The Nano-Based Catalyst for the Synthesis of Benzimidazoles

The properties of benzimidazole and its derivatives have been studied over more than one hundred years. The benzimidazole ring is an important pharmacophore in modern drug discovery. Benzimidazole-based compounds possess potential application as medicinal drugs, presently; more than 20 drugs are ava...

Full description

Saved in:
Bibliographic Details
Published inTopics in catalysis Vol. 68; no. 13; pp. 1449 - 1469
Main Authors Keri, Rangappa S., Adimule, Vinayak, Kendrekar, Pravin, Sasidhar, B. S.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The properties of benzimidazole and its derivatives have been studied over more than one hundred years. The benzimidazole ring is an important pharmacophore in modern drug discovery. Benzimidazole-based compounds possess potential application as medicinal drugs, presently; more than 20 drugs are available for the treatment of different diseases. Also, this motif is considered as privileged structure in medicinal chemistry because of its wide range of biological activities viz., antibacterial, antifungal, anticonvulsant, anti-tubercular, anti-HIV, anti-diabetic, anti-oxidant, anticancer, anti-inflammatory, analgesic antileishmanial, and antihistaminic agents etc. Owing to the diverse therapeutic applications, the incorporation of benzimidazole nucleus has become a field of high interest to organic and medicinal chemists. The various key starting materials (KSMs) utilized includes, aromatic and heteroaromatic 2-nitro-amines, phenylenediamine, carboxylic acids or its derivatives. However, these classical methods suffer from demerits such as, low atom economy, the formation of by-products, harsh reaction conditions, extended reaction period, expensive catalysts, and unsatisfactory yield of products as well as toxic solvents. Hence, the chemists have their attention towards developing synthetic processes primarily based on the set of principles of green chemistry. In this context, many efficient methods were developed for the synthesis of benzimidazole using the nanocatalyst or nanostructures. In this review, special emphasis has been given to discuss the “green” synthetic techniques adopted for the preparation of functionalized benzimidazole congeners as well as key mechanistic considerations and future outlook in this area. In this review, the literature up to the November 2021 in which very recently reported synthetic routes to access benzimidazole scaffolds are discussed. We are focused on, in particular, the synthetic methodologies/routes to construct 2-substituted/1,2-disubstituted benzimidazole or benzimidalones via various protocols involving condensation, cyclization, metal-free conditions, solvent-free conditions, and using nanocatalyst. This review will further aid the researcher to in developing more efficient and facile methods for the synthesis of benzimidazoles and associated hybrids. Graphical Abstract In this review, special emphasis has been given to discuss the “green” synthetic techniques adopted for the preparation of functionalized benzimidazole congeners as well as key mechanistic considerations and future outlook in this area. In this review, the literature up to the November 2021, in which very recently reported synthetic routes to access benzimidazole scaffolds are discussed. In particular, the synthetic methodologies/routes to construct 2-substituted/1,2-disubstituted benzimidazole or benzimidalones via various protocols involving condensation, cyclization, metal-free, solvent-free, and using nanocatalyst. This review will further aid the researcher in developing more efficient and facile methods for the synthesis of benzimidazoles and associated hybrids.
AbstractList The properties of benzimidazole and its derivatives have been studied over more than one hundred years. The benzimidazole ring is an important pharmacophore in modern drug discovery. Benzimidazole-based compounds possess potential application as medicinal drugs, presently; more than 20 drugs are available for the treatment of different diseases. Also, this motif is considered as privileged structure in medicinal chemistry because of its wide range of biological activities viz., antibacterial, antifungal, anticonvulsant, anti-tubercular, anti-HIV, anti-diabetic, anti-oxidant, anticancer, anti-inflammatory, analgesic antileishmanial, and antihistaminic agents etc. Owing to the diverse therapeutic applications, the incorporation of benzimidazole nucleus has become a field of high interest to organic and medicinal chemists. The various key starting materials (KSMs) utilized includes, aromatic and heteroaromatic 2-nitro-amines, phenylenediamine, carboxylic acids or its derivatives. However, these classical methods suffer from demerits such as, low atom economy, the formation of by-products, harsh reaction conditions, extended reaction period, expensive catalysts, and unsatisfactory yield of products as well as toxic solvents. Hence, the chemists have their attention towards developing synthetic processes primarily based on the set of principles of green chemistry. In this context, many efficient methods were developed for the synthesis of benzimidazole using the nanocatalyst or nanostructures. In this review, special emphasis has been given to discuss the “green” synthetic techniques adopted for the preparation of functionalized benzimidazole congeners as well as key mechanistic considerations and future outlook in this area. In this review, the literature up to the November 2021 in which very recently reported synthetic routes to access benzimidazole scaffolds are discussed. We are focused on, in particular, the synthetic methodologies/routes to construct 2-substituted/1,2-disubstituted benzimidazole or benzimidalones via various protocols involving condensation, cyclization, metal-free conditions, solvent-free conditions, and using nanocatalyst. This review will further aid the researcher to in developing more efficient and facile methods for the synthesis of benzimidazoles and associated hybrids. Graphical Abstract In this review, special emphasis has been given to discuss the “green” synthetic techniques adopted for the preparation of functionalized benzimidazole congeners as well as key mechanistic considerations and future outlook in this area. In this review, the literature up to the November 2021, in which very recently reported synthetic routes to access benzimidazole scaffolds are discussed. In particular, the synthetic methodologies/routes to construct 2-substituted/1,2-disubstituted benzimidazole or benzimidalones via various protocols involving condensation, cyclization, metal-free, solvent-free, and using nanocatalyst. This review will further aid the researcher in developing more efficient and facile methods for the synthesis of benzimidazoles and associated hybrids.
The properties of benzimidazole and its derivatives have been studied over more than one hundred years. The benzimidazole ring is an important pharmacophore in modern drug discovery. Benzimidazole-based compounds possess potential application as medicinal drugs, presently; more than 20 drugs are available for the treatment of different diseases. Also, this motif is considered as privileged structure in medicinal chemistry because of its wide range of biological activities viz., antibacterial, antifungal, anticonvulsant, anti-tubercular, anti-HIV, anti-diabetic, anti-oxidant, anticancer, anti-inflammatory, analgesic antileishmanial, and antihistaminic agents etc. Owing to the diverse therapeutic applications, the incorporation of benzimidazole nucleus has become a field of high interest to organic and medicinal chemists. The various key starting materials (KSMs) utilized includes, aromatic and heteroaromatic 2-nitro-amines, phenylenediamine, carboxylic acids or its derivatives. However, these classical methods suffer from demerits such as, low atom economy, the formation of by-products, harsh reaction conditions, extended reaction period, expensive catalysts, and unsatisfactory yield of products as well as toxic solvents. Hence, the chemists have their attention towards developing synthetic processes primarily based on the set of principles of green chemistry. In this context, many efficient methods were developed for the synthesis of benzimidazole using the nanocatalyst or nanostructures. In this review, special emphasis has been given to discuss the “green” synthetic techniques adopted for the preparation of functionalized benzimidazole congeners as well as key mechanistic considerations and future outlook in this area. In this review, the literature up to the November 2021 in which very recently reported synthetic routes to access benzimidazole scaffolds are discussed. We are focused on, in particular, the synthetic methodologies/routes to construct 2-substituted/1,2-disubstituted benzimidazole or benzimidalones via various protocols involving condensation, cyclization, metal-free conditions, solvent-free conditions, and using nanocatalyst. This review will further aid the researcher to in developing more efficient and facile methods for the synthesis of benzimidazoles and associated hybrids.In this review, special emphasis has been given to discuss the “green” synthetic techniques adopted for the preparation of functionalized benzimidazole congeners as well as key mechanistic considerations and future outlook in this area. In this review, the literature up to the November 2021, in which very recently reported synthetic routes to access benzimidazole scaffolds are discussed. In particular, the synthetic methodologies/routes to construct 2-substituted/1,2-disubstituted benzimidazole or benzimidalones via various protocols involving condensation, cyclization, metal-free, solvent-free, and using nanocatalyst. This review will further aid the researcher in developing more efficient and facile methods for the synthesis of benzimidazoles and associated hybrids.
Author Kendrekar, Pravin
Sasidhar, B. S.
Keri, Rangappa S.
