: 2441_CR55
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2010.0175
– volume: 175
  year: 2021
  ident: 2441_CR5
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109104
– volume: 27
  start-page: 806
  issue: 2
  year: 2017
  ident: 2441_CR12
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2766446
– ident: 2441_CR44
  doi: 10.1109/ICASSP.2014.6854992
– ident: 2441_CR31
  doi: 10.1109/ICCSS.2017.8091400
– ident: 2441_CR53
– ident: 2441_CR15
  doi: 10.1109/ICIP.2010.5652363
– ident: 2441_CR37
  doi: 10.1109/ICCV.2017.566
SSID ssj0017749
Score 2.3550239
Snippet The Convolutional Sparse Coding (CSC) model has recently attracted a lot of attention in the signal and image processing communities. Since, in traditional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1731
SubjectTerms Algorithms
Artificial Intelligence
Classification
Coding
Computer Graphics
Computer Science
Image classification
Image processing
Image Processing and Computer Vision
Image reconstruction
Methods
Original Article
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vehBfGK1yh68abC7m2yTk6hYqmARsdDbsplkQdC2ttXf7yTNtirYc5I5fMnMN0nmAXCmeckLlUhWEFkyjgqZTlTMtBGptopza11y8mMv6_b5w0AMwoPbNIRVVjbRG2ozQvdGfkkC6CgRebeuxh_MdY1yv6uhhcY61MkES7p81W_uek_Pi38Ecm68AxzTXcnlfIa0GZ8856vVMRfNTjzFYxb_pqalv_nni9QzT2cbtoLLGF3P93gH1uxwFzZ_FBLcA37_TnYhQucKu9gfD3f09VpELqo8nC6SQeZjMqV5I8dY-9Dv3L3cdlnoh8CQFGXGjDCuP4uS2DKkZiWmlrcRtUAtrUysaWe2EKXGlkSJqShTmmeIflJVisIk6QHUhqOhPYSotFZqmZWWkCEtRq2UTWhVyiVPrMgaEFdQ5BiKhbueFW_5osyxhy8n-HIPXx434HyxZjwvlbFydrNCOA9qM82Xm9yAiwr15fD_0o5WSzuGDdcmfh6o2ITabPJpT8iZmOnTcGK-AdqtxJM
  priority: 102
  providerName: ProQuest
Title Image classification via convolutional sparse coding
URI https://link.springer.com/article/10.1007/s00371-022-02441-1
https://www.proquest.com/docview/2917934410
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60vejBR1Ws1rIHbxro7ibb5FilDxWLiIV6WjaPBUFbaau_30ma3aqo4CmHTObwZV4h8wA4lTSnmYg4ydBZEqqEIjISIZGaxdIISo2xxcm3w2QwotdjNvZFYfMi2734knSWuix2c93liM0-R79CQ4Jvniqzb3eU4lHUKf8OMKBxQW-I7yNb5-lLZX7m8dUdrWLMb9-iztv0dmDLh4lBZ3mvu7BmJjXYLkYwBF4ja7D5qZ_gHtCrFzQPgbIRsU0BcqgH709ZYJPLvZAhW7QisznSTa3j2odRr_twOSB-LAJRqC8Lopm2Y1oEVy2N2par2NC2UpIpyQ2PjG4nJmO5VC2uuIpZHiOdRi8Ui5xlOooPoDKZTswhBLkxXPIkNwgWKrOSQpgIT8WU08iwpA5hgU6qfM9wO7riOS27HTtEU0Q0dYimYR3OyjOvy44Zf1I3CtBTrz3zFIUFzQbut-pwXlzEavt3bkf_Iz-GDTs9fpm_2IDKYvZmTjDGWMgmrPNevwnVTv_xpovrRXd4d990gvYBdlHKWA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5VZQAGxFMUCmSACSya2EntASEElJY-plbqFmLHkZCgLW0B8af4jZydpAUk2DrnfMPnz3fn-B4Ax5IlLBIeJxE6S8KUUER6wiUy9qnUgjGtTXFyuxPUe-y-7_cL8JnXwpi0ytwmWkMdD5X5R36OCpBK6Lwrl6MXYqZGmdfVfIRGSoum_njHK9vkonGD-3viebXb7nWdZFMFiEK6TUnsx2bKieCqEiNZE0U1qyolfSW55p6Oq4GO_ESqCldcUT-hKBejEaci8aPYNDpAk7_EKBXmRPHa3ezVAkMpG267eDMzFaZZkY4t1bO98YjJnUevyFzi_nSE8-j214Os9XO1dVjLAlTnKmXUBhT0YBNWv7Ut3ALWeEYr5CgTeJtMI7u5zttj5Jgc9ozLqAON1XiCckPjH7ehtxCcdqA4GA70LjiJ1lzyINGIDNoMJYXQHq6ijDNP-0EJ3ByKUGWtyc2EjKdw1lTZwhcifKGFL3RLcDpbM0obc_wrXc4RDrNDOgnnlCrBWY76_PPf2vb-13YEy_VuuxW2Gp3mPqyYAfVpimQZitPxqz7AMGYqDy13HHhYNFm_AIJsAao
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSgMxMEgF0YOPqlitugdvGtrdTbbJsail9VE8WOgtbF4g6La0q9_vJLvbVlHBcyYDmXeYF0IXkliS8ojhFJwlJoorLCMeYqlpLA0nxBjXnPw4TPojcjem45Uufl_tXqUki54GN6Upy1tTbVuLxjc_aQ67SnTwMSTE8P9ZB3McOrkeRd1FHgGCGx8Ah_BXcj2fZdvMzzi-uqZlvPktReo9T28XbZchY9AteLyH1kxWRzvVOoag1M462lqZLbiPyOANTEWgXHTsyoE8B4KPlzRwhealwAFasCizOcBNnBM7QKPe7fN1H5crErCCx-ZYU-1WtnCm2ho0z6rYkI5SkirJDIuM7iQmpVaqNlNMxdTGAKfBI8Xc0lRH8SGqZZPMHKHAGsMkS6wBYoFiK8m5ieBWTBiJDE0aKKyoI1Q5P9ytsXgVi8nHnqICKCo8RUXYQJeLO9Niesaf0M2K6KLUpLkAwQETAuftBrqqGLE8_h3b8f_Az9HG001PPAyG9ydo0y2VL8oam6iWz97NKYQeuTzz0vUJvuTNcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+classification+via+convolutional+sparse+coding&rft.jtitle=The+Visual+computer&rft.au=Nozaripour%2C+Ali&rft.au=Soltanizadeh%2C+Hadi&rft.date=2023-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=39&rft.issue=5&rft.spage=1731&rft.epage=1744&rft_id=info:doi/10.1007%2Fs00371-022-02441-1&rft.externalDocID=10_1007_s00371_022_02441_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon