Feasibility study on Hartman–Schijve data analysis for mode II fatigue fracture of adhesively bonded wood joints
The feasibility of using the modified Hartman–Schijve (HS) equation to analyze the fatigue fracture performance of adhesively bonded wood specimens under cyclic mode II loading was investigated in comparison with the Paris crack growth equation. Wood joints prepared with three different adhesives ha...
Saved in:
Published in | International journal of fracture Vol. 221; no. 2; pp. 123 - 140 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.02.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The feasibility of using the modified Hartman–Schijve (HS) equation to analyze the fatigue fracture performance of adhesively bonded wood specimens under cyclic mode II loading was investigated in comparison with the Paris crack growth equation. Wood joints prepared with three different adhesives have been subject to cyclic Mode II testing at room-temperature (
23
∘
C
and 50% relative humidity) in a four-point End-Notched-Flexure configuration, determining the crack length from specimen compliance. It was shown, that the HS-equation can be successfully applied to adhesively bonded wood and that it successfully estimates threshold and maximum energy release rate (ERR) values for three different adhesive systems. Since a limited number of tests were performed for investigating the feasibility, scatter sources and possible scatter reduction methods are analyzed and discussed in detail. Also, a new, automated data reduction method was developed for estimating the maximum and the threshold ERR (
G
thr
)
values. The main advantage of the HS-equation appears to be the application in design standards. However, before the maximum ERR and
G
thr
values derived here can be used in design applications or for drafting a design guideline, additional testing is required for understanding how the number of cycles, the related measurement resolution; the corresponding ERR value influence the threshold value
G
thr
and how and to what extent its scatter can be reduced; and to further explore the link between cyclic ERR and the critical ERR value measured during quasi-static fracture tests. |
---|---|
AbstractList | The feasibility of using the modified Hartman–Schijve (HS) equation to analyze the fatigue fracture performance of adhesively bonded wood specimens under cyclic mode II loading was investigated in comparison with the Paris crack growth equation. Wood joints prepared with three different adhesives have been subject to cyclic Mode II testing at room-temperature (23∘C and 50% relative humidity) in a four-point End-Notched-Flexure configuration, determining the crack length from specimen compliance. It was shown, that the HS-equation can be successfully applied to adhesively bonded wood and that it successfully estimates threshold and maximum energy release rate (ERR) values for three different adhesive systems. Since a limited number of tests were performed for investigating the feasibility, scatter sources and possible scatter reduction methods are analyzed and discussed in detail. Also, a new, automated data reduction method was developed for estimating the maximum and the threshold ERR (Gthr) values. The main advantage of the HS-equation appears to be the application in design standards. However, before the maximum ERR and Gthr values derived here can be used in design applications or for drafting a design guideline, additional testing is required for understanding how the number of cycles, the related measurement resolution; the corresponding ERR value influence the threshold value Gthr and how and to what extent its scatter can be reduced; and to further explore the link between cyclic ERR and the critical ERR value measured during quasi-static fracture tests. The feasibility of using the modified Hartman–Schijve (HS) equation to analyze the fatigue fracture performance of adhesively bonded wood specimens under cyclic mode II loading was investigated in comparison with the Paris crack growth equation. Wood joints prepared with three different adhesives have been subject to cyclic Mode II testing at room-temperature ( 23 ∘ C and 50% relative humidity) in a four-point End-Notched-Flexure configuration, determining the crack length from specimen compliance. It was shown, that the HS-equation can be successfully applied to adhesively bonded wood and that it successfully estimates threshold and maximum energy release rate (ERR) values for three different adhesive systems. Since a limited number of tests were performed for investigating the feasibility, scatter sources and possible scatter reduction methods are analyzed and discussed in detail. Also, a new, automated data reduction method was developed for estimating the maximum and the threshold ERR ( G thr ) values. The main advantage of the HS-equation appears to be the application in design standards. However, before the maximum ERR and G thr values derived here can be used in design applications or for drafting a design guideline, additional testing is required for understanding how the number of cycles, the related measurement resolution; the corresponding ERR value influence the threshold value G thr and how and to what extent its scatter can be reduced; and to further explore the link between cyclic ERR and the critical ERR value measured during quasi-static fracture tests. |
Author | Clerc, Gaspard Van de Kuilen, Jan Willem G. Brunner, Andreas J. Niemz, Peter |
Author_xml | – sequence: 1 givenname: Gaspard orcidid: 0000-0002-3865-7345 surname: Clerc fullname: Clerc, Gaspard email: gaspard.clerc@bfh.ch organization: Bern University of Applied Sciences, Architecture, Wood and Civil Engineering, Technical University of Munich, Wood Research Munich (HFM) – sequence: 2 givenname: Andreas J. surname: Brunner fullname: Brunner, Andreas J. organization: Empa, Swiss Federal Laboratories for Materials Science and Technology, Mechanical Systems Engineering – sequence: 3 givenname: Peter surname: Niemz fullname: Niemz, Peter organization: Bern University of Applied Sciences, Architecture, Wood and Civil Engineering – sequence: 4 givenname: Jan Willem G. surname: Van de Kuilen fullname: Van de Kuilen, Jan Willem G. organization: Technical University of Munich, Wood Research Munich (HFM), Delft University of Technology, Faculty of Civil Engineering and Geosciences, Biobased Structures & Materials |
BookMark | eNp9kLFO5DAQhi3ESSzcvcBVlqjD2bEdJyVCwK60EgV3tTVJxuBV1gbbAaXjHXhDnuSyLBISBcVomv8bzf8dk0MfPBLym7Mzzpj-kzjTTBaMNwVjkstCHZAFV1oUZaXFIVkwoauikWVzRI5T2jDGGl3LBYlXCMm1bnB5oimP_USDp0uIeQv-7eX1trt3myekPWSg4GGYkkvUhki3oUe6WlEL2d2NSG2ELo8RabAU-ntM7gmHibbB99jT5xB6ugnO5_ST_LAwJPz1sU_Iv6vLvxfLYn1zvbo4Xxed4E0uetlWdQlayLaZh2MDqBtppQRecimYtKixrtoaWlZbqToFskJlW6ukUlKckNP93YcYHkdM2WzCGOcKyZRCsZJXlVBzqt6nuhhSimhN5_JcKfgcwQ2GM7MzbPaGzWzYvBs2O7T8gj5Et4U4fQ-JPZTmsL_D-PnVN9R_9paR8A |
CitedBy_id | crossref_primary_10_3390_ma13061341 crossref_primary_10_1080_17480272_2021_1925963 crossref_primary_10_1016_j_engfracmech_2021_107916 crossref_primary_10_1016_j_compstruct_2020_113175 crossref_primary_10_1007_s00107_024_02179_8 crossref_primary_10_3390_met13071300 crossref_primary_10_3390_aerospace10110946 crossref_primary_10_3390_ma13061468 |
Cites_doi | 10.1016/j.compstruct.2013.12.009 10.1016/j.engfracmech.2018.06.023 10.1016/0013-7944(70)90003-2 10.1007/BF02265220 10.1007/s00226-019-01136-6 10.1111/j.1460-2695.1994.tb00239.x 10.1007/978-3-642-99854-6_8 10.1016/j.compstruct.2011.11.030 10.1016/j.compstruct.2018.04.069 10.1111/ffe.12241 10.1115/1.3656900 10.1016/j.ijfatigue.2016.12.005 10.1016/j.ijfatigue.2019.02.008 10.1016/j.compstruct.2017.07.097 10.1016/j.engfracmech.2013.12.002 10.1515/hf-2016-0154 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2019 International Journal of Fracture is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: International Journal of Fracture is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s10704-019-00414-5 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-2673 |
EndPage | 140 |
ExternalDocumentID | 10_1007_s10704_019_00414_5 |
GrantInformation_xml | – fundername: Innosuisse - Schweizerische Agentur für Innovationsförderung grantid: 18958.1 funderid: http://dx.doi.org/10.13039/501100013348 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 8WZ 95- 95. 95~ 96X A6W AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF0 PKN PT4 PT5 PTHSS QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~02 ~8M ~A~ ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-d4b682a734b934b1e9ae794f44a1214304fe7e86b8ab08f45c5a46e5fbf545543 |
IEDL.DBID | BENPR |
ISSN | 0376-9429 |
IngestDate | Fri Jul 25 11:05:51 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 Tue Jul 01 00:44:06 EDT 2025 Fri Feb 21 02:34:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Hartman–Schijve equation Paris-plot Wood adhesive Fatigue fracture 4-ENF |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-d4b682a734b934b1e9ae794f44a1214304fe7e86b8ab08f45c5a46e5fbf545543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3865-7345 |
PQID | 2350216635 |
PQPubID | 2043781 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2350216635 crossref_citationtrail_10_1007_s10704_019_00414_5 crossref_primary_10_1007_s10704_019_00414_5 springer_journals_10_1007_s10704_019_00414_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200200 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200200 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | International journal of fracture |
PublicationTitleAbbrev | Int J Fract |
PublicationYear | 2020 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | KyankaGHFatigue properties of wood and wood compositesInt J Fract19801660961610.1007/BF02265220 BachtiarEVClercGBrunnerAJKaliskeMNiemzPStatic and dynamic tensile shear test of glued lap wooden joint with four different types of adhesivesHolzforschung20177127511:CAS:528:DC%2BC2sXot1WjtbY%3D10.1515/hf-2016-0154 SmithILandisEGongMFracture and fatigue in wood2003WinchesterWiley JonesRHuWKinlochAJA convenient way to represent fatigue crack growth in structural adhesivesFatigue Fract Eng Mater Struct20153837939110.1111/ffe.12241 HartmanASchijveJThe effects of environment and load frequency on the crack propagation law for macro fatigue crack growth in aluminium alloysEng Fract Mech197016156311:CAS:528:DyaE3cXkt1yhsbw%3D10.1016/0013-7944(70)90003-2 SchijveJFatigue predictions and scatterFatigue Fract Eng Mater Struct19941738139610.1111/j.1460-2695.1994.tb00239.x StelzerSBrunnerAJArgüellesAMurphyNCanoGMPinterGMode I delamination fatigue crack growth in unidirectional fiber reinforced composites: results from ESIS TC4 round-robinsEng Fract Mech20141169210710.1016/j.engfracmech.2013.12.002 ParisPErdoganFA critical analysis of crack propagation lawsJ Basic Eng1963855285331:CAS:528:DyaF2cXitF2mtA%3D%3D10.1115/1.3656900 Gatto F (1956) New statistical methods applied to the analysis of fatigue data. In: Weibull W, Odqvist FKG (eds) IUTAM Colloquium on Fatigue, pp 66–77 LewisWCDesign consideration of fatigue in timber structuresAm Soc Civ Eng1960861523 ClercGBrunnerAJJossetSNiemzPPichelinFvan de KuilenJWGAdhesive wood joints under quasi-static and cyclic fatigue fracture Mode II loadsInt l Fatigue201912340521:CAS:528:DC%2BC1MXjtlCnur8%3D10.1016/j.ijfatigue.2019.02.008 YaoLAlderliestenRCJonesRKinlochAJDelamination fatigue growth in polymer-matrix fibre composites: a methodology for determining the design and lifing allowablesCompos Struct201819682010.1016/j.compstruct.2018.04.069 Aicher S, Christian Z (2015) Fatigue behavior of wood and glued wood components. 21. Internationales Holzbau-Forum IHF JonesRKinlochAJMichopoulosJGBrunnerAJPhanNDelamination growth in polymer-matrix fibre composites and the use of fracture mechanics data for material characterisation and life predictionCompos Struct201718031633310.1016/j.compstruct.2017.07.097 JonesRPittSBunnerAJHuiDApplication of the Hartman–Schijve equation to represent Mode I and Mode II fatigue delamination growth in compositesCompos Struct2012941343135110.1016/j.compstruct.2011.11.030 ClercGSauseMGRBrunnerAJNiemzPvan de KuilenJWGFractography combined with unsupervised pattern recognition of acoustic emission signals for a better understanding of crack propagation in adhesively bonded woodWood Sci Technol201910.1007/s00226-019-01136-6 SimonIBanks-SillsLFourmanVMode I delamination propagation and R-ratio effects in woven composite DCB specimens for a multi-directional layupInt J Fatigue2017962372511:CAS:528:DC%2BC28XitFSltLjM10.1016/j.ijfatigue.2016.12.005 AlderliestenRCBrunnerAJPascoeJACyclic fatigue fracture of composites: what has testing revealed about the physics of the processes so far?Eng Fract Mech201820318619610.1016/j.engfracmech.2018.06.023 JonesRStelzerSBrunnerAJMode I, II and mixed Mode I/II delamination growth in compositesCompos Struct201411031732410.1016/j.compstruct.2013.12.009 RC Alderliesten (414_CR2) 2018; 203 WC Lewis (414_CR13) 1960; 86 P Paris (414_CR14) 1963; 85 G Clerc (414_CR5) 2019 G Clerc (414_CR4) 2019; 123 R Jones (414_CR11) 2017; 180 I Simon (414_CR16) 2017; 96 S Stelzer (414_CR18) 2014; 116 R Jones (414_CR8) 2012; 94 R Jones (414_CR9) 2014; 110 414_CR1 EV Bachtiar (414_CR3) 2017; 71 J Schijve (414_CR15) 1994; 17 I Smith (414_CR17) 2003 A Hartman (414_CR7) 1970; 1 R Jones (414_CR10) 2015; 38 L Yao (414_CR19) 2018; 196 414_CR6 GH Kyanka (414_CR12) 1980; 16 |
References_xml | – reference: SmithILandisEGongMFracture and fatigue in wood2003WinchesterWiley – reference: LewisWCDesign consideration of fatigue in timber structuresAm Soc Civ Eng1960861523 – reference: StelzerSBrunnerAJArgüellesAMurphyNCanoGMPinterGMode I delamination fatigue crack growth in unidirectional fiber reinforced composites: results from ESIS TC4 round-robinsEng Fract Mech20141169210710.1016/j.engfracmech.2013.12.002 – reference: JonesRHuWKinlochAJA convenient way to represent fatigue crack growth in structural adhesivesFatigue Fract Eng Mater Struct20153837939110.1111/ffe.12241 – reference: HartmanASchijveJThe effects of environment and load frequency on the crack propagation law for macro fatigue crack growth in aluminium alloysEng Fract Mech197016156311:CAS:528:DyaE3cXkt1yhsbw%3D10.1016/0013-7944(70)90003-2 – reference: Aicher S, Christian Z (2015) Fatigue behavior of wood and glued wood components. 21. Internationales Holzbau-Forum IHF – reference: JonesRKinlochAJMichopoulosJGBrunnerAJPhanNDelamination growth in polymer-matrix fibre composites and the use of fracture mechanics data for material characterisation and life predictionCompos Struct201718031633310.1016/j.compstruct.2017.07.097 – reference: JonesRPittSBunnerAJHuiDApplication of the Hartman–Schijve equation to represent Mode I and Mode II fatigue delamination growth in compositesCompos Struct2012941343135110.1016/j.compstruct.2011.11.030 – reference: SchijveJFatigue predictions and scatterFatigue Fract Eng Mater Struct19941738139610.1111/j.1460-2695.1994.tb00239.x – reference: JonesRStelzerSBrunnerAJMode I, II and mixed Mode I/II delamination growth in compositesCompos Struct201411031732410.1016/j.compstruct.2013.12.009 – reference: AlderliestenRCBrunnerAJPascoeJACyclic fatigue fracture of composites: what has testing revealed about the physics of the processes so far?Eng Fract Mech201820318619610.1016/j.engfracmech.2018.06.023 – reference: ClercGBrunnerAJJossetSNiemzPPichelinFvan de KuilenJWGAdhesive wood joints under quasi-static and cyclic fatigue fracture Mode II loadsInt l Fatigue201912340521:CAS:528:DC%2BC1MXjtlCnur8%3D10.1016/j.ijfatigue.2019.02.008 – reference: SimonIBanks-SillsLFourmanVMode I delamination propagation and R-ratio effects in woven composite DCB specimens for a multi-directional layupInt J Fatigue2017962372511:CAS:528:DC%2BC28XitFSltLjM10.1016/j.ijfatigue.2016.12.005 – reference: BachtiarEVClercGBrunnerAJKaliskeMNiemzPStatic and dynamic tensile shear test of glued lap wooden joint with four different types of adhesivesHolzforschung20177127511:CAS:528:DC%2BC2sXot1WjtbY%3D10.1515/hf-2016-0154 – reference: ParisPErdoganFA critical analysis of crack propagation lawsJ Basic Eng1963855285331:CAS:528:DyaF2cXitF2mtA%3D%3D10.1115/1.3656900 – reference: Gatto F (1956) New statistical methods applied to the analysis of fatigue data. In: Weibull W, Odqvist FKG (eds) IUTAM Colloquium on Fatigue, pp 66–77 – reference: ClercGSauseMGRBrunnerAJNiemzPvan de KuilenJWGFractography combined with unsupervised pattern recognition of acoustic emission signals for a better understanding of crack propagation in adhesively bonded woodWood Sci Technol201910.1007/s00226-019-01136-6 – reference: YaoLAlderliestenRCJonesRKinlochAJDelamination fatigue growth in polymer-matrix fibre composites: a methodology for determining the design and lifing allowablesCompos Struct201819682010.1016/j.compstruct.2018.04.069 – reference: KyankaGHFatigue properties of wood and wood compositesInt J Fract19801660961610.1007/BF02265220 – volume: 86 start-page: 15 year: 1960 ident: 414_CR13 publication-title: Am Soc Civ Eng – volume-title: Fracture and fatigue in wood year: 2003 ident: 414_CR17 – volume: 110 start-page: 317 year: 2014 ident: 414_CR9 publication-title: Compos Struct doi: 10.1016/j.compstruct.2013.12.009 – volume: 203 start-page: 186 year: 2018 ident: 414_CR2 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2018.06.023 – volume: 1 start-page: 615 year: 1970 ident: 414_CR7 publication-title: Eng Fract Mech doi: 10.1016/0013-7944(70)90003-2 – volume: 16 start-page: 609 year: 1980 ident: 414_CR12 publication-title: Int J Fract doi: 10.1007/BF02265220 – year: 2019 ident: 414_CR5 publication-title: Wood Sci Technol doi: 10.1007/s00226-019-01136-6 – volume: 17 start-page: 381 year: 1994 ident: 414_CR15 publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/j.1460-2695.1994.tb00239.x – ident: 414_CR6 doi: 10.1007/978-3-642-99854-6_8 – volume: 94 start-page: 1343 year: 2012 ident: 414_CR8 publication-title: Compos Struct doi: 10.1016/j.compstruct.2011.11.030 – volume: 196 start-page: 8 year: 2018 ident: 414_CR19 publication-title: Compos Struct doi: 10.1016/j.compstruct.2018.04.069 – volume: 38 start-page: 379 year: 2015 ident: 414_CR10 publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.12241 – volume: 85 start-page: 528 year: 1963 ident: 414_CR14 publication-title: J Basic Eng doi: 10.1115/1.3656900 – volume: 96 start-page: 237 year: 2017 ident: 414_CR16 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.12.005 – volume: 123 start-page: 40 year: 2019 ident: 414_CR4 publication-title: Int l Fatigue doi: 10.1016/j.ijfatigue.2019.02.008 – volume: 180 start-page: 316 year: 2017 ident: 414_CR11 publication-title: Compos Struct doi: 10.1016/j.compstruct.2017.07.097 – volume: 116 start-page: 92 year: 2014 ident: 414_CR18 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2013.12.002 – ident: 414_CR1 – volume: 71 start-page: 2751 year: 2017 ident: 414_CR3 publication-title: Holzforschung doi: 10.1515/hf-2016-0154 |
SSID | ssj0009784 |
Score | 2.323135 |
Snippet | The feasibility of using the modified Hartman–Schijve (HS) equation to analyze the fatigue fracture performance of adhesively bonded wood specimens under... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 123 |
SubjectTerms | Adhesion tests Adhesive bonding Adhesive joints Automotive Engineering Bonded joints Characterization and Evaluation of Materials Chemistry and Materials Science Civil Engineering Classical Mechanics Crack propagation Data analysis Data reduction Design standards Drafting software Energy release rate Fatigue failure Feasibility studies Flexing Fracture testing Materials Science Mechanical Engineering Original Paper Relative humidity Room temperature Scattering |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgLDAgnqJQ0B3YwFKb2I4zVoiqRYIFKnWL7MSmrUqC-kDqxj_wh3wJ12lCCwIkhkxxPNyHfRyfey4h55oniDpUnXoNP6BM1TWVIubUhlYp39dKaFecfHsn2l120-O9oihsUrLdyyvJfKVeKXYLcsZESJ1IFKN8nWxwd3bHKO56zaXUbiAXolGBoCEut0WpzM9zfN2Olhjz27Vovtu0dsh2AROhufDrLlkz6R7ZWhEP3CdjRG8Ft3UOuUosZCm0MRSeVPr--nYf9wfDFwOOAwqq0B4BxKjgut9ApwMWvfI4M2BdpdRsbCCzoJK-cYz20Rx05v6OgyPlwDAbpNPJAem2rh-u2rTooEBjTK0pTZgW0lOBz3SIT8OEymACWsZUw0OkVGfWBEYKLZWuS8t4zBUThlttEVlx5h-SSpql5oiALzViyTjhXuIzhORSWiHQlYaxUCaxqpJGacgoLuTFXZeLUbQURnbGj9D4UW78iFfJxec3zwtxjT9H10r_REWiTSLP54hSHGyqksvSZ8vXv892_L_hJ2TTcyftnK9dI5XpeGZOEY5M9VkefR_Ov9ap priority: 102 providerName: Springer Nature |
Title | Feasibility study on Hartman–Schijve data analysis for mode II fatigue fracture of adhesively bonded wood joints |
URI | https://link.springer.com/article/10.1007/s10704-019-00414-5 https://www.proquest.com/docview/2350216635 |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7R7gUOVSkgtj-rOfQGFruJ7Tinahd2uwVRIWClcorsxKatStLuT6Xe-g68YZ-EcdZLWiR6iHJw4sPMeOazPfMNwL4RBaEO3WVRL04Y113DlMwFc6nTOo6NlsYXJ38-luMJ_3giTsKB2yykVa58Yu2oiyr3Z-TvolhQOPLx8eDyivmuUf52NbTQWIMWuWBFm6_WYHj85WtDu5uoJYFUIllKrjeUzYTiuaTOwEiZJ53iTDwMTQ3e_OeKtI48o03YCJAR-0sdP4cnttyCZ_eIBF_AlJBcyHO9wZoxFqsSx2QWv3R5d_v7W356dn5t0eeDog48JEh4FX0nHDw6Qkca-rmw6HzV1GJqsXKoi1Prs9svbtBU_qQcfYIOnldn5Xz2Eiaj4ff3Yxa6KbCcltmcFdxIFekk5ialp2dTbWkxOs51LyLU1OXOJlZJo7TpKsdFLjSXVjjjCGUJHr-C9bIq7WvAWBnClXkhoiLmBM-VclKSWi3nqSpy3YbeSpBZHqjGfceLi6whSfbCz0j4WS38TLThzd9_LpdEG49-vbvSTxYW3SxrTKQNb1c6a4b_P9v247PtwNPI77LrXO1dWJ9PF3aPoMjcdGBNjQ470OoPPgxG_n3449OwE6yQRidR_w_ZhN_5 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LU9RAEO5CPCgHy2e5iNgHPemUu5lHJgfKooB1Vx4XoYpbnElmBAoS2IfW3vgP_g9-FL-Enmxi1Cq5ccgpyRx6vun-Zqb7a4C3VubEOkyXRT0eM2G6lmmVSeYTbwzn1igbipN399TgQHw5lIcLcNXUwoS0ysYnVo46L7NwRv4x4pLCUYiPn84vWOgaFW5XmxYac1hsu9lP2rKN14abNL_voqi_tb8xYHVXAZYR3CYsF1bpyMRc2ISenkuMI1B6IUwvIvbQFd7FTiurje1qL2QmjVBOeuuJbUjBadx7cF9wnoQVpfufW5HfWM_lqmLFEnL0dZFOXaoXV_keCQsSV4LJvwNhy27_uZCt4lz_MTyqCSquzxH1BBZc8RSW_pAtfAYj4o11Vu0MK31aLAscEAjPTHF9-etrdnR88sNhyD5FU6ueILFjDH13cDhET3j4PnXoQ43WdOSw9GjyIxdy6U9naMtwLo8hHQhPyuNiMn4OB3di5RewWJSFewnItSUWm-UyyrmgzYDWXikCkRMi0XlmOtBrDJlmtbB56K9xmraSzMH4KRk_rYyfyg68__3P-VzW49avV5r5SeslPk5bQHbgQzNn7ev_j7Z8-2hv4MFgf3cn3Rnubb-Ch1HY31dZ4iuwOBlN3WsiQRO7WiEP4dtdQ_0GWu8WLw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJAQHxCrKOgduYNEktuMcEVC1bEKCStwiO7EpCBJUUiRu_AN_yJcwTlNaECBxyCm2DzNj-yV-75mQbc1TRB2qTn0vCClTdU2lSDi1kVUqCLQS2omTz85Fs82Or_n1iIq_ZLsPjiT7mgbn0pQVe4-p3RsRvoUleyKizjCKUT5OJnE59lxdt_39oe1uKPsGUqGgES69lWzm5zG-bk1DvPntiLTceRpzZLaCjLDfz_E8GTPZApkZMRJcJF1EchXP9QVKx1jIM2hiWTyo7P317TLp3N49G3B8UFCVDwkgXgV3Ew60WmAxQzc9A9appnpdA7kFlXaMY7ffv4DO3Z9ycAQduMtvs-JpibQbR1cHTVrdpkATjEtBU6aF9FUYMB3h45lIGZyMljHl-Yia6sya0EihpdJ1aRlPuGLCcKstoizOgmUykeWZWSEQSI24Mkm5nwYM4bmUVghMq2EskmmiasQbBDJOKqtxd-PFfTw0SXbBjzH4cRn8mNfIzmefx77Rxp-t1wf5iatJ9xT7AUfE4iBUjewOcjZ8_ftoq_9rvkWmLg4b8Wnr_GSNTPvuA7ykca-TiaLbMxuIUgq9WRbiB8l13dg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+study+on+Hartman%E2%80%93Schijve+data+analysis+for+mode+II+fatigue+fracture+of+adhesively+bonded+wood+joints&rft.jtitle=International+journal+of+fracture&rft.au=Clerc+Gaspard&rft.au=Brunner%2C+Andreas+J&rft.au=Niemz%2C+Peter&rft.au=Van+de+Kuilen+Jan+Willem+G&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0376-9429&rft.eissn=1573-2673&rft.volume=221&rft.issue=2&rft.spage=123&rft.epage=140&rft_id=info:doi/10.1007%2Fs10704-019-00414-5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-9429&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-9429&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-9429&client=summon |