Adimule, Vinayak
Author_xml – sequence: 1
  givenname: Rangappa S.
  surname: Keri
  fullname: Keri, Rangappa S.
  email: keriphd@gmail.com, sk.rangappa@jainuniversity.ac.in
  organization: Organic and Medicinal Chemistry Laboratory, Centre for Nano and Material Sciences, Jain University
– sequence: 2
  givenname: Vinayak
  surname: Adimule
  fullname: Adimule, Vinayak
  organization: Angadi Institute of Technology and Management (AITM)
– sequence: 3
  givenname: Pravin
  surname: Kendrekar
  fullname: Kendrekar, Pravin
  email: kkpravin@gmail.com, kendrekarps@gmail.com
  organization: Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire
– sequence: 4
  givenname: B. S.
  surname: Sasidhar
  fullname: Sasidhar, B. S.
  organization: Academy of Scientific and Innovative Research (AcSIR), Organic Chemistry Section, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research (CSIR)–National Institute for Interdisciplinary Science and Technology (NIIST)
BookMark eNp9kEtLQzEQhYNUsK3-AVcXXEfzvA9c2eILii6s65Cbm2jKbVKTdNH-elOvILjoZs7AnG9mOBMwct5pAC4xusYIVTcRY8IYRIRAhHmZ6wkYY14R2CBSj3J_GHFO6jMwiXGFEMFV04zB7fJTFy_SeTiTUXfFXCbZ72IqjA9FyrO3ncsSbSy8KWba7e3adnLvex3PwamRfdQXvzoF7w_3y_kTXLw-Ps_vFlBR3CTYcaoUwpg3LTdGMc1pbSRjiipdUtSiTslS0bpTRjWYYcp1bTTDbdWyViFJp-Bq2LsJ_murYxIrvw0unxSUEM4YL3mZXfXgUsHHGLQRyiaZrHcpSNsLjMQhKjFEJXIe4icqgTJK_qGbYNcy7I5DdIBiNrsPHf6-OkJ9AxtAfRw
CitedBy_id crossref_primary_10_1038_s41598_025_91607_7
crossref_primary_10_1007_s00289_022_04343_7
crossref_primary_10_1007_s10904_024_03191_4
crossref_primary_10_4028_p_9z8fn0
crossref_primary_10_4028_p_dKORv2
crossref_primary_10_1039_D4RA00775A
crossref_primary_10_1080_10406638_2023_2254898
crossref_primary_10_4028_p_h1j61s
crossref_primary_10_4028_p_6g8lik
crossref_primary_10_4028_p_VW2fCP
crossref_primary_10_1021_acs_iecr_3c01920
crossref_primary_10_1080_00397911_2024_2325786
crossref_primary_10_4028_p_20z89t
crossref_primary_10_1016_j_scp_2022_100932
crossref_primary_10_4028_p_6jw1f6
crossref_primary_10_1007_s11244_022_01593_7
crossref_primary_10_1021_acsomega_4c07011
crossref_primary_10_4028_p_q47uy2
crossref_primary_10_1007_s11696_023_03235_y
crossref_primary_10_4028_p_rff302
crossref_primary_10_1080_28361466_2024_2317385
crossref_primary_10_4028_p_oiprx0
crossref_primary_10_1007_s10854_022_08992_2
Cites_doi 10.1039/D1DT00806D
10.1039/C7NJ00479F
10.1111/cbdd.12462
10.1016/0169-4758(90)90226-T
10.1016/0223-5234(87)90293-5
10.1002/jccs.201700455
10.1039/c3cs35480f
10.1021/cr3002752
10.1039/C3RA47860B
10.1016/S1002-0721(17)60922-0
10.1002/anie.200500766
10.1016/j.molliq.2021.116217
10.1021/jm9706630
10.1016/S0960-894X(00)00619-3
10.1016/j.arabjc.2021.103418
10.1039/c3ra47366j
10.1016/j.ejmech.2021.113921
10.1002/aoc.6330
10.1007/s10562-020-03410-w
10.1002/aoc.3542
10.1016/S0040-4020(00)01158-3
10.1016/j.inoche.2013.06.019
10.1016/j.crci.2016.05.003
10.1039/C8TA09342C
10.1007/s10562-015-1546-z
10.1002/aoc.3934
10.1039/C4RA00559G
10.1039/c4cc01822b
10.1016/S0957-4166(02)00079-4
10.1002/aoc.3400
10.2174/0929867326666190808122929
10.1021/cr500486u
10.3390/molecules16010100
10.1016/j.jmmm.2017.10.125
10.1021/jm00164a054
10.1007/s13738-011-0045-4
10.1021/cr60289a001
10.1016/j.tetlet.2013.09.092
10.3390/ph14070663
10.1007/s11164-017-2924-5
10.1016/j.ejmech.2012.01.009
10.1016/j.apcata.2021.118005
10.2174/138955710793564151
10.2174/1389557520666201102094401
10.1016/j.ejphar.2021.174027
10.1016/j.tetlet.2012.02.021
10.1007/s10562-014-1372-8
10.1016/j.catcom.2021.106349
10.1016/j.rechem.2020.100060
10.1016/j.ejmech.2010.06.012
10.1016/j.cclet.2015.10.011
10.1016/j.dyepig.2018.01.042
10.1039/C6RA14550G
10.1016/j.molstruc.2020.129351
10.2174/1389557517666171101104024
10.1016/j.tetlet.2005.08.143
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s11244-022-01562-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1572-9028
EndPage 1469
ExternalDocumentID 10_1007_s11244_022_01562_0
GrantInformation_xml – fundername: Jain University
  funderid: http://dx.doi.org/10.13039/100009085
GroupedDBID -Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
ABRTQ
CITATION
ID FETCH-LOGICAL-c319t-d53cc01159b5ffc4e538fa44c3ce630b0dca6c38dcfc914135e8fe41b7b4bc0a3
IEDL.DBID U2A
ISSN 1022-5528
IngestDate Sat Aug 23 13:08:26 EDT 2025
Sun Aug 03 02:36:56 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Mon Jun 30 02:46:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Nanocatalyst
Nanostrutures
Synthesis
Benzimidazole
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d53cc01159b5ffc4e538fa44c3ce630b0dca6c38dcfc914135e8fe41b7b4bc0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3225445656
PQPubID 2043828
PageCount 21
ParticipantIDs proquest_journals_3225445656
crossref_citationtrail_10_1007_s11244_022_01562_0
crossref_primary_10_1007_s11244_022_01562_0
springer_journals_10_1007_s11244_022_01562_0
PublicationCentury 2000
PublicationDate 20250700
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Topics in catalysis
PublicationTitleAbbrev Top Catal
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References MG Dekamin (1562_CR59) 2016; 6
MJ Akhtar (1562_CR29) 2020; 27
A Ziarati (1562_CR58) 2017; 35
CG Gondru (1562_CR6) 2022; 227
F Rajabi (1562_CR48) 2015; 145
H Ghafuri (1562_CR50) 2016; 19
HE Hashem (1562_CR24) 2021; 14
AH Cahyana (1562_CR39) 2018
F Shukla (1562_CR65) 2021; 336
S Shojaee (1562_CR56) 2017; 32
S Choudhary (1562_CR31) 2021; 899
H Zarrinmayeh (1562_CR22) 1998; 41
Z He (1562_CR66) 2021; 151
M Shah Hosseini (1562_CR57) 2018; 35
J Shi (1562_CR27) 2012; 113
B Simone (1562_CR9) 2009; 3
D Yang (1562_CR45) 2014; 4
D Astruc (1562_CR26) 2005; 44
JL Wang (1562_CR16) 2012; 49
RM Borade (1562_CR61) 2021; 59
A Shaabani (1562_CR35) 2017; 31
E Cereda (1562_CR18) 1987; 22
R Veerasamy (1562_CR33) 2021; 14
D Parwani (1562_CR32) 2021; 21
L Tang (1562_CR55) 2014; 50
C Yu (1562_CR43) 2018; 6
R Sireesha (1562_CR7) 2021; 1226
AS Al-Wasidi (1562_CR30) 2021; 64
H Sharghi (1562_CR53) 2012; 9
A Rostami (1562_CR63) 2017; 41
A Maleki (1562_CR37) 2014; 4
GR Bardajee (1562_CR51) 2016; 27
MR Grimmett (1562_CR2) 1997
FK Behbahani (1562_CR47) 2014; 144
KS Jithendra Kumara (1562_CR49) 2018; 451
S Rahimi (1562_CR46) 2020; 2
LB Townsend (1562_CR12) 1990; 6
H Sharghi (1562_CR64) 2021; 2021
VG Navarette (1562_CR10) 2001; 11
C Karami (1562_CR42) 2017; 47
P Yadav (1562_CR40) 2021; 612
AR Katritzky (1562_CR1) 2010
C Pabba (1562_CR14) 2005; 46
MB Gawande (1562_CR25) 2013; 42
N Manjunatha (1562_CR20) 2018; 153
M Pedini (1562_CR8) 1994; 49
BM Sapkal (1562_CR41) 2017; 43
S Kohli (1562_CR62) 2021; 50
VK Vyas (1562_CR34) 2010; 10
P Toro (1562_CR11) 2013; 35
A Figge (1562_CR19) 2002; 13
YC Wang (1562_CR21) 2011; 16
A Mahiuddin (1562_CR4) 2007
T Fonseca (1562_CR13) 2001; 57
P Munnik (1562_CR23) 2015; 115
RS Keri (1562_CR5) 2015; 86
PN Preston (1562_CR3) 1974; 74
Y Bansal (1562_CR28) 2019; 19
WA Denny (1562_CR15) 1990; 33
B Fang (1562_CR17) 2010; 45
R Jamatia (1562_CR38) 2014; 4
K Nikoofar (1562_CR60) 2018; 50
D Azarifar (1562_CR44) 2019; 51
GR Bardajee (1562_CR52) 2016; 30
S Santra (1562_CR36) 2012; 53
R Shelkar (1562_CR54) 2013; 54
References_xml – volume: 50
  start-page: 7750
  year: 2021
  ident: 1562_CR62
  publication-title: Dalton Trans
  doi: 10.1039/D1DT00806D
– volume: 41
  start-page: 9033
  year: 2017
  ident: 1562_CR63
  publication-title: New J Chem
  doi: 10.1039/C7NJ00479F
– volume: 86
  start-page: 19
  year: 2015
  ident: 1562_CR5
  publication-title: Chem Biol Drug Des
  doi: 10.1111/cbdd.12462
– volume: 6
  start-page: 107
  year: 1990
  ident: 1562_CR12
  publication-title: Parasitol Today
  doi: 10.1016/0169-4758(90)90226-T
– volume: 22
  start-page: 527
  year: 1987
  ident: 1562_CR18
  publication-title: Eur J Med Chem
  doi: 10.1016/0223-5234(87)90293-5
– start-page: 87
  volume-title: Top heterocycles chemistry
  year: 2007
  ident: 1562_CR4
– volume: 35
  start-page: 850
  year: 2018
  ident: 1562_CR57
  publication-title: J Chin Chem Soc
  doi: 10.1002/jccs.201700455
– volume: 51
  start-page: 596
  year: 2019
  ident: 1562_CR44
  publication-title: Bull Chem Commun
– volume: 3
  start-page: 225
  year: 2009
  ident: 1562_CR9
  publication-title: Arkivoc
– volume: 42
  start-page: 3371
  year: 2013
  ident: 1562_CR25
  publication-title: Chem Soc Rev
  doi: 10.1039/c3cs35480f
– volume: 113
  start-page: 2139
  year: 2012
  ident: 1562_CR27
  publication-title: Chem Rev
  doi: 10.1021/cr3002752
– volume: 4
  start-page: 12826
  year: 2014
  ident: 1562_CR38
  publication-title: RSC Adv
  doi: 10.1039/C3RA47860B
– volume: 35
  start-page: 374
  year: 2017
  ident: 1562_CR58
  publication-title: J Rare Earths
  doi: 10.1016/S1002-0721(17)60922-0
– volume: 44
  start-page: 7852
  year: 2005
  ident: 1562_CR26
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200500766
– volume: 336
  start-page: 116217
  year: 2021
  ident: 1562_CR65
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2021.116217
– volume: 41
  start-page: 2709
  year: 1998
  ident: 1562_CR22
  publication-title: J Med Chem
  doi: 10.1021/jm9706630
– volume: 11
  start-page: 187
  issue: 2
  year: 2001
  ident: 1562_CR10
  publication-title: Bioorg Med Chem
  doi: 10.1016/S0960-894X(00)00619-3
– volume: 14
  start-page: 103418
  year: 2021
  ident: 1562_CR24
  publication-title: Arabian J Chem
  doi: 10.1016/j.arabjc.2021.103418
– volume: 4
  start-page: 9416
  year: 2014
  ident: 1562_CR37
  publication-title: RSC Adv
  doi: 10.1039/c3ra47366j
– volume: 227
  start-page: 113921
  year: 2022
  ident: 1562_CR6
  publication-title: Eur J Med Chem
  doi: 10.1016/j.ejmech.2021.113921
– volume: 49
  start-page: 823
  year: 1994
  ident: 1562_CR8
  publication-title: Farmaco
– volume: 2021
  start-page: e6330
  year: 2021
  ident: 1562_CR64
  publication-title: Appl Organomet Chem
  doi: 10.1002/aoc.6330
– volume: 151
  start-page: 1623
  year: 2021
  ident: 1562_CR66
  publication-title: Catal Lett
  doi: 10.1007/s10562-020-03410-w
– volume: 31
  start-page: e3542
  year: 2017
  ident: 1562_CR35
  publication-title: Appl Organ Chem
  doi: 10.1002/aoc.3542
– volume-title: Handbook of heterocyclic chemistry book
  year: 2010
  ident: 1562_CR1
– volume: 57
  start-page: 1793
  year: 2001
  ident: 1562_CR13
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(00)01158-3
– volume-title: Imidazole and benzimidazole synthesis
  year: 1997
  ident: 1562_CR2
– volume: 35
  start-page: 126
  year: 2013
  ident: 1562_CR11
  publication-title: Inorg Chem Commun
  doi: 10.1016/j.inoche.2013.06.019
– volume: 47
  start-page: 2017
  year: 2017
  ident: 1562_CR42
  publication-title: Inorg Nano-Metal Chem
– volume: 19
  start-page: 942
  year: 2016
  ident: 1562_CR50
  publication-title: C R Chimie
  doi: 10.1016/j.crci.2016.05.003
– volume: 6
  start-page: 23766
  year: 2018
  ident: 1562_CR43
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA09342C
– volume: 145
  start-page: 1566
  year: 2015
  ident: 1562_CR48
  publication-title: Catal Lett
  doi: 10.1007/s10562-015-1546-z
– volume: 32
  start-page: e3934
  year: 2017
  ident: 1562_CR56
  publication-title: Appl Organometal Chem
  doi: 10.1002/aoc.3934
– volume: 64
  start-page: 2631
  issue: 5
  year: 2021
  ident: 1562_CR30
  publication-title: Egy J Chem
– volume: 4
  start-page: 17832
  year: 2014
  ident: 1562_CR45
  publication-title: RSC Adv
  doi: 10.1039/C4RA00559G
– volume: 50
  start-page: 6145
  year: 2014
  ident: 1562_CR55
  publication-title: Chem Commun
  doi: 10.1039/c4cc01822b
– volume: 50
  start-page: 100
  year: 2018
  ident: 1562_CR60
  publication-title: Bull Chem Commun
– volume: 13
  start-page: 137
  year: 2002
  ident: 1562_CR19
  publication-title: Tetrahedron Asymmetry
  doi: 10.1016/S0957-4166(02)00079-4
– volume: 30
  start-page: 51
  year: 2016
  ident: 1562_CR52
  publication-title: Appl Organometal Chem
  doi: 10.1002/aoc.3400
– volume: 27
  start-page: 5970
  issue: 35
  year: 2020
  ident: 1562_CR29
  publication-title: Curr Med Chem
  doi: 10.2174/0929867326666190808122929
– start-page: 020061
  volume-title: Fe3O4 nanoparticles: an ffficient and recyclable catalyst for benzimidazoles synthesis
  year: 2018
  ident: 1562_CR39
– volume: 115
  start-page: 6687
  year: 2015
  ident: 1562_CR23
  publication-title: Chem Rev
  doi: 10.1021/cr500486u
– volume: 16
  start-page: 100
  year: 2011
  ident: 1562_CR21
  publication-title: Molecules
  doi: 10.3390/molecules16010100
– volume: 451
  start-page: 808
  year: 2018
  ident: 1562_CR49
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2017.10.125
– volume: 33
  start-page: 814
  year: 1990
  ident: 1562_CR15
  publication-title: J Med Chem
  doi: 10.1021/jm00164a054
– volume: 9
  start-page: 189
  year: 2012
  ident: 1562_CR53
  publication-title: J Iran Chem Soc
  doi: 10.1007/s13738-011-0045-4
– volume: 74
  start-page: 279
  year: 1974
  ident: 1562_CR3
  publication-title: Chem Rev
  doi: 10.1021/cr60289a001
– volume: 54
  start-page: 6986
  year: 2013
  ident: 1562_CR54
  publication-title: Tetrahedron Lett
  doi: 10.1016/j.tetlet.2013.09.092
– volume: 14
  start-page: 663
  issue: 7
  year: 2021
  ident: 1562_CR33
  publication-title: Pharmaceuticals
  doi: 10.3390/ph14070663
– volume: 43
  start-page: 4967
  year: 2017
  ident: 1562_CR41
  publication-title: Res Chem Intermed
  doi: 10.1007/s11164-017-2924-5
– volume: 49
  start-page: 183
  year: 2012
  ident: 1562_CR16
  publication-title: Eur J Med Chem
  doi: 10.1016/j.ejmech.2012.01.009
– volume: 612
  start-page: 115
  year: 2021
  ident: 1562_CR40
  publication-title: Appl Catal A General
  doi: 10.1016/j.apcata.2021.118005
– volume: 10
  start-page: 1366
  issue: 14
  year: 2010
  ident: 1562_CR34
  publication-title: MRMC
  doi: 10.2174/138955710793564151
– volume: 21
  start-page: 643
  issue: 5
  year: 2021
  ident: 1562_CR32
  publication-title: Mini Rev Med Chem
  doi: 10.2174/1389557520666201102094401
– volume: 899
  start-page: 174027
  year: 2021
  ident: 1562_CR31
  publication-title: Eur J Pharm
  doi: 10.1016/j.ejphar.2021.174027
– volume: 53
  start-page: 1974
  year: 2012
  ident: 1562_CR36
  publication-title: Tetrahedron Lett
  doi: 10.1016/j.tetlet.2012.02.021
– volume: 144
  start-page: 2184
  issue: 12
  year: 2014
  ident: 1562_CR47
  publication-title: Catal Lett
  doi: 10.1007/s10562-014-1372-8
– volume: 59
  start-page: 106349
  year: 2021
  ident: 1562_CR61
  publication-title: Cat Comm
  doi: 10.1016/j.catcom.2021.106349
– volume: 2
  start-page: 160
  year: 2020
  ident: 1562_CR46
  publication-title: Results Chem
  doi: 10.1016/j.rechem.2020.100060
– volume: 45
  start-page: 4388
  year: 2010
  ident: 1562_CR17
  publication-title: Eur J Med Chem
  doi: 10.1016/j.ejmech.2010.06.012
– volume: 27
  start-page: 265
  year: 2016
  ident: 1562_CR51
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2015.10.011
– volume: 153
  start-page: 213
  year: 2018
  ident: 1562_CR20
  publication-title: Dyes Pigment
  doi: 10.1016/j.dyepig.2018.01.042
– volume: 6
  start-page: 1
  year: 2016
  ident: 1562_CR59
  publication-title: RSC Adv
  doi: 10.1039/C6RA14550G
– volume: 1226
  start-page: 129351
  year: 2021
  ident: 1562_CR7
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2020.129351
– volume: 19
  start-page: 624
  issue: 8
  year: 2019
  ident: 1562_CR28
  publication-title: MRMC
  doi: 10.2174/1389557517666171101104024
– volume: 46
  start-page: 7553
  year: 2005
  ident: 1562_CR14
  publication-title: Tetrahedron Lett
  doi: 10.1016/j.tetlet.2005.08.143
SSID ssj0021799
Score 2.5447927
Snippet The properties of benzimidazole and its derivatives have been studied over more than one hundred years. The benzimidazole ring is an important pharmacophore in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1449
SubjectTerms Access routes
Amines
Anticonvulsants
Carboxylic acids
Catalysis
Catalysts
Characterization and Evaluation of Materials
Chemical synthesis
Chemistry
Chemistry and Materials Science
Chemists
Condensates
Congeners
Fungicides
Industrial Chemistry/Chemical Engineering
Original Paper
Oxidizing agents
Pharmacy
Phenylenediamine
Physical Chemistry
Scaffolds
Solvents
Substitutes
Title The Nano-Based Catalyst for the Synthesis of Benzimidazoles
URI https://link.springer.com/article/10.1007/s11244-022-01562-0
https://www.proquest.com/docview/3225445656
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHWBBPEWhVB7YwFIedpuIqalaKhBdoFKZotixpUqQIhKG9tdz5yaNQIDEEg9xPJzPd59zj4-QS5MKbMqiGWChgPFQSyZ7nmRuEBrQJ5P0LMfSw6Q7nvK7mZiVRWF5le1ehSStpa6L3dAVMcw-x_JfeG6TpsC7O2jx1OtvrlnY48zGOPGaJbygLJX5eY2v7qjGmN_CotbbjPbJXgkTaX-9rwdkS2eHZGdQsbMdkRvYXwqmccEi8EMpHeBvmGVeUAChFEAdfVxmMOTznC4MjXS2mr_O02SF_ZuOyXQ0fBqMWUmEwBSckIKlwlcKsVsohTGKa7BSJuFc-Up3fUc6qUq6yg9SZVToglsSOjCau7InuVRO4p-QRrbI9CmhYPwSX2IijOjyVCAFVSiR1g9cf6KCoEXcSh6xKruEI1nFS1z3N0YZxiDD2MowdlrkavPN27pHxp-z25WY4_K85DGaFW7BZYtcV6KvX_--2tn_pp-TXQ8JfG2-bZs0ivcPfQGoopAd0uyPomiC4-3z_bBjleoTObzCrw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDGVBfIpCAQ9sYClpnNQRU1tRFWi70ErdotixpUqQIhKG9tdz5yaNQIDEkgyxPZztu-f47j1Crk3iIymLZoCFBOOhlky2W5K5IjSwnkzcthpLo3EwmPLHmT8risKyMtu9vJK0nroqdsNQxDD7HMt_4blNdgAMCEzkmrY6m2MWcpzZO048ZvktUZTK_DzG13BUYcxv16I22vT3yV4BE2lnPa8HZEunh6TeK9XZjsgdzC8F17hgXYhDCe3hb5hlllMAoRRAHX1epvDK5hldGNrV6Wr-Ok_iFfI3HZNp_37SG7BCCIEp2CE5S3xPKcRuofSNUVyDlzIx58pTOvAc6SQqDpQnEmVU6EJY8rUwmruyLblUTuydkFq6SPUpoeD8Yk9iIowf8MRHCapQoqwfhP5YCdEgbmmPSBUs4ShW8RJV_MZowwhsGFkbRk6D3Gz6vK05Mv5s3SzNHBX7JYvQrXALLhvktjR99fn30c7-1_yK1AeT0TAaPoyfzsluC8V8be5tk9Ty9w99AQgjl5d2QX0CV-HCkg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gnoRn1itugdvupjHJk3w1FZLfRVBC72F7AsKmhYTD-2vdyZNGhUVvCSHbBby7Wbm292Zbwg5NcpDURbNgAsFjIdaMNF0BLOD0MB8MnEzr7H00Pd7A3479IafsvjzaPfySHKe04AqTUl2MVHmokp8Q7fEMBIdU4HhukxWwBzbOK8HTmux5EK9s_y8E5dcnhMUaTM_9_HVNVV889sRae55uptko6CMtDUf4y2ypJNtstYpK7XtkEsYawpmcsza4JMU7eCWzDTNKBBSCgSPPk0TuKWjlI4NbetkNnodqXiGWk67ZNC9fu70WFEUgUn4vIwpz5USeVwoPGMk12CxTMy5dKX2XUtYSsa-dAMljQxtwMTTgdHcFk3BhbRid4_UknGi9wkFQxi7AoNiPJ8rD8tRhQJL_AENiGUQ1Ild4hHJQjEcC1e8RJXWMWIYAYZRjmFk1cnZ4p3JXC_jz9aNEuao-HfSCE0Mz4lmnZyX0FePf-_t4H_NT8jq41U3ur_p3x2SdQfr-uZhuA1Sy97e9RGQjUwc5_PpAxRTxs4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Nano-Based+Catalyst+for+the+Synthesis+of+Benzimidazoles&rft.jtitle=Topics+in+catalysis&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1022-5528&rft.eissn=1572-9028&rft.volume=68&rft.issue=13&rft.spage=1449&rft.epage=1469&rft_id=info:doi/10.1007%2Fs11244-022-01562-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon