Image classification via convolutional sparse coding
The Convolutional Sparse Coding (CSC) model has recently attracted a lot of attention in the signal and image processing communities. Since, in traditional sparse coding methods, a significant assumption is that all input samples are independent, so it is not well for most dependent works. In such c...
Saved in:
Published in | The Visual computer Vol. 39; no. 5; pp. 1731 - 1744 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Convolutional Sparse Coding (CSC) model has recently attracted a lot of attention in the signal and image processing communities. Since, in traditional sparse coding methods, a significant assumption is that all input samples are independent, so it is not well for most dependent works. In such cases, CSC models are a good choice. In this paper, we proposed a novel CSC-based classification model which combines the local block coordinate descent (LoBCoD) algorithm with the classification strategy. For this, in the training phase, the convolutional dictionary atoms (filters) of each class are learned by all training samples of the same class. In the test phase, the label of the query sample can be determined based on the reconstruction error of the filters related to every subject. Experimental results on five benchmark databases at the different number of training samples clearly demonstrate the superiority of our method to many state-of-the-art classification methods. Besides, we have shown that our method is less dependent on the number of training samples and therefore it can better work than other methods in small databases with fewer samples. For instance, increases of 26.27%, 18.32%, 11.35%, 13.5%, and 19.3% in recognition rates are observed for our method when compared to conventional SRC for five used databases at the least number of training samples per class. |
---|---|
AbstractList | The Convolutional Sparse Coding (CSC) model has recently attracted a lot of attention in the signal and image processing communities. Since, in traditional sparse coding methods, a significant assumption is that all input samples are independent, so it is not well for most dependent works. In such cases, CSC models are a good choice. In this paper, we proposed a novel CSC-based classification model which combines the local block coordinate descent (LoBCoD) algorithm with the classification strategy. For this, in the training phase, the convolutional dictionary atoms (filters) of each class are learned by all training samples of the same class. In the test phase, the label of the query sample can be determined based on the reconstruction error of the filters related to every subject. Experimental results on five benchmark databases at the different number of training samples clearly demonstrate the superiority of our method to many state-of-the-art classification methods. Besides, we have shown that our method is less dependent on the number of training samples and therefore it can better work than other methods in small databases with fewer samples. For instance, increases of 26.27%, 18.32%, 11.35%, 13.5%, and 19.3% in recognition rates are observed for our method when compared to conventional SRC for five used databases at the least number of training samples per class. |
Author | Nozaripour, Ali Soltanizadeh, Hadi |
Author_xml | – sequence: 1 givenname: Ali surname: Nozaripour fullname: Nozaripour, Ali organization: Department of Electrical/Computer Engineering, Semnan University – sequence: 2 givenname: Hadi orcidid: 0000-0002-2210-675X surname: Soltanizadeh fullname: Soltanizadeh, Hadi email: h_Soltanizadeh@semnan.ac.ir organization: Faculty of Electrical/Computer Engineering, Semnan University |
BookMark | eNp9kE9LAzEQxYNUsK1-AU8LnqP5t01ylKK2UPCi55BOsiVlu6nJtuC3N-0KgocehmHg_WbevAkadbHzCN1T8kgJkU-ZEC4pJoyVEoJieoXGVHCGGaf1CI0JlQozqfQNmuS8JWWWQo-RWO7sxlfQ2pxDE8D2IXbVMdgKYneM7eE027bKe5ty0UUXus0tum5sm_3db5-iz9eXj_kCr97flvPnFQZOdY9d7fSMKq2AOCVJA9wLCbCuYa28Yt7Jmbd1swaiQAGvG150TgnJdVNbx_gUPQx79yl-HXzuzTYeUrGTDdNUal4-JUXFBhWkmHPyjdmnsLPp21BiTumYIR1T0jHndAwtkPoHQejPz_fJhvYyygc0lzvdxqc_VxeoHwNyezs |
CitedBy_id | crossref_primary_10_1007_s00371_022_02628_6 crossref_primary_10_1007_s00371_023_02780_7 crossref_primary_10_1007_s00371_024_03351_0 |
Cites_doi | 10.1109/TIP.2017.2729885 10.1007/s00371-015-1169-9 10.1016/j.measurement.2021.109104 10.1587/transinf.E96.D.387 10.1007/s11042-015-2786-z 10.1016/j.neunet.2020.01.020 10.1007/s00500-021-05723-3 10.1109/34.927464 10.1109/TSP.2006.881199 10.1007/s11263-014-0722-8 10.1109/TPAMI.2013.2295311 10.1080/00207178908953472 10.1007/s00500-020-04989-3 10.1016/j.patcog.2017.02.009 10.1109/TIP.2017.2766446 10.1137/S003614450037906X 10.1109/LSP.2016.2618776 10.1007/s00371-017-1456-8 10.1007/s00371-019-01746-y 10.1049/iet-bmt.2018.5130 10.1504/IJAPR.2015.069540 10.1109/TNNLS.2019.2910146 10.1109/TPAMI.2008.79 10.1007/s00371-016-1215-2 10.1109/TPAMI.2013.88 10.1109/LSP.2018.2847236 10.1016/j.patcog.2019.107129 10.1016/j.neucom.2015.03.071 10.1007/s10044-019-00792-5 10.1109/ACCESS.2017.2695239 10.1007/s00371-016-1318-9 10.1049/iet-cvi.2010.0175 10.1117/12.605553 10.1109/CVPR.2010.5539957 10.1007/s11634-020-00417-4 10.1007/978-3-319-46466-4_34 10.1109/CVPR.2013.57 10.1109/ICIP.2016.7532692 10.1145/3309074.3309106 10.1109/CVPR.2019.00840 10.1109/ICCV.2015.212 10.1109/CVPR.2015.7299149 10.1007/s11760-020-01821-1 10.1007/s11042-021-11379-w 10.1109/ICASSP.2014.6854992 10.1109/ICCSS.2017.8091400 10.1109/ICIP.2010.5652363 10.1109/ICCV.2017.566 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00371-022-02441-1 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 1744 |
ExternalDocumentID | 10_1007_s00371_022_02441_1 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c319t-d5d961898c0d870fc3e47ccb5cb8e82ed76ea5fbc08c8c35f30d8d84739f5ad23 |
IEDL.DBID | U2A |
ISSN | 0178-2789 |
IngestDate | Sat Jul 19 13:10:55 EDT 2025 Tue Jul 01 01:05:51 EDT 2025 Thu Apr 24 22:52:46 EDT 2025 Fri Feb 21 02:44:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Sparse representation Filters Feature map Convolutional sparse coding Image classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-d5d961898c0d870fc3e47ccb5cb8e82ed76ea5fbc08c8c35f30d8d84739f5ad23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2210-675X |
PQID | 2917934410 |
PQPubID | 2043737 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2917934410 crossref_primary_10_1007_s00371_022_02441_1 crossref_citationtrail_10_1007_s00371_022_02441_1 springer_journals_10_1007_s00371_022_02441_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230500 2023-05-00 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 5 year: 2023 text: 20230500 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Yuksel, Akarun, Sankur (CR55) 2011; 5 Zheng, Tao (CR7) 2015; 162 Benrhouma, Hermassi, Abd El-Latif, Belghith (CR2) 2016; 75 Pour, Eslami, Haddadnia (CR56) 2015; 2 CR37 Xu, Li, Yang, Zhang (CR24) 2017; 5 CR36 Gai (CR21) 2019; 35 CR35 CR34 CR33 CR32 CR31 Zhao, Zhang, Yin, Sun, Hu, Piao, Wu (CR29) 2016; 32 Foroughi, Ray, Zhang (CR12) 2017; 27 Georghiades, Belhumeur, Kriegman (CR51) 2001; 23 Chen, Billings, Luo (CR46) 1989; 50 Jiang, Lin, Davis (CR49) 2013; 35 Vu, Monga (CR50) 2017; 26 Aharon, Elad, Bruckstein (CR3) 2006; 54 CR4 An (CR18) 2020; 24 Li, Zhang, Qin, Zhang, Shao (CR8) 2019; 31 Zha, Liu, Zhang, Chen, Tang, Bai, Wang, Shang (CR19) 2018; 34 CR48 CR45 CR44 CR43 Wang, Guo, Zhang, Li (CR14) 2017; 33 CR41 CR40 Liu, Wu, Shu (CR30) 2019; 22 Liu, Chen, Ward, Wang (CR39) 2016; 23 Zhu, Lucey (CR38) 2013; 37 CR16 CR15 Fan, Hu, Liu (CR23) 2019; 35 Yang, Zhang, Feng, Zhang (CR27) 2014; 109 CR11 CR10 CR54 CR53 CR52 Wright, Yang, Ganesh, Sastry, Ma (CR26) 2008; 31 Gou, Wang, Yi, Yuan, Ou, Mao (CR6) 2020; 125 Liao, Su (CR42) 2018; 25 Bai, Zhang, Wang, Abd El-Latif, Niu (CR1) 2013; 96 Hu, Tan (CR13) 2018; 75 Zhao, Shen, Feng, Zhu (CR28) 2021; 25 Mokhayeri, Granger (CR9) 2020; 100 CR22 Shazeeda, Rosdi (CR25) 2018; 8 CR20 Chen, Donoho, Saunders (CR47) 2001; 43 Yang, Tse (CR5) 2021; 175 Liu, Chen, Chen, Wang, Zhang (CR17) 2020; 36 B Wang (2441_CR14) 2017; 33 2441_CR16 2441_CR15 J Yang (2441_CR5) 2021; 175 F Mokhayeri (2441_CR9) 2020; 100 AS Georghiades (2441_CR51) 2001; 23 SS Chen (2441_CR47) 2001; 43 F An (2441_CR18) 2020; 24 H-W Liao (2441_CR42) 2018; 25 2441_CR10 2441_CR54 2441_CR11 2441_CR52 2441_CR53 AN Pour (2441_CR56) 2015; 2 S Gai (2441_CR21) 2019; 35 Z Zha (2441_CR19) 2018; 34 C Fan (2441_CR23) 2019; 35 S Shazeeda (2441_CR25) 2018; 8 L Liu (2441_CR17) 2020; 36 Y Zhu (2441_CR38) 2013; 37 S Chen (2441_CR46) 1989; 50 TH Vu (2441_CR50) 2017; 26 J Hu (2441_CR13) 2018; 75 2441_CR22 2441_CR20 2441_CR36 A Yuksel (2441_CR55) 2011; 5 Y Xu (2441_CR24) 2017; 5 2441_CR37 2441_CR34 2441_CR35 Z Zhao (2441_CR28) 2021; 25 O Benrhouma (2441_CR2) 2016; 75 Y Liu (2441_CR39) 2016; 23 M Yang (2441_CR27) 2014; 109 2441_CR32 X Bai (2441_CR1) 2013; 96 2441_CR33 M Aharon (2441_CR3) 2006; 54 2441_CR31 2441_CR48 2441_CR45 L Zhao (2441_CR29) 2016; 32 J Gou (2441_CR6) 2020; 125 Z Li (2441_CR8) 2019; 31 Z Jiang (2441_CR49) 2013; 35 Z Liu (2441_CR30) 2019; 22 2441_CR43 J Wright (2441_CR26) 2008; 31 2441_CR44 2441_CR41 H Zheng (2441_CR7) 2015; 162 2441_CR4 H Foroughi (2441_CR12) 2017; 27 2441_CR40 |
References_xml | – ident: CR45 – volume: 26 start-page: 5160 issue: 11 year: 2017 end-page: 5175 ident: CR50 article-title: Fast low-rank shared dictionary learning for image classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2729885 – ident: CR22 – volume: 32 start-page: 1165 issue: 9 year: 2016 end-page: 1178 ident: CR29 article-title: Fisher discrimination-based -norm sparse representation for face recognition publication-title: Vis. Comput. doi: 10.1007/s00371-015-1169-9 – ident: CR4 – ident: CR16 – volume: 175 year: 2021 ident: CR5 article-title: Sparse representation of complex steerable pyramid for machine fault diagnosis by using non-contact video motion to replace conventional accelerometers publication-title: Measurement doi: 10.1016/j.measurement.2021.109104 – volume: 96 start-page: 387 issue: 2 year: 2013 end-page: 391 ident: CR1 article-title: A fully automatic player detection method based on one-class svm publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.E96.D.387 – volume: 75 start-page: 8695 issue: 14 year: 2016 end-page: 8718 ident: CR2 article-title: Chaotic watermark for blind forgery detection in images publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-015-2786-z – volume: 125 start-page: 104 year: 2020 end-page: 120 ident: CR6 article-title: Weighted discriminative collaborative competitive representation for robust image classification publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.01.020 – volume: 25 start-page: 7627 issue: 11 year: 2021 end-page: 7643 ident: CR28 article-title: Collaborative coding and dictionary learning for nearest subspace classification publication-title: Soft. Comput. doi: 10.1007/s00500-021-05723-3 – ident: CR35 – volume: 23 start-page: 643 issue: 6 year: 2001 end-page: 660 ident: CR51 article-title: From few to many: Illumination cone models for face recognition under variable lighting and pose publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.927464 – ident: CR54 – volume: 54 start-page: 4311 issue: 11 year: 2006 end-page: 4322 ident: CR3 article-title: K-svd: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – volume: 109 start-page: 209 issue: 3 year: 2014 end-page: 232 ident: CR27 article-title: Sparse representation based fisher discrimination dictionary learning for image classification publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0722-8 – volume: 37 start-page: 529 issue: 3 year: 2013 end-page: 540 ident: CR38 article-title: Convolutional sparse coding for trajectory reconstruction publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.2295311 – volume: 50 start-page: 1873 issue: 5 year: 1989 end-page: 1896 ident: CR46 article-title: Orthogonal least squares methods and their application to non-linear system identification publication-title: Int. J. Control doi: 10.1080/00207178908953472 – volume: 24 start-page: 16967 issue: 22 year: 2020 end-page: 16981 ident: CR18 article-title: Image classification algorithm based on stacked sparse coding deep learning model-optimized kernel function nonnegative sparse representation publication-title: Soft. Comput. doi: 10.1007/s00500-020-04989-3 – volume: 75 start-page: 282 year: 2018 end-page: 291 ident: CR13 article-title: Nonlinear dictionary learning with application to image classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.02.009 – volume: 27 start-page: 806 issue: 2 year: 2017 end-page: 821 ident: CR12 article-title: Object classification with joint projection and low-rank dictionary learning publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2766446 – volume: 43 start-page: 129 issue: 1 year: 2001 end-page: 159 ident: CR47 article-title: Atomic decomposition by basis pursuit publication-title: SIAM Rev. doi: 10.1137/S003614450037906X – ident: CR15 – volume: 23 start-page: 1882 issue: 12 year: 2016 end-page: 1886 ident: CR39 article-title: Image fusion with convolutional sparse representation publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2618776 – ident: CR11 – volume: 35 start-page: 109 issue: 1 year: 2019 end-page: 122 ident: CR21 article-title: Color image denoising via monogenic matrix-based sparse representation publication-title: Vis. Comput. doi: 10.1007/s00371-017-1456-8 – ident: CR32 – volume: 36 start-page: 1521 issue: 8 year: 2020 end-page: 1534 ident: CR17 article-title: Fuzzy weighted sparse reconstruction error-steered semi-supervised learning for face recognition publication-title: Vis. Comput. doi: 10.1007/s00371-019-01746-y – ident: CR36 – volume: 8 start-page: 49 issue: 1 year: 2018 end-page: 58 ident: CR25 article-title: Finger vein recognition using mutual sparse representation classification publication-title: IET Biometrics doi: 10.1049/iet-bmt.2018.5130 – volume: 2 start-page: 111 issue: 2 year: 2015 end-page: 127 ident: CR56 article-title: A new method for automatic extraction of region of interest from infrared images of dorsal hand vein pattern based on floating selection model publication-title: Int. J. Appl. Pattern Recognit. doi: 10.1504/IJAPR.2015.069540 – volume: 31 start-page: 786 issue: 3 year: 2019 end-page: 800 ident: CR8 article-title: Discriminative fisher embedding dictionary learning algorithm for object recognition publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2910146 – ident: CR43 – volume: 31 start-page: 210 issue: 2 year: 2008 end-page: 227 ident: CR26 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – ident: CR37 – ident: CR53 – ident: CR10 – ident: CR33 – volume: 33 start-page: 647 issue: 5 year: 2017 end-page: 663 ident: CR14 article-title: Hierarchical feature concatenation-based kernel sparse representations for image categorization publication-title: Vis. Comput. doi: 10.1007/s00371-016-1215-2 – volume: 35 start-page: 2651 issue: 11 year: 2013 end-page: 2664 ident: CR49 article-title: Label consistent k-svd: Learning a discriminative dictionary for recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.88 – ident: CR40 – volume: 25 start-page: 1156 issue: 8 year: 2018 end-page: 1160 ident: CR42 article-title: Monaural source separation using Ramanujan subspace dictionaries publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2847236 – volume: 100 start-page: 107129 year: 2020 ident: CR9 article-title: A paired sparse representation model for robust face recognition from a single sample publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107129 – ident: CR44 – ident: CR48 – volume: 162 start-page: 9 year: 2015 end-page: 15 ident: CR7 article-title: Discriminative dictionary learning via fisher discrimination k-svd algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.03.071 – volume: 22 start-page: 1527 issue: 4 year: 2019 end-page: 1535 ident: CR30 article-title: Sparsity augmented discriminative sparse representation for face recognition publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-019-00792-5 – ident: CR52 – ident: CR31 – volume: 5 start-page: 8502 year: 2017 end-page: 8514 ident: CR24 article-title: A survey of dictionary learning algorithms for face recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2695239 – volume: 34 start-page: 117 issue: 1 year: 2018 end-page: 137 ident: CR19 article-title: Compressed sensing image reconstruction via adaptive sparse nonlocal regularization publication-title: Vis. Comput. doi: 10.1007/s00371-016-1318-9 – volume: 35 start-page: 1797 issue: 12 year: 2019 end-page: 1807 ident: CR23 article-title: Linearized kernel dictionary learning with group sparse priors for action recognition publication-title: Vis. Comput. – ident: CR34 – ident: CR41 – ident: CR20 – volume: 5 start-page: 398 issue: 6 year: 2011 end-page: 406 ident: CR55 article-title: Hand vein biometry based on geometry and appearance methods publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2010.0175 – volume: 25 start-page: 1156 issue: 8 year: 2018 ident: 2441_CR42 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2847236 – ident: 2441_CR48 – volume: 35 start-page: 109 issue: 1 year: 2019 ident: 2441_CR21 publication-title: Vis. Comput. doi: 10.1007/s00371-017-1456-8 – ident: 2441_CR54 doi: 10.1117/12.605553 – volume: 54 start-page: 4311 issue: 11 year: 2006 ident: 2441_CR3 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – volume: 31 start-page: 786 issue: 3 year: 2019 ident: 2441_CR8 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2910146 – volume: 8 start-page: 49 issue: 1 year: 2018 ident: 2441_CR25 publication-title: IET Biometrics doi: 10.1049/iet-bmt.2018.5130 – ident: 2441_CR33 doi: 10.1109/CVPR.2010.5539957 – volume: 125 start-page: 104 year: 2020 ident: 2441_CR6 publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.01.020 – ident: 2441_CR20 doi: 10.1007/s11634-020-00417-4 – volume: 50 start-page: 1873 issue: 5 year: 1989 ident: 2441_CR46 publication-title: Int. J. Control doi: 10.1080/00207178908953472 – volume: 75 start-page: 8695 issue: 14 year: 2016 ident: 2441_CR2 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-015-2786-z – volume: 31 start-page: 210 issue: 2 year: 2008 ident: 2441_CR26 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – volume: 23 start-page: 1882 issue: 12 year: 2016 ident: 2441_CR39 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2618776 – ident: 2441_CR4 – volume: 34 start-page: 117 issue: 1 year: 2018 ident: 2441_CR19 publication-title: Vis. Comput. doi: 10.1007/s00371-016-1318-9 – ident: 2441_CR22 doi: 10.1007/978-3-319-46466-4_34 – volume: 162 start-page: 9 year: 2015 ident: 2441_CR7 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.03.071 – ident: 2441_CR45 doi: 10.1109/CVPR.2013.57 – ident: 2441_CR41 doi: 10.1109/ICIP.2016.7532692 – ident: 2441_CR16 doi: 10.1145/3309074.3309106 – volume: 96 start-page: 387 issue: 2 year: 2013 ident: 2441_CR1 publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.E96.D.387 – volume: 35 start-page: 1797 issue: 12 year: 2019 ident: 2441_CR23 publication-title: Vis. Comput. – volume: 32 start-page: 1165 issue: 9 year: 2016 ident: 2441_CR29 publication-title: Vis. Comput. doi: 10.1007/s00371-015-1169-9 – ident: 2441_CR32 doi: 10.1109/CVPR.2019.00840 – volume: 35 start-page: 2651 issue: 11 year: 2013 ident: 2441_CR49 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.88 – volume: 43 start-page: 129 issue: 1 year: 2001 ident: 2441_CR47 publication-title: SIAM Rev. doi: 10.1137/S003614450037906X – ident: 2441_CR36 doi: 10.1109/ICCV.2015.212 – volume: 33 start-page: 647 issue: 5 year: 2017 ident: 2441_CR14 publication-title: Vis. Comput. doi: 10.1007/s00371-016-1215-2 – volume: 26 start-page: 5160 issue: 11 year: 2017 ident: 2441_CR50 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2729885 – volume: 23 start-page: 643 issue: 6 year: 2001 ident: 2441_CR51 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.927464 – volume: 100 start-page: 107129 year: 2020 ident: 2441_CR9 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107129 – volume: 25 start-page: 7627 issue: 11 year: 2021 ident: 2441_CR28 publication-title: Soft. Comput. doi: 10.1007/s00500-021-05723-3 – ident: 2441_CR10 – volume: 37 start-page: 529 issue: 3 year: 2013 ident: 2441_CR38 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.2295311 – volume: 36 start-page: 1521 issue: 8 year: 2020 ident: 2441_CR17 publication-title: Vis. Comput. doi: 10.1007/s00371-019-01746-y – volume: 2 start-page: 111 issue: 2 year: 2015 ident: 2441_CR56 publication-title: Int. J. Appl. Pattern Recognit. doi: 10.1504/IJAPR.2015.069540 – volume: 75 start-page: 282 year: 2018 ident: 2441_CR13 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.02.009 – volume: 109 start-page: 209 issue: 3 year: 2014 ident: 2441_CR27 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0722-8 – ident: 2441_CR34 doi: 10.1109/CVPR.2015.7299149 – ident: 2441_CR52 – volume: 24 start-page: 16967 issue: 22 year: 2020 ident: 2441_CR18 publication-title: Soft. Comput. doi: 10.1007/s00500-020-04989-3 – ident: 2441_CR35 doi: 10.1007/s11760-020-01821-1 – ident: 2441_CR40 doi: 10.1007/s11042-021-11379-w – ident: 2441_CR43 – volume: 22 start-page: 1527 issue: 4 year: 2019 ident: 2441_CR30 publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-019-00792-5 – ident: 2441_CR11 – volume: 5 start-page: 8502 year: 2017 ident: 2441_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2695239 – volume: 5 start-page: 398 issue: 6 year: 2011 ident: 2441_CR55 publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2010.0175 – volume: 175 year: 2021 ident: 2441_CR5 publication-title: Measurement doi: 10.1016/j.measurement.2021.109104 – volume: 27 start-page: 806 issue: 2 year: 2017 ident: 2441_CR12 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2766446 – ident: 2441_CR44 doi: 10.1109/ICASSP.2014.6854992 – ident: 2441_CR31 doi: 10.1109/ICCSS.2017.8091400 – ident: 2441_CR53 – ident: 2441_CR15 doi: 10.1109/ICIP.2010.5652363 – ident: 2441_CR37 doi: 10.1109/ICCV.2017.566 |
SSID | ssj0017749 |
Score | 2.3550239 |
Snippet | The Convolutional Sparse Coding (CSC) model has recently attracted a lot of attention in the signal and image processing communities. Since, in traditional... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1731 |
SubjectTerms | Algorithms Artificial Intelligence Classification Coding Computer Graphics Computer Science Image classification Image processing Image Processing and Computer Vision Image reconstruction Methods Original Article Training |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vehBfGK1yh68abC7m2yTk6hYqmARsdDbsplkQdC2ttXf7yTNtirYc5I5fMnMN0nmAXCmeckLlUhWEFkyjgqZTlTMtBGptopza11y8mMv6_b5w0AMwoPbNIRVVjbRG2ozQvdGfkkC6CgRebeuxh_MdY1yv6uhhcY61MkES7p81W_uek_Pi38Ecm68AxzTXcnlfIa0GZ8856vVMRfNTjzFYxb_pqalv_nni9QzT2cbtoLLGF3P93gH1uxwFzZ_FBLcA37_TnYhQucKu9gfD3f09VpELqo8nC6SQeZjMqV5I8dY-9Dv3L3cdlnoh8CQFGXGjDCuP4uS2DKkZiWmlrcRtUAtrUysaWe2EKXGlkSJqShTmmeIflJVisIk6QHUhqOhPYSotFZqmZWWkCEtRq2UTWhVyiVPrMgaEFdQ5BiKhbueFW_5osyxhy8n-HIPXx434HyxZjwvlbFydrNCOA9qM82Xm9yAiwr15fD_0o5WSzuGDdcmfh6o2ITabPJpT8iZmOnTcGK-AdqtxJM priority: 102 providerName: ProQuest |
Title | Image classification via convolutional sparse coding |
URI | https://link.springer.com/article/10.1007/s00371-022-02441-1 https://www.proquest.com/docview/2917934410 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60vejBR1Ws1rIHbxro7ibb5FilDxWLiIV6WjaPBUFbaau_30ma3aqo4CmHTObwZV4h8wA4lTSnmYg4ydBZEqqEIjISIZGaxdIISo2xxcm3w2QwotdjNvZFYfMi2734knSWuix2c93liM0-R79CQ4Jvniqzb3eU4lHUKf8OMKBxQW-I7yNb5-lLZX7m8dUdrWLMb9-iztv0dmDLh4lBZ3mvu7BmJjXYLkYwBF4ja7D5qZ_gHtCrFzQPgbIRsU0BcqgH709ZYJPLvZAhW7QisznSTa3j2odRr_twOSB-LAJRqC8Lopm2Y1oEVy2N2par2NC2UpIpyQ2PjG4nJmO5VC2uuIpZHiOdRi8Ui5xlOooPoDKZTswhBLkxXPIkNwgWKrOSQpgIT8WU08iwpA5hgU6qfM9wO7riOS27HTtEU0Q0dYimYR3OyjOvy44Zf1I3CtBTrz3zFIUFzQbut-pwXlzEavt3bkf_Iz-GDTs9fpm_2IDKYvZmTjDGWMgmrPNevwnVTv_xpovrRXd4d990gvYBdlHKWA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5VZQAGxFMUCmSACSya2EntASEElJY-plbqFmLHkZCgLW0B8af4jZydpAUk2DrnfMPnz3fn-B4Ax5IlLBIeJxE6S8KUUER6wiUy9qnUgjGtTXFyuxPUe-y-7_cL8JnXwpi0ytwmWkMdD5X5R36OCpBK6Lwrl6MXYqZGmdfVfIRGSoum_njHK9vkonGD-3viebXb7nWdZFMFiEK6TUnsx2bKieCqEiNZE0U1qyolfSW55p6Oq4GO_ESqCldcUT-hKBejEaci8aPYNDpAk7_EKBXmRPHa3ezVAkMpG267eDMzFaZZkY4t1bO98YjJnUevyFzi_nSE8-j214Os9XO1dVjLAlTnKmXUBhT0YBNWv7Ut3ALWeEYr5CgTeJtMI7u5zttj5Jgc9ozLqAON1XiCckPjH7ehtxCcdqA4GA70LjiJ1lzyINGIDNoMJYXQHq6ijDNP-0EJ3ByKUGWtyc2EjKdw1lTZwhcifKGFL3RLcDpbM0obc_wrXc4RDrNDOgnnlCrBWY76_PPf2vb-13YEy_VuuxW2Gp3mPqyYAfVpimQZitPxqz7AMGYqDy13HHhYNFm_AIJsAao |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSgMxMEgF0YOPqlitugdvGtrdTbbJsail9VE8WOgtbF4g6La0q9_vJLvbVlHBcyYDmXeYF0IXkliS8ojhFJwlJoorLCMeYqlpLA0nxBjXnPw4TPojcjem45Uufl_tXqUki54GN6Upy1tTbVuLxjc_aQ67SnTwMSTE8P9ZB3McOrkeRd1FHgGCGx8Ah_BXcj2fZdvMzzi-uqZlvPktReo9T28XbZchY9AteLyH1kxWRzvVOoag1M462lqZLbiPyOANTEWgXHTsyoE8B4KPlzRwhealwAFasCizOcBNnBM7QKPe7fN1H5crErCCx-ZYU-1WtnCm2ho0z6rYkI5SkirJDIuM7iQmpVaqNlNMxdTGAKfBI8Xc0lRH8SGqZZPMHKHAGsMkS6wBYoFiK8m5ieBWTBiJDE0aKKyoI1Q5P9ytsXgVi8nHnqICKCo8RUXYQJeLO9Niesaf0M2K6KLUpLkAwQETAuftBrqqGLE8_h3b8f_Az9HG001PPAyG9ydo0y2VL8oam6iWz97NKYQeuTzz0vUJvuTNcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+classification+via+convolutional+sparse+coding&rft.jtitle=The+Visual+computer&rft.au=Nozaripour%2C+Ali&rft.au=Soltanizadeh%2C+Hadi&rft.date=2023-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=39&rft.issue=5&rft.spage=1731&rft.epage=1744&rft_id=info:doi/10.1007%2Fs00371-022-02441-1&rft.externalDocID=10_1007_s00371_022_02441_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |