Feasibility study on Hartman–Schijve data analysis for mode II fatigue fracture of adhesively bonded wood joints

The feasibility of using the modified Hartman–Schijve (HS) equation to analyze the fatigue fracture performance of adhesively bonded wood specimens under cyclic mode II loading was investigated in comparison with the Paris crack growth equation. Wood joints prepared with three different adhesives ha...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fracture Vol. 221; no. 2; pp. 123 - 140
Main Authors Clerc, Gaspard, Brunner, Andreas J., Niemz, Peter, Van de Kuilen, Jan Willem G.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The feasibility of using the modified Hartman–Schijve (HS) equation to analyze the fatigue fracture performance of adhesively bonded wood specimens under cyclic mode II loading was investigated in comparison with the Paris crack growth equation. Wood joints prepared with three different adhesives have been subject to cyclic Mode II testing at room-temperature ( 23 ∘ C and 50% relative humidity) in a four-point End-Notched-Flexure configuration, determining the crack length from specimen compliance. It was shown, that the HS-equation can be successfully applied to adhesively bonded wood and that it successfully estimates threshold and maximum energy release rate (ERR) values for three different adhesive systems. Since a limited number of tests were performed for investigating the feasibility, scatter sources and possible scatter reduction methods are analyzed and discussed in detail. Also, a new, automated data reduction method was developed for estimating the maximum and the threshold ERR ( G thr ) values. The main advantage of the HS-equation appears to be the application in design standards. However, before the maximum ERR and G thr values derived here can be used in design applications or for drafting a design guideline, additional testing is required for understanding how the number of cycles, the related measurement resolution; the corresponding ERR value influence the threshold value G thr and how and to what extent its scatter can be reduced; and to further explore the link between cyclic ERR and the critical ERR value measured during quasi-static fracture tests.
AbstractList The feasibility of using the modified Hartman–Schijve (HS) equation to analyze the fatigue fracture performance of adhesively bonded wood specimens under cyclic mode II loading was investigated in comparison with the Paris crack growth equation. Wood joints prepared with three different adhesives have been subject to cyclic Mode II testing at room-temperature (23∘C and 50% relative humidity) in a four-point End-Notched-Flexure configuration, determining the crack length from specimen compliance. It was shown, that the HS-equation can be successfully applied to adhesively bonded wood and that it successfully estimates threshold and maximum energy release rate (ERR) values for three different adhesive systems. Since a limited number of tests were performed for investigating the feasibility, scatter sources and possible scatter reduction methods are analyzed and discussed in detail. Also, a new, automated data reduction method was developed for estimating the maximum and the threshold ERR (Gthr) values. The main advantage of the HS-equation appears to be the application in design standards. However, before the maximum ERR and Gthr values derived here can be used in design applications or for drafting a design guideline, additional testing is required for understanding how the number of cycles, the related measurement resolution; the corresponding ERR value influence the threshold value Gthr and how and to what extent its scatter can be reduced; and to further explore the link between cyclic ERR and the critical ERR value measured during quasi-static fracture tests.
The feasibility of using the modified Hartman–Schijve (HS) equation to analyze the fatigue fracture performance of adhesively bonded wood specimens under cyclic mode II loading was investigated in comparison with the Paris crack growth equation. Wood joints prepared with three different adhesives have been subject to cyclic Mode II testing at room-temperature ( 23 ∘ C and 50% relative humidity) in a four-point End-Notched-Flexure configuration, determining the crack length from specimen compliance. It was shown, that the HS-equation can be successfully applied to adhesively bonded wood and that it successfully estimates threshold and maximum energy release rate (ERR) values for three different adhesive systems. Since a limited number of tests were performed for investigating the feasibility, scatter sources and possible scatter reduction methods are analyzed and discussed in detail. Also, a new, automated data reduction method was developed for estimating the maximum and the threshold ERR ( G thr ) values. The main advantage of the HS-equation appears to be the application in design standards. However, before the maximum ERR and G thr values derived here can be used in design applications or for drafting a design guideline, additional testing is required for understanding how the number of cycles, the related measurement resolution; the corresponding ERR value influence the threshold value G thr and how and to what extent its scatter can be reduced; and to further explore the link between cyclic ERR and the critical ERR value measured during quasi-static fracture tests.
Author Clerc, Gaspard
Van de Kuilen, Jan Willem G.
Brunner, Andreas J.
Niemz, Peter
Author_xml – sequence: 1
  givenname: Gaspard
  orcidid: 0000-0002-3865-7345
  surname: Clerc
  fullname: Clerc, Gaspard
  email: gaspard.clerc@bfh.ch
  organization: Bern University of Applied Sciences, Architecture, Wood and Civil Engineering, Technical University of Munich, Wood Research Munich (HFM)
– sequence: 2
  givenname: Andreas J.
  surname: Brunner
  fullname: Brunner, Andreas J.
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology, Mechanical Systems Engineering
– sequence: 3
  givenname: Peter
  surname: Niemz
  fullname: Niemz, Peter
  organization: Bern University of Applied Sciences, Architecture, Wood and Civil Engineering
– sequence: 4
  givenname: Jan Willem G.
  surname: Van de Kuilen
  fullname: Van de Kuilen, Jan Willem G.
  organization: Technical University of Munich, Wood Research Munich (HFM), Delft University of Technology, Faculty of Civil Engineering and Geosciences, Biobased Structures & Materials
BookMark eNp9kLFO5DAQhi3ESSzcvcBVlqjD2bEdJyVCwK60EgV3tTVJxuBV1gbbAaXjHXhDnuSyLBISBcVomv8bzf8dk0MfPBLym7Mzzpj-kzjTTBaMNwVjkstCHZAFV1oUZaXFIVkwoauikWVzRI5T2jDGGl3LBYlXCMm1bnB5oimP_USDp0uIeQv-7eX1trt3myekPWSg4GGYkkvUhki3oUe6WlEL2d2NSG2ELo8RabAU-ntM7gmHibbB99jT5xB6ugnO5_ST_LAwJPz1sU_Iv6vLvxfLYn1zvbo4Xxed4E0uetlWdQlayLaZh2MDqBtppQRecimYtKixrtoaWlZbqToFskJlW6ukUlKckNP93YcYHkdM2WzCGOcKyZRCsZJXlVBzqt6nuhhSimhN5_JcKfgcwQ2GM7MzbPaGzWzYvBs2O7T8gj5Et4U4fQ-JPZTmsL_D-PnVN9R_9paR8A
CitedBy_id crossref_primary_10_3390_ma13061341
crossref_primary_10_1080_17480272_2021_1925963
crossref_primary_10_1016_j_engfracmech_2021_107916
crossref_primary_10_1016_j_compstruct_2020_113175
crossref_primary_10_1007_s00107_024_02179_8
crossref_primary_10_3390_met13071300
crossref_primary_10_3390_aerospace10110946
crossref_primary_10_3390_ma13061468
Cites_doi 10.1016/j.compstruct.2013.12.009
10.1016/j.engfracmech.2018.06.023
10.1016/0013-7944(70)90003-2
10.1007/BF02265220
10.1007/s00226-019-01136-6
10.1111/j.1460-2695.1994.tb00239.x
10.1007/978-3-642-99854-6_8
10.1016/j.compstruct.2011.11.030
10.1016/j.compstruct.2018.04.069
10.1111/ffe.12241
10.1115/1.3656900
10.1016/j.ijfatigue.2016.12.005
10.1016/j.ijfatigue.2019.02.008
10.1016/j.compstruct.2017.07.097
10.1016/j.engfracmech.2013.12.002
10.1515/hf-2016-0154
ContentType Journal Article
Copyright Springer Nature B.V. 2019
International Journal of Fracture is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: International Journal of Fracture is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10704-019-00414-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-2673
EndPage 140
ExternalDocumentID 10_1007_s10704_019_00414_5
GrantInformation_xml – fundername: Innosuisse - Schweizerische Agentur für Innovationsförderung
  grantid: 18958.1
  funderid: http://dx.doi.org/10.13039/501100013348
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
8WZ
95-
95.
95~
96X
A6W
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF0
PKN
PT4
PT5
PTHSS
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~02
~8M
~A~
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-d4b682a734b934b1e9ae794f44a1214304fe7e86b8ab08f45c5a46e5fbf545543
IEDL.DBID BENPR
ISSN 0376-9429
IngestDate Fri Jul 25 11:05:51 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
Tue Jul 01 00:44:06 EDT 2025
Fri Feb 21 02:34:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Hartman–Schijve equation
Paris-plot
Wood adhesive
Fatigue fracture
4-ENF
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d4b682a734b934b1e9ae794f44a1214304fe7e86b8ab08f45c5a46e5fbf545543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3865-7345
PQID 2350216635
PQPubID 2043781
PageCount 18
ParticipantIDs proquest_journals_2350216635
crossref_citationtrail_10_1007_s10704_019_00414_5
crossref_primary_10_1007_s10704_019_00414_5
springer_journals_10_1007_s10704_019_00414_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200200
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 2
  year: 2020
  text: 20200200
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle International journal of fracture
PublicationTitleAbbrev Int J Fract
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References KyankaGHFatigue properties of wood and wood compositesInt J Fract19801660961610.1007/BF02265220
BachtiarEVClercGBrunnerAJKaliskeMNiemzPStatic and dynamic tensile shear test of glued lap wooden joint with four different types of adhesivesHolzforschung20177127511:CAS:528:DC%2BC2sXot1WjtbY%3D10.1515/hf-2016-0154
SmithILandisEGongMFracture and fatigue in wood2003WinchesterWiley
JonesRHuWKinlochAJA convenient way to represent fatigue crack growth in structural adhesivesFatigue Fract Eng Mater Struct20153837939110.1111/ffe.12241
HartmanASchijveJThe effects of environment and load frequency on the crack propagation law for macro fatigue crack growth in aluminium alloysEng Fract Mech197016156311:CAS:528:DyaE3cXkt1yhsbw%3D10.1016/0013-7944(70)90003-2
SchijveJFatigue predictions and scatterFatigue Fract Eng Mater Struct19941738139610.1111/j.1460-2695.1994.tb00239.x
StelzerSBrunnerAJArgüellesAMurphyNCanoGMPinterGMode I delamination fatigue crack growth in unidirectional fiber reinforced composites: results from ESIS TC4 round-robinsEng Fract Mech20141169210710.1016/j.engfracmech.2013.12.002
ParisPErdoganFA critical analysis of crack propagation lawsJ Basic Eng1963855285331:CAS:528:DyaF2cXitF2mtA%3D%3D10.1115/1.3656900
Gatto F (1956) New statistical methods applied to the analysis of fatigue data. In: Weibull W, Odqvist FKG (eds) IUTAM Colloquium on Fatigue, pp 66–77
LewisWCDesign consideration of fatigue in timber structuresAm Soc Civ Eng1960861523
ClercGBrunnerAJJossetSNiemzPPichelinFvan de KuilenJWGAdhesive wood joints under quasi-static and cyclic fatigue fracture Mode II loadsInt l Fatigue201912340521:CAS:528:DC%2BC1MXjtlCnur8%3D10.1016/j.ijfatigue.2019.02.008
YaoLAlderliestenRCJonesRKinlochAJDelamination fatigue growth in polymer-matrix fibre composites: a methodology for determining the design and lifing allowablesCompos Struct201819682010.1016/j.compstruct.2018.04.069
Aicher S, Christian Z (2015) Fatigue behavior of wood and glued wood components. 21. Internationales Holzbau-Forum IHF
JonesRKinlochAJMichopoulosJGBrunnerAJPhanNDelamination growth in polymer-matrix fibre composites and the use of fracture mechanics data for material characterisation and life predictionCompos Struct201718031633310.1016/j.compstruct.2017.07.097
JonesRPittSBunnerAJHuiDApplication of the Hartman–Schijve equation to represent Mode I and Mode II fatigue delamination growth in compositesCompos Struct2012941343135110.1016/j.compstruct.2011.11.030
ClercGSauseMGRBrunnerAJNiemzPvan de KuilenJWGFractography combined with unsupervised pattern recognition of acoustic emission signals for a better understanding of crack propagation in adhesively bonded woodWood Sci Technol201910.1007/s00226-019-01136-6
SimonIBanks-SillsLFourmanVMode I delamination propagation and R-ratio effects in woven composite DCB specimens for a multi-directional layupInt J Fatigue2017962372511:CAS:528:DC%2BC28XitFSltLjM10.1016/j.ijfatigue.2016.12.005
AlderliestenRCBrunnerAJPascoeJACyclic fatigue fracture of composites: what has testing revealed about the physics of the processes so far?Eng Fract Mech201820318619610.1016/j.engfracmech.2018.06.023
JonesRStelzerSBrunnerAJMode I, II and mixed Mode I/II delamination growth in compositesCompos Struct201411031732410.1016/j.compstruct.2013.12.009
RC Alderliesten (414_CR2) 2018; 203
WC Lewis (414_CR13) 1960; 86
P Paris (414_CR14) 1963; 85
G Clerc (414_CR5) 2019
G Clerc (414_CR4) 2019; 123
R Jones (414_CR11) 2017; 180
I Simon (414_CR16) 2017; 96
S Stelzer (414_CR18) 2014; 116
R Jones (414_CR8) 2012; 94
R Jones (414_CR9) 2014; 110
414_CR1
EV Bachtiar (414_CR3) 2017; 71
J Schijve (414_CR15) 1994; 17
I Smith (414_CR17) 2003
A Hartman (414_CR7) 1970; 1
R Jones (414_CR10) 2015; 38
L Yao (414_CR19) 2018; 196
414_CR6
GH Kyanka (414_CR12) 1980; 16
References_xml – reference: SmithILandisEGongMFracture and fatigue in wood2003WinchesterWiley
– reference: LewisWCDesign consideration of fatigue in timber structuresAm Soc Civ Eng1960861523
– reference: StelzerSBrunnerAJArgüellesAMurphyNCanoGMPinterGMode I delamination fatigue crack growth in unidirectional fiber reinforced composites: results from ESIS TC4 round-robinsEng Fract Mech20141169210710.1016/j.engfracmech.2013.12.002
– reference: JonesRHuWKinlochAJA convenient way to represent fatigue crack growth in structural adhesivesFatigue Fract Eng Mater Struct20153837939110.1111/ffe.12241
– reference: HartmanASchijveJThe effects of environment and load frequency on the crack propagation law for macro fatigue crack growth in aluminium alloysEng Fract Mech197016156311:CAS:528:DyaE3cXkt1yhsbw%3D10.1016/0013-7944(70)90003-2
– reference: Aicher S, Christian Z (2015) Fatigue behavior of wood and glued wood components. 21. Internationales Holzbau-Forum IHF
– reference: JonesRKinlochAJMichopoulosJGBrunnerAJPhanNDelamination growth in polymer-matrix fibre composites and the use of fracture mechanics data for material characterisation and life predictionCompos Struct201718031633310.1016/j.compstruct.2017.07.097
– reference: JonesRPittSBunnerAJHuiDApplication of the Hartman–Schijve equation to represent Mode I and Mode II fatigue delamination growth in compositesCompos Struct2012941343135110.1016/j.compstruct.2011.11.030
– reference: SchijveJFatigue predictions and scatterFatigue Fract Eng Mater Struct19941738139610.1111/j.1460-2695.1994.tb00239.x
– reference: JonesRStelzerSBrunnerAJMode I, II and mixed Mode I/II delamination growth in compositesCompos Struct201411031732410.1016/j.compstruct.2013.12.009
– reference: AlderliestenRCBrunnerAJPascoeJACyclic fatigue fracture of composites: what has testing revealed about the physics of the processes so far?Eng Fract Mech201820318619610.1016/j.engfracmech.2018.06.023
– reference: ClercGBrunnerAJJossetSNiemzPPichelinFvan de KuilenJWGAdhesive wood joints under quasi-static and cyclic fatigue fracture Mode II loadsInt l Fatigue201912340521:CAS:528:DC%2BC1MXjtlCnur8%3D10.1016/j.ijfatigue.2019.02.008
– reference: SimonIBanks-SillsLFourmanVMode I delamination propagation and R-ratio effects in woven composite DCB specimens for a multi-directional layupInt J Fatigue2017962372511:CAS:528:DC%2BC28XitFSltLjM10.1016/j.ijfatigue.2016.12.005
– reference: BachtiarEVClercGBrunnerAJKaliskeMNiemzPStatic and dynamic tensile shear test of glued lap wooden joint with four different types of adhesivesHolzforschung20177127511:CAS:528:DC%2BC2sXot1WjtbY%3D10.1515/hf-2016-0154
– reference: ParisPErdoganFA critical analysis of crack propagation lawsJ Basic Eng1963855285331:CAS:528:DyaF2cXitF2mtA%3D%3D10.1115/1.3656900
– reference: Gatto F (1956) New statistical methods applied to the analysis of fatigue data. In: Weibull W, Odqvist FKG (eds) IUTAM Colloquium on Fatigue, pp 66–77
– reference: ClercGSauseMGRBrunnerAJNiemzPvan de KuilenJWGFractography combined with unsupervised pattern recognition of acoustic emission signals for a better understanding of crack propagation in adhesively bonded woodWood Sci Technol201910.1007/s00226-019-01136-6
– reference: YaoLAlderliestenRCJonesRKinlochAJDelamination fatigue growth in polymer-matrix fibre composites: a methodology for determining the design and lifing allowablesCompos Struct201819682010.1016/j.compstruct.2018.04.069
– reference: KyankaGHFatigue properties of wood and wood compositesInt J Fract19801660961610.1007/BF02265220
– volume: 86
  start-page: 15
  year: 1960
  ident: 414_CR13
  publication-title: Am Soc Civ Eng
– volume-title: Fracture and fatigue in wood
  year: 2003
  ident: 414_CR17
– volume: 110
  start-page: 317
  year: 2014
  ident: 414_CR9
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2013.12.009
– volume: 203
  start-page: 186
  year: 2018
  ident: 414_CR2
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2018.06.023
– volume: 1
  start-page: 615
  year: 1970
  ident: 414_CR7
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(70)90003-2
– volume: 16
  start-page: 609
  year: 1980
  ident: 414_CR12
  publication-title: Int J Fract
  doi: 10.1007/BF02265220
– year: 2019
  ident: 414_CR5
  publication-title: Wood Sci Technol
  doi: 10.1007/s00226-019-01136-6
– volume: 17
  start-page: 381
  year: 1994
  ident: 414_CR15
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/j.1460-2695.1994.tb00239.x
– ident: 414_CR6
  doi: 10.1007/978-3-642-99854-6_8
– volume: 94
  start-page: 1343
  year: 2012
  ident: 414_CR8
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2011.11.030
– volume: 196
  start-page: 8
  year: 2018
  ident: 414_CR19
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2018.04.069
– volume: 38
  start-page: 379
  year: 2015
  ident: 414_CR10
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12241
– volume: 85
  start-page: 528
  year: 1963
  ident: 414_CR14
  publication-title: J Basic Eng
  doi: 10.1115/1.3656900
– volume: 96
  start-page: 237
  year: 2017
  ident: 414_CR16
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.12.005
– volume: 123
  start-page: 40
  year: 2019
  ident: 414_CR4
  publication-title: Int l Fatigue
  doi: 10.1016/j.ijfatigue.2019.02.008
– volume: 180
  start-page: 316
  year: 2017
  ident: 414_CR11
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.07.097
– volume: 116
  start-page: 92
  year: 2014
  ident: 414_CR18
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2013.12.002
– ident: 414_CR1
– volume: 71
  start-page: 2751
  year: 2017
  ident: 414_CR3
  publication-title: Holzforschung
  doi: 10.1515/hf-2016-0154
SSID ssj0009784
Score 2.323135
Snippet The feasibility of using the modified Hartman–Schijve (HS) equation to analyze the fatigue fracture performance of adhesively bonded wood specimens under...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123
SubjectTerms Adhesion tests
Adhesive bonding
Adhesive joints
Automotive Engineering
Bonded joints
Characterization and Evaluation of Materials
Chemistry and Materials Science
Civil Engineering
Classical Mechanics
Crack propagation
Data analysis
Data reduction
Design standards
Drafting software
Energy release rate
Fatigue failure
Feasibility studies
Flexing
Fracture testing
Materials Science
Mechanical Engineering
Original Paper
Relative humidity
Room temperature
Scattering
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgLDAgnqJQ0B3YwFKb2I4zVoiqRYIFKnWL7MSmrUqC-kDqxj_wh3wJ12lCCwIkhkxxPNyHfRyfey4h55oniDpUnXoNP6BM1TWVIubUhlYp39dKaFecfHsn2l120-O9oihsUrLdyyvJfKVeKXYLcsZESJ1IFKN8nWxwd3bHKO56zaXUbiAXolGBoCEut0WpzM9zfN2Olhjz27Vovtu0dsh2AROhufDrLlkz6R7ZWhEP3CdjRG8Ft3UOuUosZCm0MRSeVPr--nYf9wfDFwOOAwqq0B4BxKjgut9ApwMWvfI4M2BdpdRsbCCzoJK-cYz20Rx05v6OgyPlwDAbpNPJAem2rh-u2rTooEBjTK0pTZgW0lOBz3SIT8OEymACWsZUw0OkVGfWBEYKLZWuS8t4zBUThlttEVlx5h-SSpql5oiALzViyTjhXuIzhORSWiHQlYaxUCaxqpJGacgoLuTFXZeLUbQURnbGj9D4UW78iFfJxec3zwtxjT9H10r_REWiTSLP54hSHGyqksvSZ8vXv892_L_hJ2TTcyftnK9dI5XpeGZOEY5M9VkefR_Ov9ap
  priority: 102
  providerName: Springer Nature
Title Feasibility study on Hartman–Schijve data analysis for mode II fatigue fracture of adhesively bonded wood joints
URI https://link.springer.com/article/10.1007/s10704-019-00414-5
https://www.proquest.com/docview/2350216635
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7R7gUOVSkgtj-rOfQGFruJ7Tinahd2uwVRIWClcorsxKatStLuT6Xe-g68YZ-EcdZLWiR6iHJw4sPMeOazPfMNwL4RBaEO3WVRL04Y113DlMwFc6nTOo6NlsYXJ38-luMJ_3giTsKB2yykVa58Yu2oiyr3Z-TvolhQOPLx8eDyivmuUf52NbTQWIMWuWBFm6_WYHj85WtDu5uoJYFUIllKrjeUzYTiuaTOwEiZJ53iTDwMTQ3e_OeKtI48o03YCJAR-0sdP4cnttyCZ_eIBF_AlJBcyHO9wZoxFqsSx2QWv3R5d_v7W356dn5t0eeDog48JEh4FX0nHDw6Qkca-rmw6HzV1GJqsXKoi1Prs9svbtBU_qQcfYIOnldn5Xz2Eiaj4ff3Yxa6KbCcltmcFdxIFekk5ialp2dTbWkxOs51LyLU1OXOJlZJo7TpKsdFLjSXVjjjCGUJHr-C9bIq7WvAWBnClXkhoiLmBM-VclKSWi3nqSpy3YbeSpBZHqjGfceLi6whSfbCz0j4WS38TLThzd9_LpdEG49-vbvSTxYW3SxrTKQNb1c6a4b_P9v247PtwNPI77LrXO1dWJ9PF3aPoMjcdGBNjQ470OoPPgxG_n3449OwE6yQRidR_w_ZhN_5
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LU9RAEO5CPCgHy2e5iNgHPemUu5lHJgfKooB1Vx4XoYpbnElmBAoS2IfW3vgP_g9-FL-Enmxi1Cq5ccgpyRx6vun-Zqb7a4C3VubEOkyXRT0eM2G6lmmVSeYTbwzn1igbipN399TgQHw5lIcLcNXUwoS0ysYnVo46L7NwRv4x4pLCUYiPn84vWOgaFW5XmxYac1hsu9lP2rKN14abNL_voqi_tb8xYHVXAZYR3CYsF1bpyMRc2ISenkuMI1B6IUwvIvbQFd7FTiurje1qL2QmjVBOeuuJbUjBadx7cF9wnoQVpfufW5HfWM_lqmLFEnL0dZFOXaoXV_keCQsSV4LJvwNhy27_uZCt4lz_MTyqCSquzxH1BBZc8RSW_pAtfAYj4o11Vu0MK31aLAscEAjPTHF9-etrdnR88sNhyD5FU6ueILFjDH13cDhET3j4PnXoQ43WdOSw9GjyIxdy6U9naMtwLo8hHQhPyuNiMn4OB3di5RewWJSFewnItSUWm-UyyrmgzYDWXikCkRMi0XlmOtBrDJlmtbB56K9xmraSzMH4KRk_rYyfyg68__3P-VzW49avV5r5SeslPk5bQHbgQzNn7ev_j7Z8-2hv4MFgf3cn3Rnubb-Ch1HY31dZ4iuwOBlN3WsiQRO7WiEP4dtdQ_0GWu8WLw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJAQHxCrKOgduYNEktuMcEVC1bEKCStwiO7EpCBJUUiRu_AN_yJcwTlNaECBxyCm2DzNj-yV-75mQbc1TRB2qTn0vCClTdU2lSDi1kVUqCLQS2omTz85Fs82Or_n1iIq_ZLsPjiT7mgbn0pQVe4-p3RsRvoUleyKizjCKUT5OJnE59lxdt_39oe1uKPsGUqGgES69lWzm5zG-bk1DvPntiLTceRpzZLaCjLDfz_E8GTPZApkZMRJcJF1EchXP9QVKx1jIM2hiWTyo7P317TLp3N49G3B8UFCVDwkgXgV3Ew60WmAxQzc9A9appnpdA7kFlXaMY7ffv4DO3Z9ycAQduMtvs-JpibQbR1cHTVrdpkATjEtBU6aF9FUYMB3h45lIGZyMljHl-Yia6sya0EihpdJ1aRlPuGLCcKstoizOgmUykeWZWSEQSI24Mkm5nwYM4bmUVghMq2EskmmiasQbBDJOKqtxd-PFfTw0SXbBjzH4cRn8mNfIzmefx77Rxp-t1wf5iatJ9xT7AUfE4iBUjewOcjZ8_ftoq_9rvkWmLg4b8Wnr_GSNTPvuA7ykca-TiaLbMxuIUgq9WRbiB8l13dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+study+on+Hartman%E2%80%93Schijve+data+analysis+for+mode+II+fatigue+fracture+of+adhesively+bonded+wood+joints&rft.jtitle=International+journal+of+fracture&rft.au=Clerc+Gaspard&rft.au=Brunner%2C+Andreas+J&rft.au=Niemz%2C+Peter&rft.au=Van+de+Kuilen+Jan+Willem+G&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0376-9429&rft.eissn=1573-2673&rft.volume=221&rft.issue=2&rft.spage=123&rft.epage=140&rft_id=info:doi/10.1007%2Fs10704-019-00414-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-9429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-9429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-9429&client=summon