The Nano-Based Catalyst for the Synthesis of Benzimidazoles
The properties of benzimidazole and its derivatives have been studied over more than one hundred years. The benzimidazole ring is an important pharmacophore in modern drug discovery. Benzimidazole-based compounds possess potential application as medicinal drugs, presently; more than 20 drugs are ava...
Saved in:
Published in | Topics in catalysis Vol. 68; no. 13; pp. 1449 - 1469 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The properties of benzimidazole and its derivatives have been studied over more than one hundred years. The benzimidazole ring is an important pharmacophore in modern drug discovery. Benzimidazole-based compounds possess potential application as medicinal drugs, presently; more than 20 drugs are available for the treatment of different diseases. Also, this motif is considered as privileged structure in medicinal chemistry because of its wide range of biological activities viz., antibacterial, antifungal, anticonvulsant, anti-tubercular, anti-HIV, anti-diabetic, anti-oxidant, anticancer, anti-inflammatory, analgesic antileishmanial, and antihistaminic agents etc. Owing to the diverse therapeutic applications, the incorporation of benzimidazole nucleus has become a field of high interest to organic and medicinal chemists. The various key starting materials (KSMs) utilized includes, aromatic and heteroaromatic 2-nitro-amines, phenylenediamine, carboxylic acids or its derivatives. However, these classical methods suffer from demerits such as, low atom economy, the formation of by-products, harsh reaction conditions, extended reaction period, expensive catalysts, and unsatisfactory yield of products as well as toxic solvents. Hence, the chemists have their attention towards developing synthetic processes primarily based on the set of principles of green chemistry. In this context, many efficient methods were developed for the synthesis of benzimidazole using the nanocatalyst or nanostructures. In this review, special emphasis has been given to discuss the “green” synthetic techniques adopted for the preparation of functionalized benzimidazole congeners as well as key mechanistic considerations and future outlook in this area. In this review, the literature up to the November 2021 in which very recently reported synthetic routes to access benzimidazole scaffolds are discussed. We are focused on, in particular, the synthetic methodologies/routes to construct 2-substituted/1,2-disubstituted benzimidazole or benzimidalones via various protocols involving condensation, cyclization, metal-free conditions, solvent-free conditions, and using nanocatalyst. This review will further aid the researcher to in developing more efficient and facile methods for the synthesis of benzimidazoles and associated hybrids.
Graphical Abstract
In this review, special emphasis has been given to discuss the “green” synthetic techniques adopted for the preparation of functionalized benzimidazole congeners as well as key mechanistic considerations and future outlook in this area. In this review, the literature up to the November 2021, in which very recently reported synthetic routes to access benzimidazole scaffolds are discussed. In particular, the synthetic methodologies/routes to construct 2-substituted/1,2-disubstituted benzimidazole or benzimidalones via various protocols involving condensation, cyclization, metal-free, solvent-free, and using nanocatalyst. This review will further aid the researcher in developing more efficient and facile methods for the synthesis of benzimidazoles and associated hybrids. |
---|---|
AbstractList | The properties of benzimidazole and its derivatives have been studied over more than one hundred years. The benzimidazole ring is an important pharmacophore in modern drug discovery. Benzimidazole-based compounds possess potential application as medicinal drugs, presently; more than 20 drugs are available for the treatment of different diseases. Also, this motif is considered as privileged structure in medicinal chemistry because of its wide range of biological activities viz., antibacterial, antifungal, anticonvulsant, anti-tubercular, anti-HIV, anti-diabetic, anti-oxidant, anticancer, anti-inflammatory, analgesic antileishmanial, and antihistaminic agents etc. Owing to the diverse therapeutic applications, the incorporation of benzimidazole nucleus has become a field of high interest to organic and medicinal chemists. The various key starting materials (KSMs) utilized includes, aromatic and heteroaromatic 2-nitro-amines, phenylenediamine, carboxylic acids or its derivatives. However, these classical methods suffer from demerits such as, low atom economy, the formation of by-products, harsh reaction conditions, extended reaction period, expensive catalysts, and unsatisfactory yield of products as well as toxic solvents. Hence, the chemists have their attention towards developing synthetic processes primarily based on the set of principles of green chemistry. In this context, many efficient methods were developed for the synthesis of benzimidazole using the nanocatalyst or nanostructures. In this review, special emphasis has been given to discuss the “green” synthetic techniques adopted for the preparation of functionalized benzimidazole congeners as well as key mechanistic considerations and future outlook in this area. In this review, the literature up to the November 2021 in which very recently reported synthetic routes to access benzimidazole scaffolds are discussed. We are focused on, in particular, the synthetic methodologies/routes to construct 2-substituted/1,2-disubstituted benzimidazole or benzimidalones via various protocols involving condensation, cyclization, metal-free conditions, solvent-free conditions, and using nanocatalyst. This review will further aid the researcher to in developing more efficient and facile methods for the synthesis of benzimidazoles and associated hybrids.
Graphical Abstract
In this review, special emphasis has been given to discuss the “green” synthetic techniques adopted for the preparation of functionalized benzimidazole congeners as well as key mechanistic considerations and future outlook in this area. In this review, the literature up to the November 2021, in which very recently reported synthetic routes to access benzimidazole scaffolds are discussed. In particular, the synthetic methodologies/routes to construct 2-substituted/1,2-disubstituted benzimidazole or benzimidalones via various protocols involving condensation, cyclization, metal-free, solvent-free, and using nanocatalyst. This review will further aid the researcher in developing more efficient and facile methods for the synthesis of benzimidazoles and associated hybrids. The properties of benzimidazole and its derivatives have been studied over more than one hundred years. The benzimidazole ring is an important pharmacophore in modern drug discovery. Benzimidazole-based compounds possess potential application as medicinal drugs, presently; more than 20 drugs are available for the treatment of different diseases. Also, this motif is considered as privileged structure in medicinal chemistry because of its wide range of biological activities viz., antibacterial, antifungal, anticonvulsant, anti-tubercular, anti-HIV, anti-diabetic, anti-oxidant, anticancer, anti-inflammatory, analgesic antileishmanial, and antihistaminic agents etc. Owing to the diverse therapeutic applications, the incorporation of benzimidazole nucleus has become a field of high interest to organic and medicinal chemists. The various key starting materials (KSMs) utilized includes, aromatic and heteroaromatic 2-nitro-amines, phenylenediamine, carboxylic acids or its derivatives. However, these classical methods suffer from demerits such as, low atom economy, the formation of by-products, harsh reaction conditions, extended reaction period, expensive catalysts, and unsatisfactory yield of products as well as toxic solvents. Hence, the chemists have their attention towards developing synthetic processes primarily based on the set of principles of green chemistry. In this context, many efficient methods were developed for the synthesis of benzimidazole using the nanocatalyst or nanostructures. In this review, special emphasis has been given to discuss the “green” synthetic techniques adopted for the preparation of functionalized benzimidazole congeners as well as key mechanistic considerations and future outlook in this area. In this review, the literature up to the November 2021 in which very recently reported synthetic routes to access benzimidazole scaffolds are discussed. We are focused on, in particular, the synthetic methodologies/routes to construct 2-substituted/1,2-disubstituted benzimidazole or benzimidalones via various protocols involving condensation, cyclization, metal-free conditions, solvent-free conditions, and using nanocatalyst. This review will further aid the researcher to in developing more efficient and facile methods for the synthesis of benzimidazoles and associated hybrids.In this review, special emphasis has been given to discuss the “green” synthetic techniques adopted for the preparation of functionalized benzimidazole congeners as well as key mechanistic considerations and future outlook in this area. In this review, the literature up to the November 2021, in which very recently reported synthetic routes to access benzimidazole scaffolds are discussed. In particular, the synthetic methodologies/routes to construct 2-substituted/1,2-disubstituted benzimidazole or benzimidalones via various protocols involving condensation, cyclization, metal-free, solvent-free, and using nanocatalyst. This review will further aid the researcher in developing more efficient and facile methods for the synthesis of benzimidazoles and associated hybrids. |
Author | Kendrekar, Pravin Sasidhar, B. S. Keri, Rangappa S. Adimule, Vinayak |
Author_xml | – sequence: 1 givenname: Rangappa S. surname: Keri fullname: Keri, Rangappa S. email: keriphd@gmail.com, sk.rangappa@jainuniversity.ac.in organization: Organic and Medicinal Chemistry Laboratory, Centre for Nano and Material Sciences, Jain University – sequence: 2 givenname: Vinayak surname: Adimule fullname: Adimule, Vinayak organization: Angadi Institute of Technology and Management (AITM) – sequence: 3 givenname: Pravin surname: Kendrekar fullname: Kendrekar, Pravin email: kkpravin@gmail.com, kendrekarps@gmail.com organization: Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire – sequence: 4 givenname: B. S. surname: Sasidhar fullname: Sasidhar, B. S. organization: Academy of Scientific and Innovative Research (AcSIR), Organic Chemistry Section, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research (CSIR)–National Institute for Interdisciplinary Science and Technology (NIIST) |
BookMark | eNp9kEtLQzEQhYNUsK3-AVcXXEfzvA9c2eILii6s65Cbm2jKbVKTdNH-elOvILjoZs7AnG9mOBMwct5pAC4xusYIVTcRY8IYRIRAhHmZ6wkYY14R2CBSj3J_GHFO6jMwiXGFEMFV04zB7fJTFy_SeTiTUXfFXCbZ72IqjA9FyrO3ncsSbSy8KWba7e3adnLvex3PwamRfdQXvzoF7w_3y_kTXLw-Ps_vFlBR3CTYcaoUwpg3LTdGMc1pbSRjiipdUtSiTslS0bpTRjWYYcp1bTTDbdWyViFJp-Bq2LsJ_murYxIrvw0unxSUEM4YL3mZXfXgUsHHGLQRyiaZrHcpSNsLjMQhKjFEJXIe4icqgTJK_qGbYNcy7I5DdIBiNrsPHf6-OkJ9AxtAfRw |
CitedBy_id | crossref_primary_10_1038_s41598_025_91607_7 crossref_primary_10_1007_s00289_022_04343_7 crossref_primary_10_1007_s10904_024_03191_4 crossref_primary_10_4028_p_9z8fn0 crossref_primary_10_4028_p_dKORv2 crossref_primary_10_1039_D4RA00775A crossref_primary_10_1080_10406638_2023_2254898 crossref_primary_10_4028_p_h1j61s crossref_primary_10_4028_p_6g8lik crossref_primary_10_4028_p_VW2fCP crossref_primary_10_1021_acs_iecr_3c01920 crossref_primary_10_1080_00397911_2024_2325786 crossref_primary_10_4028_p_20z89t crossref_primary_10_1016_j_scp_2022_100932 crossref_primary_10_4028_p_6jw1f6 crossref_primary_10_1007_s11244_022_01593_7 crossref_primary_10_1021_acsomega_4c07011 crossref_primary_10_4028_p_q47uy2 crossref_primary_10_1007_s11696_023_03235_y crossref_primary_10_4028_p_rff302 crossref_primary_10_1080_28361466_2024_2317385 crossref_primary_10_4028_p_oiprx0 crossref_primary_10_1007_s10854_022_08992_2 |
Cites_doi | 10.1039/D1DT00806D 10.1039/C7NJ00479F 10.1111/cbdd.12462 10.1016/0169-4758(90)90226-T 10.1016/0223-5234(87)90293-5 10.1002/jccs.201700455 10.1039/c3cs35480f 10.1021/cr3002752 10.1039/C3RA47860B 10.1016/S1002-0721(17)60922-0 10.1002/anie.200500766 10.1016/j.molliq.2021.116217 10.1021/jm9706630 10.1016/S0960-894X(00)00619-3 10.1016/j.arabjc.2021.103418 10.1039/c3ra47366j 10.1016/j.ejmech.2021.113921 10.1002/aoc.6330 10.1007/s10562-020-03410-w 10.1002/aoc.3542 10.1016/S0040-4020(00)01158-3 10.1016/j.inoche.2013.06.019 10.1016/j.crci.2016.05.003 10.1039/C8TA09342C 10.1007/s10562-015-1546-z 10.1002/aoc.3934 10.1039/C4RA00559G 10.1039/c4cc01822b 10.1016/S0957-4166(02)00079-4 10.1002/aoc.3400 10.2174/0929867326666190808122929 10.1021/cr500486u 10.3390/molecules16010100 10.1016/j.jmmm.2017.10.125 10.1021/jm00164a054 10.1007/s13738-011-0045-4 10.1021/cr60289a001 10.1016/j.tetlet.2013.09.092 10.3390/ph14070663 10.1007/s11164-017-2924-5 10.1016/j.ejmech.2012.01.009 10.1016/j.apcata.2021.118005 10.2174/138955710793564151 10.2174/1389557520666201102094401 10.1016/j.ejphar.2021.174027 10.1016/j.tetlet.2012.02.021 10.1007/s10562-014-1372-8 10.1016/j.catcom.2021.106349 10.1016/j.rechem.2020.100060 10.1016/j.ejmech.2010.06.012 10.1016/j.cclet.2015.10.011 10.1016/j.dyepig.2018.01.042 10.1039/C6RA14550G 10.1016/j.molstruc.2020.129351 10.2174/1389557517666171101104024 10.1016/j.tetlet.2005.08.143 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11244-022-01562-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1572-9028 |
EndPage | 1469 |
ExternalDocumentID | 10_1007_s11244_022_01562_0 |
GrantInformation_xml | – fundername: Jain University funderid: http://dx.doi.org/10.13039/100009085 |
GroupedDBID | -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX ABRTQ CITATION |
ID | FETCH-LOGICAL-c319t-d53cc01159b5ffc4e538fa44c3ce630b0dca6c38dcfc914135e8fe41b7b4bc0a3 |
IEDL.DBID | U2A |
ISSN | 1022-5528 |
IngestDate | Sat Aug 23 13:08:26 EDT 2025 Sun Aug 03 02:36:56 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Mon Jun 30 02:46:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Nanocatalyst Nanostrutures Synthesis Benzimidazole |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-d53cc01159b5ffc4e538fa44c3ce630b0dca6c38dcfc914135e8fe41b7b4bc0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3225445656 |
PQPubID | 2043828 |
PageCount | 21 |
ParticipantIDs | proquest_journals_3225445656 crossref_citationtrail_10_1007_s11244_022_01562_0 crossref_primary_10_1007_s11244_022_01562_0 springer_journals_10_1007_s11244_022_01562_0 |
PublicationCentury | 2000 |
PublicationDate | 20250700 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 7 year: 2025 text: 20250700 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Topics in catalysis |
PublicationTitleAbbrev | Top Catal |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | MG Dekamin (1562_CR59) 2016; 6 MJ Akhtar (1562_CR29) 2020; 27 A Ziarati (1562_CR58) 2017; 35 CG Gondru (1562_CR6) 2022; 227 F Rajabi (1562_CR48) 2015; 145 H Ghafuri (1562_CR50) 2016; 19 HE Hashem (1562_CR24) 2021; 14 AH Cahyana (1562_CR39) 2018 F Shukla (1562_CR65) 2021; 336 S Shojaee (1562_CR56) 2017; 32 S Choudhary (1562_CR31) 2021; 899 H Zarrinmayeh (1562_CR22) 1998; 41 Z He (1562_CR66) 2021; 151 M Shah Hosseini (1562_CR57) 2018; 35 J Shi (1562_CR27) 2012; 113 B Simone (1562_CR9) 2009; 3 D Yang (1562_CR45) 2014; 4 D Astruc (1562_CR26) 2005; 44 JL Wang (1562_CR16) 2012; 49 RM Borade (1562_CR61) 2021; 59 A Shaabani (1562_CR35) 2017; 31 E Cereda (1562_CR18) 1987; 22 R Veerasamy (1562_CR33) 2021; 14 D Parwani (1562_CR32) 2021; 21 L Tang (1562_CR55) 2014; 50 C Yu (1562_CR43) 2018; 6 R Sireesha (1562_CR7) 2021; 1226 AS Al-Wasidi (1562_CR30) 2021; 64 H Sharghi (1562_CR53) 2012; 9 A Rostami (1562_CR63) 2017; 41 A Maleki (1562_CR37) 2014; 4 GR Bardajee (1562_CR51) 2016; 27 MR Grimmett (1562_CR2) 1997 FK Behbahani (1562_CR47) 2014; 144 KS Jithendra Kumara (1562_CR49) 2018; 451 S Rahimi (1562_CR46) 2020; 2 LB Townsend (1562_CR12) 1990; 6 H Sharghi (1562_CR64) 2021; 2021 VG Navarette (1562_CR10) 2001; 11 C Karami (1562_CR42) 2017; 47 P Yadav (1562_CR40) 2021; 612 AR Katritzky (1562_CR1) 2010 C Pabba (1562_CR14) 2005; 46 MB Gawande (1562_CR25) 2013; 42 N Manjunatha (1562_CR20) 2018; 153 M Pedini (1562_CR8) 1994; 49 BM Sapkal (1562_CR41) 2017; 43 S Kohli (1562_CR62) 2021; 50 VK Vyas (1562_CR34) 2010; 10 P Toro (1562_CR11) 2013; 35 A Figge (1562_CR19) 2002; 13 YC Wang (1562_CR21) 2011; 16 A Mahiuddin (1562_CR4) 2007 T Fonseca (1562_CR13) 2001; 57 P Munnik (1562_CR23) 2015; 115 RS Keri (1562_CR5) 2015; 86 PN Preston (1562_CR3) 1974; 74 Y Bansal (1562_CR28) 2019; 19 WA Denny (1562_CR15) 1990; 33 B Fang (1562_CR17) 2010; 45 R Jamatia (1562_CR38) 2014; 4 K Nikoofar (1562_CR60) 2018; 50 D Azarifar (1562_CR44) 2019; 51 GR Bardajee (1562_CR52) 2016; 30 S Santra (1562_CR36) 2012; 53 R Shelkar (1562_CR54) 2013; 54 |
References_xml | – volume: 50 start-page: 7750 year: 2021 ident: 1562_CR62 publication-title: Dalton Trans doi: 10.1039/D1DT00806D – volume: 41 start-page: 9033 year: 2017 ident: 1562_CR63 publication-title: New J Chem doi: 10.1039/C7NJ00479F – volume: 86 start-page: 19 year: 2015 ident: 1562_CR5 publication-title: Chem Biol Drug Des doi: 10.1111/cbdd.12462 – volume: 6 start-page: 107 year: 1990 ident: 1562_CR12 publication-title: Parasitol Today doi: 10.1016/0169-4758(90)90226-T – volume: 22 start-page: 527 year: 1987 ident: 1562_CR18 publication-title: Eur J Med Chem doi: 10.1016/0223-5234(87)90293-5 – start-page: 87 volume-title: Top heterocycles chemistry year: 2007 ident: 1562_CR4 – volume: 35 start-page: 850 year: 2018 ident: 1562_CR57 publication-title: J Chin Chem Soc doi: 10.1002/jccs.201700455 – volume: 51 start-page: 596 year: 2019 ident: 1562_CR44 publication-title: Bull Chem Commun – volume: 3 start-page: 225 year: 2009 ident: 1562_CR9 publication-title: Arkivoc – volume: 42 start-page: 3371 year: 2013 ident: 1562_CR25 publication-title: Chem Soc Rev doi: 10.1039/c3cs35480f – volume: 113 start-page: 2139 year: 2012 ident: 1562_CR27 publication-title: Chem Rev doi: 10.1021/cr3002752 – volume: 4 start-page: 12826 year: 2014 ident: 1562_CR38 publication-title: RSC Adv doi: 10.1039/C3RA47860B – volume: 35 start-page: 374 year: 2017 ident: 1562_CR58 publication-title: J Rare Earths doi: 10.1016/S1002-0721(17)60922-0 – volume: 44 start-page: 7852 year: 2005 ident: 1562_CR26 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200500766 – volume: 336 start-page: 116217 year: 2021 ident: 1562_CR65 publication-title: J Mol Liq doi: 10.1016/j.molliq.2021.116217 – volume: 41 start-page: 2709 year: 1998 ident: 1562_CR22 publication-title: J Med Chem doi: 10.1021/jm9706630 – volume: 11 start-page: 187 issue: 2 year: 2001 ident: 1562_CR10 publication-title: Bioorg Med Chem doi: 10.1016/S0960-894X(00)00619-3 – volume: 14 start-page: 103418 year: 2021 ident: 1562_CR24 publication-title: Arabian J Chem doi: 10.1016/j.arabjc.2021.103418 – volume: 4 start-page: 9416 year: 2014 ident: 1562_CR37 publication-title: RSC Adv doi: 10.1039/c3ra47366j – volume: 227 start-page: 113921 year: 2022 ident: 1562_CR6 publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2021.113921 – volume: 49 start-page: 823 year: 1994 ident: 1562_CR8 publication-title: Farmaco – volume: 2021 start-page: e6330 year: 2021 ident: 1562_CR64 publication-title: Appl Organomet Chem doi: 10.1002/aoc.6330 – volume: 151 start-page: 1623 year: 2021 ident: 1562_CR66 publication-title: Catal Lett doi: 10.1007/s10562-020-03410-w – volume: 31 start-page: e3542 year: 2017 ident: 1562_CR35 publication-title: Appl Organ Chem doi: 10.1002/aoc.3542 – volume-title: Handbook of heterocyclic chemistry book year: 2010 ident: 1562_CR1 – volume: 57 start-page: 1793 year: 2001 ident: 1562_CR13 publication-title: Tetrahedron doi: 10.1016/S0040-4020(00)01158-3 – volume-title: Imidazole and benzimidazole synthesis year: 1997 ident: 1562_CR2 – volume: 35 start-page: 126 year: 2013 ident: 1562_CR11 publication-title: Inorg Chem Commun doi: 10.1016/j.inoche.2013.06.019 – volume: 47 start-page: 2017 year: 2017 ident: 1562_CR42 publication-title: Inorg Nano-Metal Chem – volume: 19 start-page: 942 year: 2016 ident: 1562_CR50 publication-title: C R Chimie doi: 10.1016/j.crci.2016.05.003 – volume: 6 start-page: 23766 year: 2018 ident: 1562_CR43 publication-title: J Mater Chem A doi: 10.1039/C8TA09342C – volume: 145 start-page: 1566 year: 2015 ident: 1562_CR48 publication-title: Catal Lett doi: 10.1007/s10562-015-1546-z – volume: 32 start-page: e3934 year: 2017 ident: 1562_CR56 publication-title: Appl Organometal Chem doi: 10.1002/aoc.3934 – volume: 64 start-page: 2631 issue: 5 year: 2021 ident: 1562_CR30 publication-title: Egy J Chem – volume: 4 start-page: 17832 year: 2014 ident: 1562_CR45 publication-title: RSC Adv doi: 10.1039/C4RA00559G – volume: 50 start-page: 6145 year: 2014 ident: 1562_CR55 publication-title: Chem Commun doi: 10.1039/c4cc01822b – volume: 50 start-page: 100 year: 2018 ident: 1562_CR60 publication-title: Bull Chem Commun – volume: 13 start-page: 137 year: 2002 ident: 1562_CR19 publication-title: Tetrahedron Asymmetry doi: 10.1016/S0957-4166(02)00079-4 – volume: 30 start-page: 51 year: 2016 ident: 1562_CR52 publication-title: Appl Organometal Chem doi: 10.1002/aoc.3400 – volume: 27 start-page: 5970 issue: 35 year: 2020 ident: 1562_CR29 publication-title: Curr Med Chem doi: 10.2174/0929867326666190808122929 – start-page: 020061 volume-title: Fe3O4 nanoparticles: an ffficient and recyclable catalyst for benzimidazoles synthesis year: 2018 ident: 1562_CR39 – volume: 115 start-page: 6687 year: 2015 ident: 1562_CR23 publication-title: Chem Rev doi: 10.1021/cr500486u – volume: 16 start-page: 100 year: 2011 ident: 1562_CR21 publication-title: Molecules doi: 10.3390/molecules16010100 – volume: 451 start-page: 808 year: 2018 ident: 1562_CR49 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2017.10.125 – volume: 33 start-page: 814 year: 1990 ident: 1562_CR15 publication-title: J Med Chem doi: 10.1021/jm00164a054 – volume: 9 start-page: 189 year: 2012 ident: 1562_CR53 publication-title: J Iran Chem Soc doi: 10.1007/s13738-011-0045-4 – volume: 74 start-page: 279 year: 1974 ident: 1562_CR3 publication-title: Chem Rev doi: 10.1021/cr60289a001 – volume: 54 start-page: 6986 year: 2013 ident: 1562_CR54 publication-title: Tetrahedron Lett doi: 10.1016/j.tetlet.2013.09.092 – volume: 14 start-page: 663 issue: 7 year: 2021 ident: 1562_CR33 publication-title: Pharmaceuticals doi: 10.3390/ph14070663 – volume: 43 start-page: 4967 year: 2017 ident: 1562_CR41 publication-title: Res Chem Intermed doi: 10.1007/s11164-017-2924-5 – volume: 49 start-page: 183 year: 2012 ident: 1562_CR16 publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2012.01.009 – volume: 612 start-page: 115 year: 2021 ident: 1562_CR40 publication-title: Appl Catal A General doi: 10.1016/j.apcata.2021.118005 – volume: 10 start-page: 1366 issue: 14 year: 2010 ident: 1562_CR34 publication-title: MRMC doi: 10.2174/138955710793564151 – volume: 21 start-page: 643 issue: 5 year: 2021 ident: 1562_CR32 publication-title: Mini Rev Med Chem doi: 10.2174/1389557520666201102094401 – volume: 899 start-page: 174027 year: 2021 ident: 1562_CR31 publication-title: Eur J Pharm doi: 10.1016/j.ejphar.2021.174027 – volume: 53 start-page: 1974 year: 2012 ident: 1562_CR36 publication-title: Tetrahedron Lett doi: 10.1016/j.tetlet.2012.02.021 – volume: 144 start-page: 2184 issue: 12 year: 2014 ident: 1562_CR47 publication-title: Catal Lett doi: 10.1007/s10562-014-1372-8 – volume: 59 start-page: 106349 year: 2021 ident: 1562_CR61 publication-title: Cat Comm doi: 10.1016/j.catcom.2021.106349 – volume: 2 start-page: 160 year: 2020 ident: 1562_CR46 publication-title: Results Chem doi: 10.1016/j.rechem.2020.100060 – volume: 45 start-page: 4388 year: 2010 ident: 1562_CR17 publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2010.06.012 – volume: 27 start-page: 265 year: 2016 ident: 1562_CR51 publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2015.10.011 – volume: 153 start-page: 213 year: 2018 ident: 1562_CR20 publication-title: Dyes Pigment doi: 10.1016/j.dyepig.2018.01.042 – volume: 6 start-page: 1 year: 2016 ident: 1562_CR59 publication-title: RSC Adv doi: 10.1039/C6RA14550G – volume: 1226 start-page: 129351 year: 2021 ident: 1562_CR7 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2020.129351 – volume: 19 start-page: 624 issue: 8 year: 2019 ident: 1562_CR28 publication-title: MRMC doi: 10.2174/1389557517666171101104024 – volume: 46 start-page: 7553 year: 2005 ident: 1562_CR14 publication-title: Tetrahedron Lett doi: 10.1016/j.tetlet.2005.08.143 |
SSID | ssj0021799 |
Score | 2.5447927 |
Snippet | The properties of benzimidazole and its derivatives have been studied over more than one hundred years. The benzimidazole ring is an important pharmacophore in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1449 |
SubjectTerms | Access routes Amines Anticonvulsants Carboxylic acids Catalysis Catalysts Characterization and Evaluation of Materials Chemical synthesis Chemistry Chemistry and Materials Science Chemists Condensates Congeners Fungicides Industrial Chemistry/Chemical Engineering Original Paper Oxidizing agents Pharmacy Phenylenediamine Physical Chemistry Scaffolds Solvents Substitutes |
Title | The Nano-Based Catalyst for the Synthesis of Benzimidazoles |
URI | https://link.springer.com/article/10.1007/s11244-022-01562-0 https://www.proquest.com/docview/3225445656 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHWBBPEWhVB7YwFIedpuIqalaKhBdoFKZotixpUqQIhKG9tdz5yaNQIDEEg9xPJzPd59zj4-QS5MKbMqiGWChgPFQSyZ7nmRuEBrQJ5P0LMfSw6Q7nvK7mZiVRWF5le1ehSStpa6L3dAVMcw-x_JfeG6TpsC7O2jx1OtvrlnY48zGOPGaJbygLJX5eY2v7qjGmN_CotbbjPbJXgkTaX-9rwdkS2eHZGdQsbMdkRvYXwqmccEi8EMpHeBvmGVeUAChFEAdfVxmMOTznC4MjXS2mr_O02SF_ZuOyXQ0fBqMWUmEwBSckIKlwlcKsVsohTGKa7BSJuFc-Up3fUc6qUq6yg9SZVToglsSOjCau7InuVRO4p-QRrbI9CmhYPwSX2IijOjyVCAFVSiR1g9cf6KCoEXcSh6xKruEI1nFS1z3N0YZxiDD2MowdlrkavPN27pHxp-z25WY4_K85DGaFW7BZYtcV6KvX_--2tn_pp-TXQ8JfG2-bZs0ivcPfQGoopAd0uyPomiC4-3z_bBjleoTObzCrw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDGVBfIpCAQ9sYClpnNQRU1tRFWi70ErdotixpUqQIhKG9tdz5yaNQIDEkgyxPZztu-f47j1Crk3iIymLZoCFBOOhlky2W5K5IjSwnkzcthpLo3EwmPLHmT8risKyMtu9vJK0nroqdsNQxDD7HMt_4blNdgAMCEzkmrY6m2MWcpzZO048ZvktUZTK_DzG13BUYcxv16I22vT3yV4BE2lnPa8HZEunh6TeK9XZjsgdzC8F17hgXYhDCe3hb5hlllMAoRRAHX1epvDK5hldGNrV6Wr-Ok_iFfI3HZNp_37SG7BCCIEp2CE5S3xPKcRuofSNUVyDlzIx58pTOvAc6SQqDpQnEmVU6EJY8rUwmruyLblUTuydkFq6SPUpoeD8Yk9iIowf8MRHCapQoqwfhP5YCdEgbmmPSBUs4ShW8RJV_MZowwhsGFkbRk6D3Gz6vK05Mv5s3SzNHBX7JYvQrXALLhvktjR99fn30c7-1_yK1AeT0TAaPoyfzsluC8V8be5tk9Ty9w99AQgjl5d2QX0CV-HCkg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gnoRn1itugdvupjHJk3w1FZLfRVBC72F7AsKmhYTD-2vdyZNGhUVvCSHbBby7Wbm292Zbwg5NcpDURbNgAsFjIdaMNF0BLOD0MB8MnEzr7H00Pd7A3479IafsvjzaPfySHKe04AqTUl2MVHmokp8Q7fEMBIdU4HhukxWwBzbOK8HTmux5EK9s_y8E5dcnhMUaTM_9_HVNVV889sRae55uptko6CMtDUf4y2ypJNtstYpK7XtkEsYawpmcsza4JMU7eCWzDTNKBBSCgSPPk0TuKWjlI4NbetkNnodqXiGWk67ZNC9fu70WFEUgUn4vIwpz5USeVwoPGMk12CxTMy5dKX2XUtYSsa-dAMljQxtwMTTgdHcFk3BhbRid4_UknGi9wkFQxi7AoNiPJ8rD8tRhQJL_AENiGUQ1Ild4hHJQjEcC1e8RJXWMWIYAYZRjmFk1cnZ4p3JXC_jz9aNEuao-HfSCE0Mz4lmnZyX0FePf-_t4H_NT8jq41U3ur_p3x2SdQfr-uZhuA1Sy97e9RGQjUwc5_PpAxRTxs4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Nano-Based+Catalyst+for+the+Synthesis+of+Benzimidazoles&rft.jtitle=Topics+in+catalysis&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1022-5528&rft.eissn=1572-9028&rft.volume=68&rft.issue=13&rft.spage=1449&rft.epage=1469&rft_id=info:doi/10.1007%2Fs11244-022-01562-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon |