Combined Newton–Raphson and Streamlines-Upwind Petrov–Galerkin iterations for nanoparticles transport in buoyancy-driven flow

The present study deals with the finite element discretization of nanofluid convective transport in an enclosure with variable properties. We study the Buongiorno model, which couples the Navier–Stokes equations for the base fluid, an advective-diffusion equation for the heat transfer, and an advect...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering mathematics Vol. 132; no. 1
Main Authors Riahi, M. K., Ali, M., Addad, Y., Abu-Nada, E.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0022-0833
1573-2703
DOI10.1007/s10665-021-10205-4

Cover

Loading…
Abstract The present study deals with the finite element discretization of nanofluid convective transport in an enclosure with variable properties. We study the Buongiorno model, which couples the Navier–Stokes equations for the base fluid, an advective-diffusion equation for the heat transfer, and an advection-dominated nanoparticle fraction concentration subject to thermophoresis and Brownian motion forces. We develop an iterative numerical scheme that combines Newton’s method (dedicated to the resolution of the momentum and energy equations) with the transport equation that governs the nanoparticles concentration in the enclosure. We show that the Stream-Upwind Petrov–Galerkin regularization approach is required to solve properly the transport equation in Buongiorno’s model, in the Finite Element framework. Indeed, we formulate this ill-posed equation as a variational problem under mean value constraint. Numerical analysis and computations are reported to show the effectiveness of our proposed numerical approach in its ability to provide reasonably good agreement with the experimental results available in the literature.
AbstractList The present study deals with the finite element discretization of nanofluid convective transport in an enclosure with variable properties. We study the Buongiorno model, which couples the Navier–Stokes equations for the base fluid, an advective-diffusion equation for the heat transfer, and an advection-dominated nanoparticle fraction concentration subject to thermophoresis and Brownian motion forces. We develop an iterative numerical scheme that combines Newton’s method (dedicated to the resolution of the momentum and energy equations) with the transport equation that governs the nanoparticles concentration in the enclosure. We show that the Stream-Upwind Petrov–Galerkin regularization approach is required to solve properly the transport equation in Buongiorno’s model, in the Finite Element framework. Indeed, we formulate this ill-posed equation as a variational problem under mean value constraint. Numerical analysis and computations are reported to show the effectiveness of our proposed numerical approach in its ability to provide reasonably good agreement with the experimental results available in the literature.
ArticleNumber 22
Author Abu-Nada, E.
Riahi, M. K.
Addad, Y.
Ali, M.
Author_xml – sequence: 1
  givenname: M. K.
  orcidid: 0000-0001-7987-1391
  surname: Riahi
  fullname: Riahi, M. K.
  email: mohamed.riahi@ku.ac.ae
  organization: Department of Applied Mathematics, Khalifa University, Emirates Nuclear Technology Center, Khalifa University
– sequence: 2
  givenname: M.
  surname: Ali
  fullname: Ali, M.
  organization: Emirates Nuclear Technology Center, Khalifa University, Department of Nuclear Engineering, Khalifa University
– sequence: 3
  givenname: Y.
  surname: Addad
  fullname: Addad, Y.
  organization: Emirates Nuclear Technology Center, Khalifa University, Department of Nuclear Engineering, Khalifa University
– sequence: 4
  givenname: E.
  surname: Abu-Nada
  fullname: Abu-Nada, E.
  organization: Department of Mechanical Engineering, Khalifa University
BookMark eNp9kMFuFSEUQImpia_VH3BF4hp7gWFgluZFq0mjxto1YWbuKHUejMDry9vZb-gf9kukfSYmXXRFQs7hcs8xOQoxICGvObzlAPo0c2hbxUBwxkGAYs0zsuJKSyY0yCOyAhCCgZHyBTnO-QoAOtOIFblZx03vA470M-5KDHd_br-55WeOgbow0ouS0G3mCmR2uex8vfqKJcXryp25GdMvH6gvmFzxMWQ6xUSDC3FxqfhhxkxLciEvMRVayX4b9y4MezYmf42BTnPcvSTPJzdnfPXvPCGXH95_X39k51_OPq3fnbNB8q6wUSLyfui16CdEUJ0zYtSTxE6o1jRuMNj2YLTpxskpraFXBhUHyeU4Yd_LE_Lm8O6S4u8t5mKv4jaFOtKKVjbKtFo0lRIHakgx54STXZLfuLS3HOx9antIbWtq-5Da3kvmkTT48lCkbu_np1V5UHOdE35g-v-rJ6y_ToeaxA
CitedBy_id crossref_primary_10_3390_math11040908
crossref_primary_10_1002_ente_202301398
crossref_primary_10_1016_j_icheatmasstransfer_2023_106764
crossref_primary_10_1177_14613484221145588
crossref_primary_10_1016_j_icheatmasstransfer_2022_106029
crossref_primary_10_1051_epjconf_202328811001
crossref_primary_10_1080_10407782_2023_2192990
crossref_primary_10_3389_fenrg_2024_1422256
crossref_primary_10_1016_j_ijft_2022_100246
crossref_primary_10_2139_ssrn_4088368
crossref_primary_10_3390_fluids7120364
crossref_primary_10_1016_j_nucengdes_2022_111819
crossref_primary_10_1177_14613484241260198
crossref_primary_10_1016_j_ijthermalsci_2022_107699
crossref_primary_10_3390_axioms12020163
crossref_primary_10_1016_j_est_2023_107059
crossref_primary_10_1016_j_ijthermalsci_2024_109355
crossref_primary_10_3390_molecules28155763
crossref_primary_10_1038_s41598_023_34907_0
Cites_doi 10.1016/j.ijheatmasstransfer.2018.07.103
10.1016/j.cam.2004.09.017
10.3390/fluids1020016
10.1137/1.9780898719208
10.1016/j.cma.2004.01.026
10.1007/s00231-017-2061-0
10.1115/1.4026355
10.1016/j.applthermaleng.2018.04.080
10.1016/j.jmaa.2019.04.002
10.1137/100789002
10.1016/0045-7825(92)90143-8
10.1016/j.ijheatmasstransfer.2012.10.037
10.1140/epjp/i2018-11914-3
10.1016/j.ijheatfluidflow.2008.01.005
10.1016/j.ijheatmasstransfer.2004.07.012
10.1007/s10973-020-09378-4
10.1142/S0218202511005659
10.1007/s00231-016-1760-2
10.1016/j.ijthermalsci.2010.02.013
10.1016/j.cma.2009.11.023
10.1016/j.imu.2017.10.007
10.1016/j.enconman.2018.06.097
10.1016/S0045-7825(96)01102-4
10.1016/j.cma.2018.02.030
10.1016/0045-7825(82)90071-8
10.1016/j.ijheatmasstransfer.2017.09.050
10.1016/j.cej.2021.132321
10.1016/0045-7930(73)90027-3
10.1016/j.cma.2017.11.020
10.1007/s00231-002-0382-z
10.1016/j.compfluid.2015.12.013
10.1115/1.2150834
10.1201/9781315163574-12
10.1155/2010/742739
10.1063/1.3245330
10.1016/j.cma.2012.11.019
10.1016/j.ces.2017.08.034
10.1016/0045-7825(88)90108-9
10.1155/2010/380826
10.1016/j.ijthermalsci.2010.07.006
10.1063/1.2093936
10.1016/j.ijheatmasstransfer.2009.02.006
10.1016/j.cma.2019.05.028
10.1016/j.jmaa.2020.124151
10.1038/s41598-021-95269-z
10.1016/j.cma.2005.05.031
10.1016/j.cma.2012.04.003
10.1080/02656730801907937
10.1115/1.4002633
10.3390/en11040919
10.1061/(ASCE)EY.1943-7897.0000433
10.1016/S0378-4754(02)00098-8
10.1016/j.cma.2016.07.043
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
The Author(s), under exclusive licence to Springer Nature B.V. 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022.
DBID AAYXX
CITATION
DOI 10.1007/s10665-021-10205-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1573-2703
ExternalDocumentID 10_1007_s10665_021_10205_4
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z86
Z8M
Z8S
ZMTXR
ZWQNP
ZY4
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c319t-d3ee1bcb72bfee059a82d7f3e925684ac8e6b08789dfa5770b58e510313dfebb3
IEDL.DBID U2A
ISSN 0022-0833
IngestDate Fri Jul 25 11:02:31 EDT 2025
Tue Jul 01 03:43:57 EDT 2025
Thu Apr 24 23:04:58 EDT 2025
Fri Feb 21 02:47:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Finite element method
Navier–Stokes equations
Nanofluid
Nanofluid heat transfer
35Q35
35Q79
Newton–Raphson method
Stream-Upwind Petrov–Galerkin
65M60
Advection-dominated equation
65Y04
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-d3ee1bcb72bfee059a82d7f3e925684ac8e6b08789dfa5770b58e510313dfebb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7987-1391
PQID 2634586724
PQPubID 2043778
ParticipantIDs proquest_journals_2634586724
crossref_primary_10_1007_s10665_021_10205_4
crossref_citationtrail_10_1007_s10665_021_10205_4
springer_journals_10_1007_s10665_021_10205_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of engineering mathematics
PublicationTitleAbbrev J Eng Math
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Yurun (CR29) 1997; 141
Burman (CR52) 2010; 199
Kleinstreuer, Xu (CR1) 2016; 1
Alosious, Sarath, Nair, Krishnakumar (CR59) 2017; 53
Ardahaie, Amiri, Amouei, Hosseinzadeh, Ganji (CR6) 2018; 10
Galeão, Do Carmo (CR28) 1988; 68
Ullah, Nadeem, Khan (CR36) 2020; 143
Brooks, Hughes (CR48) 1982; 32
Astanina, Kamel Riahi, Abu-Nada, Sheremet (CR56) 2018; 116
CR2
Balla, Naikoti (CR35) 2016; 230
Taylor, Hood (CR38) 1973; 1
Abu-Nada, Chamkha (CR40) 2010; 49
Benedetto, Berrone, Borio, Pieraccini, Scialò (CR57) 2016; 311
CR47
Ho, Liu, Chang, Lin (CR24) 2010; 49
Burman, Smith (CR51) 2011; 21
Amidu, Addad, Riahi, Abu-Nada (CR27) 2021; 11
Erath, Praetorius (CR30) 2019; 353
CR42
Buongiorno, Venerus, Prabhat, McKrell, Townsend, Christianson, Tolmachev, Keblinski, Lw, Alvarado (CR20) 2009; 106
Minkowycz, Sparrow, Abraham (CR3) 2012
Bochev, Gunzburger, Shadid (CR46) 2004; 193
Apel, Randrianarivony (CR39) 2003; 61
Chon, Kihm, Lee, Choi (CR26) 2005; 87
Fan, Wang (CR18) 2011; 133
Baïri, Laraqi, Adeyeye (CR9) 2018; 133
John, Novo (CR43) 2013; 255
Gelhard, Lube, Olshanskii, Starcke (CR50) 2005; 177
ten Eikelder, Akkerman (CR44) 2018; 331
Sarkar, Ganguly, Biswas, Saha (CR4) 2016; 127
CR54
Chen, Wang, Liu (CR60) 2016; 52
ten Eikelder, Akkerman (CR31) 2018; 340
Girault, Raviart (CR37) 2012
Putra, Roetzel, Das (CR25) 2003; 39
Bänsch, Faghih-Naini, Morin (CR32) 2020; 489
Li, Kleinstreuer (CR12) 2008; 29
Franca, Frey, Hughes (CR49) 1992; 95
Li, Wang, Wang, Baleta, Min, Sundén (CR13) 2018; 171
Mahian, Kianifar, Kalogirou, Pop, Wongwises (CR11) 2013; 57
Khanafer, Vafai (CR41) 2017
Kumar, Kazi, Masjuki, Zubir (CR21) 2021; 429
Buongiorno (CR10) 2005; 128
Xu, Kleinstreuer (CR14) 2014; 6
Salloum, Ma, Weeks, Zhu (CR7) 2008; 24
Kakaç, Pramuanjaroenkij (CR19) 2009; 52
Addad, Abutayeh, Abu-Nada (CR16) 2017; 143
Shekar, Kishan (CR34) 2015; 662
John, Novo (CR53) 2011; 49
Ern, Guermond (CR55) 2013
Khodadadi, Aghakhani, Majd, Kalbasi, Wongwises, Afrand (CR17) 2018; 127
Jabbari, Rajabpour, Saedodin (CR15) 2017; 174
Wervaecke, Beaugendre, Nkonga (CR58) 2012; 233–236
Bänsch (CR33) 2019; 477
Baïri (CR8) 2018; 138
CR61
Sun, Yan, Massoudi, Chen, Wu (CR5) 2018; 11
Li, Peterson (CR23) 2010; 2
Burman (CR45) 2010; 199
Wen, Ding (CR22) 2004; 47
MA Amidu (10205_CR27) 2021; 11
E Bänsch (10205_CR32) 2020; 489
10205_CR42
AC Galeão (10205_CR28) 1988; 68
T Gelhard (10205_CR50) 2005; 177
10205_CR47
LP Franca (10205_CR49) 1992; 95
K Khanafer (10205_CR41) 2017
CH Chon (10205_CR26) 2005; 87
S Sarkar (10205_CR4) 2016; 127
N Ullah (10205_CR36) 2020; 143
C Ho (10205_CR24) 2010; 49
J Buongiorno (10205_CR10) 2005; 128
M ten Eikelder (10205_CR44) 2018; 331
10205_CR54
LH Kumar (10205_CR21) 2021; 429
PB Bochev (10205_CR46) 2004; 193
E Burman (10205_CR51) 2011; 21
D Wen (10205_CR22) 2004; 47
Q Li (10205_CR13) 2018; 171
S Kakaç (10205_CR19) 2009; 52
H Khodadadi (10205_CR17) 2018; 127
M Salloum (10205_CR7) 2008; 24
J Li (10205_CR12) 2008; 29
M Benedetto (10205_CR57) 2016; 311
W Minkowycz (10205_CR3) 2012
E Abu-Nada (10205_CR40) 2010; 49
A Ern (10205_CR55) 2013
MS Astanina (10205_CR56) 2018; 116
BC Shekar (10205_CR34) 2015; 662
CH Li (10205_CR23) 2010; 2
V John (10205_CR53) 2011; 49
C Erath (10205_CR30) 2019; 353
10205_CR61
Y Addad (10205_CR16) 2017; 143
O Mahian (10205_CR11) 2013; 57
A Baïri (10205_CR9) 2018; 133
AN Brooks (10205_CR48) 1982; 32
C Wervaecke (10205_CR58) 2012; 233–236
SS Ardahaie (10205_CR6) 2018; 10
V John (10205_CR43) 2013; 255
10205_CR2
Z Xu (10205_CR14) 2014; 6
J Fan (10205_CR18) 2011; 133
S Alosious (10205_CR59) 2017; 53
F Yurun (10205_CR29) 1997; 141
YJ Chen (10205_CR60) 2016; 52
A Baïri (10205_CR8) 2018; 138
E Burman (10205_CR45) 2010; 199
V Girault (10205_CR37) 2012
J Buongiorno (10205_CR20) 2009; 106
C Taylor (10205_CR38) 1973; 1
C Kleinstreuer (10205_CR1) 2016; 1
XH Sun (10205_CR5) 2018; 11
N Putra (10205_CR25) 2003; 39
E Burman (10205_CR52) 2010; 199
E Bänsch (10205_CR33) 2019; 477
T Apel (10205_CR39) 2003; 61
CS Balla (10205_CR35) 2016; 230
M ten Eikelder (10205_CR31) 2018; 340
F Jabbari (10205_CR15) 2017; 174
References_xml – year: 2012
  ident: CR37
  publication-title: Finite element methods for Navier–Stokes equations: theory and algorithms
– volume: 49
  start-page: 1149
  issue: 3/4
  year: 2011
  end-page: 1176
  ident: CR53
  article-title: Error analysis of the supg finite element discretization of evolutionary convection–diffusion–reaction equations
  publication-title: SIAM J Numer Anal
– volume: 127
  start-page: 47
  year: 2016
  end-page: 64
  ident: CR4
  article-title: Effect of cylinder rotation during mixed convective flow of nanofluids past a circular cylinder
  publication-title: Comput Fluids
– volume: 11
  start-page: 919
  issue: 4
  year: 2018
  ident: CR5
  article-title: Numerical simulation of nanofluid suspensions in a geothermal heat exchanger
  publication-title: Energies
– year: 2013
  ident: CR55
  publication-title: Theory and practice of finite elements
– volume: 489
  start-page: 124151
  issue: 1
  year: 2020
  ident: CR32
  article-title: Convective transport in nanofluids: the stationary problem
  publication-title: J Math Anal Appl
– volume: 47
  start-page: 5181
  issue: 24
  year: 2004
  end-page: 5188
  ident: CR22
  article-title: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions
  publication-title: Int J Heat Mass Transf
– volume: 143
  start-page: 4169
  year: 2020
  ident: CR36
  article-title: Finite element simulations for natural convective flow of nanofluid in a rectangular cavity having corrugated heated rods
  publication-title: J Therm Anal Calorim
– ident: CR54
– ident: CR61
– volume: 311
  start-page: 18
  year: 2016
  end-page: 40
  ident: CR57
  article-title: Order preserving supg stabilization for the virtual element formulation of advection–diffusion problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 116
  start-page: 532
  year: 2018
  end-page: 548
  ident: CR56
  article-title: Magnetohydrodynamic in partially heated square cavity with variable properties: discrepancy in experimental and theoretical conductivity correlations
  publication-title: Int J Heat Mass Transf
– ident: CR42
– volume: 106
  start-page: 094312
  issue: 9
  year: 2009
  ident: CR20
  article-title: A benchmark study on the thermal conductivity of nanofluids
  publication-title: J Appl Phys
– volume: 174
  start-page: 67
  year: 2017
  end-page: 81
  ident: CR15
  article-title: Thermal conductivity and viscosity of nanofluids: a review of recent molecular dynamics studies
  publication-title: Chem Eng Sci
– volume: 340
  start-page: 1135
  year: 2018
  end-page: 1154
  ident: CR31
  article-title: Correct energy evolution of stabilized formulations: the relation between vms, supg and gls via dynamic orthogonal small-scales and isogeometric analysis. ii: The incompressible Navier–Stokes equations
  publication-title: Comput Methods Appl Mech Eng
– volume: 429
  start-page: 132321
  year: 2021
  ident: CR21
  article-title: A review of recent advances in green nanofluids and their application in thermal systems
  publication-title: Chem Eng J
– volume: 193
  start-page: 2301
  issue: 23
  year: 2004
  end-page: 2323
  ident: CR46
  article-title: Stability of the supg finite element method for transient advection–diffusion problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 10
  start-page: 71
  year: 2018
  end-page: 81
  ident: CR6
  article-title: Investigating the effect of adding nanoparticles to the blood flow in presence of magnetic field in a porous blood arterial
  publication-title: Inf Med Unlocked
– volume: 255
  start-page: 289
  year: 2013
  end-page: 305
  ident: CR43
  article-title: A robust supg norm a posteriori error estimator for stationary convection–diffusion equations
  publication-title: Comput Methods Appl Mech Eng
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 24
  ident: CR27
  article-title: Numerical investigation of nanoparticles slip mechanisms impact on the natural convection heat transfer characteristics of nanofluids in an enclosure
  publication-title: Sci Rep
– volume: 49
  start-page: 2339
  issue: 12
  year: 2010
  end-page: 2352
  ident: CR40
  article-title: Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-Eg-water nanofluid
  publication-title: Int J Therm Sci
– year: 2012
  ident: CR3
  publication-title: Nanoparticle heat transfer and fluid flow
– volume: 2
  start-page: 742739
  year: 2010
  ident: CR23
  article-title: Experimental studies of natural convection heat transfer of Al O /Di water nanoparticle suspensions (nanofluids)
  publication-title: Adv Mech Eng
– volume: 138
  start-page: 924
  year: 2018
  end-page: 933
  ident: CR8
  article-title: Effects of ZnO–H O nanofluid saturated porous medium on the thermal behavior of cubical electronics contained in a tilted hemispherical cavity. an experimental and numerical study
  publication-title: Appl Therm Eng
– start-page: 279
  year: 2017
  end-page: 332
  ident: CR41
  article-title: A critical synthesis of thermophysical characteristics of nanofluids
  publication-title: Nanotechnology and energy
– volume: 57
  start-page: 582
  issue: 2
  year: 2013
  end-page: 594
  ident: CR11
  article-title: A review of the applications of nanofluids in solar energy
  publication-title: Int J Heat Mass Transf
– volume: 230
  start-page: 161
  issue: 3
  year: 2016
  end-page: 173
  ident: CR35
  article-title: Finite element analysis of magnetohydrodynamic transient free convection flow of nanofluid over a vertical cone with thermal radiation
  publication-title: Proc Inst Mech Eng N
– volume: 177
  start-page: 243
  issue: 2
  year: 2005
  end-page: 267
  ident: CR50
  article-title: Stabilized finite element schemes with lbb-stable elements for incompressible flows
  publication-title: J Comput Appl Math
– volume: 24
  start-page: 337
  issue: 4
  year: 2008
  end-page: 345
  ident: CR7
  article-title: Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel
  publication-title: Int J Hypertherm
– volume: 331
  start-page: 259
  year: 2018
  end-page: 280
  ident: CR44
  article-title: Correct energy evolution of stabilized formulations: the relation between vms, supg and gls via dynamic orthogonal small-scales and isogeometric analysis. i: The convective-diffusive context
  publication-title: Comput Methods Appl Mech Eng
– volume: 141
  start-page: 47
  issue: 1
  year: 1997
  end-page: 65
  ident: CR29
  article-title: A comparative study of the discontinuous Galerkin and continuous supg finite element methods for computation of viscoelastic flows
  publication-title: Comput Methods Appl Mech Eng
– volume: 52
  start-page: 3187
  issue: 13–14
  year: 2009
  end-page: 3196
  ident: CR19
  article-title: Review of convective heat transfer enhancement with nanofluids
  publication-title: Int J Heat Mass Transf
– volume: 6
  start-page: 3
  year: 2014
  ident: CR14
  article-title: Computational analysis of nanofluid cooling of high concentration photovoltaic cells
  publication-title: J Therm Sci Eng Appl
– volume: 39
  start-page: 775
  issue: 8–9
  year: 2003
  end-page: 784
  ident: CR25
  article-title: Natural convection of nano-fluids
  publication-title: Heat Mass Transf
– ident: CR47
– volume: 143
  start-page: 04017006
  issue: 4
  year: 2017
  ident: CR16
  article-title: Effects of nanofluids on the performance of a pcm-based thermal energy storage system
  publication-title: J Energy Eng
– volume: 133
  start-page: 4
  year: 2011
  ident: CR18
  article-title: Review of heat conduction in nanofluids
  publication-title: J Heat Transf
– ident: CR2
– volume: 662
  start-page: 012017
  year: 2015
  ident: CR34
  article-title: Finite element analysis of natural convective heat transfer in a porous square cavity filled with nanofluids in the presence of thermal radiation
  publication-title: J Phys
– volume: 127
  start-page: 997
  year: 2018
  end-page: 1012
  ident: CR17
  article-title: A comprehensive review on rheological behavior of mono and hybrid nanofluids: effective parameters and predictive correlations
  publication-title: Int J Heat Mass Transf
– volume: 477
  start-page: 41
  issue: 1
  year: 2019
  end-page: 59
  ident: CR33
  article-title: A thermodynamically consistent model for convective transport in nanofluids: existence of weak solutions and fem computations
  publication-title: J Math Anal Appl
– volume: 1
  start-page: 73
  issue: 1
  year: 1973
  end-page: 100
  ident: CR38
  article-title: A numerical solution of the Navier–Stokes equations using the finite element technique
  publication-title: Comput Fluids
– volume: 29
  start-page: 1221
  issue: 4
  year: 2008
  end-page: 1232
  ident: CR12
  article-title: Thermal performance of nanofluid flow in microchannels
  publication-title: Int J Heat Fluid Flow
– volume: 95
  start-page: 253
  issue: 2
  year: 1992
  end-page: 276
  ident: CR49
  article-title: Stabilized finite element methods: I. application to the advective–diffusive model
  publication-title: Comput Methods Appl Mech Eng
– volume: 21
  start-page: 2049
  issue: 10
  year: 2011
  end-page: 2068
  ident: CR51
  article-title: Analysis of the space semi-discretized supg method for transient convection–diffusion equations
  publication-title: Math Models Methods Appl Sci
– volume: 233–236
  start-page: 109
  year: 2012
  end-page: 122
  ident: CR58
  article-title: A fully coupled rans Spalart–Allmaras supg formulation for turbulent compressible flows on stretched-unstructured grids
  publication-title: Comput Methods Appl Mech Eng
– volume: 171
  start-page: 1440
  year: 2018
  end-page: 1448
  ident: CR13
  article-title: Effects of gravity and variable thermal properties on nanofluid convective heat transfer using connected and unconnected walls
  publication-title: Energy Convers Manag
– volume: 61
  start-page: 437
  issue: 3–6
  year: 2003
  end-page: 447
  ident: CR39
  article-title: Stability of discretizations of the stokes problem on anisotropic meshes
  publication-title: Math Comput Simul
– volume: 53
  start-page: 3545
  issue: 12
  year: 2017
  end-page: 3563
  ident: CR59
  article-title: Experimental and numerical study on heat transfer enhancement of flat tube radiator using Al O and CuO nanofluids
  publication-title: Heat Mass Transf
– volume: 199
  start-page: 1114
  issue: 17
  year: 2010
  end-page: 1123
  ident: CR45
  article-title: Consistent supg-method for transient transport problems: stability and convergence
  publication-title: Comput Methods Appl Mech Eng
– volume: 353
  start-page: 308
  year: 2019
  end-page: 327
  ident: CR30
  article-title: Optimal adaptivity for the supg finite element method
  publication-title: Comput Methods Appl Mech Eng
– volume: 68
  start-page: 83
  issue: 1
  year: 1988
  end-page: 95
  ident: CR28
  article-title: A consistent approximate upwind Petrov–Galerkin method for convection-dominated problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 49
  start-page: 1345
  issue: 8
  year: 2010
  end-page: 1353
  ident: CR24
  article-title: Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study
  publication-title: Int J Therm Sci
– volume: 133
  start-page: 1
  issue: 3
  year: 2018
  end-page: 11
  ident: CR9
  article-title: Thermal behavior of an active electronic dome contained in a tilted hemispherical enclosure and subjected to nanofluidic Cu-water free convection
  publication-title: Eur Phys J Plus
– volume: 52
  start-page: 2471
  issue: 11
  year: 2016
  end-page: 2484
  ident: CR60
  article-title: Numerical study of natural convection characteristics of nanofluids in an enclosure using multiphase model
  publication-title: Heat Mass Transf
– volume: 87
  start-page: 153107
  issue: 15
  year: 2005
  ident: CR26
  article-title: Empirical correlation finding the role of temperature and particle size for nanofluid (Al O ) thermal conductivity enhancement
  publication-title: Appl Phys Lett
– volume: 1
  start-page: 16
  issue: 2
  year: 2016
  ident: CR1
  article-title: Mathematical modeling and computer simulations of nanofluid flow with applications to cooling and lubrication
  publication-title: Fluids
– volume: 128
  start-page: 240
  issue: 3
  year: 2005
  end-page: 250
  ident: CR10
  article-title: Convective transport in nanofluids
  publication-title: J Heat Transf
– volume: 199
  start-page: 1114
  issue: 17–20
  year: 2010
  end-page: 1123
  ident: CR52
  article-title: Consistent supg-method for transient transport problems: stability and convergence
  publication-title: Comput Methods Appl Mech Eng
– volume: 32
  start-page: 199
  issue: 1–3
  year: 1982
  end-page: 259
  ident: CR48
  article-title: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations
  publication-title: Comput Methods Appl Mech Eng
– volume: 127
  start-page: 997
  year: 2018
  ident: 10205_CR17
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.07.103
– volume: 177
  start-page: 243
  issue: 2
  year: 2005
  ident: 10205_CR50
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2004.09.017
– volume: 1
  start-page: 16
  issue: 2
  year: 2016
  ident: 10205_CR1
  publication-title: Fluids
  doi: 10.3390/fluids1020016
– volume-title: Finite element methods for Navier–Stokes equations: theory and algorithms
  year: 2012
  ident: 10205_CR37
– ident: 10205_CR54
  doi: 10.1137/1.9780898719208
– volume: 193
  start-page: 2301
  issue: 23
  year: 2004
  ident: 10205_CR46
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2004.01.026
– volume: 53
  start-page: 3545
  issue: 12
  year: 2017
  ident: 10205_CR59
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-017-2061-0
– volume: 6
  start-page: 3
  year: 2014
  ident: 10205_CR14
  publication-title: J Therm Sci Eng Appl
  doi: 10.1115/1.4026355
– volume: 138
  start-page: 924
  year: 2018
  ident: 10205_CR8
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.04.080
– volume: 477
  start-page: 41
  issue: 1
  year: 2019
  ident: 10205_CR33
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2019.04.002
– volume: 49
  start-page: 1149
  issue: 3/4
  year: 2011
  ident: 10205_CR53
  publication-title: SIAM J Numer Anal
  doi: 10.1137/100789002
– ident: 10205_CR61
– ident: 10205_CR42
– volume: 95
  start-page: 253
  issue: 2
  year: 1992
  ident: 10205_CR49
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(92)90143-8
– volume: 57
  start-page: 582
  issue: 2
  year: 2013
  ident: 10205_CR11
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.10.037
– volume: 133
  start-page: 1
  issue: 3
  year: 2018
  ident: 10205_CR9
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2018-11914-3
– volume: 29
  start-page: 1221
  issue: 4
  year: 2008
  ident: 10205_CR12
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2008.01.005
– volume: 47
  start-page: 5181
  issue: 24
  year: 2004
  ident: 10205_CR22
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2004.07.012
– volume: 143
  start-page: 4169
  year: 2020
  ident: 10205_CR36
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-020-09378-4
– volume: 21
  start-page: 2049
  issue: 10
  year: 2011
  ident: 10205_CR51
  publication-title: Math Models Methods Appl Sci
  doi: 10.1142/S0218202511005659
– volume: 52
  start-page: 2471
  issue: 11
  year: 2016
  ident: 10205_CR60
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-016-1760-2
– volume: 49
  start-page: 1345
  issue: 8
  year: 2010
  ident: 10205_CR24
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2010.02.013
– volume: 199
  start-page: 1114
  issue: 17–20
  year: 2010
  ident: 10205_CR52
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2009.11.023
– volume: 10
  start-page: 71
  year: 2018
  ident: 10205_CR6
  publication-title: Inf Med Unlocked
  doi: 10.1016/j.imu.2017.10.007
– volume: 171
  start-page: 1440
  year: 2018
  ident: 10205_CR13
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.06.097
– volume: 141
  start-page: 47
  issue: 1
  year: 1997
  ident: 10205_CR29
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01102-4
– volume: 340
  start-page: 1135
  year: 2018
  ident: 10205_CR31
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.02.030
– volume: 32
  start-page: 199
  issue: 1–3
  year: 1982
  ident: 10205_CR48
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(82)90071-8
– volume: 116
  start-page: 532
  year: 2018
  ident: 10205_CR56
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.09.050
– volume: 429
  start-page: 132321
  year: 2021
  ident: 10205_CR21
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.132321
– volume: 1
  start-page: 73
  issue: 1
  year: 1973
  ident: 10205_CR38
  publication-title: Comput Fluids
  doi: 10.1016/0045-7930(73)90027-3
– volume-title: Nanoparticle heat transfer and fluid flow
  year: 2012
  ident: 10205_CR3
– volume: 331
  start-page: 259
  year: 2018
  ident: 10205_CR44
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.11.020
– volume: 39
  start-page: 775
  issue: 8–9
  year: 2003
  ident: 10205_CR25
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-002-0382-z
– volume: 127
  start-page: 47
  year: 2016
  ident: 10205_CR4
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2015.12.013
– volume: 199
  start-page: 1114
  issue: 17
  year: 2010
  ident: 10205_CR45
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2009.11.023
– volume: 128
  start-page: 240
  issue: 3
  year: 2005
  ident: 10205_CR10
  publication-title: J Heat Transf
  doi: 10.1115/1.2150834
– start-page: 279
  volume-title: Nanotechnology and energy
  year: 2017
  ident: 10205_CR41
  doi: 10.1201/9781315163574-12
– volume: 2
  start-page: 742739
  year: 2010
  ident: 10205_CR23
  publication-title: Adv Mech Eng
  doi: 10.1155/2010/742739
– volume: 230
  start-page: 161
  issue: 3
  year: 2016
  ident: 10205_CR35
  publication-title: Proc Inst Mech Eng N
– volume: 106
  start-page: 094312
  issue: 9
  year: 2009
  ident: 10205_CR20
  publication-title: J Appl Phys
  doi: 10.1063/1.3245330
– volume: 255
  start-page: 289
  year: 2013
  ident: 10205_CR43
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2012.11.019
– volume: 174
  start-page: 67
  year: 2017
  ident: 10205_CR15
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2017.08.034
– volume: 68
  start-page: 83
  issue: 1
  year: 1988
  ident: 10205_CR28
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(88)90108-9
– ident: 10205_CR2
  doi: 10.1155/2010/380826
– volume: 49
  start-page: 2339
  issue: 12
  year: 2010
  ident: 10205_CR40
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2010.07.006
– volume: 87
  start-page: 153107
  issue: 15
  year: 2005
  ident: 10205_CR26
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2093936
– volume: 52
  start-page: 3187
  issue: 13–14
  year: 2009
  ident: 10205_CR19
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2009.02.006
– volume: 353
  start-page: 308
  year: 2019
  ident: 10205_CR30
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.05.028
– volume: 489
  start-page: 124151
  issue: 1
  year: 2020
  ident: 10205_CR32
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2020.124151
– volume: 662
  start-page: 012017
  year: 2015
  ident: 10205_CR34
  publication-title: J Phys
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10205_CR27
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-95269-z
– ident: 10205_CR47
  doi: 10.1016/j.cma.2005.05.031
– volume: 233–236
  start-page: 109
  year: 2012
  ident: 10205_CR58
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2012.04.003
– volume: 24
  start-page: 337
  issue: 4
  year: 2008
  ident: 10205_CR7
  publication-title: Int J Hypertherm
  doi: 10.1080/02656730801907937
– volume: 133
  start-page: 4
  year: 2011
  ident: 10205_CR18
  publication-title: J Heat Transf
  doi: 10.1115/1.4002633
– volume: 11
  start-page: 919
  issue: 4
  year: 2018
  ident: 10205_CR5
  publication-title: Energies
  doi: 10.3390/en11040919
– volume-title: Theory and practice of finite elements
  year: 2013
  ident: 10205_CR55
– volume: 143
  start-page: 04017006
  issue: 4
  year: 2017
  ident: 10205_CR16
  publication-title: J Energy Eng
  doi: 10.1061/(ASCE)EY.1943-7897.0000433
– volume: 61
  start-page: 437
  issue: 3–6
  year: 2003
  ident: 10205_CR39
  publication-title: Math Comput Simul
  doi: 10.1016/S0378-4754(02)00098-8
– volume: 311
  start-page: 18
  year: 2016
  ident: 10205_CR57
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.07.043
SSID ssj0009842
Score 2.3572905
Snippet The present study deals with the finite element discretization of nanofluid convective transport in an enclosure with variable properties. We study the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applications of Mathematics
Brownian motion
Computational Mathematics and Numerical Analysis
Enclosures
Finite element method
Galerkin method
Iterative methods
Mathematical analysis
Mathematical and Computational Engineering
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Nanofluids
Nanoparticles
Numerical analysis
Regularization
Theoretical and Applied Mechanics
Thermophoresis
Transport equations
Title Combined Newton–Raphson and Streamlines-Upwind Petrov–Galerkin iterations for nanoparticles transport in buoyancy-driven flow
URI https://link.springer.com/article/10.1007/s10665-021-10205-4
https://www.proquest.com/docview/2634586724
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbKcikHSmkrHgvyoTdqKQ-_ctytWBAVHCoi0VNkJ7Z6oNkVWVj1Vn5D_2F_CTNZZ0NRQeopijLxIfP6Jp75TMhH72QsIa0yHZcp415wZrLMMxFXJejfmEzh7PD5hTzN-dmVuApDYU3X7d5tSbaR-tGwm5Q4TYwtWEkkGF8j6wJqd7TrPBn1VLuarzjCAWCkYVTm32v8nY56jPlkW7TNNpMtshlgIh0t9fqWvHL1NnkTICMNDtlsk41HfIJwd74iYW3ekXvwdah7QR4iGUC8P79-fzWz7wCwqalhEewx_4Eos2H5bAG1OcXjtaZ3IHcCaQN_otMl6TKaJgV0S2tTQ5EdeunovCNGpyBpb6c_MVKz6gYDKPXX08V7kk-OLz-fsnDiAivBFeesSp2LbWlVYr1zgLyMTirlU5cBMtLclNpJG2mls8oboVRkhXbIyRenlXfWph_IoJ7WbodQaUvlcfpEG84jl1mjImGxXiul9zzaJXH34Ysy0JHjqRjXRU-kjMoqQFlFq6yC75Kj1TuzJRnHi9LDTp9FcMymSGTKhZYqgcefOh33j59fbe__xPfJ66Q1QGx8GZLB_ObWHQB8mdtDsj6ajMcXeD359uX4sLXeB3L07Ls
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxRBEK7gclAOgqgBROyDN20yj37NkRhgEZaDYRM8Tbp7umMizm6YWQic9Df4D_0lVu_27CJRE46TqenMdNfjq-mqrwHeeidSgWGVqtTmlHnOqC4KT3laWVx_rQsZeocHp6I_ZB_P-XlsCmu6avduS3Lqqe80uwkRuolDCVaWcMoewTLDHJz3YHnv8PPx_oJsV7E5SzhCjDw2y_x9lD8D0gJl3tsYncabg1UYdm86KzP5ujtpza69vUfi-NBPWYOnEYCSvZnGPIMlV6_DagSjJJp6sw4rd5gK8Wowp3dtnsMP9CKYUaM8-kgEj7--__ykx18QuhNd4yChev1bwK8NHY6vMesn4eCu0RXKHWJACr_nyYzOOSg9QdxMal1j-h6r9EjbUa4TlDST0U2IAbS6DK6Z-IvR9QsYHuyffejTeJYDtWjkLa1y51JjjcyMdw4xnVZZJX3uCsRcimmrnDCJkqqovOZSJoYrF9j-0rzyzpj8JfTqUe02gAhjpQ99LUozlrjCaJlwEzJBK7xnySak3YKWNhKdh_M2LsoFRXOY_xLnv5zOf8k24d38mfGM5uO_0tudnpTR5JsyEznjSsgMb7_vln1x-9-jbT1M_A087p8NTsqTo9PjV_Akmyp5KK_Zhl57OXGvESS1ZifaxG92KQmW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwELU4JAQFN-LGBR1Y5HBsp0TAciOEWIkushNbFJBdsQFEB9_AH_IlzGST3QUBEmXkiYvM9SaeeSZk01nhC0irTPlpyLiLONNx7FjkZynoX-tY4uzw-YU4avKTm-hmYIq_7HavjyS7Mw3I0pQXO-3M7QwMvgmBk8XYjhV4EePDZBTCsY9NXc1gt0-7q3iPLxzARliNzfy8x9fU1Meb345Iy8zTmCaTFWSku10dz5Ahm8-SqQo-0so5O7NkYoBbEJ7Oe4SsnTnyBn4PNTDIQ1QDuPfx-n6l27cAtqnOYRPsN79HxNlhzfYz1OkUr9pqPYHcIaQQ_KFOuwTMaKYUkC7NdQ4Fd9VXR4uaJJ2CpHlsvWDUZtkDBlPq7lrP86TZOLjeO2LV7QssBbcsWBZa65vUyMA4awGFaRVk0oU2BpSkuE6VFcZTUsWZ05GUnomURX4-P8ycNSZcICN5K7eLhAqTSoeTKEpz7tnYaOlFBmu3VDjHvSXi1x8-SStqcrwh4y7pkyqjshJQVlIqK-FLZKv3TrtLzPGn9Gqtz6Ry0k4SiJBHSsgAlrdrHfeXf99t-X_iG2Tscr-RnB1fnK6Q8aC0ReyHWSUjxcOjXQNUU5j10nA_AWHj8No
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Newton%E2%80%93Raphson+and+Streamlines-Upwind+Petrov%E2%80%93Galerkin+iterations+for+nanoparticles+transport+in+buoyancy-driven+flow&rft.jtitle=Journal+of+engineering+mathematics&rft.au=Riahi%2C+M.+K.&rft.au=Ali%2C+M.&rft.au=Addad%2C+Y.&rft.au=Abu-Nada%2C+E.&rft.date=2022-02-01&rft.pub=Springer+Netherlands&rft.issn=0022-0833&rft.eissn=1573-2703&rft.volume=132&rft.issue=1&rft_id=info:doi/10.1007%2Fs10665-021-10205-4&rft.externalDocID=10_1007_s10665_021_10205_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0833&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0833&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0833&client=summon